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. ". Acoustic and Elastic Diffraction Tomography and 

Its Application to Fracture Detection 

. Mehmet Ali Can Tura 

Abstract 

The inverse problem of fracture detection is approached using a wavefonn 

imaging method. The Born approximation is utilized for the linearization of the nonlinear 

inverse scattering problem. This method is preferable over existing linearized methods 

because it can account for the diffractions in the medium. The inversion is perfonned 

using two separate methods, the conventional backpropagation method and a quadratic 

programming method with constraints. Initially, the two-dimensional acoustic problem 

is discussed and the following developments are treated: estimation of a background 

velocity to be used in the inversion, sensitivity of the inversion algorithm to velocity and 

how this can. be utilized to reduce unwanted wave modes, effect of the total field on the 

inversion, incorporation of free-surfaces, inversion with slanted boreholes, and two

and-a-half-dimensional corrections. 

The inversion methods are applied to field data collected from a 10.0 by 21.5 m 

rectangular region where fractures were known to exist. This region was chosen from 

the Gril~l;.el test site facility in Switzerland A complete coverage of the rectangular area 

with 0.5 m spacing of three-component receivers and a piezoelectric source was carried 

out. A data processing scheme, necessary to bring the field data into a fonn that can be 

used in the inversion algorithms, is developed and applied to the crosshole field data. 

Results of backpropagation, quadratic programming and ray tomography crosshole 
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inversions agree well and show possible fracture zones which are confmned by core 

samples. 

The theory for the elastic case is developed next. The operators acting on the 

elastic parameters are discussed and their properties used for the inversion of individual 

elastic parameters. This inverse problem is in general ill-conditioned. A method that 

stabilizes the inverse problem using multi-frequencies and constrained angles is 

introduced and tested on synthetic data. 

A fractured medium will in general be transversely isotropic. Therefore, the 

theory is extended to the transverse isotropy case for SH-waves and elliptical anisotropy 

for quasi-P waves. Reconstruction of multi-parameters in a transversely isotropic 

medium is also discussed. Incorporation of elliptical anisotropy is seen to improve the 

isotropic inversion results of the field data previously obtained. 

~GMLJ~ 
Lane R. Johnson 

Committee chairman 
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Chapter 1 

Introduction 

In recent years, detection of fractures has become an important topic in 

geophysics. Enhanced oil recovery, storage of nuclear and toxic waste, hydrological and 

geothermal applications all rely on the accurate detection and characterization of 

fractures. Fracture detection with well logs has been routinely conducted and well

developed techniques for this purpose exist (for a review, see Crary et aI., 1987; Suau 

and Gartner, 1980). Recently, imaging techniques similar to migration were introduced 

into well logging (Hornby, 1989). Currently, the constraint of well logging applications 

is that it can only give information about the fractures in a limited region surrounding the 

borehole and with a limited view. ¥ore recently, vertical seismic profiling (VSP) and 

crosshole measurements have been used for fracture detection and characterization. 

These approaches in general use measurements of P-waves, S-waves, and tube-waves 

and calculate velocity, shear-wave anisotropy and attenuation properties of the medium 

to determine bulk properties of the fractured rock mass (Stewart et aI., 1981; Green and 

Mair, 1983; Fehler and Pearson, 1984; Carswell and Moon, 1984; Ollson et aI., 1984; 

Beydoun et aI., 1985; Hardin and Cheng, 1987; Majer et aI., 1988). 

In order to determine the detailed structure of fracturing, a ray equation or wave 

equation based inversion method can be used. A comparison of these two different 

inversion methods is given by Lo et aI. (1987) and will also be discussed here. An 

example of the ray method applied to field data from granitic rock, similar to the field 

case investigated here, can be found in Wong et aI. (1984). In fracture detection 

applications, because the fractured rock volume will be small compared to the 

background rock volume, although in some cases the variation in parameters being 
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inverted for can be large, weak scattering can in general be assumed. In addition, in 

most applications the background rock will be homogeneous, allowing the free-space 

Green's function to be used in the formulation of the inverse problem. As a result, 

diffraction tomography, a wave equation approach which assumes a homogeneous 

background medium and uses the Born or Rytov approximation to linearize the inverse 

scattering problem, is well suited for studying fractures. 

Other linearized inversion methods besides diffraction tomography exist but in 

general have not been formulated for cases other than surface profiling (Lines, 1988). 

One of these methods uses the Kirchoff approximation to linearize the inverse problem. 

This method is particularly useful for imaging of sharp contrasts (Geoltrain and Cohen, 

1989; Beylkin and Burridge, 1990). Other methods use the Born approximation with 

exact Green's function for a homogeneous background medium (Cohen and Bleistein, 

1979) or WKBJ approximated Green's function in order to account for a variable 

background medium (Clayton and Stolt, 1981). The method of Cohen and Bleistein 

(1979) is quite similar to diffraction tomography except that they solve the inverse 

problem in the time-space domain for surface data whereas here it is solved in the 

frequency-wavenumber domain for any geometry of sources and receivers as long as 

they are along a line. Also, as is demonstrated in section 2.2, the diffraction tomography 

approach gives more physical insight into the inverse problem considered with its 

wavenumber domain coverage diagrams. 

In cases where a homogeneous background approximation cannot be made, a 

ray tomography inversion, to obtain the slowly varying part of the background velocity 

(as well as source and receiver locations if there is any ambiguity), followed by a 

variable background high-resolution wave tomography inversion (using the ray theory 

inversion as a background model) can be expected to give good results (e.g. Pratt and 
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Goultry, 1989). In such a scheme incorporating a variable background, the Born 

approximation is still used and the Green's function has to be approximated as well. 

In addition to the above mentioned methods, there is a whole group of imaging 

techniques developed by geophysicists under the name of migration (Gardner, 1985). 

The main difference between migration and linearized inversion is that inversion is 

expected to recover the physical properties of the scatterer as well as its shape whereas 

in migration only the shape is required. It is important to note that in practice the actual 

amplitude recovery of the scatterer in the linearized inversion approach is a difficult task 

and will be discussed in the field data applications of the methods. 

Besides the linearized approach, there are also well-developed nonlinear 

approaches to the solution of the inverse problem. One of these is an iterative diffraction 

tomography method which calculates the higher order terms in the Born series (Lesselier 

and Vuillet-Laurent, 1985; Duchene et aI., 1985, 1987, 1988). Another approach uses a 

sinc-basis function to solve the nonlinear problem (Johnson and Tracy, 1983; Tracy and 

Johnson, 1983; Johnson et aI., 1983; Berggren et aI., 1986). Although both of these 

approaches have not entered geophysical applications in a wide sense, a generalized 

least-squares method is gaining popularity for surface seismic data (Tarantola, 1984; 

Mora, 1987; Beydoun and Mendes, 1989) and borehole data (Pratt and Goultry, 1989). 

These nonlinear approaches are computer intensive and may not be necessary. For 

example, in the fracture application considered here, linearization of the inverse problem 

via the Born approximation is expected to give good results and iterations should not be 

required. 

The theory of diffraction tomography is discussed in section 2.1. The principles 

of the method were laid out by Wolf (1969). After being used in medical imaging (for a 

review, see Kak and Slaney, 1987) it was introduced into geophysical applications by 

Devaney (1984) for plane-wave sources. The method was formulated for line sources 
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and receivers by Wu and Toksoz (1987). In the diffraction tomography approach, the 

inversion is usually performed using either the backpropagation method or the 

interpolated inverse Fourier transform method (for a comparison, see Kak and Slaney, 

1987). Here, the backpropagation method together with a new quadratic programming 

method is used. The advantage of the quadratic programming method is that constraints 

on the inversion velocities can be introduced. This method was recently applied to 

diffusion tomography by Zhou (1989), because a more stable inversion method was 

necessary to accommodate the dispersive nature of the electromagnetic fields (for a 

comparison, see Tura and Zhou, 1989). In fracture detection, this method is especially 

useful because the fracture velocity will in general be lower than the background velocity 

and this property can be used as a constraint in the inversion. 

In this study, the Born approximation rather than the Rytov approximation is 

used to linearize the inverse problem because it is expected to give better results in the 

fracture case, since fractures are thin structures and form a sharp velocity contrast (see 

Kak and Slaney, 1987; Pratt and Worthington, 1988; Lo et aI., 1988). 

In section 2.4, the sensitivity of the inversion method to velocity and frequency 

is analyzed. In general, inversion with a lower velocity than the background velocity 

results in an under focusing whereas using a higher velocity results in an over focusing 

effect and both cases degrade the image quality. In both cases, due to the incorrect phase 

used in the backpropagation operators, energy leaks from the real part to the imaginary 

part of the image. The importance of this section is for two reasons. The first is to show 

the need to obtain an accurate background velocity for the inversion and the second is to 

show how the inversion algorithm will implicitly filter out modes of wave propagation 

with different velocities than the inversion velocity. This second point is discussed in 

section 3.4.1 and an example of the implicit filtering of fracture-generated tube-waves 

and S-waves in a P-wave inversion is given. 
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Section 2.6 discusses inversion with the total field rather than the scattered field. 

Although the approach of leaving the incident field in the inversion is expected to 

produce incorrect results in migration (Chang and McMechan, 1986), this is not 

observed in the diffraction tomography inversion results considered here. 

In sections 2.7 and 2.8, extension of the theory to free-surfaces and slanted 

boreholes is formulated and applied to synthetic data. The free-surfaces are accounted 

for by constructing image sources and receivers, in which case the waves reflecting 

from the free-surface and interacting with the medium are turned from noise into 

, valuable information. The result is a considerable improvement in the reconstruction of 

the physical parameters. 

Slanted boreholes can he handled by introducing sine and cosine functions into 

the formulation of the problem. This case is especially useful for deep drilling 

applications where the boreholes can be bent. The problem is formulated for arbitrary 

angles of source and receiver boreholes and an application to synthetic data together with 

.the wavenumber domain coverage diagrams is given. 

The theory discussed in section 2.1 applies to line sources in a two-dimensional 

(2-D) medium, but in practice we have point sources and receivers. Therefore, the 

approach by Esmersoy (1986) is used in section 2.9 to generate an approximate filter 

that transforms a two-and-a-half-dimensional (2.5-D) medium (point sources and 

receivers in a 2-D medium) to a 2-D one. The 2.5-D corrections are also tested on 

synthetic data, before being applied to the field data, and give good results. 

In chapter 3, the theory is applied to field data with the objective of detecting 

fractures. Although the basic theory of diffraction tomography has been available for 

some time, the method has not been applied to field data up to now. This is not only 

because of the difficulties associated with the data acquisition, but also because a new 
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data processing scheme (compared to conventional surface seismic data processing) is 

necessary to bring the data into a form to which the inversion methods can be applied. 

The methods are applied to field data recorded in the FRI zone of the Grimsel 

test site facility in Switzerland. This zone was specifically chosen because of the 

fractures it contains. The geology of the region is discussed in section 3.1. Although the 

region was believed to consist of simple fracturing in a homogeneous granite, the 

medium was found to be more complex and anisotropic. Data gathering and field 

procedures are discussed in section 3.2. 

The data processing scheme is introduced in section 3.3. This scheme initially 

estimates a background attenuation value and then, using the optimized first arrival 

times, finds a common source gather, common receiver gather and an average wavelet. 

The average wavelet is used to remove the incident field. The deconvolution is 

performed in the frequency domain for each of the three different wavelet types. The 

deconvolved data are muted at the beginning and windowed at the end of the traces in 

order to reduce random noise and unwanted wavetypes. The last step before inversion is 

the application of the 2.5-D corrections to the data set. 

In section 3.4, inversion of the. processed data is discussed. A method to 

estimate the background velocity to be used in the inversion is introduced and applied to 

the data. Finally, the data are inverted and the results are compared with the geology and 

the ray tomography inversions. It is seen that major fracture zones can be identified. 

The elastic case is considered in chapter 4. Initially, multi-parameter inversion in 

the backpropagation and quadratic programming framework is investigated. In this 

approach, the parameters can be reconstructed by performing inversions for the same 

number of frequencies as the unknowns and solving the resulting matrix (Devaney, 

1985). In general, this matrix will be ill-conditioned (Beylkin and Burridge, 1990) and 

the results can be improved by using a large number of frequencies. This approach will 
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improve the stability but will reduce resolution in turn. This or any alternate approach to 

solving the multi-parameter inverse problem will make use of the characteristics of the 

operators acting on the individual parameters. In section 4.4, these operators are 

displayed and analyzed. As a result, a method developed for acoustic medical imaging 

by Norton (1983) that utilizes the properties of each operator in an optimal fashion is 

extended to the elastic case and applied to the more difficult problem of seismic imaging. 

In this approach the most unstable parameters can be obtained in a stable fashion by use 

of the physiCal nature of the problem considered. 

As will be discussed in chapter 3, a 7-8% transverse isotropy with the symmetry 

axis normal to the plane of fracturing is observed by displaying the first arrival time data 

as a function of ray angle. Therefore, in chapter 5, the theory is extended to account for 

transverse isotropy for SH-waves and elliptical anisotropy for quasi-P waves. The 

theory is developed for anisotropic velocity perturbations in an anisotropic background, 

but in the application of the methods to field data only the background is considered to 

be anisotropic. Multi-parameter inversion is also discussed in this chapter and the 

differences brought to the isotropic wavenumber domain coverage diagrams are shown. 

From the application of this theory to field data, it is seen that the anisotropy is not as 

strong as the predicted 7-8%. One reason for this can be given by noting that the 
, 

anisotropy indicated by the travel time variations is not on a microscopic scale and can 

also be interpreted as being due to inhomogeneities associated with fracturing. It is also 

possible that diffraction tomography, a wave equation based inversion scheme, is not 

affected by anisotropy as strongly as transmission ray tomography. 
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Chapter 2 

Acoustic Inversion 

In this chapter, the inverse scattering problem of a 2-D acoustic medium with 

perturbations in parameters from a homogeneous background is considered. This 

problem is a linearized form of the general inverse scattering problem. The linearization 

is carried out by expressing the general nonlinear inverse problem in terms of a Born 

series and keeping the first (or linear) term. This approximation will hold if the changes 

in the parameters are small compared to the background. As a result, the method 

discussed in this thesis will apply only to a subset of the general class of inverse 

problems. The advantage of the method is that no approximations other than the Born 

approximation is necessary to solve the problem. Also, due to the analytical formulation, 

the inversion is fast compared to other methods. 

The method described here can be applied to any scale of problems ranging from 

nondestructive testing of materials (small-scale or high-frequency) to large-scale 

geophysical problems. In the formulation of the problem, the sources and receivers are 

required to be on a line but the general problem can also be solved without this 

requirement. 

2.1 Theory 

2.1.1 Forward problem 

The formulation of the forward problem has been treated extensively by various 

authors. Here, the recent formulation ofWu and Toksoz (1987) is followed. 

The acoustic wave equation for a 2-D medium can be given as 
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(2.1) 

in the source-free region. Here, U(r) is the total pressure field at r, where r is the 

distance from the origin of the/coordinate system to the considered point in the 2-D 

medium, co is the angular frequency, c(r) is the velocity at r, and V2 
is the Laplacian 

operator. 

Defming the object function as 

(2.2) 

where Co is the background velocity, equation 2.1 can be written as 

(2.3) 

where k = CO/co is the wavenumber of the field in the background medium. Representing 

the total field as a superposition of the incident field and scattered field or 

U(r) = Uo(r) + User), and using equation 2.1, equation 2.3 becomes 

(2.4) 

The right-hand side of equation 2.4 can be treated as an equivalent source, therefore 

using the free-space Green's function the scattered field can be given as 

(2.5) 

Here, G(rr - r'l) = ! H~l)(krr - r'l) is the free-space Green's function in 2-D (see 

Appendix A), with H~l) being the zero order Hankel function of the first-kind and the 

integration is over the object volume. Using the Born approximation, U = Uo = G, we 

have 

(2.6) 
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Here, fs and rg are respectively the distances from the origin to the considered source 

and receiver. Taking the Fourier transform of the scattered field (see Appendix A for 

Fourier transform conventions) over the source and receiver lines (with the assumption 

that the sources and receivers lie along lines) and substituting the value of the 2-D 

Green's function in the transform domain (see section I of Appendix B), we have 

(2.7) 

Here, ks and kg are the wavenumbers over source and receiver lines, Ys and Yg are the 

perpendicular wavenumbers, - i = sand g are the unit vectors in the direction of 

propagation of plane-waves from the source line to the receiver line, and ds and dg are 

the perpendicular distances from the source and receiver lines to the origin of the 

coordinate system (see ds in Figure 2.1.1a). The integration in equation 2.7 is in the 

form of a Fourier transform, therefore we can write 

~ - . 4YsYg ~ . 
O(K) = -- Us(ks,kg) exp[ - l(Ysds + ygdg)] , 

k2 
(2.8) 

where K = keg - i) = XKx + ZKz , with x and zbeing the unit vectors in the horizontal 

and vertical directions, and Kx and Kz being the horizontal and vertical wavenumbers. 

Equation 2.8 yields a linear relationship between the object function and the 

Fourier transform of the scattered field. 

Given the scattered field, the object function can be reconstructed by various 

methods. The two main methods used to accomplish this task are the backpropagation 

method and the interpolated inverse Fourier transform method (for a comparison, see 

Kak and Slaney, 1987). In the next section we review the backpropagatibn method and 

discuss a quadratic programming method to carry out the inversion. 
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2.1.2 Inversion by backpropagation 

Taking the inverse Fourier transform of equation 2.8 and changing the variables 

of integration from K x, Kz to ks, kg we have 

x exp[ i(Kxx + Kzz)] , (2.9) 

where J(Kx,Kzlks,kg) is the Jacobian of the transformation from Kx, Kz to ks, kg. 

For different geometries of sources and receivers the mapping of ks, kg t 0 

. K x, Kz will be different. This mapping is discussed in sections 2.2 and 2.8. For various 

commonly used data gathering geometries this relationship can be given as follows: For 

the crosshole case of Figure 2.1.1 a 

K - K - k k Iks'Yg + kg'Ysl x - 'Ys - 'Yg, z - s + g, therefore, J(Kx,Kzlks,kg) = -'-"----'''-'--
'Ys'Yg 

(2.10) 

For the vertical seismic profiling with receivers in the borehole to the right of the 

. medium or VSPR case of Figure 2.1.1 b 

Kx =ks + 'Yg , Kz = kg - 'Ys , therefore, J(Kx,Kzlks,kg) = Ikskg + 'Yg'Ysl 
, ~~ 

(2.11) 

For the vertical seismic profiling with receivers in the borehole to the left of the medium 

or VSPL case of Figure 2.1.1c 

(2.12) 

For the surface reflection profiling where sources and receivers are on the surface or 

SRP case of Figure 2.1.1d 

K - k k K - Iks'Yg - kg'Ysl x - g + s, z - - 'Ys - 'Yg, therefore, J(Kx,Kzlks,kg) = . (2.13) 
'Ys'Yg 
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Equation 2.9 can be discretized and solved using the Fourier transform of the 

observed scattered field and equations 2.10-2.13, depending on the data gathering 

geometry considered, to obtain a band-limited version of the object function. These finer 

points of the inversion are discussed in detail in the following sections. 

2.1.3 Inversion by quadratic programming 

The quadratic programming method can be applied to the considered problem by 

writing equation 2.7 as 

where 

and 

N 

Pi = L SijOj, 
j=l 

Sij = exp[ - i(Kxx + Kzz)] , 

(2.14) 

(2.15) 

(2.16) 

for the i th combination of (ks,kg) and the j th pixel, with j = 1, ...... ,N = LK, and OJ 

being the object function at the j th pixel (see Figure 2.1.Ia). The mapping of ks, kg to 

Kx, Kz is as given in equations 2.10-2.13. 

For M wavenumber combinations and N pixels, we can write 

80 = P, (2.17) 

with P = [ PI, P2, ........... , PM]T, 0 = [01, 02, ........... , ON]T and 8 = [Sij]NxM. 

Minimizing the L2 norm of the misfit of the solution 0' or 

(2.18) 

subject to constraints 
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L· < 0'· < U . l' - 1 N 1 - 1 - 1, - , ••••••••• , , (2.19) 

where Li and U i are the lower and upper bounds on the object function, constitutes a 

quadratic programming problem with constraints. 

Smoothing can be incorporated into the minimization problem (Peterson, 1986; 

Constable et aI., 1987; Zhou, 1989) and will also cause stability. For this purpose, Rl 

and R2 are defined respectively to be the summations of the squared differences of the 

object function between adjacent pixels in the horizontal and vertical directions or 

L K 

Rl=L L (0(l-1)K+k-0(l-1)K+k-l)2 = IIDIOIl2, 
1 =1 k = 2 

K L-l 

R2 = L L (OIK+k - 0(l-I)K+02 = IID20112, 
k=1 1=1 

(2.20) 

(2.21) 

where K andL are the number of pixels in the horizontal and vertical directions (Figure 

2.1.1a), and Dl and D2 are two N by N matrices. The problem in equation 2.18 can be 

reposed to minimize Rl and R2 together with the misfit or to minimize 

(2.22) 

where 1\.1 and A2 are the damping parameters which control the smoothness in the 

horizontal and vertical directions. Equation 2.22 can be rewritten as 

(2.23) 

The matrix DIDI can be given as 

H 0 0 0 
0 H 0 0 

DIDI = 0 0 H 0 (2.24) 
0 0 0 0 
0 0 0 H LxL 

with 
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1 -1 0 0 
-1 2 -1 0 

H= 0 -1 2 0 (2.25) 
0 0 -1 -1 
0 0 0 1 KxK 

and the matrix DID2 can be given as 

1 -I 0 0 
-I 21 -I 0 

DID2 = 0 -I 21 0 (2.26) 
0 0 -I -I 
0 0 0 1 LxL 

with 

1 0 0 0 
0 1 0 0 

1= 0 0 1 0 (2.27) 
0 0 0 0 
0 0 0 1 KxK 

Therefore, the aim of the quadratic programming method is to minimize equation 

2.23 subject to the constraints given in equation 2.19 in order to obtain a smoothed 

inversion. This minimization problem can also be formulated as a linear programming 

problem and different methods of smoothing can also be incorporated. 

2.2 Wavenumber domain coverage 

An advantage of the perturbation theory approach for solving the inverse 

problem is that physical insight into the nature of the problem can be gained from the 

analytical formulation possible. In this section we demonstrate this aspect of the method. 

2.2.1 Single frequency 

Equation 2.8 implies that each scattered plane-wave observed from a plane-wave 

source, or each (S,g) pair, at a certain wavenumber k, will give a value of the object 
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function's transform O(K) at K = XKx + ZKz = k(g - i), where i = - s. If we were to 

know O(K) for every K in the (Kx,Kz) space, we could, in theory, reconstruct O(r) 

uniquely (using inverse Fourier transforms), which would in turn yield the unknown 

velocity c(r) uniquely. 

In practice, there are several reasons that prevent us from obtaining a full 
~ ---+ ---+ 

coverage of O(K) in the K space. The first one is that we are dealing with discretely 
~ ---+ 

spaced sources and receivers, therefore we will have a discrete coverage of O(K). The 

second is that if we were able to generate and record plane-waves at every possible 

angle, the resulting coverage would be limited to a circle of radius 2k = 2m/co. Due to 

the nature of the source function as well as temporal and spatial aliasing constraints the 

data will be band-limited, therefore k will be band-limited as well and large 

wavenumbers or sharp variations in the object function will not be recovered. The third 

reason is that in geophysical applications we are not able to generate and record plane

waves at every possible angle due to the discrete spacing and constrained geometry of 

the sources and receivers in the field. Usually, we are limited to the geometries shown in 

Figures 2.1.1 and here we discuss how these geometries further reduce the wavenumber 

domain coverage. In section 2.8 more general geometries are discussed and treated in a 

similar manner. 

In order to understand the mapping between the transform of the observed 

scattered field and the object function's transform, we will start from a simple example. 

For a plane-wave source in the s = x direction and scattered plane-waves measured 

from 90° to - 90° from the x-axis, the coverage of O(K) will be as shown by the semi

circle on the right side of Figure 2.2.1. This figure is obtained by first drawing ks and 

then each kg (note that IkSj = Ikg! = k, therefore the drawn vector lengths are equal). 

Extending this mapping procedure, if we were able to generate plane-waves from all 

angles and measure the scattered field at all angles as well we would have coverage in a 
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circle of radius 2k which is the maXImum coverage possible. The plane-wave 

decomposition discussed in section I of Appendix B and utilized in section 2.1 enables 

us to follow this approach, but the angles that the plane-waves can be generated will be 

discrete and depend on the specific geometry of the experiment considered. 

Using equations 2.10-2.13 we plot the coverage of the object function: in the 

wavenumber domain for the geometries of Figures 2.1.1 in Figures 2.2.2. Since the 

object function O(r) is real, or the medium is assumed to be non-attenuative, O(K) is 
""-1* --to ,..., --to ,..., --+ 

complex conjugate symmetric, or 0 (K) = O( - K), therefore knowing OCK) we can 

obtain 5 at - K by taking its complex conjugate. These additional wavenumbers are 

included in all wavenumber domain plots throughout this thesis, unless stated 

otherwise. 

The wavenumber domain plots are normalized so that the Nyquist wavenumber 

over the source and receiver lines is unitary or L\x = L\s = L\g = n, since k~ = k~ = 

(2n)j(2L\x). Also, Co is set to 2n since then k will be equal to the frequency used in the 

inversion. 

In Figures 2.2.2, the inversion frequency is 1 Hz and 40 sources and receivers 

are used for each geometry considered. Each point in this figure represents a single 

plane-wave pair from the source line to the receiver line. Increasing the number of 

sources and receivers (or equivalently, extending the length of the borehole) would 

result in a plot with denser points, which would especially help increase the coverage in 

the less dense sections near the boundaries of the plotted coverage, but the actual 

boundaries of these regions would not change. In other words, the boundaries of the 

plotted regions are fixed by the choice of the experiment geometry or by the source and 

receiver positioning which can only generate plane-waves in a certain range. For 

example, a sample in one of the two inner circles of Figure 2.2.d cannot be obtained 

with the SRP geometry. 
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In the crosshole case, Figure 2.2.2a, the coverage in the horizontal direction is 

sparse or the image will not be resolved well in the vertical direction. In addition, the 

sampling of the object function's transform is dense at low-wavenumbers and becomes 

sparse as the wavenumbers increase. 

In the VSPR case, Figure 2.2.2b, the coverage of the object function's 

transform is quite well other than the region where the horizontal wavenumbers equal 

the vertical wavenumbers. 

In the VSPL case, Figure 2.2.2c, the coverage of the object function's transform 

is again quite well other than the region where the horizontal wavenumbers equal the 

vertical wavenumbers with opposite sign. 

In the SRP case, Figure 2.2.2d, the coverage in the horizontal direction has two 

large holes, therefore the image will not be resolved well in the vertical direction similar 

to the crosshole case. In addition, the sampling of the object function is quite dense in 

the high-wavenumber sections contrary to the crosshole case. 

Considering the coverage of the crosshole case and the SRP case two 

conclusions can be drawn: i) If the SRP or backscattering experiment were to be done 

inside boreholes vertical to the surface rather than on the surface, the combination of this 

experiment with the crosshole experiment would give a coverage in a circle of radius 2k, 

i.e., the maximum coverage possible (rotate Figure 2.2.2d by 90° and add to Figure 

2.2.2a), ii) The SRP or back scattering experiment recovers high-wavenumber 

components of the object function or sharp changes in the object whereas the crosshole 

or forward scattering experiment recovers low-wavenumber components of the object 

function or smooth changes in the object. Therefore, in a single frequency inversion 

algorithm these two geometries are complementary and both should be carried out to 

obtain a good image. 
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In Figures 2.2.2, the inversion frequency was conveniently chosen to give an 

inversion wavenumber k which had the same value as the Nyquist wavenumber of the 

source and receiver lines, k~ and k~, yielding maximum coverage: If the inversion 

frequency is chosen to have a lower value, the coverage will shrink, preserving its 

shape, into a circle of radius 2k, with the new k value. Therefore, un sampled regions, 

especially near the boundaries, can be obtained by performing inversions for a range of 

frequencies. By averaging these inversions the general results can be improved. This 

will be discussed later on in detail. 

The frequency band width of the data is determined by the source spectrum and 

Nyquist criteria or sampling. As long ~s we are in the usable frequency range, the 

inversion frequency can be increased as well as decreased. Figures 2.2.3 show the 

wavenumber domain coverage for a frequency of 1.25 Hz and for 40 source and 

receiver pairs for each geometry. In this case, the coverage will grow to a circle of 

radius 2k or 2.5 m- 1 as is reflected in the axis of these plots. We see that although 

higher wavenumbers can be obtained in the inversions, the range of plane-waves that 

can be generated is further reduced (compare Figures 2.2.2 and 2.2.3). 

The analysis given in this section is helpful in designing an experiment and can 

be summarized as follows. Depending on the shape of the object being imaged, 

determine how to layout sources and receivers to get the best coverage. Depending on 

the size and shape of the object being imaged, determine the largest wavenumber to be 

used in the inversion (for a discussion, see Aki and Richards, 1980, p.749). Using the 

largest wavenumber and the background velocity, determine the maximum frequency 

using fmax = kcol(21t). Use a source that has a band width larger than the maximum 

frequency and sample in time accordingly. Determine the ideal source and receiver 

sampling using, ~x = (21t)/(2k). Gather data with this sampling. After processing, 
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invert the data at various frequencies starting from fmax and decreasing to a frequency 

determined by experience, and average the resulting inversions. 

2.2.2 Multi-frequency 

In this section, we look at a property of the backscattering or SRP geometry. 

From Figure 2.2.2d it can be seen that if. the scattered field is recorded only when 

kS' = - kg or only the plane-wave component of the scattered field in the opposite 

direction to the plane-wave from the source is recorded, for all possible angles of plane-
~ --+ 

waves that can be generated with this geometry, values of O(K) will be obtained on a 

circle of radius 2k, the outer rim of the coverage diagram of Figure 2.2.2d. By varying 

the frequency, which will in effect change the radius of this circle, and taking only the 

components of the scattered field discussed above, it can be seen that coverage in a circle 

of radius 2k, the maximum coverage possible can be approximately obtained. For 40 

source and receiver pairs and for 20 frequencies from 0 to 1 Hz with 0.05 Hz steps, this 

mapping is shown in Figure 2.2.4a. Although most of the available data have not been 

used in this mapping the coverage is well distributed and close to the maximum coverage 

achievable. Some problems with the horizontal wavenumber directions, which are 

inherent to the SRP geometry, still remain. The coverage outlined here is actually the 

coverage of Born inversion in the time domain since now we are dealing with a multi-

frequency experiment. 

In field data, because of the source function, low-frequencies will not be 

obtainable, therefore in practice we will have the coverage shown in Figure 2.2.4b 

instead. 

If the object being imaged is a point diffractor in the center of the medium then 

the amplitude of the object function in the wavenumber domain will be a constant. In 

such a case the amplitude in the radial direction of Figure 2.2.4b will give the source 
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function. The amplitude as a function of angle on a specific circle, or a specific 

frequency, will give the source radiation pattern at that frequency and for the considered 

angle, since the value observed at each angle will correspond to a plane-wave incident 

and recorded at that same angle. 

Using this approach, the properties of the source used, i.e., source function and 

radiation pattern, could be obtained from a scale model backscattering experiment 

consisting of a point diffractor and the results used in field applications for 

deconvolution of the wavelet and radiation pattern corrections. 

2.3 Synthetic point diffractor examples 

In this section we apply the backpropagation algorithm, equation 2.9, in order to 

invert for a point dim·actor. Here we only consider the geometries discussed in Figures 

2.1.1. The importance of the point diffractor example is that the Born approximation in 

this case is exact (single scattering) and imaging a point diffractor will give us the 

impulse response of the geometry considered showing the resolving capabilities of the 

various data acquisition geometries. 

The synthetic data are generated using the pseudo spectral finite difference 

(PSFD) method (Gazdag, 1981; Kosloff and Baysal, 1982; Eastwood, 1988), with 

absorbing boundary conditions, which will give the exact total field (including 

multiples). This method is used in the single scattering case as an initial test of the 

method before applying it to more complicated models. The source function used in the 

generation of the data is the derivative of a Gaussian pulse. The model considered is 

shown in Figure 2.3.1a. Here, 20 sources are placed on the left boundary with 0.5 m 

intervals. The receivers are placed with the same 0.5 m intervals so as to form the VSPR 

(20 receivers on the top boundary), crosshole (20 receivers on the right boundary), and 

backscattering (20 receivers on the left boundary) geometries. The background velocity 
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is 4800 rn/s and the diffractor is located'at the center of the medium with a velocity of 

4500 rn/s. 

In the data processing, first the incident field is obtained by a run through the 

medium without the diffractors and then subtracted from the total field observed. This is 

followed by a wavelet deconvolution in the frequency domain using the inverse of the 

source function mentioned above. 

The inversion wavelength is chosen to be at least 1 m or twice the source or 

receiver spacing, therefore, the maximum frequency used in the inversion is 4800 Hz. I 

Figure 2.3.1 b is the result of the crosshole inversion at 4800 Hz. The sidelobes 

in the vertical direction can be clearly seen in the image, indicating low-resolution in this 

direction as discussed in the previous section. Figure 2.3.1c is the image obtained by 

averaging frequencies ranging from 3900 to 4800 Hz, with 122 Hz intervals. The I > I 

and I < I pattern occuring due to limited view at the diffractor location in Figure 2.3.1b 

is reduced in Figure 2.3.1c because of the improved coverage near the boundaries of 

Figure 2.2.2a. 

Figure 2.3.1d is the inversion result for the VSPL geometry with the receiver 

borehole to the left of the image area (see Figure 2.1.1c). Here the diffractor is 

recovered quite well with some ambiguity in the horizontal, vertical and 45° from the 

horizontal toward the vertical directions. Figure 2.3.1e is the average of the images in 

the same frequency range as the previous example. The result of Figure 2.3.1e is only 

slightly better than Figure 2.3.1d due to the good single frequency coverage in the VSP 

geometries (see Figure 2.2.2c). In the VSPR case with the receiver borehole to the right 

of the image area, the same results can be expected with ambiguity in the opposite 45° 

direction. 

Figures 2.3.lf and g are the single frequency and averaged inversion results of 

the backscattering experiment with sources and receivers on the left boundary of the 
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image area. As expected the resolution in the horizontal direction is not good (Figure 

2.3.10 and some improvements can be seen in the averaged result (Figure 2.3.lg). 

These examples demonstrate what can be expected from each of the different 

geometries considered without the effects of the size and variations in amplitude of the 

object being imaged. As long as the assumption of linearity holds, imaging of more 

complicated structures can be analyzed by assuming a superposition of the point 

diffractor inversion results. 

We next investigate how the inversion will be affected by the location of the 

diffractors and spatial sampling. Forward data can be generated conveniently using 

equation 2.6 with the 2-D Green's function. These data will only contain single 

scattering and will be used in cases where multiple scattering is not prominent. The data 

generated by this method will be used throughout this thesis and will be called Born 

forward data. 

For the following examples, Born forward data are generated for a 10 m 

horizontal by 20 m vertical area with 40 sources and receivers separated by 0.5 m 

intervals and placed in a crosshole fashion (along the z direction in FIgures 2.3.2). The 

point diffractor has a 4500 m/s velocity and the background velocity is 5500 m/s. For 

these velocity values, the object function will have a value of - 0.5 at the diffractor 

location and 0.0 elsewhere. 

In Figures 2.3.2a-d we display the absolute value of the inversion results with 

the imaginary part of the image plotted next to the real part, separated by 5 empty traces. 

The inversions are performed at a wavelength of 1 m, twice the source and receiver 

spacing, or at 5500 Hz which is the maximum frequency, fmax , for this example. The 

impulse at the origin or top-left comer is a reference value, in order to compare images, 

set to - 0.5 or the expected amplitude of the object function. 
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For Figures 2.3.2a-c the diffractor is located at 5.25 m horizontal and 10.25 m 

vertical. In Figure 2.3.2a the data are inverted with 0.5 m horizontal and vertical 

sampling, in Figure .2.3.2b with 0.25 m sampling and in Figure 2.3.2c with 0.125 m 

sampling. It is seen that when the" diffractor is not located at the inversion grid points 

and if the inversion is performed at the maximum frequency, the spatial sampling must 

be at least half the source and receiver spacing. Denser spatial sampling beyond this 

value brings no apparent improvement to the images (Figure 2.3.2c). This is so because 

when the data are inverted at the maximum frequency of 5500 Hz, they do not contain 

such high-wavenumber components of the object function necessitating a denser spatial 

sampling than 0.25 m. 

Figure 2.3.2d is the result of an inversion at 5500 Hz with 0.25 m spatial 

sampling when the diffractor js located at 10.25 m horizontal and 0.25 m verticaL 

Although the result in this figure is quite good it is not as good as the inversion obtained 

when the diffractor is located near the center of the model (Figure 2.3.2b). This is so 

because as the object moves away from the center of the medium the limited view 

problem becomes more severe. Therefore, structures near the boundaries of the 

inversion area will not be reconstructed as well as structures in the interior. 

2.4 Effects of velocity and frequency variation 

The background velocity used in the inversion and the frequency which the 

inversions are being performed at are two important variables that will be further 

investigated. 

In the inversion of field data, the background velocity is unknown. Therefore, it 

is important to investigate its effect on the inversion by inverting synthetic data for a 

range of velocities around the correct background velocity. This experiment will lead us 

to the development of a method to estimate the background velocity. 
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For the velocity and frequency experiments the same model used in the last part 

of the previous section is considered. The only difference is that now the point diffractor 

is located at 5 m horizontal and 10 m. Figures 2.4.1a-e show respectively the inversion 

results for inversion velocities ranging from 5420 to 5580 m/s with 40 m/s intervals. 

Although the range of velocity variations is small compared to the background velocity, 

the effect on the inversion is drastic. The result in Figure 2.4.1c is the inversion with the 

correct background velocity of 5500 m/s. As the velocity varies, the backpropagation is 

done with an incorrect phase of propagation, therefore, the image becomes out of focus 

and the energy leaks from the real part to the imaginary part of the image. 

Besides the conceptual understanding it brings, this example suggests a method 

to estimate an accurate inversion velocity for the field data cases. This follows from 

observing the ratio of the energy in the real part of the image to the imaginary part as a 

function of inversion velocity. In the case with the correct inversion velocity (Figure 

2.4.1c) this ratio is high (in an ideal case of full coverage it would be infinity), 

otherwise it decreases depending on the accuracy of the inversion velocity being used. 

Figure 2.4.2 is a display of this function. This figure shows the ratio of the maximum of 

the absolute value of the real part to the maximum of the absolute value of the imaginary 

part of the inversions for intervals of 5 m/s. We see that this figure resembles a 

Gaussian function and peaks at the correct inversion velocity of 5500 m/s. In chapter 3, 

this test will be used on the field data and shown to be very effective not only in 

estimating an accurate inversion velocity but also in estimating other inversion 

parameters. 

In the previous sections we took averages of the inversions at different 

frequencies without a detailed discussion. Here, we demonstrate that such an approach 

is plausible and can be used to improve image qUality. 
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U sing the same model as above, we generate Born forward data at various 

frequencies and invert the data at the corresponding frequencies. The inversion results 

are shown in Figures 2.4.3a-d for frequencies of 4028 Hz, 4517 Hz; 5005 Hz and 5493 

Hz. In the low-frequency end or Figure 2.4.3a, the image is smoother and more spread 

out. As the frequency increases, the image becomes sharper and tighter as expected. 

Overall, the inversions in these figures give a good reconstruction for all the frequencies 

and therefore, averaging of images is encouraged and used in the applications 

considered here . 

.In field data applications where there is noise from various sources, such as 

random noise or from various other wave modes, averaging is especially useful since it 

will increase the signal-to-noise ratio in the inverted images. 

2.5 Synthetic fracture examples 

In this section the pseudo spectral finite difference (PSFD) method is used to 

generate forWard data for a model representing the field case to which the, methods are 

applied to in chapter 3. The model has a background velocity of 5500 rn/s and a 

perturbation velocity of 4500 rn/s along two lines representing two fracture zones 

(Figure 2.5.3). A 10 m horizontal by 20 m vertical area is considered with a sampling 

interval of 0.25 m in space and 0.008 ms in time. As mentioned in section 2.3, 

absorbing boundary conditions are implemented and the source function used is the 

derivative of a Gaussian pulse. 

For a source located at S 1 (see Figure 2.5.1a) a snapshot of the wavefield as it is 

propagating in the medium is shown in Figure 2.5.1 b. In this figure the outer circle 

represents the incident field and the inner semi-circle represents the scattered field. Due 

to the absorbing boundary conditions, as the wavefield approaches the boundary it is 

attenuated. Figure 2.5.1c is yet another snapshot of the wavefield where the s~urce is 
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now located at S2 in Figure 2.S.la. Here we see several inner semi-circles. These 

additional semi-circles are due to the multiple scattering in the zone representing the 

fractures. This example demonstrates that the data generated by this method are exact in 

the sense that multiple scattering in the medium is contained in the data. Because the 

inversion is performed using the Born approximation, which only accounts for single 

scattering, the inversion results of this data set will indicate how well the Born 

approximation holds in the fracture case considered. 

For the experiment considered (see Figure 2.S.2a), 40 sources are placed on the 

left boundary of the model and the receivers are located as follows: The fIrst 20 receivers 

are located on the top boundary (indicated by an A) and form the VSPL geometry, the 

next 40 receivers are located on the right boundary (indicated by a B) and form the 

crosshole geometry and the remaining receivers are located on the left boundary 

(indicated by a C) and form the backscattering geometry. The sources and receivers are 

spaced with O.S m intervals. Figures 2.5.2b-d are respectively the seismograms for the 

source at the top-left corner, at center-left and at the bottom-left corner (indicated by S 1, 

S2 and S3 in Figure 2.S.2a) and all receivers along lines A, Band C. In general, the 

incident field is the strong first arriving wavefIeld in these fIgures and the scattered fIeld 

is the secondary arrivals. Because the initial time steps are calculated analytically, when 

a source is located close to a receiver, the initial section of the considered trace will be 

truncated, as can be seen in the first trace of Figure 2.S.2b. These sections are later 

generated and added to the appropriate traces. 

In the data processing, the incident fIeld is obtained by a run through the medium 

without the diffractors and then subtracted from the total field observed, followed by a 

wavelet deconvolution in the frequency domain. 

Due to aliasing considerations, discussed in sections 2.2.1 and 2.3, the 

inversions are done at a maximum frequency of S500 Hz with sampling in the horizontal 
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and vertical directions of 0.5 m. For comparison reasons, the input model is shown 

once again in Figure 2.5.3. The backpropagation inversion result for the crosshole 

geometry at 5500 Hz is shown in Figure 2.5.4a. The quadratic programming inversion 

result for the same geometry at 5500 Hz with negativity constraints, which force the 

object function to have values less than zero (or the inversion velocities to be less than 

the background velocity), is shown in Figure 2.5.4b. In most applications concerning 

fractures negativity constraints can be used since the fracture velocity will in general be 

lower than the background velocity. It can be seen that the Born approximation is quite 

valid in the simulated fracture case and the inversions give good results. 

In the crosshole geometry inversion with the backpropagation and the quadratic 

programming methods three distinct features can be seen. The first is the extension of 

the object (or simulated fractures) along the line of diffractors. This is due to the limited 

coverage in the wavenumber domain or limited view, arising from the source and 

receiver geometry in the crosshole configuration. The next is the sidelobes parallel to the 

diffractor line seen in Figure 2.5.4a. This is because the coverage of the object function 

in the wavenumber domain is discrete and limited to low-wavenumber components by 

the inversion being done at a specific finite frequency. It is not seen in the quadratic 

programming inversion of Figure 2.5.4b because of the information given to the 

inversion by the negativity constraints. The third effect is that the diffractor line is thick 

and the diffractors are not distinctly resolved as can be seen by a comparison with the 

. input model (Figure 2.5.3). This is caused by the wavenumber domain coverage being 

constrained to low-wavenumbers (slow variations) in the crosshole case. This will also 

contribute to the stretching of the object along the line of diffractors. 

Figure 2.5.4c is a cross-section of the images in Figures 2.5.3, 2.5.4a and b 

taken at a horizontal distance of 5 m in the vertical direction from 0 to 20 m. The 

sidelobes in the backpropagation inversion can be seen here clearly. In this figure, the 
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values of the backpropagation inversion for velocities greater than the background 

velocity of 5500 mls are seen to be quite high. This is because although the inversion is 

a sinc-type function in the object function domain, the transformation from the object 

function domain to the velocity domain is nonlinear and will increase the artificial 

velocities higher than the background velocity. A normalized plot of this transformation 

is shown in Figure 2.5.4d and displays the large variation for positive values of the 

object function. 

Contrary to the backpropagation method, the quadratic programming method 

does not have sidelobes. This is due to the additional information brought to the 

inversion by the negativity constraints which will not allow positive sidelobes to exist, 

resulting in a considerable improvement, although the limited view problem is inherent 

to the crosshole geometry and will still exist. In the backpropagation case, the sidelobes 

can be reduced by inverting the data at a range of frequencies and averaging the results, 

thereby increasing the coverage of the object function in the wavenumber domain. 

For the crosshole geometry, the average of backpropagation inversions from 

2440 to 5500 Hz with 122 Hz intervals is shown in Figure 2.5.4e. The inversion result 

suggests once again that in the backpropagation method averaging of images is useful 

and improves the image quality. 

Computationally, the single frequency quadratic programming inversion is an 

order of magnitUde slower than the multi-frequency backpropagation inversion. Due to 

this reason and also because negativity constraints can be applied to the field data case 

we consider here, we do not average quadratic programming inversion results 

throughout this thesis, although this can be done. 

For the backscattering geometry with sources and receivers in the left borehole, 

the average of backpropagation inversions from 2440 to 5500 Hz with 122 Hz intervals 

is shown in Figure 2.5.4f. Although the image quality is not good and only the tip of the 
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diffractors close to the source-receiver locations are resolved, they are resolved distinctly 

or each diffractor is resolved. This is because the coverage of the backscattering 

experiment contains high-wavenumber components of the object function, contrary to 

the crosshole case (see section 2.2.1 for a discussion). 

Figure 2.5.4g is the VSPL geometry inversion results averaged over the same 

range of frequencies as for the previous examples. Here we do not see the diffractors at 

all. This is because the Fourier transform of a line pa~sing through the origin is a line in 

the transform domain in a direction perpendicular to the direction of the line 

transformed. Therefore, the diffractor line at - 45° from the horizontal lies at 45° from 

the horizontal in the wavenumber domain. Considering Figure 2.2.2c, we see that this is 

exactly the region where we do not have coverage of the object function in the VSPL 

geometry, therefore we will not be able to reconstruct such a model with this data 

gathering geometry. 

To prove this point we generate Born forward data for the VSPR geometry with 

0.25 m spacing of diffractors, as in the PSFD examples, using equation 2.6 with the 2-

D Green's function. This data will only contain single scattering but this does not affect 

the argument being made here. Inversion of the data gives a good image, as shown in 

Figure 2.5.4h, and proves the point discussed above, since for the VSPR geometry we 

have a good coverage of the diffractor line in the wavenumber domain (see Figure 

2.2.2b). 

As a result, depending on the information available regarding the object to be 

imaged, a certain geometry can be designed and used in order to obtain the best 

coverage. For this case it is seen that the VSPR geometry is preferable over the VSPL 

geometry. 

One important point before closing this section will be made on how diffractor 

separation will affect the inve,rsion results. To discuss this point we generate Born 
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forward data for a 10 m horizontal by 20 m vertical area consisting of a cluster of 

diffractors along a line starting at 2.5 m horizontal and 5.0 m vertical and ending at 7.5 

m horizontal and 15.0 m vertical with a 4500 rn/s velocity. We will only consider the 

crosshole geometry with 0.5 m spacing of sources and receivers. The background 

velocity in these examples is 5500 rn/s and the inversion frequency is 5500 Hz. 

Figures 2.5.5a-d are respectively the inversions of the medium with 10, 20, 200 

and 2000 diffractors on the specified line. The spatial sampling in the inversion is 0.25 

m. For 10 diffractors, Figure 2.5.5a, the horizontal spacing of diffractor is 0.5 m and 

the vertical is 1.0 m, therefore the inversion results are quite good. For 20 diffractors, 

Figure 2.5.5b, the horizontal spacing of diffractors is 0.25 m and the vertical is 0.5 m 

and the reconstruction is not as good. This is because the diffractors are located at a 

separation where the discrete Fourier transform of the model cannot be sampled well 

with this data set. As the diffractor spacing approaches continuity, Figures 2.5.5c and d, 

the inversion results start improving, since, the Fourier transform of a continuous 

function is continuous as well. This example outlines the differences to be expected 

when going from a discrete case (synthetic examples) to a continuous case (field data). 

2.6 Inversion with the total field 

The wavefield that is measured in the field is the total field but in the inversion 

the scattered field is required, therefore, the scattered field must be extracted from the 

total field. This is an important step in the data processing. In synthetic examples this is 

accomplished by generating the incident field via a run through the medium without the 

diffractors. This is not possible in field applications. 

There have been several approaches to solving this problem. A common one is 

to remove the incident field before the inversion, as is done here with the field data. 

Another less frequented approach is to deconvolve the incident field after the inversion 
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(Chang and McMechan, 1986). In this section we apply the inversion routine to the 

incident field and total field, in order to see their effects on the image, and from these 

results suggest another method for removing the incident field from the total field. 

We use the PSFD data generated in the previous section for the inversions in this 

section. Application of the inversion algorithm to the incident field of the crosshole case 

(receivers on line B in Figure 2.5.2a), averaged from 2440 to 5500 Hz with 120 Hz 

steps, is given in Figure 2.6.1a. Here we see that most of the energy has been 

backpropagated to the boundaries of the inversion region and the interior contains only 

minor anomalies. As a result, we claim that in the specific field case we are considering 

the incident field does not cause any considerable damage to the inversions. 

Figure 2.6.1 b shows the averaged inversion of the total field with the 1 m region 

surrounding the boundaries set to the background velocity value. As can be seen, 

although the incident neld is left in, the inversion is quite successful. 

These two inversions suggest another method for removing the incident field 

effects. This method would involve a simple step of subtraction of the total field image 

from the incident field image. The resulting image from the application of this process is 

shown in Figure 2.6.1c and is almost identical to the image obtained by subtracting the 

incident field prior to inversion, Figure 2.5.4e. This follows from the linearity of the 

inversion process. For this method, it is again necessary to estimate the incident field in 

order to form the incident field inversion. The advantage of the method is that we can 

visually see the effect of the incident field on the inversion. 

On field data, both methods; removal of the incident field before inversion and 

removal of the incident field after the total field inversion must be carried out in order to 

asses the effectiveness of either scheme. 

For the other geometries, removal of the incident field is a routine procedure. In 

VSP type applications removal of the downgoing wavefield is actually the removal of 
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the incident field. In the SRP case, the incident field arrives at eady times and is in 

general decoupled from the scattered wavefield. In exploration seismology an additional 

reduction of the incident wavefield, together with surface-waves, is obtained by using 

angle sensitive receiver arrays. 

2.7 Inversion with free-surfaces 

In most field applications the inversion area is bounded by free-surfaces. The 

inversion algorithm in its present state cannot account for the free-surfaces and all 

wavefields interacting with the free-surface will enter into the inversion as noise and 

disturb the resulting image. 

The PSFD method is used to generate forward data for a medium bounded by 

free-surfaces from above and below or a double free-surface case. The model 

considered is shown in Figure 2.7.1a and other than the free-surfaces it is the same as 

the one usedin section 2.5, As shown in Figure 2.7.1a, in this experiment 40 sources 

are placed on the right boundary and the receivers are located as follows: The first 20 

receivers are located on the top boundary (indicated by an A), the next 40 receivers are 

located on the right boundary (indicated by a B) followed by 20 receivers on the bottom 

boundary (indicated by a C) and 40 receivers receivers on the left boundary (indicated 

by a D). Figure 2.7.1 b shows a snapshot of the incident field in this medium when the 

source is located at Sl in Figure 2.7.1a. The incident field reflected from the upper and 

lower boundaries can be identified clearly. The resulting seismograms from such a 

medium are quite complicated compared to the full-space seismograms, as can be seen in 

Figure 2.7.1 c. In this Figure, the source is at the center of the right borehole (indicated 

by S2 in Figure 2.7.1a) and all receivers along lines A, B, C and D are shown. 

All images in this section are the result of averaging inversions from 2440 to 

5500 Hz with 122 Hz intervals. The inversion result of the crosshole data containing the 
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scattered field is shown in Figure 2.7.2a. Here we see a sharp horizontal zone in the 

center of the image. In addition, the boundaries are disturbed as well but cannot be seen 

in this figure because in order to better resolve the interior of the image, aIm region 

from the boundaries to the interior of the image is set to the background value. Inversion 

of the crosshole data with the total field is shown in Figure 2.7 .2b, where the full image 

in the object function space is shown in order to see the effects of the incident field at the 

boundaries. The positive zone in the center of the image in the scattered field case, 

Figure 2.7 .2a, has become negative in this case showing that part of the reflected 

incident field from the free-surface is mapped here. Inverting only the incident field, 

Figure 2.7.2c, shows this point more clearly. 

The VSPR inversion result of the scattered field with free-surfaces and sources 

in the right borehole, Figure 2.7.2d, shows the effects of the free-surfaces as positive 

images next to the actual negative images. In the VSP case, the images are not harmed 

by the free-surfaces as much as they are in the crosshole case. The VSP inversion with 

the total field is shown in Figure 2.7.2e and this result is again better than the crosshole 

inversion with the total field. 

To improve the inversion results of the crosshole case, we will use image 

sources and receivers. This approach can be outlined by referring to Figures 2.7.3. The 

wavefields observed at the receiver from a medium with a single diffractor and a free

surface are as displayed in Figures 2.7.3a-c. Waves 1 and 2 are part of the incident field 

(see Figure 2.7.1 b) whereas waves 3 to 6 are part of the scattered field. In the direct 

inversion discussed above waves 4 to 6 are multiply scattered fields that harm the 

inversion. By removing the free-surface, and constructing the image source and 

receiver, parts of the unwanted waves 4 to 6 become singly scattered waves and 

contribute to the inversion rather than harming it. 
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The construction of the image source and receiver for a single source-receiver 

pair is done by going to a 2 by 2 matrix from the 1 by 1 matrix as follows: The (S,G) 

pair data are assigned to the (S, image G) and (image S, G) pair with a negative sign and 

to the (imageS, image G) pair with a positive sign, where the locations of S, G, image 

S and image G are as given in Figures 2.7.3d-f. 

As a result of this mapping some of the multiply scattered fields are transformed 

into singly scattered fields. Figures 2.7.3b and e show howa wave interacting with the 

free-surface and the object is now only interacting with the object or how the double 

scattering has become single scattering and will now contribute to the inversion. Figures 

2.7.3c and f shows how a third order scattering is transformed into a first order 

scattering, again contributing to the inversion. The outlined wave types in Figure 2.7.3e 

and f are the waves that are transformed into signal from noise. Although the dominant 

part of the wavefield is transforn:ied successfully by this method, there will still be 

second and higher order scattering terms, caused by the interaction of the wavefield with 

the object and free-surfaces, that will harm the inversion. In the synthetic examples we 

will see that most of these unwanted wavefields will actually be mapped to the free

surface locations. The extension of this method to multisources and multireceivers or 

more free-surfaces is straightforward. An important result of this approach is that the 

limited view problem is considerably reduced because of being able to account for the 

steep-angled shown in Figures 2.7.3e and f. 

The absolute value of the averaged crosshole geometry inversion result, with the 

application of the image method, is shown in Figure 2.7.4a. Here the vertical axis is 60 

m long, rather than 20 m, due to the increase in the inversion area resulting from the 

application of the imaging method to two free-surfaces. In this image we see that some 

of the second or higher order scattered fields map to the free-surface locations as 

mentioned previously. Folding this image at the two free-surface locations and 

- 34 -



averaging the resulting three images, we arrive at Figure 2.7.4b. In Figures 2.7.4b and 

cal m region from the boundaries to the interior of the image is set to the background 

value in order to remove the free-surface effects from the boundaries of the images. The 

free-surface effects at the center of .the image in Figure 2.7 .2a do not exist in Figure 

2.7.4b and the result is even better than the·full-space inversion of Figure 2.5.4e, 

especially at the tip of the diffractors. This is due to the increase in the wavenumber 

domain coverage made possible by being able to account for plane-waves with steeper 

angles, generated by the wavetypes shown in Figures 2.7.3e and f. The total field 

inversion wi~ the image principle is shown in Figure 2.7.4c. The inversion technique is 

quite successful even for the total field which includes the waves denoted by a 2 in 

Figure 2.7 .3a. 

2.8 Inversion with slanted boreholes 

In some field applications, the geometry of the measurements may not be the 

conventional ones we have discussed. A common example is the geometry that can 

result from the diversion of a drill bit during drilling. In general, the diffraction 

tomography method can accommodate any layout of sources and receivers as long as 

they are on lines. This requirement is necessary due to the Fourier transforms taken over 

the source and receiver lineS. In cases were the boreholes are highly curved, the problem 

must be reconsidered. 

In this section, the diffraction tomography method is generalized to slanted 

boreholes. This generalization is accomplished by constructing the rotation operator that 

gives the mapping of (ks,kg) to (Kx,Kz) for the considered geometry. Here we give a 

general formula that can be applied to any configuration of slanted boreholes. Figure 

2.8.1 shows the general layout that will be considered with the angles <P and 11 being 

arbitrary in the 00 to 1800 range. The experiment area is divided into three regions, 
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where each region requires a different formulation. For each region, the possible range 

of plane-waves that can be generated due to the geometry of the source and receiver lines 

is shown in Figure 2.8.1, with I and g being the unit vectors in the direction of 

propagation of plane-waves from the source line and to the receiver line. 

From Figure 2.8.1 it can be seen that the rotation or mapping of (ks,kg) to 

(Kx,Kz) can be accomplished by a formulation incorporating angles. Noting that ks is the 

wavenumber along the source line, kg is the wavenumber along the geophone line and Ys 

and Yg are the perpendicular wavenumbers to ks and kg, we can write, for region I 

Kx =ks Icos(<I»1 - Ys sin (<I» + kg Icos(ll)1 + Yg sin(ll) 

Kz = ks sin (<I» - Ys cos(<I» + kg sin(ll) - Yg cos(ll) , (2.28) 

for region II 

Kx = ks Icos(<I»1 + Ys sin (<I» + kg Icos(ll)1 + Yg sin(ll) 

Kz = ks sin (<I» + Ys cos(<I» + kg sin(ll) - Yg cos(ll) , (2.29) 

and for region III 

Kx = ks Icos(<I»1 - Ys sin (<I» + kg Icos(ll)1 - Yg sin(ll) 

Kz = ks sin (<I» - Ys cos(<I» + kg sin(ll) + ygcos(ll) . (2.30) 

The Jacobian of the transformation can be obtained by taking the derivatives of these 

equations with respect to (ks,kg) and is found to be, for region I 

J(Kx,Kxlks,kg) = 

Ilcos(<I»1 sin(ll) + Icos(<I»1 cos(ll) kg + sin(ll) sin (<I» ks + sin(<I» cos(ll) kskg 
Yg YsYsYg 

. k . . kg . kskg I 
- sm(<I» Icos(ll)1 - cos (<I» Icos(ll)1 ~ + sm(ll) sm(<I» - + cos (<I» sm(ll) - , (2.31) 

. ~ ~ ~~ 
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for region II 

J(Kx,Kxlks,kg) = 

Ilcos(<I»1 sin(T\) + Icos(<I»1 cos(T\) kg - sin(T\) sin(<I» ks _ sin (<I» cos(T\) kskg 
~. ~ ~~ 

- sin(<I» Icos(T\)1 + cos(<I» Icos(T\)1 ks + sin(T\) sin (<I» kg - cos(<I» sin(T\) kskg I , (2.32) 
~ ~ ~~ 

and for region III 

J(Kx,Kxlks,kg) = 

Ilcos(<I»1 sin(T\) - I cos(<I»I cos(T\) kg + sin(T\) sin (<I» ks _ sin (<I» cos(T\) kskg 
'Yg 'Ys 'Ys'Yg 

- sin (<I» Icos(T\)1 - cos (<I» Icos(T\)1 ks - sin(T\) sin (<I» kg _ cos (<I» sin(T\) kskg I 
~ ~ ~~ 

(2.33) 

Depending on the region being studied, substituting the above equations into 

equation 2.9 where appropriate, will give the inversion formula for the geometry 

considered. 

The wavenumber domain coverage diagrams can be drawn using equatiol1s 2.28 

to 2.30 for each region and for any angle of source and receiver boreholes in the 

indicated range. 

In practice, there are some constraints on the use of regions II and III. The 

experiment being conducted must be in the form of a transmission experiment, which 

images the area in between the source and receiver boreholes (or region I), or 

backscattering experiment, which requires the sources and receivers to be in the same 

borehole, bringing a constraint to regions II and III. With this in mind, we see that the 

wavenumber domain coverage diagrams in the back scattering experiment will be the 

same for regions II and III. 
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The coverage of the object function in the wavenumber domain is shown for two 

cases with 32 source and receiver pairs. In the frrstcase, the source borehole angle <l> is 

135° and the receiver borehole angle T\ is 45°. This geometry forms a back scattering 

experiment. The coverage in region II is th~ same as the coverage in region III and is 

shown in Figure 2.8.2a. This coverage is the conventional back scattering coverage 

mentioned before (see Figure 2.2.2d) but now it is rotated 45° since the source and 

receiver borehole (or line) angle has changed by 45°. The second example is for a 

transmission experiment where <l> is 90° and T\ is 45°. The coverage in region I, Figure 

2.8.2b, resembles the crosshole coverage (Figure 2.2.2a) with the main difference being 

that the coverage in Figure 2.8.2b is spread out to a wider area and therefore the 

inversion result for this case can be expected to be better. 

The inversion algorithms are demonstrated on Born forward data, for the case 

where <l> is 90° and T\ is 45°. The model is a 32 m by 32 in area with 1 m intervals of 

sources and receivers. There are three diffractors, as can be seen in Figure 2.8.3a, with 

an object function value of 0.16 at the diffractor locations and 0.0 elsewhere. The single 

frequency inversion for region I is seen in Figure 2.8.3b and the reconstruction of the 

object function is quite good. 

2.9 Inversion with point sources (2.5-D corrections) 

The theory discussed in the previous sections was for line sources whereas in 

field applications data are gathered from point sources. If we assume the medium is 2-D 

and imaged by point sources, a correction to the data must be applied for the recorded 

wavefield to represent a line source wavefield. 

, To correct for the 2.5-D effects of the wavefield in the inversion we follow the 

approach by Esmersoy (1986). The Green's function for a point source in a 3-D 

medium can be given as G(R,rs) = exp[iklR - rsll/{ 41tIR - rsl} where, 
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Ii = xx + yy + zz. Substituting this point source Green's function into equation 2.6 

and assuming a 2-D medium we have 

U~.5-D(rs,rg) = - k
2

2
ff o(h[f eXp[~IR~- ;,1] exp~kl;g-.: RI] dYJ dx dz. (2.34) 

161t IR - rsl Irg - RI 
, y "', . 

z x 

The integral in brackets over y can be evaluated using the method of steepest descent 

(Brekovskikh, 1980) yielding 

[ .... J == (21t}1/2 exp[ill.] exp[ik(lr - rsl + Irg - rl)] . 
, k 4 (Ir _ rsl + Irg _ i1)1/2 Ir _ rsl1/2lrg _ r11/2 

(2.35) 

Substituting equation 2.35 into equation 2.34 we have 

z x 

dx dz. (2.36) 

In the line source case, the asymptotic form of the 2-D Green's function can be 

given as 

G(r,r') == i ( 3 -+' )112 exp[ - i1t/4] exp[iklr - r'l] , 
1tklr - rl 

substituting in equation 2.6 we get 

US(fS,r ) == - ik II O(r) exp[ik(lr - fsl + Irg - n)] dx dz . 
g 81t 1- - 11/2 1- -11/2 r-rs rg-r 

z x 

(2.37) 

(2.38) 

Equation 2.36 and 2.38 indicate that by knowing the scattered field from a 2.5-D 

medium, we can obtain the approximate field of an equivalent 2-D medium by the 

relation 
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Us = - [lkc3] w(ro) * [eXP[i31t/4 ] U~.5-D] , 
Iro13/2 (2.39) 

where w(ro) = i sgn(ro)/(2IroI3!2), and ' * ' denote~ convolution. Therefore, for the 2.5-

D corrections the wavelet deconvolved frequency domain scattered field data are first 

mUltiplied by the filter exp[i31t/4 ]/ro3/2, then inverse Fourier transformed and multiplied 

by a second filter {t/(21t)} 112, which is the inverse Fourier transform of w(ro), and 

finally Fourier transformed again and multiplied by [ - ikc3], to yield the approximate 2-

D scattered field in the frequency domain. To form the relation in equation 2.39, 

w(k) * exp[ikd] = (21t)1/2 dl/2 exp[lkdl, 

d = rr -r sl + Irg - rl > O. 

is used where k = ro/co and 

2.5-D Born forward data can be generated using equation 2.6 with the 3-D 

Green's function. In section 2.5 it was demonstrated that multiple scattering effects were 

not prominent in the fracture case considered and Born data could be used for 

simulation. Born forward data are generated at various frequencies for the same model 

as the PSFD forward data model (Figure 2.5.3) except that spatial sampling is 0.5 m 

rather than 0.25 m, that is, there are half as many diffractors on the lines representing 

the fractures in the Born forward data case. 

Figure 2.9.1a shows the inversion of the data without the 2.5-D corrections. The 

application of the 2.5-D processing discussed above to the Born forward data forms the 

corrected data. The result of inverting the corrected data with the backpropagation 

algorithm is shown in Figure 2.9.1b. In both applications, the images are averaged from 

2760 to 5520 Hz with 120 Hz intervals and the absolute value of the real and imaginary 

parts of the object function are displayed. The value at the origin or upper-left comer is 

the reference or expected value of the inversion. 

It is seen that inverting a point source data set with a line source inversion 

algorithm without corrections (Figure 2.9.1a) results in a reconstruction of diffractors 
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with wrong amplitudes. As can be seen from this figure, not only are the resultant 

values smaller than the reference or expected value but also, due to the phase-shift, the 

imaginary part of the image has nearly the same amplitude as the real part. These effects 

are removed in the resulti~g image of the corrected data (Figure i9.1b) and a good 

inversion is obtained. The resulting amplitudes are slightly lower than the expected 

amplitudes due to the smoothing brought by averaging of frequencies. 

It is seen that the 2.5-D correctioQs are quite useful, especially when seeking the 

correct amplitudes in the inversion results. In addition, the real to imaginary ratio test, 
, 

outlined in section 2.4, will perform well only if these corrections are applied to the data 

set, since then the phase-shift will be removeq and the amplitude ratios preserved. 
~ .' 
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Figure 2.1.1 a Crosshole data gathering geometry and 
gridding conventions. 
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Figure 2.1.1b VSPR data 
gathering geometry. 

Figure2.1.1c VSPL data 
gathering geometry. 
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Figure 2.1.1d SRP data gathering geometry. 
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Figure 2.2.1 Plane-waves imaging the object (left side) and the infonnation they carry 

on the object in the wavenumber domain (right side). 
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b) With (bottom) the source function. 
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inversions from 3900 to 4800 Hz 
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Figure 2.5.1a Input model to the PSFD method and location of sources Sl and S2. 
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Figure 2.5.1b Wavefield snapshot showing incident and scattered waves (source at Sl). 

Figure 2.5.1c Wavefield snapshot containing multiply scattered waves (source at S2). 
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Figure 2.5.2a Input model to the PSFD method. Sources are located on the left 

boundary and receivers are located along lines A, B and C. 

Figure 2.5.2b Seismograms for the source at S 1 and all receivers. 
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Figure 2.5.2d Seismograms for the source at S3 and all receivers. 
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backpropagation inversions averaged from 2440 to 5500 Hz with 122 Hz intervals. 



Free-surface A 

Figure 2.7.1a Input model to the PSFD method. Sources are located on the right 

boundary and receivers are located along lines A, B, C and D. 
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Figure 2.7.1 b Snapshot of the wavefield showing the incident field reflecting from 

the free surfaces (source at S 1)' 

Figure 2.7.1c Seismograms for source at S2 and all receivers. 

- 68-



\0 

HORIZONTAL DISTANCE (M) HORIZONTAL DISTANCE (M) HORIZONTAL DISTANCE (M) 
o 2 4 6 B 10 0 2 4 6 B 10 0 2 4 6 B 10 

o '--"'."' • .1-. .•. "' .• ,"'''' ... ''' . .1 .......... ''', •• '''''' .. '''' 0 0 I.. .....•.• ! l.. . .1 0 0 l'~:···:·.L!'···'·······"'J!·'..···-·····.b·'·""f 

• ~ .. ru"""""',,,,,,,,,,,,,,,,,,,,,,,,,,,""""',,',,,,",,c· • ~~~!~:~_'ffil~;_~~. • i~I[~~lliiii;:~:~;~i~iii:ii~i:~:~;:,~ii~i::~i~'I",C • 
.., -I:!,:::"",::::::::::::::::::::::::::::::::::::::ii:::iiiiiii::iiiiiiiiiiit-.., .., -I!l!ili!mmm!lmmHHH1Hm::,lll,lllHHH,l?il:HlH,lHm,::", .., .., -llllllllllllllllllllllllllll:l:'l:l:l:l::l:::l:::lllmlllll:::::i:lljllllj~'" 

!! :'!!! :'!!! -l~~mmmmmHHmiimmmmi:llHll:lmjllllllllllll:llIjl:ii~:'! 

!! ~mTImmmmm::mHlHmmm:HL.:::.:Immmmmmmr ~ ~ -R!~!rll!!iiiiiiiimiiiiiiiiiiiiiii!!l!mlim;!m!illllliiii~ ~ ~ ~mHmmmiiii!iii!lllmmm!lllllmmiiii!!mi!!i!!iiiillllllll~ ~ 
::~:::~::::;:~:::~::~:::::;~m~m; 

~ r:::::::::::TT ... n .. r:pr=nnq'wrr .. ···jj:,,· ·'::"1 ~ ~ j#::::::ijj"':"''''''i'';;ij:::::jjj:::::::'''''''''''''T:j:::::;::::1 ~ 

2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 

4250 4750 5250 5750 8250 8750 -0.75 ·0.44 ·0.13 O. \8 0.49 0.80 -1.120 -0.1Ie5 ·0.2\0 0.245 0.700 
VELOCITY 1M/SEC) OBJECT FUNCTION OBJECT FUNCTION 
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Figure 2.7.4a Scattered field crosshole backprupagation inversion averaged 

from 2440 to 5500 Hz with 122 Hz intervals. 
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Figure 2.7Ab,c Folded b) Scattered (left) and c) Total (right) field crosshole 

backpropagation inversions averaged from 2440 to 5500 Hz with 122 Hz intervals. 
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producible in each region. 
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Figure 2.9.1a,b Crosshole 2-D backpropagation inversion of 2.5-D data 

a) Uncorrected (top) and b) 2.5-D effects corrected (bottom). 
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Chapter 3 

Application to Field Data 

In this chapter, the inversion methods are applied to field data from a region of 

granitic rock in order to image the fractures it contains. A data processing scheme, 

necessary to bring the field data into a form that can be used in the inversion algorithms 

is introduced. The processing scheme is quite different from conventional seismic data 

processing. This is mainly due to the multi-offset and crosshole nature of the data. 

After processing, the data are inverted using the diffraction tomography 

algorithms and the resulting images are compared to ray tomography inversions. These 

images are seen not only to be in good agreement with the ray tomography inversions 

but also with the geological information available on the fracture zones obtained from 

core samples. 

3.1 Geology of the FRI test site 

The field data that the methods are applied to is from the FRI site in the southern 

part of the Grimsel test facility which is located a few hundred meters below the surface 

inside the luchlistock mountain in the Swiss alps. This facility is operated by the Swiss 

National Cooperative for the Storage of Radioactive waste (NAGRA), and joint projects 

are conducted here with the Lawrence Berkeley Laboratory (LBL) on topics ranging 

from measurements of rock mechanical properties of the granitic rock to hydrological 

conductivity studies and detection of fractures in the granitic rock mass. The FRI site 

consists of two main tunnels which are 21.5 m apart and lying in the north-south 

direction and are connected by two ooreholes oriented in an east-west direction with a 10 

m separation. This site is chosen in a region of granitic rock where fractures are known 
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to exist. The geometry outlined above, together with a geological interpretation of the 

region is shown in Figure 3.1.1. The fractures intersecting the boreholes, indicated by 

short lines at the borehole locations, are an interpretation of core samples taken from the 

boreholes. The geological interpretation of this information together with core samples 

from the main access tunnel and laboratory tunnel is indicated by a main shear zone. The 

main shear zone in the experiment area has a nearly vertical dip forming an approximate 

2-D medium. Some mafic dykes and associated small fractures are shown as stippled 

areas and indicated by an L in Figure 3.1.1. In addition, there are a few centimeter thick 

veins which are generally filled with quartz, feldspar, epidote or aplitic material not 

shown in Figure 3.1.1. Measured from the laboratory tunnel these veins are seen in 

borehole BOFR 87.002 at 10-12 m striking north-east, at 12 m and 14 m striking north

west and in borehole BOFR 87.001 at 12.8 m striking north-west. 

3.2 Data gathering and analysis 

Data were collected for all possible crosshole and VSP geometries around the 

experiment area with 0.5 m spacing of sources and receivers. An unclamped 

piezoelectric source was used in the water filled borehole which gave energy up to 10 

kHz. The receiver used was a three-component accelerometer clamped to the borehole 

wall in order to improve coupling and reduce tube-waves. To improve the quality of the 

data, for each source-receiver pair the experiment was repeated two to nine times and the 

results averaged. The VSP type data were not used in the diffraction tomography 

inversions because of tube-wave contamination and limited dynamic range of the 

recording system. For more detailed information on the equipment used and data 

gathering procedures, see, Majer et aI., 1990. 

In the crosshole case, the nearest source location used in the inversions was 1.5 

m away from the access tunnels so that prominent tube-waves and surface-generated 
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waves could be avoided. The data contained some tube-waves from the locations where 

fractures intersected the boreholes. 

In the inversions we use the receiver component perpendicular to the borehole 

wall. This is done because a wavefield separation method (Devaney and Oristaglio, 

1986) when applied to field data did not produce good results, possibly due to tube

waves and spatial sampling of sources and receivers. 

An example data set is shown in Figure 3.2.1 for a source located at 7.5 m from 

the main access tunnel in borehole BOFR 87.002 and receivers between 1.5 m and 19.5 

m from the main access tunnel in borehole BOFR 87.001. In this Figure, a fracture

generated tube-wave can be seen starting at the twentieth and continuing through the first 

receiver at a downward slope of about 45° from the horizontal giving an approximate 

velocity of 1400 mls for the tube-wave. We can also see the reverberative nature of the 

wavelet in this figure which will be discussed in the next section. From field data, 

transmission ray tomography inversions and laboratory measurements, the background 

or granitic rock velOCity is estimated to be near 5300 mls. In addition, a 7-8% transverse 

isotropy with the symmetry axis normal to the plane of fracturing is observed from 

displaying the first arrival time data as a function of ray angle. 

3.3 Data processing 

In Figure 3.3.1 we outline the data processing scheme which is used. Initially, a 

cos (8) operator is applied to the data for the radiation correction, where 8 is the angle 

of the line joining the source and receiver, measured from the horizontal. The cos (8) 

correction operator was found as follows: a source was fixed and receivers were moved 

in a crosshole fashion in a homogeneous region of granitic rock outside the experiment 

area. An estimated attenuation correction and a geometrical spreading correction were 
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applied to this data and amplitudes as a function of angle were matched with possible 

operators. The cos (8) function proved to fit the data best. 

In order to estimate the wavelet and a more precise attenuation correction factor 

(a.) of the background medium, we consider the initial portion of the data which 

contains the waveform of the first arrivals. To this set we initially apply a geometrical 

spreading correction of R, which is the source-receiver separation. We then estimate a. 

as follows: we correct the data with a certain a. value and for each source, we look at the 

mean deviation of the maximum amplitudes as a function of distance to receiver 

. locations. Next, we sum the mean deviations for all sources to obtain a total mean 

deviation value for the considered a.. We repeat this process for a range of a. values and 

take the a. that gives the minimum total mean deviation as the background attenuation 

factor. In this case, the total mean deviations gave a smooth change with a minimum 

corresponding to an a. value of 0.12 m-l. Using Q = (1tf)/(o.co) (Aki and Richards, 

1980, p.168) with f = 5500 Hz and Co = 5300 m/s gives a Q of 27 for the granitic rock. 

We apply the attenuation correction with this a. to the radiation corrected full-wavefield. 

This gives us the corrected total field (see Figure 3.3.1). 

In order to estimate the wavelet, the attenuation correction is applied to the first 

arrival waveforms, then the first arrival times are picked and used to align the first 

arrival waveforms. Further improvements on these picked times are achieved by 

aligning the first minimums of the traces (Figure 3.3.2 displays the minimums to be near 

0.06 ms). We use the first minimums to align the traces in order to avoid possible errors 

that could result from early arrivals of the scattered field effecting subsequent maxima 

and minima. Averaging these aligned traces over receivers for a fixed source gives us an 

estimate of the wavelet for a specific source or a common source gather. Averaging all 

the common source gather wavelets will give us an average wavelet. In Figure 3.3.2, 

common source gather wavelets (top) and the average wavelet (bottom) are displayed. 
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As can be seen the average wavelet has a reverbatory nature. These 

reverberations are caused by the wavefield being trapped in the water-filled borehole 

because the arrival times of the multiples correspond to the two-way travel time in the 

water-fIlled borehole. We therefore define two sets of wavelets, one a short wavelet (up 

to 0.2 ms in Figure 3.3.2) which does not include the multiples and another a long 

wavelet (up to 0.46 ms in Figure 3.3.2) which includes the multiples. For the 

deconvolution, each common source wavelet can be used to deconvolve its associated 

source group or the average wavelet can be used to deconvolve all the traces. We 

discuss which wavelet will be used for deconvolution, including the common receiver 

gather, in the next section. 

The maximum amplitudes of the common receiver gathers for each receiver, 

which indicates the coupling of the receivers, and common source gathers for each 

source, which indicates the coupling of the sources, are given in Figures 3.3.3a and b. 

From these figures, it is seen that although the variations from the average values are not 

large for both cases, the coupling of the sources and receivers with the medium will 

affect somewhat the inversion amplitudes. 

Continuing with the data processing (Figure 3.3.1), we generate 3-D Green's 

functions using the corrected first arrival times and then convolve them with the average 

long wavelet, constructing an estimate of the incident field, which is subtracted from the 

total field to give the scattered field. 

To avoid additional noise entering the inversions, the beginning of the traces are 

muted using the corrected first arrival times. In addition, the end of the traces are 

windowed using a one-sided Hamming window in order to exclude arrivals other than 

the singly scattered field, such as refracted-waves, shear-waves and especially fracture

generated tube-waves in borehole applications. Although these tube-waves carry 

information on the fractures they need to be removed as completely as possible, 
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otherwise they can disturb the inversion results at the boundaries. The choice of the 

window lengths used will be discussed in the next section. The last step before the 

inversion is the. application of the 2.5-D corrections discuss~ earlier. 

3.4 Inversion of the field data 

In the application of the inversion some criterion is necessary to assess the 

quality of the inversion results. In the synthetic data case we used the method of 

quantitative and visual comparison of the model and inversion results. For the field data 

this is not possible. Therefore, in the backpropagation method we use the ratio of the 

maximum of the absolute value of the real part to the maximum of the absolute value of 

the imaginary part of the obtained images as an indicator of the inversion quality. We 

will call this test the real to imaginary ratio test. In the acoustic case, when attenuation 

effects are removed from the wavefield the object function will be real. Therefore, with 

full coverage in the wavenumber domain this ratio would be infinity. Due to sampling 

and limited coverage in the crosshole case, a good inversion would mean a high ratio, as 

discussed in section 2.4. In the field data, with the present formulation of diffraction 

tomography, not only is the removal of attenuation necessary but the removal of 2.5-D 

effects and wavefields besides the singly scattered P-waves is necessary as well, but can 

only be done approximately, therefore this test should be used with caution. 

We use the real to imaginary ratio test initially to find an accurate background 

velocity for the inversion as discussed with the synthetic examples in section 2.4. 

Application of a range of velocities from 5000 to 5400 m/s gives a smooth variation with 

a peak in the ratio at 5270 mls when the short average wavelet is used in the 

deconvolution. This velocity is consistent with the field data, transmission ray 

tomography inversions and laboratory measurements, indicating that the data processing 
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scheme has been useful in removing unwanted effects from the recorded wavefield and 

the test is reliable in this case. 

When the deconvo~ution is done using common source or receiver gathers with 

the long wavelet, the variation of the real to imaginary ratio test with respect to velocity 

is unstable and several peaks appear. This is due to the sharp troughs in the wavelet 

spectrum which make the deconvolution operator unstable. We therefore prefer to use 

the average wavelet for doing the deconvolution. The real to imaginary ratio test is also 

used in order to detennine the length of the Hamming window to be applied to the end 

of the traces. A good ratio is obtained for a window length of up to 7.0 ms. 

3.4.1 S-wave and tube-wave reduction 

In this section we demonstrate the sensitivity of the inversion algorithm to 

velocity. Because the inversion is done at the P-wave velocity, we expect the wavefields 

propagating with different velocities to be weakened in the resulting image. To 

demonstrate this principle, 2-D Born forward data are generated for two diffractors with 

the same circular scattering pattern (angle independent) and same amplitude but with 

different propagation velocities depending on the wavetype. For the following two 

examples, we consider a 10 by 20 m area with 0.5 m spacing of 40 sources and 

receivers in a crosshole configuration. For the P-to-S example we consider two 

diffractors, one diffractor at x = 5 mand z = 5 m with a propagation velocity of 5500 

m/s from source to diffractor and diffractor to receiver (P-to-P), and the second 

diffractor at x = 5 m and z = 15 m with a propagation velocity of 5500 m/s from source 

to diffractor and 3200 m/s from diffractor to receiver (P-to-S). The 3200 m/s velocity 

used for the S-waves is in accordance with the field data. Figure 3.4.1 a shows the 

absolute value of the real and imaginary parts of the averaged backpropagation inversion 

for 24 frequencies. The inversion is perfonned using a 5500 m/s background velocity. 
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We see that the P-to-P diffractor is reconstructed well but the P-to-S diffractor is widely 

distributed and has about one-tenth the amplitude it would have had if it were to be a P

to-P diffractor. Averaging backpropagation inversions is seen to be very effective in 

further reducing the amplitude of the P-to-S diffractor. In the quadratic programming 

inversion at 5500 Hz with negativity constraints and no smoothing, we get a similar 

result but the noise due to the P-to-S diffractor is more pronounced (Figure 3.4.1 b). 

The same test is carried out for fracture-generated tube-waves with the P-to-P 

diffractor located at x = 7.5 m and z = 10 m and the P-to-tube diffractor located at x = 

0.25 m arid z = 10 m, where a tube-wave velocity of 1400 mls is used for the 

propagation of the wavefield from the diffractor to the receivers. Because of the slower 

velocity involved, the P-to-tube diffractor is not imaged as well as the P-to-S diffractor 

(see Figure 3.4.1a and 3.4.2a). Averaging backpropagation inversions is seen to 

improve the results similar to the previous case. The two lines at about 45° and - 45° 

from the horizontal in Figure 3.4.2b result from limited wavenumber domain coverage, 

as discussed at the end of section 2.3, and are not specific to the tube-wave velocity 

used. They can also be seen in the backpropagation inversion at a single frequency but 

are unnoticeable when averaging of images is performed due to the increased coverage 

(see Figure 3.4.2a). 

We infer from these tests that the inversion method will reduce to a certain extent 

the wavefields propagating with a velocity different from the inversion velocity. The 

reduction will depend on how far the wave has propagated with this different velocity 

and how large a contrast this velocity forms with the inversion velocity. We conclude 

that tube and S-waves should be filtered out of the data set with as little harm to the P 

wavefield, but if some residues are to remain, the inversion process will also help 

reduce their effect on the image. 
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In field data, the amplitude of the S wavefield in crosshole applications will be 

lower than that generated here if the receiver component perpendicular to the formation 

is chosen for the inversion (due to the scattering pattern of the P-to-S converted waves) 

whereas, the amplitude of the fracture-generated tube-waves will in general be larger. 

3.4.2 Diffraction tomography inversion results 

Figure 3.4.3 is the inversion of crosshole data using 31 source and receiver 

pairs, starting at 3 m and ending at 18 m, with the top and bottom sections zero padded 

completing the coverage to 21 m. The zero padding is done to avoid possible tube

waves and boundary-waves generated by the tunnels from entering the inversion. In this 

case, a short average wavelet is used for deconvolution and images for 22 frequencies 

from 2685 to 5250 Hz with 122 Hz intervals are averaged. The heavy averaging and 

short wavelet are used in order to achieve an inversion with smooth variation. In the 

inversion, the spatial sampling is half the source and receiver sampling or 0.25 m and 

the inversion result is displayed from 2 to 19 m in this figure. The inversion velocity 

used is 5270 m/s. 

The velocity values in Figure 3.4.3 are obtained directly from the inversion. In a 

full-waveform inversion, such as diffraction tomography, the amplitudes of the 

waveforms are utilized as well as the travel times. The source function, coupling of 

sources and receivers to the formation and the source radiation pattern are some of the 

factors that will affect the amplitudes of the waveforms measured, therefore the actual 

velocity values obtained in the inversion will depend on how well these effects are 

corrected for in the data processing. In the case we consider, the obtained values suggest 

that the data processing has performed quite well. Figure 3.4.3 is interpreted to indicate 

two distinct zones. Zone one starts at 8 to 10 m down the left borehole (BOFR 87.001) 

and ends at 15 to 18 m down the right borehole (BOFR 87.002) with a velocity near 
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4900 m/s. Zone two starts at 14 to 15 m down the left borehole (BOFR 87.001) and 

extends to 18 to 20 m down the right borehole (BOFR 87.002) with a somewhat higher 

velocity near 5000 m/s. 

Figure 3.4.4 is the quadratic programming inversion for the crosshole case with 

39 sources and receivers and deconvolution of data with the long average wavelet. The 

inversion frequency is 5250 Hz. We constrain the velocity of the inversion to be less 

than 5400 m/s and apply horizontal and vertical smoothing. The actual inversion velocity 

is 5270 m/s. In the inversion, the spatial sampling is equal to the source and receiver 

sampling or 0.5 m. This sampling is preferred due to computation time considerations. 

The inversion agrees well with the fractures indicated by the core samples (see 

Figure 3.1.1). This is due to imaging of the fracture-generated tube-waves remaining in 

the data from receiver and source locations close to the fractures, together with scattered 

P-waves from the fractures. The agreement with the backpropagation method is also 

quite good. The first zone seen in the backpropagation case can be defined in more detail 

to be from 9 m down the left borehole (BOFR 87.001) to 17 m down the right borehole 

(BOFR 87.002). The second zone mentioned in the backpropagation inversion is not 

very clear here besides the beginning of the zone at 13 m down the left borehole (BOFR 

87.001) and the end at 20 m down the right borehole (BOFR 87.002). 

3.4.3 Comparison with transmission ray tomography 

Figure 3.4.5 is a transmission ray tomography inversion of the crosshole data 

set with transverse isotropy corrections (for a review of the transmission ray 

tomography method, see Peterson et. aI, 1985; Peterson, 1986). The transverse isotropy 

corrections to the first arrival times are performed using the method of Backus (1965). 

The spatial sampling is 0.25 m in the transmission ray tomography inversions of this 

section. 
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For the crosshole case, comparing the ray tomography inversion with the wave 

tomography inversions, we see that in general ray tomography gives the smooth 

variations in the medium whereas wave tomography gives a higher resolution inversion 

result. In addition, the inversion area is larger in the wave tomography inversions or 

regions near the boundaries are better resolved with respect to the transmission ray 

tomography inversions. 

This inversion together with the quadratic programming inversion supports the 

existence of a possible third zone from 6 m down the left borehole (BOFR 87.001) to 

about 16 m down the right borehole (BOFR 87.002) in addition to the zone at 12 to 13 

m down the left borehole (BOFR 87.001) and 19 m down the right borehole (BOFR 

87.002). 

In the transmission ray tomography approach, inversions were found to be quite 

sensitive to the transverse isotropy and corrections to data were necessary to improve the 

results. 

Figure 3.4.6 is the anisotropy corrected transmission ray tomography inversion 

result using the crosshole data together with the VSP type data. As mentioned before the 

VSP type data could not be used in the wave tomography inversions due to recording 

problems affecting the amplitudes at late arrival times. Therefore, a direct comparison 

between the two methods cannot be carried out in this case. 

This image indicates several zones. The main two zones can still be seen but a 

new strong zone enters the inversion. This zone starts from 12 to 16 m down the left 

borehole (BOFR 87.001) and intersects the top of the image area at 7 to 9 m horizontal. 

Traces of this zone can be spotted in the quadratic programming inversion result of 

Figure 3.4.4 but the angle of the zone is less steep. In Figure 3.4.4, this zone starts 

from 1 to 5 m down the right borehole (BOFR 87.002) and extends to about 4 to 7 m 

down the left borehole (BOFR 87.00 1). The strength of this zone in the ray tomography 
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inversions may be caused artificially by the deformations in the rock near the boundaries 

of the tunnels causing ray bending or nonlinear variations and will enter the inversion 

when the VSP type data are considered. 

In addition to the above mentioned zone, there are also some other structures 

perpendicular to the fracturing direction which start at 19 m (Figure 3.4.4) and 15 to 16 

m (Figures 3.4.3, 3.4.4 and 3.4.5) down the left borehole (BOFR 87.(01). Several 

other low-velocity regions exist, one is at 8 m's in the vertical direction (down the 

borehole) and 6 to 7 m's in the horizontal direction (in the access tunnel) which 

distinctly appears in all images. 

In general, the different inversion results agree well with the core samples and 

with each other in the crosshole case. The methods can be further improved in order to 

obtain more accurate results. In the next two sections we consider the extension of the 

theory to the elastic and transversely isotropic cases, and later apply the transverse 

isotropy developments to the field data. 
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Figure 3.1.1 Geological interpretation ofFRI test site and experiment geometry. 

Fractures seen in core samples are indicated by short lines at the borehole locations. 

- 90-



TIME (MS) 

Figure 3.2.1 Crosshole data with source at 7.5 m down borehole 

BOFR 87.002 and receivers in BOFR 87.001. 
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Figure 3.3.2 Common source gather (top) and average of all traces (bottom) . 
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Figure 3.3.3a,b Maximum a) Common receiver gather amplitudes for ill receivers (top) 

and b) Common source gather amplitudes for all sources (bottom). 
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Figure 3.4.la,b Shear-wave filtering, a) Averaged backpropagation inversion (top) and 

b) Quadratic programming inversion (bottom). 
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Figure 3.4.2a,b Tube-wave filtering, a) Averaged backpropagation inversion (top) and 

b) Quadratic programming inversion (bottom). 
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Figure 3A.3 Averaged backpropagation inversion of crosshole field data 

from 2685 to 5250 Hz with 122 Hz intervals. 
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Figure 3.4.4 Quadratic programming inversion of crosshole field data at 5250 Hz. 

Velocities are constrained to be lower than 5400 rn/s. 
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Figure 3.4.5 Transmission ray tomography inversion of crosshole data. 

- 99-



<0 

-~ 
- co 
W 
U 
Z 
~o 
~~ 
CJ) 

0 
-'~ « 
u 
I-
a:~ 
w~ 

> 
<0 
~ 

co ... 

0 
N 

N 
N 

HORIZONTAL DISTANCE (M) 
o 2 4 6 8 10 

0 2 4 6 8 10 

I IIli!!!! 
4950 6080 6210 6340 6470 6600 

VELOCITY (M/SEC) 

Figure 3.4.6 Transmission ray tomography inversion of the entire data set. 
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Chapter 4 

Elastic Inversion 

In this chapter, we extend the inversion theory to an elastic medium. In general, 

an elastic medium is approximated by an acoustic medium due to the simplicity brought 

not only to the theoretical formulation but also to the field procedures and the 

computational requirements making it more economical. The elastic wavefield is a 

combination of P and S-waves including conversions from P-to-S and S-to-P when a 

scatterer is encountered. The P wavefield can be approximated by an acoustic wave 

equation but the success of this approximation will depend on how well this field can be 

extracted from the total field observed. In addition, in the acoustic inversion the 

scattering pattern of the observed wavefield is assumed circular or angle independent 

whereas in actuality it is angle dependent for both P .and S-waves. Choosing an 

appropriate geometry and the right components of the data, by taking into account the 

scattering patterns of the wavefields (as done in chapter 3), the P wavefield can be 

represented quite well in the acoustic theory framework. For applications such as 

fracture detection where the S wavefield carries valuable information and to obtain a 

high-resolution image for detailed analysis, the elastic wavefield should be used thereby 

removing some of the approximations made in the formulation. 

In this chapter, we assume a 2-D medium and formulate the problem for the SH

waves and the P-SV waves. 

4.1 Forward problem 

The equation of motion in the source-free region of an elastic, isotropic medium 

can be given as 
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Pii· = (AV·g)· + (II(U" + U .. »· 1 ,I r- l,j j,l ,j' (4.1) 

where p is the density, A and ~ are the Lame parameters ofthe medium and ulr,t) is the 

displacement in the i th direction at location r and at time t. Defining 

A(r) = An + OA(r) , (4.2) 

where 0 represents the perturbation to a homogeneous background and substituting into 

equation 4.1, we have 

+ (OA) ·V·o + (OA) '(u' . + U· .) . ,I ,J I,J J,I (4.3) 

The displacement in equation 4.3 can be represented as a superposition of the incident 

and scattered displacements or Ui = u? + u~ giving, 

(4.4) 

where 

Qi = - Opiii + (OA + o~)(V 'n),i + O~ V2Ui + (OA),iV·n + (O~),j(Ui,j + Uj,i) . (4.5) 

To obtain this equation poii? - (AO + ~o)(V ·UO),i - ~o V2
u? = 0 was used. In equation 

4.4, Q is an equivalent source. Using Green's theorem and the free-space Green's 

function we have (see Aki and Richards, 1980; Wu and Aki, 1985), 

(4.6) 

Where ' * t ' denotes convolution in time. Using the Born approximation, u ~ uO 

equation 4.5 can be given as 
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(4.7) 

Substituting equation 4.7 into 4.6 

u1 = i (- opii? *, Gj' + (OA V.ii").j " Gj' + (OIJ.(UJ.k + "'L».k " Gj,) dV . (4.8) 

Integrating by parts the tenns involving the derivatives of the elastic parameters we have 

In the frequency domain and for a source in the I-direction and measurements in the j-

direction equation 4.9 becomes 

(4.10) 

This equation fonns the fundamental equation of the elastic case, obtained by 

using the Born approximation. Because we have assumed that the background is 

homogeneous (equation 4.2) the Green's function can be detennined analytically. If the 

background were assumed to be inhomogeneous equation 4.10 would still hold but then 

the Green's function would have to be detennined using high-frequency approximations 

(for a discussion, see Beydoun and Mendes, 1989; Beylkin and Burridge, 1990). In this 

equation Gij = Gi/r :rS
) for the source and Gt = Gij(r ,rg

) for the receiver. 

The elastic Green's function in 3-D for a homogeneous background can be 

found in Aki and Richards (1980). In Appendix C and D derivation of the 2-D Green's 

function for a homogeneous background is discussed (Eastwood, 1988). Here we give 

the results in the transfonn domain. For SH-waves 

(4.11) 

For P-SV waves 
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!lk~k~ 1 exp(i ("fsds - k!ls· r)] 
(!lk~)2 "fs 

i 

- ~k~k~ 1 exJi (Isds - k~s· r)] . 
(k~f Is 

(4.12) 

Here, !lk~ and ~k~ are respectively the vertical wavenumbers over the source line for the 

P and S-waves. These equations are for the sources and the equations for the receivers 

(in the Born approximation framework) can be obtained by replacing the s's with g's in 

the above equations. 

4.2 Inversion of SH-waves 

For SH-waves in 2-D, equation 4.10 can be written as 

uh(r ,.r g,ro) = -i ( -ro20p~yG~y + OJ.l( G'yy .xG~y.x + ~y .zG~y.J) dV. (4.13) 

Similar to the acoustic case, we take the Fourier transform of this equation over the 

source and receiver lines to form the plane-wave decomposition. The application of this 

process to the Green's function, together with the derivative operations, is given in 

Appendix B. For an outgoing wave from the source (f = -S) and an incoming wave to 

the receiver (g) we have 

x exp( - i keg - f). r] dV, (4.14) 

where now, f = Xk~ + Zk:~. Using the dot product and the definitions of the unit vectors 

we can substitute (k~k~ + k~k~) = k2(i· g) in the above equation yielding 

- 104 -



t ~ 't x exn- i k(g - f). r] dV. (4.15) 

The right side of this equation is in the fonn of a Fourier transfonn, therefore, we can 

write this equation as 

(4.16) 

Eqmltion A.16 forms the linear relationship between the perturbation in the 

medium param~ters and the observed scattered field. This equation is quite similar to the 

variable density acoustic case (Pevaney, 1985) as can be expected since both wavefields 

are scalar. The main difference is that in this case we use a different data set and invert 

for different physical paramet~rs of the medium. 

At this point the problem can be solved for the tenn in the brackets in the above 

equation simply by following the inversion proced,ure for the backpropagation or the 

quadratic programming cases of the acoustic data, chapter 2. In order to obtain the 

individual physical parameters inside the brackets on the left side of equation 4.16, we 

must require the same number of independent measurements as the physical parameters 

and solve the resulting matrix. To obtain independent measurements we see from the 

tenns in the brackets that we can use either the frequency dependence of the parameters, 

or the dependence of the parameters on the directionality of the plane-waves from the 

source to the geophone, or both. In general, the resulting matrix to be solved is ill-

conditioned (Le Bras, 1985; Beydoun and Mendes, 1989; Beylkin and Burridge, 1990). 

An inversion method using the directionality of the plane-waves has been considered by 

Ozbek (1988) where the ill-conditioning is taken care of by using multi-angles and 

perfonning a least-squares inversion for the parameters. Norton (1983) has proposed a 

method which uses both the directionality and the frequency dependence of the 
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parameters in an optimal fashion to stabilize the ill-conditioned problem. We will 

investigate this approach and extend it to seismic applications in section 4.5. In the 

diffraction tomography formulation the frequency is fixed and all possible directions of 

plane-waves are used to reconstruct the object, therefore in this method inversions at 

different frequencies can be obtained and used to extract the individual parameters 

sought. In this case the ill-conditioning is taken care of by either choosing two 

frequencies with a large difference between them or by using multi-frequencies and 

posing a least-squares problem. The formulation presented here is parallel to that carried 

out by Devaney (1985) for the variable density acoustic case. The main differences are 

that we are now investigating the elastic rather than the acoustic problem and considering 

line sources rather than plane-wave sources. We will also need different filtering 

operators since we do not have the comfort of the coverage obtainable in medical 

imaging applications. As a result of the limited view problem, as discussed earlier, 

seismic inversions cannot be expected to achieve the quality of the inversion results 

obtainable in medical imaging applications. 

To solve for the SH-wave case, as done in the variable density acoustic case, we 

substitute the following identity 

~ ,... 1 ~ 2 1 1-+12 I·g = 1 - - (g - I) = 1 - - K , 
2 2k2 ( 4.17) 

into equation 4.16 which yields 

x exp[ - i ('ygdg + 'Ysds)] . (4.18) 
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Representing the first two terms on the left-hand side respectively by A(I{) and B(I{) 

and taking the inverse Fourier transform of equation 4.18 with a change of variables of 

integration we have 

x exp[i (Kxx + Kzz)] , (4.19) 

with I{ = k(g - f) = Kxx + Kzz where Kx = k~ - k~ and Kz = kf - k~. 

From this equation we can see the frequency dependence of the two terms since 

k = ro/~o. From equation 4.19 we also see that a backpropagation inversion at a fixed 

frequency will give us the so called raw inversion or the term on the left-hand side of 

this equation. In order to obtain the individual parameters we can perform an inversion 

at two distinct frequencies and extract the individual parameters as follows: If we call the 

raw inversions obtained at two frequencies f2 > f1 as Fi(r) we will have 

[ 
F 1 (r) 1 [ kIll [ A(f) 1 

H1(r) * F2(r) - k~ 1 B(r) , 
(4.20) 

where HI (r) is a filter used to bring the second inversion (high-frequency) to the same 

frequency content as the first one for reasons of stability. This filter is quite complicated 

in seismic applications where the coverage is limited and will be discussed in section 4.4 

for the crosshole case. In the above equation A(r) = A1(r) = H1(r) * A2(r) and a similar 

equation holds for B(r), with' * ' denoting spatial convolution. Inverting this matrix we 

have 

[ 
A(r) 1 ~ 1 [~ 1 

B(r) - (k~ - ki) . k~ 
1 1 [ Fl (r) 1 

-ki Hl(r) * F2(r) 
(4.21) 

Upon obtaining A(r) and B(;) from this equation, we take their Fourier transform and 

solve for the unknown parameters using 
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(4.22) 

Taking the inverse Fourier transfonn of these equations will yield the physical 

parameters in space. 

Although this fonnulation is elegant, in practice a somewhat different approach 

is used to stabilize the inversion procedure. The problem comes from the divisions in 

equations 4.22 and is avoided by performing two separate sets of inversions. One is the 

set just described in equation 4.18 and the other is the inversion of 

k2(5P(K) + B;;(K)) + (- ~(K») = _ 4p2 'Ys'Yg US (k k co) 

1-12 2 1-12 4 4 0 1-12 yy s, g' 
K ~o K ~o 2~o K 

Representing the first two tenns on the left-hand side respectively by A'(K) and B'(K) 

-and following the above procedure we can now solve the equations for A'(K) and 

B'(K). Using B'(K) from the second set of solutions and A(K) from the first set we 

can write a stable set of solutions as 

~---+ 4 ~ 

OIJ.(K) = - 2~oB'(K), 

op(K) = ~~A(K) - OIJ.(K) = ~~A(K) + 2~~B'(K) . 
~~ 

(4.24) 

The extension of this method to more than two frequencies can be carried out, 

using a least-squares method to invert the resulting matrices, and should be used in field 

data applications. 
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We proceed to the next sec~ion where t~is technique will be applied to the 

inversion of P-SV waves with some modifications in order to recover three parameters 

simultaneously. We will discuss why the method presented here works and when it will 

not and present synthetic examples after investigating the P-SV wave case. 

To formulate the quadratic programming inversion equation 4.14 can be used. In 

this case, similar to the above procedure, the raw inve~sion can be obtained at two 

separate frequencies using equation 4.14 and the resulting 2 by 2 matrix solved to obtain 

the individual parameters. We do not investigate this case any further since it is a 

straightforward extension of the above method. 

4.3 Inversion of P-SV waves 

The displacement for a source in the I-direction and measurements in the j-

direction can be represented as a superposition of four wavetypes, namely P-to-P, P-to

S, S-to-P and S-to-S, or equivalently we can write uij = ut-
p + ut-S + u~-p + u~-s. This 

representation is a direct consequence of the Green's function representation, equation 

4.12. Substituting the appropriate parts of the Green's function into equation 4.10 for 

each of the four different wavetypes results in: 

uf.P(k k (0) = - 1 ,1 {8Ak4 + 8poo2k~k~ + 281Ik~k~kSkg}kSk~SPRP dV J s, g' 2 4 . 1 1 ,... 11k k I J ' 
4pooo v .. 

utS(ks,kg,oo) = -21 41 {8poo2Iqkf + 28Ilkikrkkk~}kikfsPRS dV , 
4pooo v . 

~P(ks,kg,oo) = - 1 1 {8poo2kikf + 28Ilkikfkkkf}ktk?SSRP dV , 
4P5oo4 v .. . J 
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where the summation convention holds for all indices and the indices are for x and z in 

the 2-D case. A capital index is to be interpreted as follows: i) Switch the index value, ii) 

If the resulting index values from the interaction of two capital indices are not the same, 

reverse the sign. For example, for j = x we have kikjkr = k~(k~k~ - ~kf) and for j = z 

we have kikjkr = - k~(k~k~ - ~kf). In addition 

sP = exp(i ("fsds + kcxf· r)] 
"fs ' 

SS= ex~i(~ds + k~f.r)] , 
~ 

RP = exp(i (Yidg - kCXg. r)] 
Yi 

RS = ex~i{~dg - k~g· r)] 
~ 

(4.26) 

The above equations are now in the form required by the quadratic programming 

method. 

U sing the dot and cross product representations in equation 4.25, we have 
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(4.27) 

In this equation, for the P-to-S and S-to-P modes, we have kJ = kL = kz for j = I = x and 

kJ = kL = - kx for j = I = z. Also, the conventi~n for capital indexes given above holds 

for the S-to-S mode. 

To obtain the backpropagation formulatio~, we use the Fourier transform 

relations to get 

oA(K ). op(K ) ('Z' "') 20Il(K ) ('Z' ~ 2 kSkg _ 4 2",a",a~P.p [. (",ad ",ad)~ I 
-pp --pp --pp \ 

+ I·g + I'g, ,1 j -- POlglsUIJ exp -I Is s+ Ig g'J' 
«4 «2 «4 o .0 '. 0 

(4.28) 

. h K--PP - ka '" ka ':' K-+PS - k A'" ka ':' K-+SP - ka '" k A':' d K-+SS - k A'" k A':' WIt - g - I, - I'g - I, - g - 1'1 an - I'g - 1'1. 

This equation shows the relation between the physical parameters and the 

observed scattered field for each of the four modes, in the transform domain. For 

simplicity, in the extension of the SH-wave inversion formulation to this case we will 

only consider the P-to-P mode and give guidelines for the remaining modes since these 

modes can be inverted using the same procedure as done for the P-to-P mode with 

minor adjustments. In addition we note that since only the P-to-P mode contains all three 

parameters, it is necessary and sufficient to solve the multi-parameter inverse problem. 

- III -



This wavefield and can be obtained by using sources and receivers immersed in a fluid 

or extracted from the data by post-processing the data set (see Dankbaar, 1985; 

Devaney, 1986). In addition, as we concluded in section 3.4.1, inverting the data for a 

specific mode will implicitly reduce the contributions from the other modes since the 

propagation velocities are different for the different modes. 

From equation 4.28 we see that the problem we are faced with is indeed quite 

similar to the variable density acoustic or the SH-wave case. Once again the problem can 

be solved for the terms in the brackets in these equations simply by following the 

inversion procedures for the backpropagation or the quadratic programming cases. It is 

clear that in this case for the measurements used in the inversion to be independent, or 

the determinant of the resulting matrix (used to obtain the individual parameters) to be 

nonzero, neither the directional dependence of the measurements nor combinations of 

the different modes can be used. This can be seen by noting that the terms in the 

brackets do not depend on these variables. In other words, the directional dependence 

and the different modes cannot be used to extract the individual parameters but can be 

used to stabilize the inversion of the resulting matrices. We see once again from the 

terms in the brackets that we can use either the frequency dependence of the parameters, 

or the directionality of the plane-waves from the source to the geophone, or both. In 

Beylkin and Burridge (1990) a generalized Radon transform is used to perform the 

multi-parameter inversion for a variable background medium whereas Beydoun and 

Mendes (1989) use a least-squares approach to solve the full nonlinear problem for 

multi-parameters both making use of the variations in the parameters with the 

directionality of the plane-waves. In conventional seismic methods this is referred to as 

Amplitude Versus Offset (AVO). 
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We will now investigate the diffraction tomography formulation for the P-to-P 

mode using three frequencies and give guidelines for the other modes which require a 

minimum of two frequencies. 

4.3.1 P-to-P scattering inversion 

To display the frequency dependence of the P-to-P scattering term in equation 

4.28 and to remove the dot product the following identity 

~ ~ 1 1 r.:: ~)2 . 1· 1 I;;I2K I·g = - - I..g - I = - - ~I , 
2 2k2 

(4.29) 

is substituted into the PP te:nn in equation 4.28 yielding 

Representing the first three terms in parentheses on the left-hand side respectively by 

A(K), B(K), and C(K) and taking the inverse Fourier transform with a change of 

variables on the right-hand side we have 

(4.31) 

From equation 4.31 we see that a backpropagation inversion at a fixed frequency 

will give us the raw parameters or the term on the left-hand side of this equation. To 

obtain the individual parameters, we can perform inversions at three distinct frequencies 
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and extract the individual physical parameters as follows: If we call the raw parameters 

F/r), obtained from inversions at three distinct frequencies 0>3> 0>2 > 0)1 we will have 

(4.32) 

where H1(r) is a filter used to bring the second and third inversions (high-frequencies) 

to the same frequency content as the first. As mentioned in the SH-wave case, this filter 

is quite complicated in seismic applications where the coverage is limited and will be 

discussed in section 4.4 for the crosshole case. In the above equation 

A(r) = A1(r) = H1(r) * A2(r) = H1(r) * A3(r) and a similar equation holds for B(f) and 

C(r). Substituting (Ji = o>i2, we see that the coefficients of equation 4.32 are in the form 

of a Vandermode matrix (Boyse and Keller, 1986), therefore we can write the inverse as 

[ 

A(r) 1 [ ~(J3 - ~(J2 
B(:) = det (W) ~ - ~ 

C(r) (J2 - (J3 

~(J1 - crT(J3 crT(J2 - (J~(J1 

crT-~ ~-crT 

(4.33) 

with det (W) = {(J1 - (J2)( (J1 - (J3)(J2 - (J3) }-1. Upon obtaining A(r), B(r) and C(r) their 

Fourier transforms are taken and from equation 4.30 and 4.31 the parameters can be 

given as 

(4.34) 
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Taking an inverse Fourier transform of equations 4.34 would yield the solution of the 

inverse problem. 

As observed by various researchers (for a review, see Beylkin and Burridge, 

1990) this matrix is ill-conditioned and rather than reconstructing the individual physical 

parameters it is more stable to reconstruct certain combinations of these parameters such 

as impedance. The instability res~lts not only fr~!ll the matrix being solved but also from 

the subtraction operations that need to be performed. If the above method is to be used 

for extracting the parameters of the medium a least-squares inversion with multi

frequencies must be used to stabilize the inverse problem. After considering synthetic 

examples we will present a method where the most difficult parameter in the SH-wave 

case and the P-to-P scattering case can be obtained with good accuracy. This work is an 

extension of the work carried out by Norton (1983) for the medical imaging problem. 

We also note here that by using the SH-wave case and P-to-P scattering case all the 

physical parameters existing in an isotropic medium can be obtained. From the more 

unstable P-to-P scattering we only require that OA(r) be extracted accurately which can 

be accomplished with the method we will present later on . 

. To formulate the quadratic programming inversion equation 4.25 can be used. In 

this case, similar to the above procedure, the raw inversion can be obtained at three 

distinct frequencies using equation 4.25 and the resulting 3 by 3 matrix solved to obtain 

the individual parameters. 

4.3.2 Inversion of other modes 

The remaining three modes in equation 4.28 require a minimum of two 

frequencies to perform the inversion. As a result, the method for SH-waves can be used 

to invert for these modes as well with some additional identities to equation 4.29 in 
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order to account for the cross products. These identities can be obtained from the 

orthogonality of the dot and cross products and can be given as 

(4.35) 

These operators are quite different from the previous dot product operators and their 

properties will be discussed in the next section. 

4.4 Parameter operators and synthetic examples 

Before proceeding to the multi-parameter case we will demonstrate the SH-wave 

inversion without density variations (equation 4.16 with 8p = 0) for a point diffractor 

example. Here we will only investigate the crosshole case, but due to the similarity in 

the equations between the non-variable density acoustic and the SH-wave cases, all 

conclusions of chapters 2 and 3 will hold for this and other geometries. 

For the crosshole geometry of Figure 2.1.1a, k~ = -Ys, k~ = -Yg, k~ = -ks, and 

k~ = kg (these equations are obtained directly from their counterparts in chapter 1 but 

now they are given for i = - 5, therefore the signs involving the source terms are 

switched). With this, equation 4.16 can be given as 

x exp[i(ys - Yg)x + (ks + kg)z)]. (4.36) 

To demonstrate the inversion of SH-waves, we generate Born forward data for a 

point diffractor using equation 4.14. The geometry considered is a 10 m horizontal by 

20 m vertical area with 40 source and receiver pairs placed at 0.5 m intervals in a 

crosshole fashion. Equation 4.36 is used to invert the Born forward data for the SH-
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wave case. In order to display the similarity we perfonnthe same inversion for the P-

wave case using equation 2.7 to generate Born forward data and equations 2.9 together 

with 2.10 to invert the data. The inversion results for 24 frequencies are averaged and 

displayed in Figure 4.4.1a and b. The expected or reference value is displayed in the 

upper-left comer of the plots. The stmilarity of the two methods is apparent although in 

the final result Figure 4.4.1a displays the P-wave velocity of the medium whereas 

Figure 4.4.lb displays the S-wave velocity. 

We begin the multi-parameter case by displaying the dot and cross product 

operators involved in equations 4.16 and 4.28 in Figures 4.4.2 for a fixed frequency. 

Here, the figures are in cylindrical coordinates and are normalized by the background 

wavenumber. As a result, these figures can be extended to any background wavenumber 

by simply multiplying the axis and the scale with the appropriate k = OJ/co. Figure 4.4.2a 

is the unitary operator acting on 8p in the SH-wave case and 8A in the P-to-P mode, 

Figure 4.4.2b is the (1. g) operator acting on 8J.l in the SH-wave case and on 8p in the . . 

P-to-P and SV -to-SV modes, Figure 4.4.2c is the ci· i) 
2 

operator acting on 8J.l in the P

to-P mode, Figure 4.4.2d is the ~x~ operator acting on 8p in the P-to-SV and SV-to-P 

modes, Figure 4.4.2e is the.~xgI2 operator that. will be used further on, Figure 4.4.2f is 

the Ci. gfix~ operator acting on 8J.l in the P-to-SV and SV-to-P modes and Figure 

4.4.2g is the (Ci.g)2 - ~xgI2) operator acting on 8J.l in the SV-to-SV mode. 

Noting that the different properties of these operators are what we have to use to 

extract the individual parameters we can arrive at the following conclusions. The 

coverage in Figures 4.4.2a and b indicate that the separation of the parameters in the 

SH-wave case and the variable density acoustic case is quite feasible since the operators 

have different properties. In tqe P-to-P mode recovery of 8p and 8J.l will be difficult 

since the operators in Figures 4.4;2b and c are similar. Here, only the sign difference in 

the backscattering experiment <;an really be used. This can be seen by noting that the 
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radial distance in these figures represents the angle between the incident and the scattered 

waves. At the origin, this angle is 00 (forward scattering) and at the rim this angle is 

1800 (backscattering). In the P-to-P mode the recovery of 8A is quite feasible due to the 

difference in Figures 4.4.2a, and band c. In the P-to-SV or SV-to-P modes we have 

Figures 4.4.2d and f. This case presents itself as a manageable case as well but the 

differences in the operators are not as large as they are in SH-wave case. This difference 

in the operators between the two wavetypes can be expected to affect a backpropagation 

type inversion but not the type of inversion we will present in the next section, where 

the inversion is performed at the locations where one of the operators is identically zero 

or very small. We note that if one parameter were to have an operator with zero values at 

every point in the wavenumber domain, this parameter would drop out of the equations. 

This has been demonstrated in the inversion in Figure 4.4.1 b, since in this case setting 

8p to zero is equivalent to keeping 8p and setting its associated operator to zero. Finally, 

from Figures 4.4.2b and 4.4.2g we see that in the SV-to-SV mode the parameters will 

be separable since the peak amplitudes of one figure coincides with the zeros of the 

other. 

The operators we have discussed above will not change the shape of the 

coverage diagrams for the different geometries, they will only change the amplitudes 

since they are multiplied with the parameters. In Figure 4.4.2h we show the effect of the 

(1. i) operator on the normalized amplitudes of the crosshole case. In fact, this is the 

coverage and amplitude information we have used to accomplish the reconstruction in 

Figure 4.4.1 b. 

In Figure 4.4.3a, we display the model that will be used to demonstrate the 

inversion technique for the multi-parameter SH-wave case. This model consists of four 

diffractors and is a basic model to test such algorithms (Le Bras, 1985; Beydoun and 

Mendes, 1989). The first two diffractors are of type 8p and 8Jl and are superimposed at 
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8 m horizontal and 8 in vertical with amplitudes of 0.5. The third diffractor is at 12 m 

horizontal and 10 m vertical and is of type SJ,1 with unit amplitude, and the last one is at 

8 m horizontal and 12 m vertical and is of type Sp with unit amplitude. In this example 

we use 40 source and receiver pairs in a crdsshole fashion with 0.5 m spacing. The data 

are generated at two frequencies with a background shear-wave velocity of 5500 rn/s 

using equation 4.14 with the Born approximation. As a result, the data will not take into 

account the multiple scattering in the medium. The method outlined in section 4.2 is 

applied to the data set at 5500 Hz and at 3500 Hz. Figure 4.4.3b shows the raw 

inversion at 5500 Hz with the application of a low-pass filter which has a cut-off at 3500 

Hz. This filter denoted by Hl(r) in sections 4.2 and 4.3 is a special filter designed for 

the crosshole case and must be similarly designed for different geometries depending on 

the coverage of the considered geometry in the wavenumber domain. The aim of this 

filter is to reduce the frequency content of the high-frequency inversions to the 

frequency content of the lowest frequency inversion in order to stabilize the following 

operations that are performed on the inversions. The filter we use in this case can be 

outlined as follows: For each (Kx,Kz) pair being inverted at the high-frequency (in this 

case 5500 Hz) we measure the radial wavenumber of the considered pair and compare it 

to the boundaries formed by the coverage diagram of the lower frequency (in this. case 

3500 Hz). If the radial value obtained from the considered pair is larger than the 

boundary value we set its amplitude to zero. If it is smaller than the boundary value, the 

amplitudes are gradually increased to their original values depending on how far the 

radial distance considered is from the lower frequency boundaries. This is done to avoid 

Gibbs phenomena that can result from a sharp cut-off. This filter is also applied to the 

lowest frequency coverage. We·also note that because the filter is coordinate dependent 

it will cause an increase in the required computation time. 
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Returning to Figure 4.4.3b we see that the filtered raw inversion at 5500 Hz is 

quite good since in this case we are perfonning no averaging of the resulting images as 

done in previous examples .. 

Figures 4.4.3c and d show the separate reconstructions of o~ and op. Here we 

see that the reconstruction of o~ is quite good whereas the reconstruction of op is not so 

good. As discussed earlier this result can be improved by using multi-frequencies in 

exchange for computation time. 

Examining the operator diagrams, Figures 4.2.2, or equivalently equation 4.28 

we see that the recovery of the parameters in the P-to-P mode will be very difficult due 

to the increased ill-conditioning since in this case we are faced with three unknowns. 

4.5 A stable inversion method 

The method we will discuss in this section is the extension of an approach 

proposed by Norton (1983) for variable density acoustic imaging. The specific 

application considered by Norton is in medical imaging which has several advantages 

regarding the flexibility in the experiment setup over the seismic problem. Here we bring 

this idea into a form applicable to acoustic and elastic seismic imaging and demonstrate it 

on synthetic examples. 

The idea comes from the physics of the problem by noticing that for some 

specific angles between the incident plane-wave and the measured plane-wave some 

parameters produce no scattering. The task here is to combine the frequency and angle 

dependence of the operators acting on the parameters in such a way as to cancel out one 

or more of the parameters from the equations. 

Let us consider the SH-wave case where the operators are as shown in Figures 

4.4.2a and b. If we consider a 90° angle between the incident and scattered wavefields 

we will have the operator values on a circle of radius 12k = 12 in these figures. It will be 
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on a circle because we send the incident wavefield at various angles toward the object 

but always receive it perpendicular to the direction it was sent. In this case we see that 

the operator in Figure 4.4.2a has unit amplitude whereas the operator in Figure 4.4.2b is 

identically zero. This means that for this specific recording angle the Oil tenn will drop 

out of the equations. In addition to this we can change the radius of this circle to sample 

the wavenumber domain completely simply by varying the frequency since the circle 

radius is defined by v'2k = v'2ro/co. This idea fonns the basis of the method and can be 

applied in medical imaging straightforwardly since the angle between the source and 
. . 

receiver can be preset arbitrarily. In pnictice, a minimum of two separate angles are used 

in order to extract two parameters. For the variable density acoustic case or the SH-wave 

case a straightforward choice for this second angle is 180° or the backscattering angle 

since at this angle we will be on the outer rim of the operator diagrams in Figures 4.4.2a 

and b, and at this radius the absolute value of the amplitude of the second operator is 

. maximum. The inversion results of the first parameter obtained in the 90° case can be 

used to extr~ct the second parameter using the measurements at 180°. 

From equation 4.16 this method can be given mathematically as 

with 8 being the angle between the incident and the scattered plane-wave and 

For a pair of fixed angles, 81 and 82 we can write 

and inverting we have 

1 

1 
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(4.39) 



-~~ 
cos (82) 

Although any angle can be used in these equations we use the angles 8 1 = 90° and 82 = 

180° which will yield the most stable results as 

~-- 2( 1-- .....2--) 81l(K) = ~O Fe(K) - l'e(K) . (4.41) 

This inversion process can also be performed for multi-angles to stabilize the 

inversion if necessary. 

Considering Figures 4.4.2, in the P-to-P mode 8A. can be obtained similarly by 

choosing the angle 8 to be 90°. As discussed previously the recovery of the other 

parameters in this case can be quite difficult. In the P-to-SV or SV-to-P modes again the 

90° angle can be used to recover 8p but the recovery of 81l will be difficult. As for the 

SV-to-SV mode the 90° and the 180° angles can be used to reconstruct 8p and 81l. In 

the cases where the parameters are difficult to reconstruct and do not decouple easily it is 

suggested that multi-angles be used to reduce the ill-conditioning of the resulting 

matrices. 

In the seismic cases, the problem is not as straightforward since the angles that 

the plane-waves are generated and recorded is determined by the discrete values of the 

Fourier transform taken over the source and receiver lines. We must look at where the 

samples will lie in the wavenumber domain if we are to apply a constraint on the 

acceptable range of angles. The coverage in the wavenumber domain for 100 frequency 

samples and 40 source and receiver pairs is displayed in Figure 4.4.4a when a bound is 

enforced on the chosen angles to be in the neighborhood of 90°. In Figures 4.4.4 the 

amplitudes displayed are the values of the cos (8) function and reflect the leakage of the 
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unwanted parameter into the inversion, therefore our aim is to minimize the values in 

these plots. When the bound is tightened, Figure 4.4.4b, we see that the amplitudes 

decrease which is advantageous. but the number of nodes satisfying the bounds decrease 

as well. For 200 frequency samples and 40 source and receiver pairs the resulting 

coverage, Figure 4.4.4c, is quite good and the amplitudes obtained are quite low, as 

required. We note here that the maximum amplitudes displayed in Figures 4.4.4 is 5% 

of 1.0 or the maximum amplitude obtainable (see the scales in Figures 4.4.4). This 

means that if all the samples in these figures had the maximum value of their associated 

scales, only 5% of the unwanted parameters amplitude would leak into the inversion, 

which is quite low. Therefore, in practice, a fewer amount of frequencies can be used 

and the constraint on the acceptable range of angles can be loosened. 

In these figures we see that the discrete values obtained lie on lines at 45° angles 

from the horizontal and at nodes with steps of V28k. This is a consequence of the 

discrete Fourier transform taken over the source and receiver lines and forms the. basis 

of the method we develop here. 

Since the parameters we are considering are real (no attenuation), the positive 

wavenumbers in the vertical direction Can be reconstructed by taking the complex 

conjugates of their associated negative ones. Therefore, we will only consider the top 

two quadrants in Figures 4.4.4 for the following developments. Since we now know 

that the obtained discrete values can be minimized on lines at 45° angles from the 

horizontal and at nodes with steps of V28k, we initially chose these specific locations 

and try to find the wavenumber values that minimize the cos (8) operator. This is done 

in order to obtain a regular grid. The result of this search is displayed in Figure 4.4.4d 

for a quick search with large margins on the variation from 90° and for a more 

comprehensive search, Figure 4.4.4e, where the margins are reduced. It can be seen that 

the comprehensive search produces lower amplitudes which is advantageous. 
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The next step is to obtain the values on a rectangular grid, so that the inversion 

results can be obtained by a 2-D inverse Fourier transfonn. For this we zero pad the 

regions outside the sampled area and choose the appropriate values inside the sampled 

area. In Figure 4.4.4f we show the zero padded sections by small dots and the sections 

where we actually have coverage by large dots. In this case we have increased the 

sampling steps to 2.1k by discarding the values that do not lie on the rectangular mesh. 

We note that an interpolation procedure could have been employed as well where in this 

case the sampling would have been chosen to be in steps of .1k. Once the samples on 

this mesh are obtained the inversion process involves a simple 2-D inverse Fourier 

transfonn of the obtained mesh. 

We demonstrate this method on the model given in Figure 4.4.3a. The inversion 

result of this model for the reconstruction of op is shown in Figure 4.4.5a. This result is 

better than the one obtained in Figure 4.4.3d which shows the effectiveness of this 

technique. 

For the P-to-P mode inversion we consider a model with six diffractors, Figure 

4.4.5b. The first three are of type 0,,", Op and o~ at 8 in horizontal and 8 m vertical and 

with amplitudes of 0.33. At 12 m horizontal and 8 m vertical we have a diffractor of 

type o~ of unit amplitude, at 8 m horizontal and 12 m vertical we have a diffractor of 

type op of unit amplitude and at 12 m horizontal and 12 m vertical we have a diffractor 

of type 0,," of unit amplitude. Here we use the above outlined multi-frequency method to 

recover the parameter OA. using a 90° angle for S. 

The result of the application of the method is shown in Figure 4.4.5c and the 

reconstruction is quite good. In this figure, the diffractor at 8 m horizontal and 8 m 

vertical is reconstructed well also but cannot be seen very clearly in this figure due to its 

low-amplitude value of 0.33. 
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Figure 4.4.1a,b Average of crosshole backpropagation inversions of a) P-waves (top) 

and b) SH-waves (bottom) from 2440 to 5500 Hz with 122 Hz intervals. 
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Chapter 5 

Inversion in a Transversely Isotropic Medium 

In this chapter we investigate the extension of the inversion methods to a 

transversely isotropic (TI) medium. Transverse isotropy is seen to be the most common 

form of anisotropy encountered in geophysical applications occurring due to thin 

sedimentary layers and alignment of pores and fractures' due to the stress conditions 

affecting the medium. 

In the Grimsel test site case investigated in chapter 3, there is reason to believe 

that the medium is transversely isotropic. This is seen from plotting all the observed first 

arrival times of P-waves as a function of ray-angle. From this arrival time information 

there is seen to be a 7-8% P-wave velocity variation in two perpendicular directions. 

Although this does suggest the presence of anisotropy and improves the ray tomography 

inversion results, the ray-angle results are not on a microscopic scale and may also be 

interpreted as being due to inhomogeneities introduced by the alignment of fractures. 

In this section we develop the diffraction tomography formulation for the wave 

equation in elliptical form, discuss the wavenumber domain coverage and present the 

application of the formulation to the field data from the Grimsel test site. 

5.1 SH-wave forward problem 

The SH-wave equation in the source-free region of a transversely isotropic 

medium (see Appendix E) can be given as 

(Auy,x + Buy,z),x + (Cuy,z + Buy,x),z - piiy = 0, (5.1) 

with 
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B = sinS cosS (Css - C66) , 

C = Css cos2S + C66 sin2S . 

Defining 

C66(r) = ~6 + oC66(r) , 

Css(r) = ~s + oCss(r) , 

per) = Po + op(r) , 

where 0 represents the perturbation to a homogeneous background we have 

B = BO + OB(r) , 

C = CO + oC(r) . 

Substituting in equation 5.1 we get 

where 

Qy = - opiiy + (OAuy,x + OBuy,z),x + (oCuy,z + OBuy,x),z . 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

The displacement in equation 5.5 can be represented as a superposition of the incident 

and scattered displacements or uy = u~ + u~ yielding 

(5.7) 
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To obtain this equation, poii~ - (A ou~,xx + 2Bou~,xz + C<>u~,zz) = 0, was used. In 

equation 5.7, Qy is an equivalent source. Using Green's theorem and the free-space 

Green's function we have (see Aki and Richards, 1980), 

(5.8) 

Using the Born approximation, u ~ uO equation 5.6 becomes 

Qy = - Bpii~ + (BAu~,x + BBu~,z),x + (BCu~,z + BBtPy,x),z . (5.9) 

Substituting into equation 5.8 

u~ = i (-llpij~ *, Gy + (IlAtPy.x + IlBtPy.J.x ',Gy + (IlCu~., + IlBtPy.x)., "Gy) dV. 

(5.10) 

Integrating out terms involving the derivatives of the elastic parameters using integration 

by parts we have 

u~ = i (-llpij~ " Gy - (IlAtPy.x + IlBu~.,) ',G,.x - (IlCu~., + IlBtPy.x) ',G,,,) dV. 

(5.11) 

In the frequency domain and for a line source in the y-direction and measurements in the 

y-direction equation 5.11 becomes 

uh = i (ro2IlpG~G~ -1lAG',.xG~.x- IlBGj,.,G~.x -IlBG',.xG~., - 1lCGj,.,G~.,) dV . 

(5.12) 

This equation is the fundamental equation for the SH-waves in a transversely 

isotropic medium, obtained by using the Born approximation. In this equation 

Gy = G/r,rS
) for the source and G~ = Gy(r,rg

) for the receiver. 
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In Appendix F we derive the 2eD Green's function for SH-waves in a 

homogeneous background transversely isotropic medium. The result in the Fourier 

transform domain for the source line can be given as 

(5.13) 

with 

(5.14) 

The result for the receiver line can be obtained (in the Born approximation framework) 

by replacing the s's with g's. 

We see that the main difference between the isotropic (equation 4.11) and the 

transversely isotropic Green's function for SH-waves is that the perpendicular 

wavenumber to the source and receiver line is modified in order to account for an 

elliptical wavefront. 

5.2 SH-wave inverse problem 

We follow the same procedure as in the previous sections to invert the equations. 

We take the Fourier transform of equation 5.12 over the source and receiver lines to 

form the plime-wave decomposition. The application of this process to the Green's 

function of the acoustic case is given in Appendix B and can be similarly applied to the 

Green's function given in equation 5.13. With this, equation 5.12 becomes 

with 

- 135 -



(5.16) 

where A~,g, B~,g, Cl,g are determined via equation 5.2 using 8s and 8g which are 

respectively the angles between the source and receiver lines and the symmetry axis, 

k~g = ro/c~,g with c~,g being the velocity in the direction of propagation of plane-waves f 

and g and ro is the angular frequency. In this equation the sign of'fs,g will be determined 

by the geometry as in the previous sections whereas the sign ofYs,g is always positive. 

5.2.1 Single parameter inversion 

For the application to field data we will simplify the problem by setting op = 0 

and alsooCss = OC66 or oB = 0 and oC = oB. This second condition implies that the 

perturbation is isotropic whereas the background is transversely isotropic. With these 

assumptions equation 5.15 becomes 

(5.17) 

The right side of this equation is in the form of a Fourier transform, therefore we can 

write this equation as 

(5.18) 

This equation forms the linear relationship between the perturbation and the 

observed scattered field. Taking the inverse Fourier transform and changing the 

integration variables from Kx, Kz to ks, kg we have 
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x exp[i (Kxx + Kzz)]. (5.19) 

This equation is the solution of the inverse problem for SH-waves in a 2-D 

transversely isotropic medium which will yield the parameter BA(r) = BCss(r) = B~(r). 

The mapping from Kx, Kz to ks, kg is the same as in chapter 2 but now the sign of Ys,g 

must remain positive as discussed. 

5.2.2 Multi-parameter inversion 

Substituting the transverse isotropy parameters from equation 5.2 into equation 

5.15 we have 

where 

Oss(8,kS ,kg) = k~k~ sin2(8) + k~k~ cos2(8) + (k~k~ + k~k~) cos(8)sin(8) . (5.21) 

In equation 5.20 there are three unknowns. In order to reconstruct these 

individual parameters we again have to use the properties of the operators acting on 

these parameters. The operator acting on Bp is unitary (see Figure 4.4.2a). The 

operators 066 and Oss acting on BC66 and BCss are dependent on the angle that the axis 

of symmetry makes with the vertical, or 8, and on the direction of the plane-waves 

considered. For an isotropic background and for an axis of symmetry in the vertical 

direction (8 = 0°), the operators acting on the parameters BC66 and BCss are plotted in 
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Figures 5.2.1a and b, for the crosshole geometry. In this case the operators are not 

radially symmetric (compare with Figures 4.4.2) and have their own distinctive 

characteristics. It can be seen by tracing the outer boundary of Figure 5.2.1a or from 

Figure 5.2.1c that for an axis of symmetry in the vertical direction or for e = 0°, the 

operator acting on BC66 has zero values, or BC66 produces no scattering, when the 

direction of propagation of incoming or outgoing plane-waves make an angle of 0° or 

180° with the vertical (see Figure 2.2.1). As can be seen from Figure 5.2.1b or from 

Figure 5.2.1d, for the same axis of symmetry, the operator acting on BCss has zero 

values when the direction of propagation of incoming or outgoing plane-waves make an 

angle of 90° or 270° with the vertical. Figures 5.2.1 c and d are geometry independent 

and are shown to better illustrate the above points. 

The method discussed in section 4.5, which uses only the part of the observed 

wavefield where all parameters other than the one being inverted for produce no 

scattering, can be applied to this case as well. The multi-frequency extension of Figures 

5.2.1c and d will give the zero values of the operators as concentric circles in the dark 

areas of Figures 5.2.2a and b. As a result, by choosing only the incident or scattered 

plane-waves whose direction of propagation makes a 0° or 180° angle with the vertical 

over a range of frequencies, BC66 can be dropped out of equation 5.20 in the limited 

region indicated by the dark areas in Figure 5.2.2a. Similarly, BCss can be dropped out 

of equation 5.20, in the limited region indicated by the dark areas in Figure 5.2.2b, by 

choosing the previous angles to be 90° or 270°. We see from Figures 5.2.2a and b that 

the region which the operators can be minimized is less than a circle of radius 2k which 

was the coverage in the elastic case where radial symmetry existed. An important result 

of this is that outside the dark areas of Figures 5.2.2a and b the operators cannot be 

decoupled or resolved well. For the crosshole geometry and with e = 0°, the sections 

where BC66 and BCss can be minimized is shown in Figures 5.2.2c and d. It can be 
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seen from this figure that BC66 can be canceled out of equation 5.20 quite well but this 

does not hold for BCss. If the boreholes were to be placed horizontally rather than 

vertically, the opposite would happen and BCss could be canceled out from equation 

5.20 quite well. These two data gathering geometries would suggest themselves as ideal 

data gathering geometries for this angle of the symmetry axis, since the zeros of the 

operators have the same coverage as the two crosshole coverages. 

The extension of the above multi-parameter inversion method to cases where the 

symmetry axis makes an arbitrary angle with the vertical is straightforward. The plane

wave angles that zero an operator and therefore the axis of the mappings given above 

vary together with the axis of symmetry angle. For example, for an axis of symmetry at 

45° clockwise from the vertical, Figures 5.2.1c and d and Figures 5.2.2a and b would 

be rotated clockwise by 45° as shown in Figures 5.2.3a-d. Therefore, the operator BC66 

would have zero values when the direction of propagation of incident or scattered plane

waves make a clockwise angle of 45° or 225° from the vertical and BCss would have 

zero values for a clockwise angle of 135° or 315°. As a result, depending on the axis of 

symmetry, an optimal data gathering geometry can be chosen (in this case, two 

crosshole geometries where the boreholes make a clockwise angle of 45° and 135° from 

the vertical would be preferable). 

5.3 Quasi-P wave inverse problem 

The differential equations that govern the propagation of P and SV-waves in a 

transversely isotropic medium can be obtained in the same way as done for the SH

waves in Appendix E. In this case, the separation of P and SV -waves is not a trivial 

matter. The approaches used up to now involve substitution of plane-waves into the 

coupled differential equations and retrieval of quasi-P and quasi-S waves (see Auld, 

1973; White, 1982; Meadows, 1985). In general, the SV-wave group velocities can 
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form cusps and a numerical migrator's equation cannot be derived for such waves 

(Meadows, 1985). A paper by Dellinger and Etgen (1990) deals with the separation of 

quasi-P and quasi-S waves in a general anisotropic medium with the use of a plane

wave decomposition method. 

Although the problem is quite complicated, it has been shown by Levin (1979) 

that as long as the anisotropy is less than about 15% the propagation of quasi-P waves 

can be approximated by an elliptical form. This property was used by Verwest (1989) to 

derive a migration operator in an elliptically anisotropic (EA) medium with a symmetry 

axis in the vertical or z-axis direction. 

As mentioned in the introduction of this chapter, in the field case we are 

considering the anisotropy is estimated to be near 7-8% from the travel time data, 

therefore, the elliptical form approximation to the quasi-P wave propagation is used in 

our applications and is expected to be a reasonable approximation. 

In the previous section we derived the inversion algorithm for SH-waves in the 

elliptical form. Comparing equation 4.36 and 5.19 we see that the main difference from 

the isotropic case is that in the phase the vertical wavenumber is modified to account for 

the ellipticity of the wavefield and Ys ~ 1/ and Yg ~ ~ in the amplitudes. Using the 

similarity between the acoustic (equation 2.9 and 2.10) and the SH-wave (equation 

4.36) cases, the backpropagation algorithm for the acoustic case in the elliptical form can 

be given with the above modifications to equation 2.9 and 2.10. 

5.3.1 Wavenumber domain coverage 

Before proceeding to field data applications we look at how TI or EA effects the 

wavenumber domain coverage. 

To demonstrate this we initially consider a constrained measurement of plane

waves which are observed only in the directions they are generated at a fixed frequency. 
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In Figures 5.3 the line with empty dots represents the isotropic case with a normalized 

background velocity if I m/s whereas the line with filled dots represents the elliptically 

anisotropic case with a velocity of 1.1 m/s along the axis of symmetry and 0.9 m/s in the 

perpendicular direction. These figures are for 40 source and receiver pairs and are 

normalized as was done in Chapter 1. Figure 5.3.la is the coverage of the SRP 

geometry with a e (the clockwise angle of the axis of symmetry from the vertical) of 

90°. We see the elliptical form and the dense coverage for the large vertical 

wavenumbers. Figure 5.3.1 b shows the same case when e = 0°. Here the ellipse is cut 

in the vertical direction at the tips due to the requirement that the wavenumbers be real. 

The crosshole case with e = 0° is shown in Figure 5.3.1c. In this case the 

coverage is dense for the large horizontal wave numbers and is not cut at the top and 

bottom since now we do not exceed the maximum value at the top and bottom. 

Changing the symmetry axis to e = 90° in the crosshole case, Figure 5.3.1.d, we see 

that the ellipse is now cut at the top and bottom again to keep the wavenumber values 

real. The last example, Figure 5.3.le, is the case when e = 150° which represents the 

transverse isotropy axis observed from the travel time plots of the field data. 

We now extend the previous coverage diagrams to the multi-frequency case 

again when the plane-wave is observed only in the direction it is generated. Figure 

5.3.2a is the multi-frequency SRP coverage with e = 90° for 40 source and receiver 

pairs. To observe their differences we can compare these figures to the isotropic case 

Figures of 2.2.4. We see that the area covered is quite similar in both cases but in the 

elliptical anisotropy case samples are obtained on ellipses rather than circles as can be 

expected. Figure 5.3.2b is the same example for e = 0° and Figure 5.3.2c is for e = 

150° which represents the observed transverse isotropy direction from the travel times 

of the field data. 
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We now look at the unconstrained single frequency coverage diagrams. For the 

following examples 32 source and receiver pairs were used in order to better resolve the 

interior of the coverage diagrams. Figure 5.3.3a shows the crosshole coverage when e 
= 90°. We see that in this case the coverage is further reduced in the horizontal 

wavenumber direction (see Figure 2.2.2a). When e = 0°, Figure 5.3.3b, the contrary 

happens and for this case the coverage is quite good. Figure 5.3.3a and b suggest that 

better results from crosshole inversions can be expected from a medium with an axis of 

symmetry in the vertical direction rather than a medium with an axis of symmetry in the 

horizontal direction. For e = 150°, Figure 5.3.3c, the coverage is again quite good but it 

can be seen that some sections are now multiply covered or over sampled. 

The unconstrained single frequency coverage diagram for the SRP case is given 

in Figure 5.3.4a for e = 90°, Figure 5.3.4b for e = 0° and Figure 5.3.4c for e = 150°. 

We see that in the single frequency cases the coverage diagrams are affected more 

severely by the elliptical anisotropy than they are in the multi-frequency cases (Figures 

5.3.2). This is due to the well distributed coverage in the multi-frequency case. In the 

single frequency SRP case, contrary to the crosshole case, the coverage is better when e 
= 90° rather than when e = 0°. 

The single frequency coverage diagrams for the VSPL geometry is given in 

Figure 5.3.5a is for e = 90° and Figure 5.3.5b is for e = 0°. In this case the isotropic 

figure is stretched straightforwardly in the appropriate directions (see Figure 2.2.2c). 

The VSPR case is not demonstrated here due to its resemblance to the VSPL case (see 

Figures 2.2.2b and c). 

5.4 Application to field data 

As discussed earlier, the first arrival times of the P-waves suggest the presence 

of transverse isotropy with an angle of symmetry of 150° clockwise from the vertical. 
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Although this angle is expected to be robust, the velocities obtained from the arrival time 

observations as a function of angle may not be. Therefore, we will perform the 

inversions at a fixed angle and for a range of velocity values in the neighborhood of 

5270 m/s, the background velocity used in the isotropic inversions, and compare the 

resulting images. 

The following backpropagation velocities were used in the elliptical inversions in 

Figures 5.4.1a, b, c, d, e, f, g and h: 5570 m/s, 5420 m/s, 5370 m/s, 5320 m/s, 5220 

m/s, 5170 m/s, 5120 m/s, and 4970 m/s in the direction making a clockwise angle of 

150° from the vertical and 4970 m/s, 5120 m/s, 5170 m/s, 5220 m/s, 5320 m/s, 5370 

m/s, 5420 m/s and 5570 m/s in the direction making a clockwise angle of 60° from the 

vertical. In simpler terms, we start form a 300 m/s velocity variation from the isotropic 

background value in the 150° direction and reduce it to 150 m/s, 100 m/s, 50 m/s, - 50 

mIs, - 100 mIs, - 150 m/s and - 300 m/s while the opposite is done in the vertical 

direction or in the 60° direction. At the end of this process, the fast velocity axis (150°) 

has the·slowest velocity whereas the slow velocity axis (60°) has the fastest velocity. 

From these figures it can be seen by comparison that the ± 300 m/s case, 

Figures 5.4.1a and h, displays an overly corrected image. This can be observed from 

noticing the abnormal stretch of the inhomogeneities caused by defocusing. Even the + 

150 m/s case, Figures 5.4.1 band g, suggest themselves as being over corrected which 

represents a nearly 6% variation. From these initial results several conclusions can be 

drawn. It is possible that the large anisotropy values observed in the travel time plots are 

not microscopic and are due to the inhomogeneities caused by the presence of fractures. 

It is also possible that the diffraction tomography method or a full-waveform inversion 

method is not as sensitive to anisotropy as is a ray theory based method. It is virtually 

impossible to separate anisotropic effects and effects caused by fracture induced 

inhomogeneities in the inversion results when a smaller velocity range is used for the 
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anisotropy corrections. The only way to make a distinction is to rely on the robust 

estimate of the transverse isotropy angle observed from the P-wave arrival time plots, 

which is near 150°, and therefore to considered the results in Figures 5.4.1c and d to be 

more representative of the medium. 
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Chapter 6 

Discussion and Conclusions 

In this thesis, we have considered the development and application of waveform 

imaging methods to the problem of fracture detection and characterization. As observed 

by many researchers, the general inverse problem is a difficult one, therefore, we have 

made use of various common approximations suitable for the fracture detection problem. 

Before considering the conclusions we will briefly state which approximations were 

made, for what reasons; and why they are expected to work. 

As can be seen in the theory presented, the general inverse problem is nonlinear. 

There have been many approaches to the nonlinear inverse problem (see Chapter 1) but 

in general these approaches have not proven successful in practice, at least in cases 

where the nonlinearity is strong. This is because most methods proposed are iterative in 

nature and as a result, if the discrepancy is large the iterations can diverge. In cases 

where the scattering is weak, linearized inversion of the data can produce good results. 

In the fracture case considered here, we expect the scattering to be weak and therefore 

use the Born approximation for linearization. The reason for the scattering being weak 

and the choice of the Born approximation arises from the fractures being thin structures 

forming sharp contrasts. For this reason another popular approximation, the Rytov 

approximation, is not used. 

In the theory discussed, the background medium is assumed homogeneous. If 

the rock considered is homogeneous prior to fracturing, this approximation is expected 

to be quite valid. In the field case considered, the background granite can be assumed 

homogeneous, but in large scale applications where the considered rock can be 

inhomogeneous prior to fracturing, caution must be taken. With this approximation, the 
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analytical form of the exact Green's function can be used in the theory. If the 

background were assumed inhomogeneous, the Green's function would have to be 

obtained in an approximate form. 

Finally, we have assumed the medium to be two-dimensional (2-D). In the 

specific field case we consider, the fractures intersect the inversion area near vertically, 

therefore, if the 3-D effects of the point sources and receivers are corrected for, as 

carried out in section 2.9, this approximation will be quite valid as well. We note that 

extension of the methods to 3-D will require data on planes rather than lines. In this case 

the free-space Green's function will have to be approximated, even for a homogeneous 

background, in order to obtain the plane-wave decomposition which is necessary for the 

inversion methods discussed here. 

The analytical formulation obtained in the framework of these approximations 

gives considerable insight into the nature of the problem with its wavenumber domain 

coverage diagrams. Here, we extend these diagrams to the elastic and the transversely 

isotropic cases. Such diagrams, together with the a priori knowledge available, can and 

should be used in designing the experiments. 

In the acoustic case the following conclusions can be drawn: 

i) Averaging of inversions at various frequencies is useful in improving the 

inversion results and will also improve the signal-to-noise ratio and should therefore be 

carried out in field applications. 

ii) When the parameter being imaged is assumed to be real (or the attenuation 

corrected for), a useful criterion for estimating the background velocity can be developed 

using the real to imaginary ratio of the resulting images. 

iii) If a priori knowledge relevant to the parameters being imaged is available, it 

can be used in the quadratic programming method to constrain the inversion. 
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iv) As observed in the synthetic examples given here, including the total field in 

the inversions may not necessarily deteriorate the image quality. In addition, the total 

field effects can be removed after the inversion rather than before. 

v) Free-surfaces cannot only be accounted for, but can also be used in the 

inversions to improve the results. 

vi) The theory can and is extended to cases where the boreholes are slanted. 

In the application of the methods to field data the following conclusions can be 

drawn: 

i) For the methods to perforin well on field data a comprehensive data processing 

scheme, such as the one developed here, must be used. 

ii) The recovery of the scattering amplitudes and therefore the actual values of the 

physical parameters is a difficult task in field data applications. 

iii) Separation or filtering of unwanted wavefields from the data forms another 

difficult task in the field data applications. 

iv) Wave modes propagating with different velocities than the inversion velocity 

will not be able to interact constructively in the resulting images. 

v) The inversion results indicate that the method is useful for fracture detection 

applications. 

vi) The waveform inversion results give high-resolution images with respect to 

transmission ray tomography results. 

In the elastic case the followil1g conclusions can be drawn: 

i) Properties of the operators acting on the parameters in the elastic case are used 

to obtain the individual parameters. 

ii) This problem is in general ill-conditioned. 

iii) The ill-conditioning can be reduced by a new method proposed which makes 

optimal use of the characteristics of the operators acting on the parameters. 
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iv) Due to the similarity in the inversion methods, all conclusions drawn for the 

acoustic case will hold for the elastic case. 

v) The data processing techniques developed can be used in the elastic case with 

some modifications. 

In the transverse isotropy case the following conclusions can be drawn: 

i) Weak amounts of transverse isotropy can be accounted for by using an 

elliptical formulation for the quasi-P waves. 

ii) The characteristics of the operators acting on the individual anisotropy 

parameters can be used once again to recover these parameters. 

iii) For multi-parameter inversion in the transverse isotropy case, the axis of 

symmetry should be taken into consideration in the experiment setup. 

iv) Due to the similarity in the inversion methods, all conclusions drawn in the 

acoustic wave case will hold for the SH-wave case in a transversely isotropic medium 

and the quasi-P wave case in an elliptically anisotropic medium. 

v) The data processing techniques developed can and are used for the inversion 

of quasi-P waves in an elliptically anisotropic medium and can also be used for the 

inversion of SH-waves in a transversely isotropic medium. 

vi) Application of the inversion methods accounting for an elliptically anisotropic 

medium to field data is seen to improve results in fractured medium applications. 

Inversion results indicate that the anisotropy may not be as strong as the levels observed 

from the first arrival time data. 

Several improvements and developments can be brought to the investigated 

methods, besides improvements on the previously mentioned assumptions. These can 

be given as follows: 

i) Extension of inversion methods to account for attenuation. This case can be 

formulated by considering Laplace transforms rather than Fourier transforms. 
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ii) Development of techniques and apparatus to accurately obtain the actual 

scattering amplitudes and to separate or eliminate the unwanted wavefields from the 

data. 

iii) Development of quantitative methods for evaluating the quality of the 

obtained images and to form a basis for comparison of inversion results obtained with 

different methods. One such method could involve the generation of forward data using 

the inversion results and developing a method, possibly using the residual error, to 

compare this data set with the field data. 

iv) Inversion for anisotropic parameters in an anisotropic medium. The methods 

given in Chapter 5 can be further developed to account for such cases. 

v) The application of the elastic and amsotroPlc developments to scale model and 

field data. 
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Appendix A 

Acoustic Green's Function 

In this thesis, the Fourier transfonn over time and space are defmed as 

F(ro) = 1- f(t) exr{iro t] dt, and F(K) = 1 f(R) exIt - iK· If] dR. (A. 1) 
- V~-

The solution of the homogeneous wave equation V
2

<l> + k2<l> = 0, in the 

frequency domain can be obtained by taking a Fourier transform over x yielding 

Ci<l>loz2) - ki<l> + k2<l> = O. As a result, the upgoing and downgoing wavefield 

satisfying the radiation condition is obtained as <l>U = exp[ - ikz z] for 

<l>u = exp[ + ikz z] for z > zs, where kz = 1k2 - ki . 

z < Zs and , 

The general 2-D inhomogeneous scalar wave equation in the frequency domain 

can be given as 

iG iG 
K __ 4> + K __ 4> + pro2(J4> = - B(x - xs)B(z - Zs), 

ox2 dZ2 
(A.2) 

taking the Fourier transfonn over x 

(A.3) 

where k = ro/c and c2 = Kip. Thl! solution of this equation can be given as O~::::: al<l>D 

U U D U 
for z > zs, and G4> = a2<l> for z < Zs, with G4> = 04>' and 

(dG~dZ) - (dG!i;dZ) = -exp[ - ikxxs]1K at z = Zs. The second equation at z = Zs is 

derived by integrating equation A.3 from Zs + 6 to Zs - 6 over Z and letting 6 ~ O. The 

coefficients al and a2 can be obtained using the above conditions or by solving 
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[ 
exp[ikzzsl 

ikz exp[ikzzsl 
-exp[-ikzzsl ][a1]':'[ 0 1 

ikz exp[ - ikzZsl a2 - K-l [;'I~ 1 . - exp - z .... xxs 
(A4) 

Substituting the obtained coefficients and the solutions of the homogeneous equation, 

<l>D and <l>u, into the solution of the inhomogeneous equation, the Green's function is 

found to be 

(A.5) 

taking the inverse Fourier transform over x 

G = .-L [li- exp[ ikz Iz - zsl + ikx(x - xs)l ~ 1 
<l> 4K 1t kz x , -

(A6) 

or 

i (1) -+ -+ 

G<l> = 4K Ho (rolr - rsl/c) , (A7) 

where H~l) is the zero order Hankel function of the fIrst-kind. 

Equation A2 will represent the inhomogeneous acoustic wave equation if the 

delta functions on the right-hand side are multiplied by K (compare equation A2 with 

equation 2.1). This substitution will yield the Green's function for the acoustic case as 

(A8) 

where c is now the acoustic wave velocity of the medium. 
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Appendix B 

I. Decomposition of the Green's Function 

The plane-wave decomposition of the 2-D Green's function along the source line 

can be given by writing the Green's function obtained in Appendix A as (see Morse and 

Feshbach, 1953, p.823) 

G(r,r,) = 4k Hli)(kli- - r,l) = 4k [j~2f f 
(B.l) 

This equation is in the fonn of a Fourier transfonn and from the rotation property of the 

Fourier transfonn can be given as 

(B.2) 

The integration over k~ can be evaluated yielding 

G(-+ -+ ) = _i_[_l 1- exp[ik~lz' - z'sl + ik~(x' - x~)] dk'l 
r,rs 2K 21t k' x , _ z 

(B.3) 

with k~ = ~ k2 - k~ 2 . For the decomposition over the source line we choose k~ = ks 

where ks is the wavenumber over the source line and k~ = "is where "is is the 

wavenumber perpendicular to the source line. With these substitutions, equation B.3 

becomes 
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G(- - ) = _i [...Lf~· exn - iks.i\] exnlks.r] 
r ,rs 2K 21t 'Ys 

- .. 

(B.4) 

To obtain this equation we assume z' > ~ = ds with ds being the perpendicular distance 

from the source line to the origin (see Figure 2.1.1 a) and the appropriate sign associated 

with 'Ys will be substituted depending on the inversion area being in between the source 

1· d h .. I ddi' . tho ..... - k~ - k~ . - ks - 'Ys me an t e ongm or not. n a non, 10 IS equanon s = x k + Z k = x k + Z k' 

rs = xXs + zZs = xx~ + zds and r = xx + zz = xx' + zz'. Equation B.4 is for an 

outgoing wave, if we consider an incoming wave or s ~ -s we have 

(B.5) 

This equation can be given as 

G(--)=_i [_lf~(eXI{i'YSdSJexn-'ks.r]l J'k ']dk] (B.6) 
r,rs 2K 21t 'Ys exM.' sXs s· 

. -. 
The last step is noting that the equation in brackets is in the form of an inverse Fourier 

transform, therefore we can write 

(B.7) 

This equation gives the individual components of the plane-wave decomposition 

of the 2-D Green's function along the source line. The plane-wave decomposition along 

the receiver line can be obtained by replacing the s's with g's in equation B.7 . 
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II. Derivatives of the Green's Function 

In applications concerning elastic wave propagation, the derivatives of the 

Green's function in the horizontal and vertical directions will be required. By partial 

differentiation or 

dG dG dX' dG dZ' 
-=--+--
dX dX' dX dZ' dX ' 

dG dG dX' dG dZ' 
-=--+--
dZ dX' dZ dZ' dZ ' 

(B.8) 

the derivatives of the Green's function can be obtained over the source or receiver lines. 

For the source line, from equation B.2 we have 

dG . dX' . .. dZ' - = ikxG - + ikzsgn(z - zs)G - , 
dX dX dX 

dG .' dX' . .. dZ' - = lkxG - + ikzsgn(z - zs)G - , 
dZ dZ dZ 

(B.9) 

and a similar equation can be obtained for the receiver line by replacing the s's with g's. 

The rotation from the unprimed to the primed axis is for a fixed angle for the 

source Green's function and again a fixed but different angle for the receiver Green's 

function. Since this angle is determined by the geometry of the source and receiver lines, 

we would like to obtain a general formula and substitute the associated values depending 

on the geometry considered. Therefore, we write the above equation as 

(B.IO) 
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where k~g. k~,g are determined fromks• Ys. kg., and Yg for the geometry considered and 
; , 

Gs,g can be given from equation B.7. 
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Appendix C 

SH-wave Green's Function 

In this appendix, we derive the SH-wave Green's function for a 2-D 

homogeneous background medium with the use of Appendix A. 

The equation of motion in an elastic, isotropic medium can be given as 

Pii· - (A.Uk k)' - (II(U' . + U· .» . = F· . 1 ,,1 t"" l,j J,I ,J 1 (C.l) 

In the y-direction or for i = y we have 

(C.2) 

In the 2-D case, (Uk,k),y = A.,y = Uj,yj = 0 and for a homogeneous background medium 

Il,j = 0, therefore we have 

piiy - IlUy,xx - IlUy,zz = Fy . (C.3) 

To obtain the homogeneous background Green's function we write the explicit form of 

equation C.3 in the frequency domain for a line source and measurements in the y-

direction as 

(C.4) 

We see that this equation is identical to equation A.2 (Appendix A) with K = 11. 

Therefore, using equation A.5, we can write 

G _ i exp[i(kzlz - zsl - kxxs)] 
yy - 2kzJ.l ' (C.5) 

or taking the inverse Fourier transform over x 

i -u(1) - - A Gyy = 411 no (rolr - rsl/p) , (C.6) 

- 166 -



where ~ is the shear wave velocity of,the m~um. 

Following Appendix B, the individual components of the plane-wave 

decomposition of the Green's function along the source line can be given as 

(C.7) 

, ' 

where now k = ro/~ and the decomposition along the receiver line can be obtained by 

replacing the s~s with g's in equation C.7 . 

. ' t, 

""":;.;) 
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Appendix D 

P-SV wave Green's Function 

In this appendix, the P-SV wave Green's function for a 2-D medium with a 

homogeneous background is derived following Eastwood (1988). 

The equation of motion in an elastic, isotropic medium was given in Appendix 

Cas 

Pii· - (AUk k) . - (II(U' . + U· .» . = F· . 1 ,,1"" l,j j,l ,j 1 (D.1) 

For a homogeneous background 2-D medium, in the x-direction or for i = x we have 

piix - A,(ux,xx + uz,xz) - 21lux,xx -Il(ux,zz + uz,xz) = Fx , (D.2) 

and in the z-direction or for i = z we have 

piiz - A(ux,xz + uz,zz) - 21luz,zz - Il(ux,xz + uz,zz) = Fz . (D.3) 

The displacements can be represented in terms of potentials (Aki and Richards, 

1980, p.68) as 

and [~x] =[ <l>,x ] +[- 'P,z] , 
z <l>,z 'P,x 

(D.4) 

where the potentials satisfy 

.. 2 2 
'If - p V 'If = 'P /p , (D.5) 

with ex. = ...; (A + 21l)/p being the P-wave velocity and p = ffl/p the S-wave velocity in 

the considered medium. Referring to Appendix A, the upgoing and downgoing 

wavefields for the potentials can be given in the Fourier transform domain as 
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cpO = exp('k~z] and ~ = exJik~z] for z > Zs , 

(D.6) 

Rewriting the explicit fonn of equations D.2 and D.3 in the frequency domain 

we obtain 

Taking the Fourier transfonn over x 

[
- (A + 2j.1)k~ + j.1d; + pro

2 
i(A + j.1)kxdz 1 [Gxx ~xz 1 = 

i(A + j.1)kxdz (A + 2j.1)d; - j.1k~ + pro2 Gzx Gzz 

[ 
o(z - zs) 0 1 

- eXJl - ikxxsJ . (D.8) 
o o(z - zs) 

Using the potentials and equation D.4, the solution of equation D.8 can be given as 

GO = [ iClkx~O- ~3dz'l'° icskx~- ~7dz'l'.0 1 for z > Zs , 

Cl dz<1> + IC3kx'l'°' CSdz<1> + IC7kx'l'° 

GU = [ iC2kx<1> U - C4dz'l'U ic6kx<1> U - CSdz'-VU 1 
. C2dzCP U + iC4kx'l'U C6dzCP U + icskx'l'u 

for z < zs, 

with the conditions,. 

-0 -u -0 -u .[ G = G and dzG - dzG = .. -
lIj.1 

o o 1 eXJl - ikxxsJ . 
lI(A + 2Jl) 

Solving for the coefficients Cl to Cs we get 

. Cl = C2 = kx , C4 = -C3 = Cs == - C6 = _1_, C7 = Cs = kx 
2pro2k~ 2pro2 2pro2k~ 
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Substituting back 

ki sgn(z - zs)kxk~ 1 i exp[ik~lz - zsl] exp[ - ikxxsl 

sgn(z - zs)kxk~ (k~f 2pro2k~ 

(D.12) 

or equivalently 

a 2 a 2 a 2 _ a 2 

ax2 ax2az2 
exp[ik~lz - zsl - ikxxs] az2 ax2az2 exp[i~lz - zsl - ikxxs] G= + 

a 2 a 2 - i2pro2k~ _ a2 a 2 - i2pro2k~ 
ax2az2 az2 ax2az2 ax2 

(D. 13) 

Taking the inverse Fourier transform we have 

a2 

G= 
ax

2
az

2 f- exp[ik~lz - zsl + ikx(x - xs)] dk
x 

a2 - i2pro2k~ 

az2 

a 2 - a2 

az2 ax2az2 f- exp[ik~lz - z,1 + ikx(x - x,)] dk
x 

. + (D.14) 
_ a2 a 2 - i2pro2k~ -ax2az2 ax2 

Once again following Appendix B, the individual components of the plane-wave 

decomposition of the Green's function along the source Hne can be given as 

Uk~k~ 1 exp[i'fsds - ikuS'. rl 
(uk~f it 
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with 

(D.16) 

where ka = rota, k~ = ro/~ and ak~ and ~k~ are respectively the vertical wave numbers 

over the source line for the P and S-waves. The decomposition along the receiver line 

can be obtained by replacing the SIS withg's in equation 0.15. 

; . 
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Appendix E 

SH-waves in a Transversely Isotropic Medium 

The 2-D inhomogeneous SH-wave equation in a transversely isotropic medium 

is derived here following Auld (1973) and Meadows (1985). 

The equilibrium of momentum in an elastic anisotropic medium can be given as 

(E.1) 

where iii is the second derivative of the component of displacement in the i th direction 

over time, fi is the component of force acting in the i th direction and O'ij,j is the 

derivative of the stress tensor in the j th direction. 

Hooke's law in an anisotropic medium can be given as O'ij = Cijklekl with 

eij = t (Ui,j + Uj,i). In a transversely isotropic medium with the axis of symmetry along 

the z-axis or vertical direction this equation becomes 

O'xx Cll C12 C13 Exx 
O'yy C12 Cll C13 0 Eyy 
O'u. C13 C13 C33 Eu. .. 

0'= = C55 =C'E, (E.2) 
O'yz 2Eyz 
O'xz 0 C55 2Exz 
O'xy C66 2Exy 

where cr is now the abbreviated stress vector, E is the abbreviated strain vector and C is 

the elastic parameter matrix in the transversely isotropic medium with an axis of 

symmetry in the vertical direction and with C12 = Cll - 2C66. 

The SH-wave equation in a homogeneous transversely isotropic elastic medium 

whose axis of symmetry lies in the (x',z') plane along the z'-axis, which is a clockwise 

rotation from the vertical or z-axis by an angle of e, can be found by a transformation of 

the wave equation from the primed to the unprimed coordinate system. This requires the 
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rotation of the actual (un abbreviated) stress and strain tensors through an angle 8 using a 

counterclockwise rotation operator or 

, 
O'ij = aikajIO'kI ' 

, 
eij = aikajlekI ' 

with 

[

COS 8 

a= 0 

- sin 8 

o 
1 

o 

sin 8 ] 
o . 

cos 8 

(E.3) 

(E.4) 

The Bond stress transfonnation (Auld, 1973, p. 75) is obtained by substituting 

the abbreviated fonns of equation E.3 into equation E.2'Yieiding 

a= MC'MTE, (E.5) 

where 

cos2 8 0 sin2 8 0 sin 28 0 

0 1 0 0 0 0 
" 

sin2 8 0 cos2 8 0 - sin 28 0 
M= (E.6) 

0 0 0 cos 8 0 - sin 8 

- sin 2e 0 sin 2e 0 cos 28 0 
2 2 

0 0 0 sin 8 0 cos 8 

and 

- -' 0' = MO', 

E = MT·1E' , 

C = MC'MT. (E.7) 
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The 2-D inhomogeneous SH-wave equation can obtained from equation E.1 as 

pliy = O'yx,x + O'yz,z + fy , 

where 

O'yz = 2eyzC44 + 2exyC46 

Using C = M C' MT we fmd 

C44 = ~C~4~4 + ~6C'66M46 , 

C66 = M64C~4M64 + M66C'66M 66 , 

C64 = M64C~~4 + M66C'66M 46 , 

C46 = ~4C~M64 + ~6C'66M66 . 

Substituting the values of Mij from equation E.6 and using C~4 = C~5 we get 

piiy = ([C66 cos2S + C55 sin2S]uy,x + [sinS cosS (C55 - C66)]Uy,z),x 

(E.8) 

(E.9) 

(E.10) 

+ ([C55 cos2S + C66 sin2S]uy,z + [sinS cosS (C55 - C66)]Uy,x),z + fy , (E.11) 

where the primes are removed from the Cij for convenience. For a homogeneous 

transversely isotropic medium this equation becomes 

piiy= [C66 cos2S + C55 sin2S]uy,xx + [2sinS cosS (C55 - C66)]Uy,xz 

+ [C55 cos2S + C66 sin2S]uy,zz + fy , 

as the 2-D SH-wave equation in a homogeneous medium. 
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, Appendix F 

SH-wave Green's Function for Transverse Isotropy. 

In this appendix, we derive the SH-wave Green's function in a homogeneous 2-

D transversely isotropic medium. 

The equation we are considering was de,rived in Appendix E and for the source

free homogeneous caSe can be given as 

.. 
A °<l>.xx + 2B°<l>,xz + C°<l>.zz~ p<l> = 0 , (F.l) 

with 

° rl) "rl) '2 C = LS5 cos2e + L66 SIn e . (F.2) 

Taking a Fourier transform, as defmed in Appendix A, over x, z and t we get 

(F.3) 

which yields the dispersion relation for SH-waves in a transversely isotropic medium to 

be 

(F.4) 

Returning to equation F.1 and taking the Fourier transform over X and t we get 

(F.5) 

Therefore, using the dispersion relation, the up going and down going wavefield can be 

given as <l>D = exp[i(kl + kP)z] for z> zs, and <l>u = exp[i(kl- kP)z] for z < Zs. 
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The general 2-D inhomogeneous SH-wave equation in the frequency domain can 

be given from Appendix E as 

Taking the Fourier transform over x we have 

G ·k 2Bo G k2 A ° G pco
2 

G _ 5:( ) exp[ - ikxxsl 
cl> + I x- cl> - x - cl> + -- cl> - - u Z - Zs . . (F.7) 

,zz CO ,z CO CO CO 

The solution of this equation can be given as G~ = al <f>D for z > Zs. and G~ = a2<f> U for 

z < Zs. with G~ = G~ and (aG~z) - (aa!i;az) = -exp[ - ikxxs]/Co at z = Zs. The 

coefficients al and a2 can be obtained from the above conditions or by solving 

[ 
exp[i(kl + k¥)zs] 

i(kl + k¥) exp[i(kl + k¥)zs] 

(F.8) 

Substituting the obtained coefficients and the solutions <f>D and <f>u of the homogeneous 

equation, the Green's function is found to be 

G = i exp[i (klsgn(z - zs) + k¥) Iz - zsl - i kxxsJ 
cl> 2k¥Co . 

(F.9) 

Once again following Appendix B, the individual components ofthe plane-wave 

decomposition of the Green's function along the source line can be given as 

(F.lO) 

where k = co/~ and the decomposition along the receiver line can be obtained by 

replacing the s's with g's. 
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