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ABSTRACT 

The t-( -1 model (strongly interacting limit of a particular Hub

bard model) is solved exactly on small clusters of eight sites with 

periodic- boundary conditions for the simple, body-centered, and face

centered cubic lattices and for the two-dimensional square lattice. The 

symmetry, k-vector and spin of the ground state are studied as functions 

of crystalline environment, interaction strength, and electron concentra-

tion. Phase diagrams are presented for stable solutions, and regions of 

parameter space that exhibit ferromagnetism and heavy-fennionic 

behavior are identified. 
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I. Introduction 
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and 
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Strong electron correlation is responsible for long-range-order magnetic materi

als,1 heavy fermion (HF) behavior,2.3 and high-temperature superconductivity.4•5 The 

t-t' -J model is the simplest model of an interacting electronic system that mimics the 

strong correlation effects present in these materials. In ferromagnetic and HF systems 

this model describes the mutual interaction and effective electron transfer of the nar-

row d- and f -band electrons while in the high-temperature superconductors it approx

imates the hole-hole interaction and hole hopping in the Cu02 planes. 

The t-t' -J model is defined on a lattice with one spherically symmetric orbital 

per site by the following Hamiltonian: 

H = HlNN + H2NN +Hint 

HlNN =- t L 
i,j;a 

<i,j> = lNN 

H2NN =- ( L 
i,j;a 

<i,j> = 2NN 

(1) 

(2a) 

(2b) 
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i ,j 
<i,j> =INN 

S· · S· I } 
(2c) 

In these equations ci~ (cia) are creation (destruction) operators for an electron in the 

orbital at site i with z-component of spin a, nia = ci~ cia is the corresponding number 

operator, and Si is the vector spin of an electron at site i . The terms in H. include a 

band "hopping" interaction between conduction states on nearest-neighbor sites (2a) 

and next-nearest-neighbor sites (2b) and an antifer_romagnetic nearest-neighbor Heisen

berg· superexchange interaction term (2c) with exchange integral 2J. The hopping 

terms contain projection operators that prevent double occupation of any orbital. 

This Hamiltonian has two interpretations: it is an electronic system with indirect 

exchange interactions and a "super" Pauli principle that forbids electrons of like or 

unlike spin from occupying the same spatial site; or it is an approximation to the 

U ~ oo limit of the single-band Hubbard7 model 

i ,j; a 
<i,j> =INN 

( I, 
i,j ;a 

<i,j> = 'JNN 

(3) 

Anderson8 first showed the equivalence of the half-filled band Hubbard model at large 

interaction strength to the Heisenberg. model. His proof was based upon second-order 

perturbation theory: At half-filling and infinite U each lattice site is singly occupied 

and all spin states are degenerate. When U is made finite, the lowest order correction 

to the energy comes from virtual processes where an electron hops to its nearest neigh-

bor (if the spins are antiparallel) and then hops back. The energy gain for such a 

fluctuation is ::: t 2/U since doubly occupied states have energy ::: U. This hopping 

creates the Heisenberg superexchange interaction term to lowest order in t/U. Away 

from half-filling, the electrons can hop from occupied to empty sites and additional 

fluctuations that involve three sites (an electron hops to a neighboring occupied site 

and then hops to a third unoccupied site) are present. Schrieffer and W olff9 found a 

canonical transformation to the single-occupied sector of a related model that was valid 
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for arbitrary fillings. This technique was applied to the Hubbard model to first order, 10 

and recently to arbitrary order.I1 Since the t-t' -1 Hamiltonian (1) only involves the 

nearest-neighbor superexchange interaction, it approximates the canonically 

transformed Hubbard Hamiltonian (3) in the limit of large U when 1 = 2t2/U and 

when any terms of order 0 (t2/U2) or 0 (t' 21tU) and any three-site hopping terms in 

the transformed Hubbard Hamiltonian are neglected. This approximation is exact at 

half-filling for t' = 0 but becomes increasingly less accurate with hole concentration 

away from half-filling. 

A few rigorous results are known about the t-t' -1 model: 

(a) At half-filling it reduces to a Heisenberg model whose ground state12 is a nonde

generate singlet on bipartite lattices and possibly ferrimagnetic for other cases. 

Lieb13 recently extended this analysis to the Hubbard model with finite U. 

(b) The case of one hole in a half-filled band at 1 =0 (U =oo) is known to be fer

romagnetic14 (Nagaoka's theorem) when t' ~ 0 for the simple cubic (se ), body

centered cubic (bee), and the square (sq) lattices for all t and for the face~ 

centered cubic (fee) when t < 0. 

(c) The one-dimensional t-t' -1 model with free boundary conditions and an even 

number. of electrons has a spin-singlet ground state. 15 

(d) The one-dimensional Hubbard model has been solved exactly with the Bethe 

ansatz for arbitrary fillings by Lieb and Wu16 which yields solutions17•18 to the 

t-t' -1 model at t' = 0 and 1 =0 (U =oo). 

(e) The Bethe ansatz has also been applied19 to the one-dimensional t-t' -1 model 

with t=1 and t'=O. 

Aside from these theorems little else is known rigorously about the solutions of 

this many-body problem. The standard approach is to apply variational, perturbative, 

or mean-field approximations to such interacting models. We choose an alternate 
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method which is exact, but subject to finite-size effects. It is called the small-cluster 

approach. 20 

The small-cluster approach begins with the periodic crystal approximation:21 A 

bulk crystal of M atoms is modeled by a lattice of M sites with periodic boundary 

conditions (PBC). Bloch's theorem then labels the electron many-body wavefunctions . 

by one of M k-vectors of the first Brillouin zone. The standard approach takes the 

thermodynamic limit (M ~ oo ), which replaces the finite grid in reciprocal space by a 

continuum that spans the Brillouin zone. Ele~tron correlation effects are then treated in 

an approximate fashion. The small-cluster approach takes the opposite limit: The . 

number of sites is chosen to be a small number (M = 8) restricting the sampling in 

momentum space to a few high-symmetry points. However, the interacting electronic 

system is solved exactly taking into account all electron correlation effects. The one

electron band structure of these two methods is identical when sampled at the common 

points in reciprocal space. The relationship of the many-body solutions (at equal elec

tron concentration) for the macroscopic crystal and the small cluster is much more 

complicated due to uncontrolled finite-size effects in the latter. Nevertheless, the 

small-cluster approach does provide an alternate means of rigorously studying the 

many-body problem and (possibly) extrapolating these results to macroscopic crystals. 

The small-cluster approach was proposed independently for the Hubbard model 

by Harris and Lange10 and Falicov and Harris22 with the exact solution of a two-site 

cluster. Subsequent work concentrated on the ground-state23 and thermodynamic24 

properties of the one-dimensional half-:filled band Hubbard model on four- and six-site 

clusters. 

The first truly three-dimensional case to be investigated was the eight-site sc clus

ter. Ground-state properties at infinite25 and finite26 U and thermodynamic25- 27 pro

perties have all been studied. The solution of the four-site square (sq) and tetrahedral 

(j cc) clusters28 marked the first time that group theory was used to factorize the 
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Hamiltonian into block-diagonal form by using basis functions of definite spin that 

transform according to irreducible representations of the full space group. 

Takahashi29 studied the ground-state spin as a function of electron filling in the 

infinite U limit of the Hubbard model on a variety of clusters (up to twelve sites). 

Unfortunately, the use of free boundary conditions (instead of PBC) introduces strong 

surface effects that complicate extrapolation to the thermodynamic limit The effect of 

geometry on the ground state has also been examined30 for finite U. 

The r-( -1 model was solved for 7 electrons in eight-site fcc bulk31 and sur

face32 clusters. The bulk calcul~tion illustrates clearly the power of group-theoretical 

techniques, where a 1024xl024 matrix is diagonalized in closed form after being 

block-diagonalized. Recent work has concentrated on the square lattice at half-filling 

and with one or two holes.33 The cluster sizes are large (up to 18 sites) so only the 

low-lying eigenvalues and eigenvectors were determined. 

The small-cluster approach has also been applied to the study of real materials. It 

is quite successful in describing properties that depend on short-range many-body 

correlations.· These include photoemission in transition metals,34 alloy formation,35 

surface photoemission36 in Ni and Co, and surface magnetization37 in Fe. This tech

nique has also been applied to multi-band· versions of the Hubbard model that 

describes high-temperature superconductivity in the Cu02 planes.38 

In this contribution we examine the ground-state symmetry, k-vector, and spin as 

a function of electron concentration and interaction strength for the t-( -1 model on 

eight-site clusters for sc, bee, fcc, and sq lattices with PBC. In the next section we 

describe the method of calculation used; in section III we present our results for the 

ground-state properties, phase diagrams for regions of stability in parameter space, and 

we identify ferromagnetic ground-state solutions; in section IV we examine low-lying 

excitations in the many-body spectra to determine regions in parameter space where 

HF behavior is expected; in the final section we present our conclusions and some 
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conjectures. 

II. Calculational Details 

The dimension of the Hamiltonian matrix grows exponentially with the size of the 

cluster (e.g., an M -site cluster with one orbital per site has dimension 4M x4M). This 

rapid growth restricts the maximum size of the cluster to be on the order of 10 sites. 

In the strong-interaction regime (i.e., the t-t' -J model), double-occupancy of an orbi

tal is forbidden, reducing the Hilbert space from 4M to 3M (for eight-site clusters this 

corresponds to art order of magnitude simplification from 65536 to 6561). The sys

tematic use of conserved quantities and symmetries of the Hamiltonian provides further 

simplifications. 

The total-number operator N = Li,a nia commutes with the Hamiltonian in 

Eq. (1) and is a conserved quantity. The Hilbert space with definite electron number 

N reduces to dimension 2N M !IN !(M -N)! as summarized in Table I for the eight-site 

cluster. The largest remaining block size is now 1792 x 1792 for the 5 and 6 electron 

cases. 

The electronic states can be further characterized by their spin and spatial sym

metries. Since the total spin, the total z-component of spin, and the total spin raising 

and lowering operators all commute with the Hamiltonian, the many-body states may 

be labelled by the total spin S and the total z-component of spin ms , with every state 

in a given spin multiplet degenerate in energy. The spatial symmetry is labelled by 

the irreducible representation of the space group that transforms according to the 

many-body state. In our case, the space groups are symmorphic, moderately sized 

finite groups, that are constructed from the poin~group operations and the eight trans

lation vectors of the lattice (see the appendix). The grand orthogonality theorem and 

the matrix element theorem39-41 (generalized Unst>ld theorem) guarantee that the Ham-. 

iltonian matrix will be in block-diagonal form, with no mixing between states of 
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different spin or spatial symmetry, when it is expanded in a symmetrized basis that has 

definite spin and transforms according to the (1,1) matrix elements of an irreducible 

representation of the space group. We have written a symmetry-adapted computer 

algorithm that, given the lattice structure of a small cluster with PBC (see the appen

dix), the generators42 of the space group, and the character table43 of the space group,· 

calculates the (1,1) matrix elements of the irreducible representations (in a fashion 

similar to Luehrmann41). These matrix elements are used to construct projection 

operators that operate on maximum z-component of spin states (ms = S) to generate 

symmetrized ·basis functions of definite spin and spatial symmetry. The Hamiltonian 

blocks are determined in this symmetrized basis and are checked for completeness 

within each subspace of definite spin and spatial symmetry. The resultant blocks are 

diagonalized by the so-called QL algorithm44 which determines all of the eigenvalues 

and eigenvectors in the many-body problem. Table II summarizes the reduced block 

sizes for the four different lattices considered. The application of full spin and space 

group symmetry reduces the block sizes by another two orders of magnitude which, in 

turn, reduces the diagonalization time by six orders of magnitude. This symmetry

adapted algorithm was tested for 7 electrons in an eight-site fcc cluster and ve!ified the 

known analytic results31 for that case. 

The effect of geometry on the many-body solutions to the t-t' -1 model is stu

died by solving the model exactly for four different crystalline environments: the sc, 

bee, fcc, and sq lattices. The eight-site clusters with PBC for these different structures 

are illustrated in real space and reciprocal space in Figs. 1-4. The PBC will renormal

ize the parameters in the Hamiltonian (1) when the summations in Eq. (2) are res

tricted to run over the finite cluster (1 ~ i, j ~ 8). For example, the six nearest

neighbors of an even (odd) site i in the sc lattice (see Fig. 1) are two each of the odd 

(even) sites (excluding the site 9-i ), the twelve next-nearest neighbors are four each of 

the remaining even (odd) sites, and the eight third-nearest neighbors are eight each of 
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the site 9-i. This renonnalizes the parameters in the t-t' -1 model by t ~ 2t, 

t' ~ 4t', and 1 ~ 2J. Similar analysis for the other crystalline structures is given in 

Table III. 

The small-cluster approach samples the first Brillouin zone at eight k-vectors, 

which correspond to only three (bee , fee) or four (se, sq) different symmetry stars. 

As summarized in Table IV, the one-electron energies of the small-cluster Hamiltonian 

agree precisely with the one-electron band structure of the infinite crystal, when sam

pled at the common k-vectors. Some of the properties of the many-body states can be 

understood by the naive picture of occupying these one-electron levels as if the elec

trons were non-interacting (see below). 

The space groups that are relevant for totally symmetric orbitals on each site of 

the cluster have 48 (se ), 192 (bee, fee) or 64 (sq) distinct elements. They are 

divided into 10 (se ), 14 (bee), 13 (j ee ), and 16 (sq) classes, respectively. The char

acter tables for these space groups are given in the appendix. 

The nearest-neighbor hopping matrix element It I is chosen to be the unit of 

energy. Three different cases are examined for the next-nearest-neighbor hopping 

matrix element: ( > 0, t' = 0, and t' < 0. The magnitude oft' is chosen to be 0.5 for 

the bee lattice. This sets It' I = 0.15 for the other three lattices, when exponential 

dependence of the hopping matrix elements on the distance between lattice sites is 

assumed. 

Finally, we note that whenever the lattice is bipartite (se, bee, sq) - i.e., it can 

be separated into two sublattices A and B such that the nearest-neighbor hopping is 

A ~ B and B ~ A and the next-nearest-neighbor hopping is A ~ A and B ~ B only 

- then the t-t' -1 model has an eigenvalue spectrum that is symmetric16 in t. This· 

allows us to limit45 our discussion to t = 1 for the se , bee , and sq lattices; while we 

consider both t = 1 and t = -1 for the fee lattice. 
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ITI. Results: Ground State Symmetry 

The k-vector, spatial (small group of k) symmetry, and spin of the many-body 

ground state are calculated exactly for all electron fillings (0 :::;; N :::;; 8) and for 

0.0 :::;; 1 < 1.0. The symmetry of the ground state is recorded by attaching the spin

multiplicity (2S + 1) as a superscript to the symbol for the irreducible representation 

that transforms according to the many-body state (as given in the appendix). The 

t-t' -1 model on small clusters has many accidental degeneracies; that is, degeneracies 

that are not required by the spin and space-group symmetries of the underlying lattice 

(see below). Some of these degeneracies are inherent in the model itself/·23 while 

other degeneracies occur due to finite-size effects46 (permutation symmetries of the 

small cluster that are not representable as space group symmetries). 

The cases of low electron filling (N :::;; 3) are well-described by occupying the 

lowest one-electron energy levels (Table IV). These one-electron energy levels have a 

rich structure. The lowest level is nondegenerate and has r 1 symmetry for the sc ' 

bee, fcc (t > 0), and sq lattices, while the lowest level for the fcc (t < 0) lattice is 

threefold degenerate with X 1 symmetry. The first excited level is threefold (X 1), six

fold (N 1), or fourfold (L 1) degenerate for the sc, bee, and fcc lattices, respectively. 

The sq lattice does not have a unique first excited level: when the 2NN hopping 

integral vanishes (t' = 0) there is an accidental degeneracy of 1:1 and X 1, creating a 

sixfold degenerate level; for t' > 0 the ordering is 1:1 (fourfold degenerate) <X 1 (two

fold degenerate), and vice versa for t' < 0. 

Since the case of one electron (N = 1) contains no many-body effects, the ground 

state is formed by occupying the lowest one-electron level. The ground state, there

fore, has symmetry 2r 1 (d = 2) for the sc, bee, fcc (t > 0), and sq lattices and 

2X 1 (d = 6) for the fcc (t < 0) lattice. A second electron (N = 2) is added by plac

ing15 it in a spin-singlet state in the same level as the first electron. This results in a 

1 r 1 (d = 1) symmetry for the ground state of the sc' bee' fcc (t > 0), and sq lattices. 
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The fcc (t < 0) lattice has 1 r 12 (d = 2) symmetry for finite J' but has a spin

degenerate 3X 2 EB 1 r 12 (d = 11) ground state when J = 0 (because of the degeneracy of 

the one-electron levels). 

In general, the addition of a third electron (N = 3) is made by placing it in the 

first-excited one-electron energy level. This yields a 2X 1 (d = 6), 2N 1 (d = 12), and 

2L 1 (d = 8) ground state for the sc, bee, and fcc (t > 0) lattices. The sq lattice has a 

21:1 (d = 8), 2X 1 EB 2~1 (d = 12), or 2X 1 (d = 4) ground state for ( > 0, ( = 0, and ( < 0 

respectively. However, many-body effects begin to play a more important roie in the 

three-electron case. There is a level crossing in the sc ground state from 2X 1 (d = 6) 

to 2r 12 (d =4) at J It = 0.85100 when ( < 0. The fcc (t <0) case is even more 

interesting. It is the first example of a ferromagnetic ground state 4r 1 (d = 4) (result

ing from the application of Hund's empirical rule47) which undergoes a level crossing 

to a spin-doublet 2X 2 (d = 6) at J It = 0.29972 (( > 0), J It = 0.23617 (( = 0), or 

J It = 0.15045 (( < 0). 

Many-body effects become increasingly more important for N ~ 4. The ground

state symmetries are recorded in Tables V-Vill for the cases 4 s N s 7. 

The half-filled band (N = 8) reduces to the case8 of a Heisenberg antiferromag

net. The solutions are all spin-singlets, have symmetry 1r 1 (d = 1) for the sc, bee, 

and sq lattices, and have 1r 1 EB 1r 12 (d =3) symmetry for the fcc lattices. 

Our results agree with previous work for the sc lattice,25- 27 the fcc lattice,31 and 

the sq lattice. 48 There are a few salient features of these results that deserve comment: 

(a) The case of the sq lattice with ( = 0 is identical to the bee lattice with ( = 0 

due to a hidden symmetry of the eight-site sq lattice. 

(b) There is a large number of ferromagnetic49 solutions for J < t. These solutions 

occur in the sc lattice (( S 0, N = 4; ( S 0, N = 7), in the bee lattice 

(( S 0, N =7), in the fcc (t < 0) lattice (all (, N =3; all (, N =7), and in the 
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sq lattice (all t', N = 7). The ferromagnetic solutions for N = 7 are all examples 

of Nagaoka's theorem14 for one hole in a half-filled band at J = 0. 

(c) There is also a large number of ferrimagnetic50 solutions for J « t. When 

N = 4, ferrimagnetic ·solutions occur for all geometries except the sc lattice; 

when N = 5, ferrimagnetism occurs in the sc and fcc (t > 0) lattices; and when 

N = 7, it occurs for all lattices except fcc (t > 0). 

(d) Whenever the Heisenberg interaction J is large enough, the ground state is stabil

ized in the lowest spin configuration (S = 0 for N = even, S = 112 for N = odd). 

In particular, the case of two holes (N = 6) is always a spin-singlet. 

(e) Non-minimal-spin solutions undergo "spin-cascade" transitions, passing through 

each intermediate spin en route to minimal spin solutions, as J is increased. The 

only exceptions are in the sc lattice (t' :5: 0, N = 4 and t' = 0, N = 7) which have 

one level crossing from maximal spin to minimal spin and the sq lattice 

(t' < 0, N = 7) which does not have a spin-5/2 ground state in the cascade from 

spin-7 /2 to spin-1/2. 

(f) Ground states that are accidentally degenerate for all values of J always have the 

same total spin, but usually have space symmetries corresponding to different k

vectors. The sc lattice is the only cluster that has no "accidental" degeneracies in 

the ground state. 

(g) At J = 0 there are some solutions with additional accidental degeneracies. The 

degenerate states contain mixtures of different total spin. These special solutions 

are summarized in Table IX. 

There are many magnetic solutions to the t-t' -J model. Hund's empirical 

rules47 may be employed to explain the occurence of ferrimagnetism for N = 4 and 

N = 5, but, as the filling increases, many-body effects overwhelm the system and the 

one-electron picture loses its predictive power. The N = 7 cases verify Nagaoka's 

theorem, 14 but the ferromagnetic state is quite unstable with respect to the interaction 
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parameter J, with a rapid level crossing to a lower spin state. Geometry also plays a 

role, as the se and fee lattices exhibit far stronger magnetic properties than the bee or 

sq lattices. 

The case with two holes (N = 6) has a spin-quenched ground state for all four 

different geometries. This fact has been observed for many geometries by previous 

investigators in small cluster calculations.25- 27•29-31 .33 There are also variational and 

heuristic arguments why the two-hole state cannot be ferromagnetic. 17•51 Our solutions 

(Table Vll) show one interesting additional feature: The ground-state manifold always 

contains a state with 1r 1 symmetry whenever the hypotheses of Nagaoka's theorem14 

are satisfied (( ~ 0 for the se, bee, fee (t < 0), and sq lattices). This result suggests 

that there is a two-hole extension to Nagaoka's theorem which yields a spin-singlet 

ground state. We leave this result as a conjecture, however, and do not offer any 

proof. 

Up to this point we have kept the electron occupation number N fixed. It is 

important, however, to examine the stability of a fixed-N ground state with respect to 

discommensuration (a macroscopic rearrangement of the crystal into domains, with 

different electron number in each domain, but with an average filling N). The stabil

ity of a particular ground state (for fixed interaction J) is determined by forming the 

convex hull of the ground-state energy versus·· electron filling and comparing it to the 

calculated ground-state energy for N electrons. If the convex hull is lower in energy, 

then the ground state with N electrons is unstable against discommensuration. Previ

ous work33 on the phenomenon of discommensuration has concentrated exclusively on 

one and two holes in the half-filled band of a square lattice (determining the binding 

energy of hole pairs). 

Our results are summarized in the form of phase diagrams (Figs. 5-9). The phase 

diagrams plot regions of parameter space that are stable against discommensuration as 

functions of the electron filling N (y-axis) and the Heisenberg interaction J (x-axis). 
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Horizontal solid lines denote stable ground-state solutions for fixed N. Dotted vertical 

lines separate regions where discommensuration occurs and also denote regions where 

the ground state for fixed N has a level crossing (see Tables V-vrrn. The level cross

ings for fixed N are also marked by a solid dot in the phase diagrams. 

In general, the tendency toward discommensuration increases as the interaction J 

increases: however, there are cases where islands of stable ground-state configurations 

form (these include N = 4 in the bee, fcc (t < 0), and sq lattices, and N = 7 in the 

fcc (t- < 0) lattice). The role of geometry on the structure of the phase diagrams can 

be explained by three empirical rules (listed in order of importance): (1) ground-state 

solutions with even numbers of electrons are more stable than solutions with odd 

numbers of electrons (in particular, N = 0, N = 2, and N = 8 are always stable); (2) 

filled or half-filled one-electron shells are stable in relation to other electron fillings; 

and (3) when the ground state for an odd number of electrons (N) is stable, the 

ground states for even numbers of electrons (N ± 1) are also stable. In particular, the 

third rule implies that whenever an (N = odd) solution becomes unstable with respect 

to discommensuration, it always separates into even mixtures of solutions with (N ± 1) 

electrons. However, when an (N = even) solution becomes unstable, it separates into 

many different kinds of mixtures (N ±2; N +2, N -4; N +2, N -1; N +4, N -2). 

These empirical rules explain the stability of N = 0, 1, 2, 4, 5, 6, 8 for the sc lattice; 

N = 0, 1, 2, 8 for the bee and sq (t' = 0) lattices; N = 0, 1, 2, 6, 8 for the 

fcc (t > 0) and sq (t' > 0) lattices; N = 0, 2, 3, 4, 6, 8 for the fcc (t < 0) lattice; 

and N = 0, 1, 2, 4, 8 for the sq (t' < 0) lattice. The rules do not explain the stability 

of N = 6, 7 in the bee lattice or N = 7 in the fcc (t < 0) lattice. We believe the last 

feature arises from many-body effects and a sensitivity of the solutions to the next

nearest-neighbor hopping t'. The bee and fcc (t < 0) lattices are strongly sensitive to 

t', the sq lattice is moderately sensitive to t', and the sc and fcc (t > 0) lattices are 

insensitive to t'. Finally, we note that although the sq lattice does show regions of 
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parameter space which favor pair-formation of holes in the half-filled band, it is the 

fcc lattice with t > 0 (t < 0) that shows the strongest tendency toward hole (electron) 

pair-formation in the t-( -1 model. This result suggests that frustration is a key ele

ment for stable pair-formation in itinerant interacting electronic systems and that the 

fcc lattice is more likely to be superconducting than the sq lattice for a single-band 

model. 

IV. Results: Heavy-Fermion Behavior 

Two electrons which have strong correlation (i.e., satisfy the "super" Pauli princi

ple) must avoid each other when moving in a solid. This places an additional con

straint on the electron dynamics which should, in turn, strongly affect the transport 

properties; e.g. reduce the specific heat, electron conductivity, etc. The constraint is 

felt in many-body solutions by a drastic reduction in the number of available states 

(reduced by one order of magnitude in eight-site clusters). Under certain cir

cumstances, however, some transport properties are enhanced by orders of magnitude 

because of strong correlation (as evidenced in the HF materials2.3). We find analogous 

behavior in the many-body solutions to the t-( -1 model on small clusters. 

The HF materyals exhibit large coefficients of the term linear in the temperature 

in their specific heat, quasi-elastic magnetic excitations (large magnetic susceptibili

ties), and poor metallic conductivity. We test our solutions to the t-( -J model to 

find candidate solutions that depict this HF behavior. Since electron correlation effects 

begin to be large at N == 4, we expect solutions near half-filling to have the strongest 

HF character. 

The large coefficient of the linear term in the specific heat arises from an abun

dance of low-lying excitations, i.e. many-body states in the ground-state manifold and 

energetically close to it. We calculated the maximum number of states (including all 

degeneracies) lying within an energy of 0.11 t I of the ground state for 0.0 ~ J < 1.0 
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(see Table X). The maximum number of states appear for only a finite range of J, as 

illustrated for the three cases in Figs. 10-12. We search for enhancements52 in the 

strong-correlation regime by comparing the maximum number of states in Table X 

with the total number of states in the ground-state manifold of the non-interacting 

regime (Table XI). The degeneracy of the non-interacting ground-state manifold is 

determined by a paramagnetic53 filling of the one-electron levels of Table IV (all of 

the excited states in the non-interacting electron spectrum lie beyond 0.11 t I of the 

ground state). The possible HF lie predominantly near half-filling and are highlighted 

in boldface in Table X. Both the bee and the sq (( = 0) lattices show no tendency 

toward HF behavior due, in part, to the large density of states of the non-interacting 

electrons at half-filling. 

Large magnetic susceptibilities and large magnetic fluctuations occur whenever 

two states with different total spin are nearly degenerate. These fluctuations increase 

when more than two different total-spin configurations are nearly degenerate (a feature 

that we call the spin-pileup effect). Many solutions exhibit this spin-pileup effect: the 

case of a half-filled band has, for all structures, five different total-spin configurations 

degenerate at J = 0; for N = 7, the spin-pileup effect is seen in the se (t' ~ 0), 

bee (( = 0), fee (t > 0), and sq lattices; for N = 6 and N = 4 it is observed in the 

fee (t > 0) lattice and in the se (( = 0) lattice, respectively. A simple example of the 

spin-pileup effect is illustrated in Fig. 11. Cases when only two different total-spin 

states are nearly degenerate occur in the regions near isolated level crossings between 

the two states. These regions have been summarized in Tables V-VIII. 

Finally, we require candidate HF solutions to exhibit weak metallic conductivity. 

Previous investigations31 have shown that electrons in the strongly correlated regime 

are poor conductors (in particular, the half-filled band has electrons that are frozen in 

space, i.e. an insulator). We expect, however, an enhancement of the conductivity 

whenever a solution is close to a discommensuration instability, since the system has 
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states with tWo different charge distributions which are nearly degenerate. 

Solutions to the t-t' -1 model that satisfy all three criteria54 are the best candi

dates for models of HF systems. These solutions are listed in Table xn. The solu

tions lie predominantly near half-filling, are quite sensitive to variations in 1, are 

moderately sensitive to changes in t', and may be magnetic. In fact, the geometrical 

tendency toward HF appears to be closely linked to the geometrical tendency toward 

magnetism of the previous section, with the sc and fcc lattices having stronger HF 

. character than the bee and· sq lattices. 

Conclusions 

We have studied the effect of geometry on the exact many-body solutions of the 

t-t' -1 model in eight-site small clusters. We examined five particular cases: sc; bee; 

fcc (t > 0); fcc (t < 0); and sq lattices. Spin and space-group symmetries were used 

to reduce the Hamiltonian to block-diagonal form, which decreased the diagonalization 

time by six orders of magnitude. 

The spatial symmetry, k -vector, and total spin of the ground state were calculated 

for all electr~n fillings as a function of the interaction strength. We found that the 

ground state typically has minimal spin and there are many accidental degeneracies. 

Magnetic solutions (including ferromagnetism) occur in some cases when 1 < t. In 

particular, we verified Nagaoka's theorem, 14 found the ferromagnetic solutions to be 

quite unstable with respect to increasing J, and we proposed an extension of the 

theorem to the case of two holes: Whenever the hypotheses of Nagaoka's theorem14 

are satisfied and there are exactly two holes in the half-filled band, then the ground 

state is a spin-singlet with 1r 1 symmetry. This conjectured extension of Nagaoka's 

theorem indicates that the ferromagnetic solution is quite unstable to both interaction 

strength 1 and electron filling N. 
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We studied the stability of the many-body solutions with respect to discommen

suration. Amazingly enough, we found that the phase diagrams can be almost entirely 

described by a one-electron picture: The stability of solutions tends to decrease as the 

interaction J is increased; the one-eighth (N = 2) and one-half (N = 8) filled bands are 

always stable; an even number of electrons tends to be more stable than an odd 

number; and an odd number of electrons that forms a half-filled one-electron shell 

tends to be stable. Frustration was a key element to the binding of two holes or two 

electrons, as shown in the fee lattice. In particular, we found no evidence for 

enhanced superconductivity (via the binding of holes) in the two-dimensional sq lattice 

versus the three-dimensional lattices. 

Heavy-fermion behavior was studied by examining the character of the ground

state manifold and its low~lying excitations. We found many-body solutions that have 

a large density of many-body states near the ground state, have large spin fluctuations, 

and are poor metallic conductors. These solutions exhibit HF character for only a 

small range of the interaction and are sometimes magnetic. 

Geometry plays a similar role in both magnetism and HF behavior. The se and 

fee lattices have a stronger tendency toward magnetism and HF behavior than the bee 

and sq lattices. 

In conclusion, the small-cluster technique is an alternate approach to the many

body problem that treats electron correlation effects exactly, but has uncontrolled 

finite-size effects. Group theory is used to simplify the problem, so that many 

different cases can be studied. We find a richness to the structure of the ground-state 

solutions as functions of the interaction strength, electron filling, and geometry, that 

includes magnetism and HF behavior. 
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Appendix 

The cubic point group oh has 48 operations, however, the improper rotations and 

inversion yield no additional information . when spherically symmetric orbitals are 

placed at each lattice site. Therefore, the relevant cubic point group for the small clus

ters that we study is the orthogonal group 0 which has 24 operations. Similarly, the 

relevant point group for the square lattice is C 4v which has 8 operations. The eight

site cluster has eight translations which yield space groups of order 192 (64) for the 

cubic (square) lattices. However, it turns out that there is a fourfold redundancy of 

group operations in the sc lattice when spherically symmetric orbitals are placed at the 

lattice sites (a similar phenoment" occurs in the four-site tetrahedral clustex-28). This 

reduces the order of the space group for the sc cluster to 48 and this reduced group is 

isomorphic to the point group 0 h with an origin at the center of the cube. 

The sc Brillouin zone43 is sampled at four symmetry stars: r (d=l); R (d=1); M 

(d=3); and X (d=3). The character table43 is reproduced in Table A1 with the conven

tional and the space group notations for the 10 irreducible representations. 

The bee and fcc lattices display the full symmetry of the proper space group. 

Their Brillouin zones43 are sampled at three symmetry stars: r (d=1); H (d=1); and N 

(d=6) for the bee lattice and r (d=1); X (d=3); and L (d=4) for the fcc lattice. The 
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character tables43 are reproduced in Tables A2 and A3. The space group operations are 

denoted by a point group operation with origin at site 1 and a translation vector. 

Nearest-neighbor translations are denoted by 't and next-nearest neighbor translations 

by 9. The subscripts II, 1, and L refer to translations that are parallel to, perpendicular 

to, or at an angle to the rotation axis of the point group operation. 

The sq lattice also displays the full symmetry of the proper space group. The 

Brillouin zone43 is sampled at four symmetry stars: r (d=1); M (d=1); X (d=2); and :E 

(d=4). The character table43 is reproduced in Table A4. The symbol cr denotes 

reflections in the planes perpendicular to the x- and y-axes, cr' denotes reflections in 

planes perpendicular to the diagonals x±y, n denotes the third-nearest-neighbor trans

lations, and the subscripts II (1) refer to translations that are parallel (perpendicular) to 

the normal of the mirror plane. 

Finally, we elaborate upon the algebraic identification of the lattice points in an 

infinite lattice with those of an eight-site cluster with PBC. A se lattice is described 

by triples of integers (i, j, k ). The eight-site se cluster with PBC describes the same 

set of points, but each point on the infinite lattice is identified with one of eight 

equivalence classes, determined by the site in the small cluster with which it is 

equivalent. These equivalence classes are given in Table A.5 for the se, bee, fee, 

and sq lattices. 
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Table I. Hamiltonian block sizes for N electrons in an eight-site cluster in the strongly 

interacting limit (no double-occupation of a lattice site). 

Dimension of 

N Hilbert Space 

0 1 

1 16 

2 112 

3 448 

4 1120 

5 1792 

6 1792 

7 1024 

8 256 

Table II. Largest Hamiltonian block sizes for N electrons in the four different eight

site clusters when expanded in a symmetrized basis of definite spin and spatial sym

metry. 

N sc bee fcc sq 

0 1 1 1 1 

1 1 1 1 1 

2 3 2 2 3 

3 8 5 5 8 

4 16 8 9 14 

5 18 9 12 18 

6 18 9 11 18 

7 8 5 5 8 

8 3 2 2 3 
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Table ill. Renormalized parameters for the t-t' -J Hamiltonian when restricted to iso

lated eight-site lattices. 

sc bee fcc sq 

lNN 2t 2t 2t t 

2NN 4t' 2t' 6t' 2t' 

int 2J 2J 2J J 

Table N. One-electron energy levels for the four different eight-site clusters. 

sc bee fcc sq 

Er = -6t-12t' E r = -8t-6t' Er = -12t-6t' Er = -4t-4t' 

Ex= -2t+4t' EN= 2t' EL = 6( Er. = 0 

EM = 2t+4t' EH = 8t-6t' Ex = 4t-6t' Ex= 4t' 

ER = 6t-12t' EM= 4t-4t' 



Table V. Ground-state symmetry for theN = 4 case. The synunetry labels refer to the 

irreducible representations of the space group (see the appendix) with the superscript 

corresponding to the spin-degeneracy (2S + 1 ). The critical values of 1 It record the 

parameter values where a level crossing occurs within the interval 0.0 ~ 1 It < 1.0. 

t' > 0 t' = 0 

sym. de g. [1 It 1crit. sym. de g. [1lt1crit. 

sc 1r12 2 5R 2 5 0.13715 

1r12 2 

1r12ES1H 12 4 0.07807 1f12E91H 12 4 0.11379 

bee 1 ' 1 
r25ES N2 9 1 ' 1 

r25ES N2 9 

fcc 3x5 18 0.00273 3x5 18 0.00521 
(t>O) 1f~E91X3 6 1 ' 1 

r25ES X3 6 

fcc 3x2 9 0.06404 3x2 9 0.08559 
(t >0) 1r12 2 1r12 2 0.69025 

1L2 4 

3f5E93X3 12 0.00274 1r1 ES1f4ES1M 1 ES1M 4 4 0.11379 
sq 1f4ES1M4 2 0.08861 . 1r3ES1M 5ES1X4E9 1~ 9 

1M5E91X4 4 

sym. 

5R 
2 

1r12 

3 ' 3 
H25 E9 N3 

1f12E91H12 
1 ' 1 
r25ES N2 

3x5 
1 ' 1 
r25ES X3 

3x2 

1r12 

1L2 

3M3 

Ir3 

t' < 0 

de g. 

5 

2 

27 

4 

9 

18 

6 

9 

2 

4 

3 

1 

[1 It 1crit. 

0.21162 

0.03743 

0.09289 

0.00788 

0.07870 

0.33435 

0.08520 

I 
N 
-.....! 
I 



Table VI. Ground-state symmetry for the N = 5 case. 
---

t' > 0 r' = 0 

sym. de g. [J It lcrit. sym. 

sc 4R2 4 0.22719 4R2 

2x2 6 2x2 

2N1$2N4 24 0.13027 2N1 $2N4 

bee 2 I 2 I 

r15EB H 15 
2 I 2 I 2 2 
r15Ea H 15 $ N2$ N3 

$2N2$2N3 36 

fcc 4L2 16 0.00216 4L2 

(t > 0) 2L3 16 2L 3 

fcc 2x1 6 0.65744 2x 1 
(t < 0) 2L3 16 0.85651 2x5 

'2 
X5 12 

2:E1 8 0.16958 2x 1 Ea2X2Ea2:E1Ea2~ 

sq 2~ 8 2r2Ea2r5Ea2M2$2Ms 

$2X3$2X4$22~ 

:r 

-- -----

t' < 0 

de g. [J It lcrit. · sym. 

4 0.28014 4R2 

6 2x2 

24 0.21214 2N1$2N4 

36 2 I 2 I 2 2 
T15Ea H 15 Ea N2$ N3 
2 I 2 
r25Ea N2 

16 0.00432 4L2 

16 2L3 

6 0.52150 2x1 

12 2xs 

24 0.21214 2x1 

2~ 

36 

de g. 

4 

6 

24 

36 

18 

16 

16 

6 

12 

4 

8 

---

[J It lcrit. 

0.30507 

0.20073 

0.82705 

0.00690 

0.30260 

0.27940 

I 
N 
co 
I 



Table VII. Ground-state symmetry for the N = 6 case. 
--- --- ~--------~-------

t' > 0 t' = 0 

sym. de g. [J/t lcrit. sym. de g. 

sc Irl2 2 lrl 1 

lr12 2 

Irl ED1r12ED1H 2 4 0.13007 IrlEDir12ED1H2 4 

bee 1 ' 1 
r2sED N2 9 ~r~ED~N2 9 

fcc lr12 2 lr12 2 

(t > 0) 

lr 
1 1 0.63022 lr 

1 1 

fcc 1 ' 1 
r2sED X3 6 Ir~ED~X3 6 

(t < 0) 1L2 4 

sq tr 
1 1 0.17094 21r 1 ED 1r 4 ED 1M 4 4 

Ir3 1 Ir3EDIM sEDIX4EDI~ 9 

t' < 0 

[J It lcrit. sym. de g. 

0.04489 lr 1 1 

lr12 2 

0.21355 lr }..-. . lH 
1ED 112ED 2 4 

1 ' 1 
r2sED N2 9 
lr 1 1 

lr12 2 

0.49013 lrl 1 

0.80484 1 ' 1 
r2sED X3 6 

1L2 4 

lrl EDlri2 3 

0.21355 Iri 1 

IM sE91X4 4 

[J It lcrit. 

0.21765 

0.20287 

0.54656 

0.30941 

0.42641 

0.78826 

0.28349 

I 
N 
1.0 
I 



Table VITI. Ground-state symmetry for the N = 7 case. 

t' > 0 t' = 0 

sym. de g. [1 lt]crit. sym. 

2x 1 6 8R1 

2x 1 

sc 

6N1 36 0.02488 8H1 

bee 4f'l2$4H 12 16 0.09174 6N1 

2N 
1 12 4r12e4H 12 

2N 
1 

fcc 2r 2 e 2X 1 e
2X2 14 2r2e2x 1 e2x2 

(t > 0) 

sr 
1 8 0.08785 sr1 

6L 
1 24 0.11555 6£1 

fcc 4 , 4 
r2sED X3 24 0.22932 4r~e4x3 

(t < 0) 2Lt 8 0.26969 4L3 

2xs 12 0.34658 4r1 e4rl2e4x 1 

2L2$2L3 24 0.69048 2x 1 e2x2 

2x 1 e2x2 12 

8M1 8 0.03336 8M1 

sq 6x 
1 12 0.05991 6x 1 e 6.E1 

4rt e4M 1 8 0.12436 4r1 e4r4e4M 1 e4M 4 

2x 
1 4 2x 1 e 2.E1 

de g. [J It lcrit. 

8 0.05878 

6 

8 0.10383 

36 0.11856 

16 0.16573 

12 

14 

8 0.12633 

24 0.17794 

24 0.20209 

32 0.25000 

24 0.33333 

12 

8 0.10383 

36 0.11856 

16 0.16573 

12 

t' < 0 

sym. de g. 

8R 1 8 

6r 
1 6 

4R 1 4 

2x 1 6 

2r1 '--· 2 

8H1 8 
6 
r1 6 

4H1 4 

2r1 2 

2:r2e2x 1 e2x2 14 

sr1 8 

6x 1 
. 

18 

4r1 e4r12e4x 1 24 

2x 1 e2x2 12 

8M1 8 

4r4e4M4 8 

21:1 8 

2r1 2 

[J It lcrit. 

0.11763 

0.14158 

0.27134 

0.34310 

0.14286 

0.20000 

0.33333 

0.14286 

0.20000 

0.33333 

0.13165 

0.19593 

0.53125 

I 
w 
0 
I 
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Table IX. Accidental degeneracies in the t-( -J model at J = 0. 

lattice N ground state de g. 

fcc 2 3x2e1r12 11 

(t < 0) 

bee 4 3H' 3N 1r 1H 25 EB 3 EB 12 ED 12 31 
t' = 0 

sq 3rse.3M 3 ED 3X 3 ED 3~ 
( = 0 4 ED 1r 1 e

1r 4e 1M 1 ED 1M 4 31 

fcc 6 sr2e3x2e1r12 16 
(t > 0) 

fcc 6x2e4L2ED 4r12ED4X 1 e 4x2 

(t > 0) 7 e 2L3e 2r2ED 2x 1 ED 2x2 96 

all 8 all 256 
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Table X. Maximum number of many-body states lying within 0.11 t I of the ground

state energy (including the degeneracy of the ground-state manifold). Potential HF are 

highlighted in bold. 

N sc bee fcc (t > 0) fcc (t < 0) sq 

t' + 0 - + 0 - + 0 - + 0 - + 0 

1 2 2 2 6 2 

2 1 1 1 11 1 

3 4 4 18 12 8 10 8 12 
4 11 16 7 40 24 11 18 40 

5 10 60 32 28 34 34 16 60 
6 2 3 3 13 16 7 10 10 2 13 
7 6 38 18 52 60 14 96 48 98 42 28 76 

8 256 256 256 256 256 256 

Table XI. Maximum number of non-interacting-electron states lying within 0.11 t I of 

the ground-state energy (including the degeneracy of the ground-state manifold). 

N sc bee fcc (t > 0) fcc (t < 0) sq 

t' + 0 - + 0 - + 0' - + 0 - + 0 -

1 2 2 2 6 2 
2 1 1 1 15 1 
3 6 12 8 20 8 12 4 
4 15 66 28 15 28 66 6 
5 20 220 56 6 56 220 4 
6 15 495 70 1 70 495 1 
7 6 792 56 8 56 792 8 
8 1 924 28 28 28 924 28 

-

4 
4 
12 

5 
54 
256 
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Table XII. Many-body solutions to the t-t' -1 model that exhibit strong HF character. 

The range of interaction strength 1 It where the solutions are HF and the total spin of 

,,. the ground state Scs are included. 

N lattice t' 1 It Scs 

3 sc t'<O 0.0 < 1 It < 0.05 1/2 

4 sc t' = 0 0.0 <lit< 0.04 2 or 0 

7 sc t' = 0 0.05 < 1 It < 0.065 7/2 or 1/2 

7 sc t' < 0 0.12 < 1 It< 0.13 7/2 or 5/2 

7 fcc (t > 0) all t' 0.0 <lit< 0.01 1/2 

7 fcc (t < 0) t' > 0 0.1 < 1 It < 0.12 5/2 or 3/2 

7 fcc (t < 0) t'=O 0.17 < 1 It < 0.19 5/2 or 3/2 

7 sq t' < 0 0.15 <lit< 0.16 3/2 

.. 
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Table Al. Character table for the space group of the eight-site sc cluster. The space 

group is isomorphic to the cubic point group Oh, with an origin at the center of the 

small cluster, when spherically symmetric orbitals are placed at the lattice sites. E is 

the identity, C;:' is the rotation of 2rtm In about an n -fold axis, and J is the inversion. 

Both the space group and the point group notations for the irreducible representations 

are included. 

1 3 6 6 8 

1 JCt JC4 JC2 JC3 

.rl Alg 1 1 1 1 1 1 1 1 1 1 

r2 A2g 1 1 -1 -1 1 1 1 -1 -1 1 

r12 Eg 2 2 0 0 -1 2 2 0 0 -1 

M2 Tlg 3 -1 1 -1 0 3 -1 1 -1 0 

Ml T2g 3 -1 -1 1 0 3 -1 -1 1 0 

R2 Alu 1 1 1 1 1 -1 -1 -1 -1 -1 

Rl A2u 1 1 -1 -1 1 -1 -1 1 1 -1 

R12 Eu 2 2 0 0 -1 -2 -2 0 0 1 

xi T1u 3 -1 1 -1 0 -· -3 1 -1 1 0 

x2 T2u 3 -1 -1 1 0 -3 1 1 -1 0 
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Table A2. Character table for the space group of the eight-site bee cluster. The space 

group operations are constructed by a point group operation with origin at site 1 fol-

lowed by a translation. The symbol 0 denotes no translation, 't denotes a nearest-

neighbor translation, and 8 is a next-nearest-neighbor translation. The subscripts II , 1, 

and L refer to translations that are parallel to, perpendicular to, and at an angle to the 
.- rotation axis of the point group operation. 

1 6 24 12 32 4 12 24 12 12 32 3 6 12 

E c} c4 c2 c3 E c} c4 c2 c2 c3 E c} c2 
0 0811 o8· 081 08 't 't 't 'tL 't1 't 8 81 8L 

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 -1 -1 1 1 1 -1 -1 -1 1 1 1 .:.1 

112 2 2 0 0 -1 2 2 0 0 0 -1 2 2 0 
, 

115 3 -1 1 -1 0 3 -1 1 -1 -1 0 3 -1 -1 

r~ 3 -1 -1 1 0 3 -1 -1 1 1 0 3 -1 1 

Hl 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 

H2 1 1 -1 -1 1 -1 -1 1 1 1 -1 1 1 -1 

H12 2 2 0 0 -1 -2 -2 0 0 0 1 2 2 0 
, 

H15 3 -1 1 -1 0 -3 1 -1 1 1 0 3 -1 -1 

H~ 3 -1 -1 1 0 -3 1 1 -1 -1 0 3 -1 1 

Nl 6 2 0 2 0 0 0 0 0 0 0 -2 -2 -2 

N2 6 -2 0 0 0 0 0 0 -2 2 0 -2 2 0 

N3 6 -2 0 0 0 0 0 0 2 -2 0 -2 2 0 

N4 6 2 0 -2 0 0 0 0 0 0 0 -2 -2 2 
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Table A3 .. Character table for the space group of the eight-site fcc cluster. The nota-

tion is identical to that of Table A.2. 

1 6 24 12 32 6 6 12 24 24 1 12 32 

E cj c4 c2 c3 E cj cj c4 c2 E c2 c3 
0 09 091:1 01:11 01:1 't 1:1 'tL 'tL 'tL 9 91:1 9'tL 

rl 1 1 1 1 1 1 1 1 1 1 1 1 1 

r2 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 

r12 2 2 0 0 -1 2 2 2 0 0 2 0 -1 
I 

r1s 3 -1 1 -1 0 3 -1 -1 1 -1 3 -1 0 
I r25 3 -1 -1 1 0 3 -1 -1 -1 1 3 1 0 

xl 3 3 1 1 0 -1 -1 -1 -1 -1 3 1 0 

x2 3 3 -1 -1 0 -1 -1 -1 1 1 3 -1 0 

x3 3 -1 -1 1 0 -1 3 -1 1 -1 3 1 0 

x4 3 -1 1 -1 0 -1 3 -1 -1 1 3 -1 0 

Xs 6 -2 0 0 0 -2 -2 2 0 0 6 0 0 

Ll 4 0 0 2 1 0 0 0 0 0 -4 -2 -1 
L2 4 0 0 -2 1 0 0 0 0 0 -4 2 -1 
L3 8 0 0 0 -1 0 0 0 0 0 -8 0 1 
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Table A4. Character table for the space group of the eight-site sq cluster. The symbol 

a denotes the mirror planes perpendicular to the x- and y -axes and a' denotes the 

mirror planes perpendicular to the diagonals x ± y . The translations are denoted by 0 

(no translation), 't (nearest-neighbor translation), e (next-nearest-neighbor), and n 
(third-nearest-neighbor). The subscripts II and 1 refer to translations parallel to or per

pendicular to the normals of the mirror planes. 



Table A4 
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.. 
Table A5. Equivalence classes of the eight small-cluster sites in the se, bee, fee, and 

sq infinite lattices. 

Class sc bee . fcc sq 

1 (2i ,2j ,2k) (4i ,4j ,4k) ' (2i ,2j ,2k) (2i ,2j) 

(4i +2,4j+2,4k+2) i+j+k =even i+j =even 

2 (2i + 1,2j ,2k) (4i +2,4j ,4k) (2i ,2j+1,2k+1) (2i+1,2j) 

(4i ,4j+2,4k+2) i+j+k =even i+j =even 

3 (2i +1,2j+1,2k) (4i ,4j ,4k+2) (2i+1,2j ,2k+1) (2i + 1,2j + 1) 

(4i+2,4j+2,4k) i+j+k =odd i+j =odd. 

4 (2i ,2j + 1,2k) (4i ,4j+2,4k) (2i+1,2j+1,2k) (2i,2j+1) 

(4i +2,4j ,4k+2) i+j+k =odd· i+j =even 

5 (2i + 1 ,2 j ,2k + 1) (4i + 1,4j+1,4k+ 1) (2i ,2j ,2k) (2i ,2j) 

(4i +3,4j+3,4k+3) i+j+k =odd i+j =odd 

6 (2i ,2j ,2k+1) (4i +3,4j+1,4k+ 1) (2i ,2j+1,2k+ 1) (2i+1,2j) 

(4i + 1,4j+3,4k+3) i+j+k =odd i+j =odd 

7 (2i ,2j + 1,2k+ 1) (4i+1,4j+1,4k+3) (2i + 1,2j ,2k+ 1) (2i + 1,2j + 1) 

( 4i + 3,4j +3,4k+ 1) i+j+k =even i+j =even 

8 (2i + 1,2j+1,2k+1) (4i+1,4j+3,4k+1) (2i + 1,2j + 1,2k) (2i ,2j+1) 

(4i +3,4j + 1,4k+3) i+j+k =even i+j =odd 
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Figure Captions 

Figure 1. Eight-site cluster with PBC for the sc lattice in a) real and b) reciprocal 

space. The nearest neighbors of the site 1 are two each of the sites 2, 4, and 6 as 

indicated in a). The four symmetry stars in b) are r = (0, 0, 0); R = (1, 1, 1) 1tla; 

M = (1, 1, 0) 1t/a; and X = (1, 0, 0) 1t/a. 

Figure 2. Eight-site cluster with PBC for the bee lattice in a) real and b) reciprocal 

space. The dotted line in a) is the body diagonal. The nearest neighbors of site 5 are 

two each of the sites 1, 2, 3, and 4. The three symmetry stars in b) are r = (0, 0, 0); 

H = (2, 0, 0) 1tla; and N = (1, 1, 0) 1tla. 

Figure 3. Eight-site cluster with PBC for the fcc lattice in a) real and b) reciprocal 

space. The double-tetrahedral structure is ·highlighted With dotted lines in a). The 

three symmetry stars in b) are r = (0, 0, 0); X = (0, 0, 2) 1t/a; and L = (1, 1, 1) 1tla. 

Figure 4. Eight-site cluster with PBC for the sq lattice in a) real and b) reciprocal 

space. The 2.../2 a x 2.../2 a "primitive" cell is highlighted with dotted lines in a). The 

four symmetry stars are r = (0, 0); M = (1, 1) 1t/a; X = (1, 0) 1t/a; and I:= (1, 1) 1t/2a. 

Figure 5. Stability phase diagram for the sc lattice. The x-axis is the interaction 

strength J It and the y-axis is the electron filling N. Solid horizontal lines correspond 

to stable single-phases. Dotted vertical lines denote discommensuration instabilities or 

level crossings in the fixed-N solutions. Level crossings are also marked by a black 

dot. Three cases have been calculated: a) t' = 0.15 I t I ; b) t' = 0.0; and c) 

t' = --0.15 It I. 

Figure 6. Stability phase diagram for the bee lattice. Three cases have been calcu

lated: a) t' = 0.5 It I; b) t' = 0.0; and c) t' = --0.51 t I. Note the phase islands for 

N =4. 

Figure 7. Stability phase diagram for the fcc (t > 0) lattice. Three cases have been 

calculated: a) t' = 0.151t I; b) t' = 0.0; and c) t' = --Q.l51t I. 

.. 



-41-

Figure 8. Stability phase diagram for the fcc (t < 0) lattice. Three cases have been 

calculated: a) t' = 0.151t I; b) t' = 0.0; and c) t' = -0.151 t I. Note the phase islands 

for N = 4 and N = 7 and that N = 1 is unstable. 

Figure 9. Stability phase diagram for the sq lattice. Three cases have been calculated: 

a) ( = 0.151 t I; b) t' = 0.0; and c) t' = -0.151 t I. Note the phase islands for N = 4. 

Figure 10. Total number of states in the ground-state manifold and in the low-lying 

excitations within 0.1 It I of it for the sc (f < 0) lattice and N = 3. 

Figure 11. Total number of states in the ground-state manifold and in the low-lying 

excitations within 0.11 t I of it for the fcc (t > 0) lattice and N = 7. There are no 

low-lying excitations in the range 0.1 < 1 It < 1.0. The spin-pileup effect can be seen 

at 1 = 0. 

Figure 12. Total number of states in the ground-state manifold and in the low-lying 

excitations within 0.1 I t I of it for the fcc (t < 0) lattice with ( = 0 and N = 7. 

There are no low-lying excitations in the range 0.5 < 1 I It I < 1.0. 
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