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ABSTRACT 

Dispersion relations between the forward elastic scattering am­
plitude and the total inclusive cross section are shown to hold 
for B+L violating instanton-induced interactions in the elec­
troweak sector of the Standard Model and in the two dimen­
sional Abelian Higgs model. The result is due to instanton­
antiinstanton interactions, which are evaluated in the frame­
work of the dilute instanton approximation. Within that frame­
work finite instanton-size corrections are considered, and it is 
shown that their effect is not sufficient to suppress multiple 
gauge vector or Higgs scalar production below the threshold 
E0 ~ MH/aw. These processes may be sensitive to deviations 
from the dilute gas approximation. 
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1 Introduction 

Interest in non-perturbative baryon (B) and lepton (L) number violating 
processes in the electroweak sector of the Standard Model has grown again 
after years, due to two different (and related) observations. The first 01ie [1] 
is that at temperatures of the order of Mw / aw, the cross sections of baryon 
number violating amplitudes could become strong. Various evidence for [2] 
and against [3] this possibility has been brought up in the literature in 
the past years. Anyway, a second, more recently observed phenomenon 
has been pointed out. In [4,5] it was shown that even in zero-temperature, 
high-energy scattering of weakly interacting particles, some baryon number 
violating cross sections become enormous at energies Mw / aw 2

, so large 
indeed that they eventually violate unitarity bounds. Put in another way, 
weak interactions, according to this analysis, become strong at energies 
around ten Te V. 

The relevant process is, in the three family Standard Model, the inelastic 
scattering of two fermions into ten fermions plus an arbitrary number n of 
Higgs particles and/or gauge vectors. The largest cross sections are those 
for which n ~ 1/ o:w [4,5,6]. The cross sections of these B+L violating 
processes are zero to all orders in perturbation theory. It is known long since 
that non-perturbative effects give rise to a nonzero amplitude [7], but that 
effect was neglected in the past, since its cross section is 0( exp( -47r I ow)). 

The crucial observation of refs. [4,5,6] is that B+L violating interactions 
are completely pointlike for any number of emitted Higgs and gauge bosons 
in the zeroth-order instanton calculation. This fact makes up for the ex­
ponential suppression in 1/ aw at energies O(Mw I aw ), due to the phase 
space growth. Violation of unitarity in pointlike interactions is obvious, so 
obvious indeed to make us remember that the approximations used in [4,5] 
break down when the number of external particles in a scattering ampli­
tude becomes 0(1/ aw ). That fact was clearly stated in [4,5]. Moreover, the 
results of [4,5] were criticized in manifold ways in refs. [8]. In order to over­
come these problems, the authors of [6,9,10] took into account some of the 
effects that could give rise to a form factor for the B+ L violating processes. 

2Jn all papers on the subject it is assumed that the Higgs and the W masses be of the 

same order of magnitude, in order to avoid the complication of dealing with two scales. 
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In particular, they considered the effects of the modification of the ins tau­
ton background due to the presence of many ext~rnal pa~ticles. The claim 
of [6,9,10] is that these corrections are unable to prevent the rapid growth 
of B+L violating amplitudes at large energies (i.e. at E ~ Mw / a:w ). This 
conclusion means, evidently, that electroweak interactions become strong 
at large energy. . 

In v~ew of the relevance of that conclusion, it becomes crucial to evalu­
ate possible corrections to that result, and try to verify if the approximation 
scheme used respects all basic phyiscal requirements. The most important, 
and more delicate requirement is that imposed by dispersion. relations be­
tween forward elastic scattering (FES) amplitudes and total cross sections. 
The fact that the lowest order instanton calculation respects dispersion 
relations below the critical threshold E = .Mw/aw is by no means triv.­
ial. Moreover, inclusive calculations, like those necessary to evaluate FES 
amplitudes, may offer some advantage ove exclusive calculations. 

The first one is that phase space approximations are overcome at once 
with all resummation problems typical of exclusive cross section calcula­
tions. More importantly, in the calculation of FES amplitudes the source 
of potential classi<;al corrections becomes. clearer. In this paper, for exam­
J?le, it will be shown that our approximation of large separation between 
instantons is adequate only for the vector boson .emission, and even that 
only at sufficiently low energies. . · 

Interesting considerations on the evaluation of inclusive cross sections 
and cla:ssical corrections .to leading order :results were made in ref [11]. 
Also in [11], the role of instanton-antiinstanton configurations was correctly 
pointed out. 

The paper is organized as f~llows_. In Section 2, we evaluate, as a 
startup, fermion number violating contributions to the FES of two fermions 
in the two-dimensional Abelian Higgs model, in the limit of large Higgs 
mass. Already .in that simple example some interesting features emerge. 
For example, one may see that finite size corrections cannot modify the 
unitarity-violating growth of thetotal cross section. That growth may only 
get changed, at the classical level, by the breakdown of the dilute instan­
ton approximation itself. Section 3 describes in some detail how to single 
out the relevant B+L violating contributions to the FES amplitude of two 
fermion:s in the lowest order instanton calculation of a four dimensional 
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SU(2) gauge theory coupled to fermions. This is the usual approximation 
of the Standard Model, corresponding to setting sin Ow -:- 0, used in the 
literature on the subject [4,5,6]. The problem of disentangling the per­
turbative contribution to the total cross section from the non-perturbative 
one is in general quite complex. Within the approximation we use, how­
ever, the task is not so difficult. The reason is that widely separated 
instanton-antiinstanton configurations are the only ones wich contribute 
to FES amplitudes with intermediate states containing the desired num­
ber of fermions to lowest order in aw. Always in Section 3 we show how 
to single out multiple Higgs particle emission from the total B+L violat­
ing cross section. All this machinery is used in Section 4 to evaluate the 
relevant quantities. There in particular it is found that the total B+L vio­
lating cross section grows, if finite instanton-size corrections are neglected, 
as exp( const(E I E0 )

413
), while the inclusive cross section for Higgs particle 

emission grows, as exp( constE2 I E5) ( cfr. [4,6]). From these behaviors one 
concludes that at energies below the critical threshold E0 , gauge vector pro­
duction dominates over Higgs particle production. This conclusion does not 
change if finite instanton-size corrections, also discussed in Section 4, are 
taken into account. These corrections are indeed not sufficient to suppress 
gauge vector production at energies below threshold. The fate of multiple 
Higgs production is similar. For that process indeed, one can show that 
the exponential growth found at lowest order remains to all orders in the 
expansion parameter e = p2 1 a 2

, with p=instanton size and a=instanton­
antiinstanton distance. In this case, a problem comes from the fact that, 
quite surprisingly, the relevant value of e is 0(1) for all energies. A brief 
discussion of the implications of these results· is given at the end of the 
section. 

2 The Abelian Higgs Model 

Before turning to th,e case of four-dimensional electroweak interactions, it 
is useful to study the simpler case of the two-dimensional Abelian Higgs 
model in the limit oflarge Higgs mass. Besides having a natural scale for the 
instanton (i.e. vortex) configurations, this model linearizes in the MH --+ oo 
limit. Vortex-antivortex configurations are therefore exactly evaluable and 
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the (classical) theory is completely under control. The field content of the 
model is: a complex scalar c/J, an abelian gauge vector A~, and a charged 
Dirac fermion 'r/J. The action in Euclidean space reads 

D~ 8~ +ieAw (2.1) 

Since (c/J) plays the role of perturbation expansion parameter, we assume 
l(c/J)I ~ 1, as in ref. [6], in order to deal with a weakly coupled theory. 
This model possesses a vortex solution, whose form is known exactly in the 
>. .--+ oo limit and reads, in polar coordinates: 

iB ' Mw . 1 -t 
¢J = e (¢J), Ar = 0, Ae = -rKt(Mwr)- -0, _r > MH . (2.2) 

e e 

Here Mfv = 2e2 l(c/J)I 2 is the gauge vector mass, and K 1 is<;~- modified Bessel 
function. Action 2.1 evaluated on the background 2.2 remains finite in the 
infinite Higgs mass limit, once the value of fields in the region r < Mi/ 
is taken into account. Its value is Svortez = Cl(¢)1 2

, with C a coupling 
constants independent number of order one. 

In this theory non-perturbative effects give rise to the fermion number 
violating processes [ 6]: 

f + f --+ n Higgs + m Gauge Vectors. (2.3) 

To check dispersion relations, one must find a way of computing the FES 
amplitude f + f --+ f + f, and extract its relevant part. In our case 
this means that one has to insert a projector P over intermediate states 
containing no fermions. 

We proceed as follows. Consider the Green function 

(2.4) 

From it, one extracts a scattering amplitude by the usual LSZ procedure, 
i.e. by Fourier transforming 2.4 and amputating the external fermion prop­
agators. The result is 

A(pt,P2,pa,P4) = (2nVh2
(Pt + P2 + Pa + P4) 

-+- -+-
( 'r/J' lit u(pt )'1/J' Ji2u(p2)Pu(pa )pa'r/J' (Pa )u(p4)P4 '1/J' (P4)), (2.5) 
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where u(pi) and u(pi) are the appropriate external spinors, and the prime 
denotes the Fourier transform. Naturally A(p1 ,p2 ,p3 ,p4 ) must be contin­
ued back to Minkowsky space momenta. This is done by evaluating it at 
imaginary P?. 

Calculating G( x 1 , x 2 , x3 , x4 ) is in general far from trivial. To lowest or­
der and in the dilute gas approximation, however, one can argue as follows. 
The dominant contribution to the functional integral is the one given by 
substituting to the fermions their zero modes in the appropriate vortex 
background. Here we need four zero modes, two of charge -f-e and two 
of charge -e. A smaller number of zero modes would indeed mean that 
in the Green function 2.4 there are internal fermion lines. On the other 
hand, the effect of P is, to lowest order in the semiclassical expansion, to 
put to zero all contributions from intermediate states containing fermions. 
A larger number of zero modes would make the functional integral vanish 
upon integration over the fermions. The dominant finite action configura­
tion with 2+2 zero modes is the vortex-antivortex one. In the dilute vortex 
approximation the zero modes of positive charge are concentrated around 
the center of the vortex, while the negative charge ones are concentrated 
around the antivortex. Needless to say, the self-consistency of the dilute 
vortex approximation has to be checked at the end of the calculation. 

To sum up, the Green function 2.4 reads 

G(x1,x2,xa,x4) = const j d2xd2 y't/J~(xt- x)'t/;~(x2- x) X 

-$~( xa - y )-$ci( X4 - y) exp( -S( A "'Y, <f>"'Y) ). (2.6) 

Here, x and y are the usual collective coordinates of the classical vortex~ 
antivortex configuration (A"'Y, <f>"'Y). The vortex is centered about x and 
the antivortex about y. Let us denote by O.,(z) the angle formed by the 
line passing through (x, z) and the x axis. Similarly, call Oy(z) the angle 
between (y, z) and the x axis. The value of <f>"'Y is then 

(2.7) 

while A:Y is simply the sum of a vortex (A:) and an antivortex (A~) so­
lution. That configuration solves exactly the equations of motion of 2.1 
in the infinite Higgs mass limit. The dilution assumption enters when we 
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substitute the vortex (antivortex) zero modes '1/;~(z- x) (~~(z- y)) into 2.6 
instead of the exact fermionic background fields. 

By performing the gauge transformation 

,)..:XY ,)..:XY -ill.,(z)+illy(z) 
'+' -+ '+' e ' (2.8) 

' ' 

one can easily evaluate S(A:XY' </J:XY). This is done by dividing the space into 
three regions: two disks D:x, Dy of radius p ~ Mi/, centered about x andy 
respectively, and the outside region R-Dz-Dy =D. In D the interference 
term in the bosonic action is 

Since A:+ A~ is a solution of the classical equations of motion, integral 2:9 
reduces to . 

- ~ { dxP.€1-'"' pz,_,AY - ~ { . dxPcl-'"' pz,_,AY. (2.10) 
2 ian., .· ,_. P 2 lavy ,_. . P 

To evaluate the first integral, it is convenient to pass to polar coordinates 
centered about x, and notice that, in our gauge, 

r dxP€1-'"' pz AY =I d(}~Fz AY = laD., ,_.,_, P p rll II 

M 2 M2 2 
w ( ) I d · y wP ( ) y --
2
-Ko Mwp BA 11 = 1r 

2 
Ko Mwp F11r = 

e · e a · 
M4 P2 

1r ~ Ko(Mwp)Ko(Mwa). 
e 

(2.11) 

Here a- lx- Yi· The second integral in 2.10 is evaluated in a similar way, 
and gives 

(2.12) 

Inside the disk Dz the fields are, approximately: 
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These expressions are determined by matching the solutions of the equa­
tions of motion for A11 inside and outside the disk. The interference term 
IS 

r ~ px FY + 21 ("") 12 Ax AY = r dxPc~'" px AY = 
j D., 2 ~'" J.W 'f' 11 11 j 8D., ~'" P 

M4 2 . 

1r ~p Ko(Mwp)Ko(Mwa). (2.14) 

The contribution of the integral in Dy is the same. 
We are studying the case Mwp ~ MwMii1 ~ 1, so that we find 

(2.15) 

We have now all the elements to evaluate eq. 2.6, but it is simpler to com­
pute directly the scattering amplitude A(p1,p2,p3 ,p4). In fact, by Fourier­
transforming, amputating the external fermionic legs, and putting all ex­
ternal momenta on-shell, we get 

A(pt,P2,pa,p4) = const (27r) 2P(Pt + P2 + Pa + P4) x 

u(pt)Fu(p2 )F Fu(p3 )Fu(p4):F 

:F j d2aexp(ia · PT -, 2CI(¢>)1 2 + 27rl(¢>)1 2 Ko(Mwa)), 

PT Pt + P2· (2.16) 

Amputated zero mode wave functions have been replaced, on the mass 
shell, by the momentum-independent constant spinors F and F, following 
ref. [6]. 

The integration over angular variables in 2.16 is trivial, and yields 

:F 1r j daaJo( aE) exp( -2CI(¢>) 12 + 27rl(¢>) fKo(Mwa)) 

E (2.17) 

As pointed out before, the function :F(E) must be evaluated at imaginary 
values of E. 

By using the well known asymptotic expansions for ] 0 and K 0 : 

J0(~)'" {-!; cos(x- 7r/4), K 0(x)'" j;;_ exp( -x), x ~ 1, (2.18) 
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and letting E----+ iE, one finds 

:F = ~Mii}£-1/2 J dxxl/2 exp (Ex+ .J27r3/21{4>)12x-lf2e-z+ 

-2CI (4>) 12
) , 

X - aMw, £- E/Mw. (2.19) 

Evaluation of integral 2.19 can be done in the saddle point approxima­
tion. The stationary point is given by the sol~tions of the equation 

(2.20) 

Self-consistency of approximation 2.18 requires £x -::t> 1 and x -::t> 1. With 
these constraints we find an apptoximate solution of 2.20 of the form 

L~ £ ~ ../21!"3/2(4>). 

(2.21) 
From this equation and the previous considerations we get . 

. -2 -1 [ )21!"3/21(4>)12 ( J21!"3/21(4>)12)-1/2]1/2 
:F = mMw £ log £ log £ x 

exp (flog e y'2,•;1 (<fo) I' (log v'2"';1(<fo) I') -•I• - 2CI(<fo) I') . · 

(2.22) 

Notice that :F is imaginary, so that it gives a contribution to the inclusive 
cross section f + f ----+ anything. Equation 2.22 coincides with formula 29 
of ref. [6], up to the replacement Mw ----+ MH. This difference is probably 
due to the fact that here we are also considering gauge vectors production, 
instead of only Higgs particles production, like in [ 6]. Equation 2.22 tell us 
that, stretching the limits of validity of our approximations, the inclusive 
cross section f+ f----+ anything becomes 0(1) at energies E ~ O(Mwl(</>)1 2

). 

It is also possible to evaluate :F for energies E -::t> Mw I { 4>} 12
, with the 

caveat that the dilute vortex approximation is in this case quite question­
able. 
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Resorting again to the saddle point calculation we find: 

:F - iv'27r 2 1(~}1 2 Mi/&- 2 exp(27ri(~W log e£/27rl(~}l 2 - 2CI(~}I 2 ), 
X - 211"1(~}1 2 /£, MH :;}> £ :;}> 211"1(~}1 2 • (2.23) 

Notice that in this case the growth ofthe total cross section turns out to be 
£""l(<P)I2

-
1 • This result seems to indicate that, in two dimensions, form fac­

tors due to classical corrections are not sufficient to stop the Abelian Higgs 
model from becoming a strongly interacting theory at E ~ M w I ( ~) 12 • Cor­
rections to equation 2.23, which in principle can easily .change this result, 
are to be expected when deviations to the dilute vortex approximation are 
taken into account. 

3 SU(2) Gauge Interactions in Four Dimen-
• 

SIOnS 

We pass now to the four dimensional SU(2) electroweak interactions. As 
usual [4,5,6] we put sin Bw = 0. The action in Euclidean space reads 

(3.1) 

Here SF is the fermionic action, and ua are the usual Pauli matrices. In 
terms of the constants of lagrangian 3.1, the physical Higgs mass is MH = 
(>../2(~} t (~} )112 and the gauge vector mass is Mw = vfKMH, with K = g2 

/ )... 

In the following we will take K of order one, to avoid complications due to 
the presence of two scales. 

In the present case, the relevant B+L violating processes are [5] 

q + q ---+ ( 3n 1 - 2) q + n 1 l + n W + m H, (3.2) 

where the q's denote quark fields, l corresponds to leptons, W to gauge 
vectors and H to physical Higgs particles. The number of families is n 1. 

In this ·process a fermion for each family of quarks and leptons is present 
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either in the initial or in the final state. Process 3.2 evidently violates B+L, 
while it conserves B-1. 

In order to single out the relevant part of the FES q + q --t q + q, we 
follow the procedure of Section 2, up to some modifications. What we 
are looking for is, indeed, the lowest order contribution to a process with 
ten fermions in the· intermediate state. The relevant Green function, from 
which the corresponding scattering amplitude is evaluated, is therefore 

(3.3) 

where P projects on intermediate states with the correct number of ferinions. 
To lowest order in the semiclassical approximation, one can·'easily tell apart 
two different contributions to intermediate states with ferrillons. · One is 
coming from fermionic zero modes around a classical finite-action config­
uration. The other one is the perturbative contribl1tion C?ming fr()m the 
ferinionic propagator. ·This second contribution is suppressed, relatively to 
the first one, at least by a factor 9 2 • Thus, even in this case, the Green 
function 3.3 is easily written down explicitly to lowest order in 92

• In order 
to find this explicit representation, we must .first recall that, in the Stan­
dard Model, the instanton solution is found by introducing an operator 
constraint [12] which, in our case, gives rise to the following form of the 
classical action [12] 

(3.4) 

Here p is the instanton size, i.e. another collective coordinate, besides the 
instanton;s location. By v we mean ( (¢) t (¢) )112 • This result is easily proven 
by substituting into action 3.1 the explicit form ofthe constrained instanton 
solution, which, in the singular gauge, reads [12,5] 

A~-' XvAI-'vA(x), 

A(x) 2M 2 K 2(Mwx) 
- p w 2 ' X 

M-t X» H' 

A(x) 2p2 /x2(x2 + l), x < M.iil; 

¢(x) M ( 1 _! 2M 2 K1(MHx))h 
H 2p H X ' X» M[/, 

¢>(x) MHx(x2 + P2t1f2h, M-1 x< H· . (3.5) 

10 
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In this equation, h is a constant isospinor and AI-'"' is defined, according to 
. the conventions of ref. [5), as A~-'"' = 1/2fJa.~-&vUtua.U. The SU(2) matrix U 
gives the instanton orientation in isospin space. The antiinstanton solution 
is identical to 3.5 with the substitution fJa.~-&v ~ 1la.~-tv• 

Next, we have to find the action of an instanton-antiinstanton configu­
ration, which, as we will see later in this section, is the relevant one to our 
computations. We are interested in the dominant terms for large instanton 
separation a, i.e. for a ~ p. We call this approximation dilute instanton,. 
or dilute instanton gas, with a slight abuse of terms. 

Because of equation 3.5, one is supposed to consider two different cases, 
namely: when the distance a of the instanton pair is much larger than M}/, 
and when a ~ M]/. This happens because the instanton solutions behave 
in a qualitatively different way in the two regions. Actually we will always 
deal with the second situation. A heuristic motivation for this choice is 
that the interesting energy region for baryon and lepton number violating 
processes is E ~ MH(), [4,5,6). This fact, at least naively, implies that the 
relevant lenght scale is a ~ Mi/), ~ Mi/. 

In the SU(2) case actually, we need not to redo all calculations to figure 
out the form of the instanton-antiinstanton interaction term. All relevant 
calculations were inde~d already done in refs. [13) and [14]. In this paper, 
we will simply sketch the main points of the derivation. 

The first thingto notice is that, in the dilute instanton approximatio'u, 
one may use the following argument [13], which we describe only for the 
gauge contribution to the classical action. When a is much larger than both 
the instanton and antiinstanton sizes p and p', we can split the integration 
over the four-dimensional space in two parts: inside and outside a ball Ba: 
of radius R (p, p' ~ R ~ Mi?) centered about the instanton. Since the 
value of the antiinstanton field is ~mall inside Bz, the value of the action is: 

SIT( a, p, p') 

5SB., (3.6) 

Here F:v and D! denote the field strenght and covariant derivative in the in­

stanton background. A~ is the antiinstanton solution. 5SR4-B., is obtained 
by replacing the instanton with the antiinstanton. Using the equations of 
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(3.7) 

In equation 3.7, u1 is a unit SU(2) vector giving the instanton orientation 
in isospin space, U[ is the same object for the antiinstanton. The scalar 
field contribution to the classical action is found in a similar way [14] and 
reads: 

Note that the contribution of the scalar potential to the action is O(Mf-Ip4
), 

and is not present in eq. 3.8 because is ofthe same order ofterms which were 
already discarded in eq. 3.4. We are not going to integrate over instanton 
orientations, rather, we notice that, in the saddle point approximation we 
are w~rking in, the relevant configurations are those of minimal action. 
This means to take,.urur = 1 in eqs. 3.7, 3.8. The total II classical action 
reads then: 

To find the FES amplitude for the process q + q --+ q + q, first of all, we 
ought to find an explicit expression for eq. 3.3. To lowest order in g2 this 
is done as follows. 

The fermionic action is not exactly zero in the II sector, even when 
evaluated on instanton zero modes, due to the presence of the interference 
term 

(3.10) 
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Here, 1/J? (-If;?) denote the fermionic zero modes in the instanton ( antiin­
stanton) background. The index i is the fermion label and the m} are 
the fermion masses. The center of the instanton is at xr, and that of the 
antiinstanton at xr. 

Due to this term, II configurations give nonvanishing contributions 
to 3.3. These contributions are indeed exactly ~hose coming from B+L 
violating processes. The corresponding FES amplitude is again.computed 
by the LSZ procedure from 3.3. The Green function 3.3 itself reads, once 
we write explicitly the spinor indices ai: 

G(x1, x2, X3, x4)a1a2 a3a4 =I dpp- 5 f(PI1) I dp'p'- 5 f(P 111) I d4xrd4xr 
1 2 -1 -2 

1/Joa1 (Xt- xr}I/Joa2 (X2- xr)'I/Joa3 (X3- xr)'I/Joa4 (X4- xr) X 

4nt 

IT I d4x1/;?( x - x r)( i?J + m~ )1/J?( x - xr) exp( -SII (p, p', a)). (3.11) 
i=3 

In this equation, we have explicitly written down the integration measure 
for all collective coordinates. This measure includes, in f(PI1) and f(p' 11 ), 
terms coming from the lagrangian constraint that is to be imposed in order 
to find stationary points in the action 3.1 [12,5]. The function f(PI1) also 
accounts for one-loop renormalization group effects. For this reason, it 
depends on the renormalization point 11· Its explicit form is 

f(PI1) = tonst(p11 t. (3.12) 

For SU(2) a = ( 43 - 8n1 )/6 [7,5]. In order to get the FES amplitude 
A(pl!p2,p3,p4) from G(x 1 ,x2,x3,x4) one Fourier-transforms 3.11 and am­
putates the external fermion legs. The amputated, on shell values of all 
fermionic zero modes in an instanton background were given in ref. [5], and 
read 

[1/JA(P)]amp 

[1/JB(P)Jamp 

-27ripm1utx, 
21ripp~-'u~-' ut x. (3.13) 

Here 1/JA ('I/; B) are in the (1/2,0) ((0,1/2)) representation of S0(4) ~ SU(2)® 
SU(2). The x are constant isospinors defined as 

(3.14) 
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for 'up' and 'down' fermions respectively [5]. The Fourier transforms 1/J10i(p) 
of the zero modes themselves read (6] 

o· 1 . 
1/J~'(p) = p2 + (m})2F:(p). (3.15) 

The F~(p) reduce to 3.13 on the mass shell. By substituting equations 3.13 
and 3.15 into the Fourier transform of 3.11, and after amputating all ex­
ternal legs, one gets a very simple form for the imaginary part of the FES 
amplitude A(p1,p2 ,p3,p4). This quantity is the one of interest for check­
ing dispersion relations, since it is related to the inclusive cross section of 
processes 3.2 by means of the optical theorem. One finds 

ImA(pl,P2,P3,P4) = (27r)484
(Pl + P2 + P3 + P4)ha1cr2cr3crt(Pl,P2,P3,p4) 

4nt . n f d4pi21rB(p?)8(p~ + (m~)2 )c:iimT(pT), 
•=3 

c:i (x!UpfuJ.Lutxi}u, 

I(pT) I d4a I dpp-5 j(pJ.L) I dpt pt-5 J(/ J.L )p4nt pt4nt 

exp(-SII(p,/,a)+ia·pT)· (3.16) 

Here (} u denotes the average over instanton orientations in isospin space. 
We called ha 1 a2a3a4 a SO( 4) invariant polynomial depending only on the 
momenta of the four external fermions, PT is the total four-momentum 
available to gauge vector or Higgs production, i.e. 

4nt 

PT = Pl + P2 - L Pi. (3.17) 
i=3 

In order to extract from 3.16 the cross section corresponding to given values 
of the intermediate fermion momenta, i.e. to calculate all cross sections 
for the processes 3.2 summed over n and m, one substitutes in 3.16 the 
appropriate kinematical invariants to the integrated phase space 

4nt · 

<I>= IT I d4pi21rB(p?)c5(p~ + (m~) 2 ). 
i=3 

(3.18) 
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.. 

.. 

The actual computation of 3.16 is the subject of next section, here we 
only make a: last observation. If one substitutes expression 3.9 to sri in 3.16, 
one may expand exp( -Sll) as 

exp(-Sil) -- L= 1 (967r2 2 /2 -4) n . ( 167r2 2-rr2 M2 2 - -_ -p p a exp --- - - HP + 
n::::O n! g2 g2 A 

2-rr2 M2 /2 4-rr2 M2 2 /2 -2) --_x HP + T HP P a . . (3.19) 

On the other hand, 

(3.20) 

In other words, expansion 3.19 is an expansion in powers of the classical 
gauge fields A!, A~. By means of an argument similar to that used to figure 
out the inclusive cross section of processes 3.2, one may convince oneself 
that 

(3.21) 

gives rise to a FES amplitude with n intermediate gauge vectors. This fact 
implies that, if one keeps only the n = 0 term in 3.19, i.e. if one considers 
in equation 3.16 only the Higgs field contribution to the Classical action, 
one would find, via dispersion relations, the inclusive eros~ section of the 
process 

q + q---+ (3nt- 2)q + nf l + m H, 

summed over m. For related consideration see also ref. [11]. 

(3.22) 

4 Energy Dependence of Inclusive Cross Sec­

tions 

We have now all the tools necessary to evaluate B+L violating contribu­
tions to inclusive cross sections, and check thereby whether the instanton 
calculations of refs. [4,5,6] satisfy dispersion relations. What we do in this 
section indeed, is to relate eq. 3.16 to the corresponding total cross section. 
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This is done as usual via the optical theorem, by equating initial and final 
momenta p 1 = p3 , p2 = p4 , multiplying equation 3.16 by the appropriate 
external spinors ua(P) and iia(P) and the usual kinematical factors. The 
result is 

4nt 

IT j d4pi2rrO(p?)8(p~ + (m~)2 )cJmi(pT)· (4.1) 
i=3 

In this equation, the only nontrivial thing to be calculated is I. 
Recalling equations 3.12, 3.13, 3.16, and defining 

(4.2) 

one is left with the following integral 

Integrating over angular variables one finds that :J reduces to 

Consider now the region Ea ~ 1, where the Bessel function in 4.4 can be 
approximated by 

J1(aE) ~ J 2 
cos(aE- 3/4rr). 

rraE · 
( 4 .. 5) 
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Since we are interested in the analytic continuation of integral 4.3 to Min­
kowsky space momenta, we make the substitution E --t iE everywhere. 
Integral 4.4 reduces then, disregarding exponentially small terms, to 

2{271" )3/2 I I 3/2( ')c ( 1671"2 271"2 2 2 :J = E 312 dadpdpa pp exp Ea-~- ):MHp + 

271"
2 

M2 12 9671"
2 

2 . 12 -4 471"
2 

M2 2 12 -2) (4.6) -T HP + ~p P a + T HP P a . 

In order to be consistent with the approximations we made, integral 4.6 
is to be evaluated in the saddle point approximation. Notice that, since we 
have assumed that a« Mif 1

, then 

(4.7) 

In computing the saddle point, we can therefore disregard the last term in 
the exponential of 4.6. 

It is convenient to define new variables: 

t 2M-2 -4 
r., = p H a ' t' 12M-2 -4 

r., =p H a ' (4.8) 

and set K- = 1. 
The stationary point is at e = e = 1/48, X= (6g 2 E/11"2 MH) 113

, i.e. at 

(4.9) 

Self consistency of the approximation requires: · 

( 4.10) 

These conditions can be verified simultaneously for sufficiently small g 2
• 

The first of conditions 4.10 ensures that p « a« Mif1
, as well as that the 

expansion parameters in the saddle point approximation be all small. The 
second one comes from the requirement Ea ~ 1. 
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The matrix of quadratic fluctuations about the point 4.9 has a single 
negative eigenvalue. The gaussian·integral about 4.9 is therefore imaginary 
and it gives 

.v.:> . g . M-2c-6 M ( 1 )c-1 ( 2)3 ( E )4/3c-4/3 
z- - - H - X 

4 48 1r Eo 

( 

1671"2 1r2 ( E )4/3) 
exp --2- + -8 2 -E ' 

g g 0 

1r
2 MH 
6g2 . ( 4.11) Eo = 

Substituting equation 4.11 into 4.1 one finds a cross section which, in spite 
of the exponential suppression exp(167r2 

/ g2
) typical of instanton effects, 

becomes of 0(1) at energies E ~ E 0 • This is consistent with the results 
of ref. [4,6], where an exponential growth of inclusive cross sections with 
energy was also found. 

Before commenting about the reliability of this result, we must notice 
that, for energies below the critical value E 0 , the exponential growth that 
we obtain is even larger than that of [4,6]. In [4,6] indeed, the growth 
was exp(const(E/E0 )

2
), whereas we find exp(const(E/E0 )

413
). This should 

come as no surprise, since by formula 4.11 we are evaluating inclusive cross 
sections for processes involving the production of an arbitrary number of 
gauge vectors and Higgs scalars. In ref. [4,6] instead, only the contribution 
of multiple Higgs production was considered. Equation 4.11 suggests there­
fore that gauge vector production is the dominant B+L violating process 
for energies below E 0 • 

~-The inclusive cross section for processes 3.22 may also be computed by 
means of observation 3.19. The main step here is to compute the integral 

The only difference between this integral and .J is that the gauge field 
contribution to the interference term in the I I action has been dropped. 
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In order to evaluate :1', one uses again the saddle point. In this case, 
it is convenient to go to variables e = p2 I a2

' e = p12 I a2
• The saddle point 

is found at a= >-.EI27i2 M'fr, e = e' = 112. Notice that we started from the 
assumption PI a, p' I a~ 1. As we see, this assuption works very marginally 
in this case. Nevertheless, it is still interesting to go on and see what form 
has the resulting :f'. The other self consistency condition is 

( 4.13) 

These bounds are easily satisfied for ).. ~ 1. 
Saddle point approximation yields 

:J' . (1)c+2 ()..)
3 

_2c-S ( E )2c-3/2 (1'i2 ( E )
2 

161'i2) tv'2 - - MH - exp - - - -- , 
2 1'i · Ec ).. Ec g2 

( 4.14) 

The integral turns out again to be imaginary, because the quadratic fluc­
tuations about the saddle point have a single negative eigenvalue. The 
contribution to the total B+L violating cross section has thus the form 
exp( constE2 IE;). Since we set g 2 ~ ).., :J' becomes of order one at E ~ 4Ec. 

Already now we may draw a nontrivial conclusion, namely that disper­
sion relations between FES amplitudes and total cross sections are satisfied 
in the semiclassical calculation scheme of [4,5,6]. 

To go further, one must pay some attention to the validity of the ap­
proximations used here. The subject of classical corrections to the leading 
order results 4.11, 4.14 is of great importance, as emphasized in ref. [11]. 

One fact that may look suspicious is that the integrals 4.11, 4.14 turn 
out to be imaginary, and contribute by that to inclusive cross sections, 
because one is expanding about unstable stationary points3

• Actually this 
objection is not so strong. The integral over collective coordinates indeed, 
has the exact form (in the dilute instanton approximation) 

( 4.15) 

3 Interchanging analytic continuation in E and integration over collective coordinates, 

while potentially dangerous in general, is acceptable in the saddle point approximation. 
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where 

lim sii(p, p', a) 
p-+oo 

+oo, lim sii(p,p',a) = +oo 
p'-+oo 

lim sii(p, p', a) 
a-+oo 

sr (p) + si (p'). ( 4.16) 

Equations 4.15, 4.16 ensure that the saddle point (better the steepest de­
scent) method is appliable to the integration over p, p' [15]. The integral 
over a can be done by the same method if one decomposes the Bessel func­
tion Jl(Ea) in terms of the Hankel's functions nP)(Ea) and H~2)(Ea) and 
writes 

f daa2HP)(Ea)exp(-S(a)) + 
lc+ 
i fa_ daa2 H~2)(Ea) exp( -S(a)). ( 4.17) 

In this equation exp( -S(a)) is the result of the steepest descent integra­
tion over p and p'. The contours of integration C+ and C_ are given in 
Figure 1. Equation 4.17 holds under the quite natural assumption that no 
singularities lie between the curves c+, c_ and the half-line a> 0. 

Another point which may be raised against equations 4.11 and 4.14, 
is that higher order terms in ~' e may change the exponential growth in 
energy. In order to deal ~ith this problem one may examine corrections 
introduced by considering the improved form of sii given in ref. [14], where 
finite instanton-size corrections to equation 3.9 were considered. _ 

Let us consider at first corrections to gauge vector production. The 
improved II action of (14] is 

( 4.18) 

The stationary point of Ea - S11 
lS easily found, by going to variables 

~ = p2 1 a 2
, e = p12 1 a 2

, to be at 

I .(EIE0' ) 213 1 1 
~ ~ a= MH(EIEo')l/3- 24MH(E/Eo'). (4.19) = . = 48 - 2( E I Eb)213 ' 
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Here E~ = ~E0 , with E 0 defined as in equation 4.11. The value of Ea-SII 
at this point is 

2 2 16 2 
Ea - sii = .!!.._ (EIE' )413 - _11"_ (E IE' )2 - ~. 

8g2 0 288g2 0 g2 ( 4.20) 

The exponential exp( Ea- S11) as a function of E IE~ reaches its maximum 
value 

( 4.21) 

at E = 48V(5E~. In other words, finite size corrections to the classical 
instanton action are not sufficient, by themselves, to stop the exponential 
growth of the inclusive cross section for gauge vector production. Substi­
tuting equation 4.20 into 4.1 one still get a cross section that reaches the 
unitarity limit for energies O(Mwlaw). 

Finite size corrections to Higgs boson production are dealt as follows. 
By going to the usual variables e = p2 I a 2' e' = p'2 I a2' one may rewrite the 
scalar contribution to the classical II action as: 

II 211"
2 

2 2[ ( ') '] 1611"
2 

Ea- sscalar = Ea + TMHa 4> e,e - e- e - 92" ( 4.22) 

The explicit form of <P(e,e'), given in ref. [11], is 

( 4.23) 

It can be readily verified that 

( 4.24) 

From the small e, e' expansion of</>( e, e') we know that the point e = e' = 0 
is never a stationary point of the action 4.22. Therefore, at the stationary 
point for e and e' one finds: 

~(1,1) > 0. ( 4.25) 
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Here ~is the Legendre transform of¢>. The saddle point in a gives: 

- ( E
2

).. 161r
2

) exp( Ea - S!:alar) = exp 2 - - -2- · 
811"2 M H¢>(1' 1) g 

( 4.26) 

Even in this case, classical finite size corrections can not stop the growth 
of the inclusive cross section for B+L violating Higgs production. 

Summing up all the previous results, we may draw the following con­
clusions. 

Semiclassical instanton calculations, when properly done, preserve dis-
persion relations. , 

An exponential growth in inclusive cross sections, which eventually sat­
urates the unitarity bounds, exists both in the two dimensional Abelian 
Higgs model arid in spontaneously broken SU(2) gauge theories coupled to 
fermions. Classical corrections to the instanton action, which are present 
because instantons have nonzero size, do ~ot change, by themselves, these 
results. 

Finite size corrections, naturally, do not exhaust all possible contribu­
tions to equations 4)1, 4.14. For one thing, indeed, we never touched the 
problem of quantum corrections to our results. Moreover, we never left the 
framework of dilute instanton gas approximation. The inadequacy of that 
approximation is evident when the relevant values of pja or p'ja versus the 
c.m. energy E are considered. For example, one notices immediately that 
the values of the square instanton radii over the square instanton distance 
in equation 4.19 become of order one for E ::::::: E~. The case of Higgs par­
ticle emission is even more dramatic. There indeed, the function ¢>( ~, e') 
in equations 4.22, 4.23 does not depend on E, ).. or g 2

• Thus, the relevant 
values of ~, e', i.e. the values at the saddle point, are always 0(1 ). This 
fact by itself should make us doubt about the actual validity of the dilute 
instanton approximation. 

On the other hand, other sources of indeterminacy in our findings, like 
the fact that corrections O(Mf.rp4 log MHP) were not considered, seem to 
play a minor role, according to the analysis of ref. [9,10]. The authors 
of [9,10], indeed, claim that that kind of corrections does not have the 
strenght of modifying an exponential growth in the inclusive cross section 
for multiple Higgs emission, in the case of a SU(2) supersymmetric theory. 
Since this conclusion does not seem to depend heavily on the particular 
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form of the theory, it seems possible to extend it to the Standard Model as 
well. 
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Figure Captions 

Figure 1 - The contours of integration 0+ and 0_, the crossed circle indi­
cates the stationary point of S(a). 
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