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ABSTRACT 

We have studied numerically the classical states of equilibrium, 

stable and metastable, of magnetic-field vortex lines in a type II super-

conductor in the presence of twin boundaries which attract the vortex 

lines. Depending on the value of the magnetic field and the density of 

the twin boundaries, a variety of situations is found. Among them are 

Abrikosov lattices, anisotropic structures in which the vortex lines are 

mostly localized at the twin boundaries, and a consistently large regime 

of disordered structures. Statistical analysis of the distributions, their 

energies, and their pair-correlation functions are presented. 
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L INTRODUCTION 

In a type 11 superconductor it is expected that magnetic flux lines in equilibrium 

make an Abrikosov lattice, i.e. an ordered array with hexagonal symmetry 1- 3• There-

fore it was somewhat surprising that decoration experiments on the new high-

temperature superconductors exhibit hexagonal lattices only in some cases 4. One of 

the first observations on a YBa 2Cu 30 1--a single crystal by Gammel et al. showed a 

considerably disordered lattice, though pair-correlation functions showed, on the aver-

age, hexagonal ordering 1. Similar experiments on bismuth-based superconductors 

have shown a highly disordered flux lattice 5, as well as some indication that the flux 

lattice might melt. These findings have led to the speculation that new intrinsic 
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properties of the flux lines may be responsible for these unusual properties. The new 

features are believed to be caused by large fluctuations arising from a transition tern-

perature Tc that is an order of magnitude larger than in traditional superconductors, 

and by a coherence length ~ which is an order of magnitude smaller. A consequence 

of such a view some authors believe that the flux lattice is no longer two-dimensional, 

and· therefore three-dimensional effects have to be included in the description 6-S. 

Aside from the possibility of fluctuation phenomena being important, the new 

materials all have a high concentration of defects. Since many of the decoration 

experiments exhibiting order/disorder are performed a! low temperatures ( 4 K - 20 K) 

on thin single-crystal samples with the magnetic field perpendicular to the ab -plane, 

the third dimension (the thin dimension of the single-crystal film) along the c -axis is 

essentially frozen. Therefore it is likely that third-dimension fluctuations are not the 

primary cause of the observed disorder, and that in these thin samples the structure of 

the flux-line distribution is probably caused by crystalline defects which interact with 

the lines. The purpose of this contribution is to study the influence of a particular 

defect, the twin boundaries. Twin boundaries originate from the tetragonal-to-

orthorhombic phase transition which many of the new high-temperature 
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superconductors undergo at various temperatures. The low-temperature orthorhombic 

phase, which consists of inequivalent a and b axes, seldom appears in "true" 

... (untwinned) single crystals. In particular YBaCuO "single" crystals are normally 

-
highly twinned, with the twinning planes parallel to both the c -axis, and either the 

[1,1,0] or [-1,1,0] direction, i.e. they are (-1,1!0) or (1,1,0) planes. 

Magnetic flux experiments9•10 on YBaCuO "single crystals", with magnetic field 

parallel to the c -axis clearly show three regimes: 

(l) in twin-free regions the flux lines, because of their mutual repulsion, distribute 

themselves in Abrikosov hexagonal lattices; 

(2) twin boundaries act as an attractive potential for the flux lines, so that there are 

regions in which the flux lines localize themselves, almost exclusively, along ·the 

twin boundaries (planar anisotropic and possibly disordered arrangement); 

(3) an intermediate regime where the attractive twin-boundary/flux-line interaction 

and the repulsive mutual interaction between the flux lines produce conflicting 

effects that result in a variety of glass-like disordered states, neither dominated by 

the twin boundaries (planar flux-line arrangement) nor ordered in a hexagonal, 
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defect-free lattice. 

These three regimes are evident from an examination of, for instance, Figure 1 (a) 

of Ref. 9. A numerical study and an analysis of these regimes constitute the subject 

matter of this paper. 

II. FORMULATION 

Flux lines in type II superconductors are most conveniently described in the 

framework of Ginzburg-Landau (GL) theory 2• In that theory the ratio 1C =AI~ of the 

magnetic penetration depth A., and the coherence length ~. plays a very important role. 

If 1C is larger than (ll..f2) the superconductor is called of type II: the magnetic field 

penetrates the superconductor in the form of quantized flux lines; each line contains 

one flux quantum <1>0 = (he 12e ). For materials with large values of 1C, the supercon-

ducting order parameter is constant over most of the sample, except in regions of the 

order ~ around the cores of the flux lines. Since in this work only interactions 

between flux lines in moderate fields are considered, it is a good approximation to 

neglect the "normal" cores of the flux lines, and use an order parameter of constant 

magnitude throughout the superconductor. In this limit the GL theory becomes 
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identical to the London theory3, a considerable simplification of the problem. The mag-

netic field around a single flux line is thus given by 

ci> 
H (R) = ---;. K 0(R /A.) 

21t'A. 
(1) 

Here H (R ) is the local magnetic field at a radial distance R from the core of the line, 

<1>0 is the magnetic flux quantum, and K 0 is the zeroth order Bessel function of the 

second kind. The contribution to the free energy arising from the interaction between 

flux lines is 3 

(2) 

where R;i is the separation between flux line i, located at~, and line j, located at~. 

The presence of twin boundaries introduces and additional contribution to the 

flux-line free energy, a twin boundary potential M' 2• The total excess flux-line free 

energy -- caused by their mutual interaction and the interaction with the twin boun-

daries -- now becomes 

N 
L V(it;) (3) 
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The potential V (~) describes the attraction between the flux lines and the twin boun-

daries. An exponential potential was chosen to describe that interaction 

(4) 

In (4) Xi indicates the coordinate o~ the i flux line perpendicular to the direction of the 

twin boundaries (assumed to be all parallel to each other), xk 1s the corresponding 

coordinate of the k twin boundary, V 0 is the parameter that determines the strength of 

the twin-boundary/flux-line interaction and the dimensionless parameter cr governs the 

range of that attraction. The range of the twin-boundary potential is expected to be 

short compared to the magnetic penetration depth A. and its strength to decrease fast; 

the functional form of the potential was therefore chosen to be a Gaussian. The 

numerical values of V 0 and cr are difficult to estimate and should be determined 

experimentally ( e.g. from the pinning energies of the twin boundaries). In the calcu-

lations reported below the parameters were chosen so as to give results compatible 

with the experimental observations. The results were very insensitive to the choice of 

V0 if the magnitude is larger than a given threshold (a change of two orders of magni-

tude in V 0 gave negligible changes in the static properties of the flux line 
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distributions, even though the dynamic properties may be considerably altered. The 

density and location of the twin boundaries are functions of the "quality" of the sam-

ple, and depend on the way the sample was fabricated. 

If U 0 = (<1>0)2 I (81t2A.2) is taken to be the unit of energy per unit length of thick-

-
ness of the sample, and A. is the unit of length, then the problem contains the following 

dimensionless. parameters: 

(i) 11/, the total excess flux line free energy in units of U o; 

(ii) v 0 = V ofU 0, the strength of the twin-boundary/flux-line interaction in the new 

energy units; 

(iii) L, the length of the chosen hexagonal unit cell, in units of A.; 

(iv) z1 , the average separation between flux lines, in units of A., in the perfect Abriko-

sov hexagonal lattice at a given value of the applied magnetic field; this quantity 

is a measure of the inverse value of the field that has penetrated the superconduc-

tor; 

(v) N, the number of flux lines in the chosen unit cell, a quantity equal to (L n1 )
2; 
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(vi) 0', the dimensionless range of the twin-boundary/flux-line attraction, 

(vii) It, the average separation between twin boundaries in units of A.; 

(viii) Nt, the number twin boundaries in the chosen unit cell, a quantity inversely pro-

portional to It ; 

(ix) crt, the standard deviation for the distribution of twin boun~ separations, in 

units of A.. 

For weak magnetic fields ( H ~He 1 ) the average distance between the flux lines 

is larger than A. ( i.e. 11 > 1), and the zeroth order Bessel function can be approxi-

mated by 

K 0(R) = [(1t I (2R )] 112 exp(-R) (5) 

This leads to an interaction identical to a two-dimensional screened Coulomb repul-· 

sion. The total excess flux-line free energy now becomes 

.. 

N [ 1t ]112. ( ) N Ntww [- ( X·-X~c)2] ~! = . L. -.-. : exp -rij - Vo ~ L exp . I 2 
I < J 2r1J ' Jc 0' 

(6) 

' 
This equation constitutes the basis of this work. The problem is to find the 

configurations of flux lines, for a given magnetic field. and a given configuration of 
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twin boundaries that are local minima of the free-energy expression given above. 

Although some analytic methods have been attempted to solve this problem11 , it is far 

too complex to expect sensible solutions from that approach. The richness and variety 

of the numerical solutions reported below confirm this notion. 

Before proceeding to report on the calculation and the results, the limitations of 

the model and approximations made should be discussed. The use of London's theory 

is probably a very good approximation, especially for the new high temperature super-

conductors since these materials all have a very large value of K (::: 100 ). The chosen 

form of the twin-boundary/flux-line interaction potential is a more difficult approxima-

tion to evaluate. Examination of the experimental data9 clearly indicates that the 

interaction is attractive, and reasonably short-ranged. Therefore a Gaussian form, as 

adopted here, is plausible, although by no means certain. It can be justified qualita-

tively by assuming that the destruction of the order parameter (i.e. the formation of the 

core of the flux line) is more favorable at the twin boundary and its immediate neigh-

borhood than in the rest of the crystal, and that there is negligible ineraction between 

the distribution of magnetic field lines and the twin boundaries themselves. In other 

words only when the core of the flux line lies within a few lattice parameters of the 
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twin boundary is the interaction appreciable. 

IlL MINIMIZATION AND RESULTS 

The minimization of the free energy (6) was performed numerically. A hexago-

nal unit cell with periOdic boundary condition was chosen, a given number of parallel 

twin boundaries was introduced and repeated periodically in the direction perpendicular 

to the boundaries, and a finite number of flux lines was placed at random in the hexag-

onal unit cell. This ,latter number was always a perfect square (4, 9, and 16). The flux 

lines were infinitesimally displaced and the values of (6) calculated at every stage until 

a local minimum was achieved. The procedure used a sequential quadratic program-

ming algorithm, in which the search direction is the solution of a quadratic program-

ming problem. By having a high accuracy in the calculations, the random initial start 

configuration "moved" to the "nearest" stable or metastable minimum configuration. 

..:.. 

The procedure for each twin-:-boundary configuration and for each N was repeated for 

100 different initial random flux-line configurations. 

Some features of the numerical procedure deserve comment. The unit cell was 

chosen to have hexagonal symmetry and only interactions between lines in the same 
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unit cell and in nearest-neighbor cells were included (longer-range interaction, between 

lines two or more cell away is always negligibly small for the screened coulomb 

potential). 

The choice of hexagonal symmetry for the unit cell insured the natural hexagonal 

symmetry of the flux lattice in twin-free regions. Any other syinm.etry of the unit cell 

could in principle be chosen, but the boundary effects would produce unwanted struc-

tures unless the size were unreasonably large (and the computational tax excessive). 

The above choice was guaranteed to minimize size effects. In addition, because of the · 

periodic boundary conditions, a favorable hexagonal Abrikosov lattice. can only form if 

the number of flux lines is a perfect square. Any other choice would require one or 

more artificial defects of the flux lattice. 

A stochastic function that generates a distribution of the N twins twin boundaries in 

the unit cell must be defined. In the calculations a normal distribution was chosen, so 

that it gave an average separation of /1 , with a standard deviation cr1 • This means that, 

in the cases examined, by starting from any twin boundary and going in a direction 

perpendicular it, the average separation between twins is /1 , and the deviations from 
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this average are given by crt. 

The initial distribution of flux lines was obtained from random-number generators. 

This procedure attempted to imitate the conditions in the decoration experiments9•10 

where the samples were field-cooled through the superconducting transition tempera-

ture to low temperatures of the experiment. The flux lines therefore were probably 

"nucleated" at random. Different results should be obtained in experiments where the 

field is applied after cooling to low temperatures, and the flux lines penetrate the sam-

ple "from one side". The initial random distribution mimics an ideal quenching, and 

probably overestimates the disorder in the final metastable states. 

Calculation of a large number of random initial flux lattice configurations allows 

to compile, for a given set of parameters, statistical information on a variety of quanti-

ties: the density of metastable configurations; their distribution in energy; the flux dis-

tribution pair-correlation function. 

In all calculations the following parameters were used: 

v 0 = 0.05 

cr2 = 0.05 

L = 20 , 

(Or)2 = 0.04 

The other parameters were varied, so that the following fifteen cases were studied 

.. 
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N =4 N = 9 , N = 16 ; 

Ntwins = 0 , Ntwins = 2 , Ntwins = 4 , Ntwins = 8 , Ntwins = 18 . 

If the parameters of YBaCuO and the experimental results of Ref. 4 are used, these 

parameters correspond to magnetic fields of 

B:::: 9.2G B :::: 20.1 G , B :::: 36.7 G 

and twin-boundary separations of 

00 ' 1.40 J.Lm 0.70 J.Lm 0.35 J.Lm 0.16 J.Lm 

respectively. The penetration depth A. was taken12.13 to be 0.14 J.Lm. 

The flux line decoration experiments45 have been all, by necessity, performed at 

low magnetic fields. The numerical calculations reported here correspond, therefore, to 

low fields. For each value of the magnetic field and the distribution of twin boun-

daries the calculation was repeated 100 times, using new random initial configurations 

of the flux lines. For each of the fifteen cases, statistics of the energies and flux-line 

pair-correlation functions corresponding to the final (meta)stable states of the 100 ini-

rial configurations were obtained. Figures 1 - 4 show the histograms for the energy 
·\0; 

distributions of the twelve cases here considered that involve twin boundaries. Figures 

5 - 9 exhibit the pair-correlation functions for the cases of N = 16, and Ntwins equal 

to 0, 2, 4, 8, and 18 respectively. Figures 10 - 12 are examples of various stable and 
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metastable configurations. 

When no twin boundaries are present, the flux lattice relaxes mostly to an Abriko-

sov lattice. Only defect-free Abrikosov lattices were obtained for all values. of N 

reported here. However, for larger values of the magnetic field, structures involving 

an occasional flux-line-lattice dislocation were obtained: this was the situation when 

several cases for N = 25 were run. 

When twin boundaries are present the metastable structures were very different 

An analysis of the histograms in Figures 1 - 4 reveals that the energy distributions are 

essentially of three types: 

1) Discrete, narrow, multimodal distributions observed when both the density of twin 

boundaries and the magnetic flux are low; 

2) Quasi-continuous, single-mode distributions observed essentially when the density 

of twin boundaries is high; 

3) Multimodal, broadened distributions in the intermediate regimes. 

From an analysis of the histograms and the corresponding flux-line configurations 

it emerges that twin boundaries are attractive to flux lineS only when they are popu-
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lated by fewer lines than a critical number Nc per unit-cell length. For N = 16 and 

Ntwins = 2 (see Figures 1 and 11) the critical number is five flux lines per unit-cell 

length, i.e. each twin boundary can accommodate up to five flux lines in the chosen 

unit cell. If the flux-line density (flux lines per unit cell) exceeds exceeds the product 

Nrwins · Nc, the additional lines are, by necessity, "caught" in the twin-boundary-free 

region. It is possible that, even though the twin boundaries are not saturated, some 

flux lines are nonetheless "caught" in the defect-free regions and produce thus a meta-

stable, higher-energy state. This is the origin of the multimodal, discrete distributions · 

observed. A clear example of this behavior is observed in Figures 10 and 1(a), where 

the four modes in the histogram correspond to 0, 1, 2 and 4 flux lines not located on 

twin boundaries. (Obviously 3 flux lines outside twin boundaries are also possible, 

even though our statistical sampling did not reach any of those cases). It should be 

noted that the highest-energy case in this example, Figure lO(d) and the right-most 

peak in Figure 1(a), correspond to a perfect Abrikosov lattice, which completely 

"ignores" the presence of the defects. 

As seen in Figures 10-12, all metastable states tend to maximize the separation 

between neighboring lines. Since the lines are, however, bound to the twin 
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boundaries, there are competing processes which, to a varying degree, break the 

natural hexagonal symmetry. 

This broken symmetry is evident in the flux-line pair-correlation diagrams of Fig-

ures 5 - 9. These figures correspond all to the same value of the magnetic field. In the 

case of a perfect crystal (Figure 5) the Abrikosov lattice yields a pair-correlation func-

tion consisting of 15 "spots" of equal strength in a perfect hexagonal pattern. Succes-

sive addition of twin boundaries tends to destroy the hexagonal symmetry, which is all 

but gone in Figures 8 and 9. Only average (statistical) mirror symmetries in the direc-

tions · parallel and perpendicular to twin boundaries remain. 

IV. CONCLUSIONS 

The calculations reported here result in complicated metastable flux-line distribu-

tions in superconducting crystals with twin boundaries. There are, in this case, com-

peting. forces between the short,.range attraction of flux lines and twin boundaries, and 

the repulsive (screened Coulomb) interaction between the flux lines. A large number 

of metastable configurations results in what may be called a "flux-line glass" situation, 

with different and sometimes contrasting behaviors· which strongly depend on the den-
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sities of flux lines (magnetic-filed strength) and twin boundaries (quality of the cry-

stal). 

The results reported here, based on calculations of small systems with periodic 

boundary conditions, should be considered as describing a small but macroscopic sec-

tion of a much larger crystal. Envisioned that way, the patterns shown in the various 

figures here strongly resemble particular sections of the decoration experiments of 

references 4 and 9. 

It should be mentioned also that the specific details of the patterns depend on the 

values of the force parameters chosen, in particular the form, range and strength of the 

twin-boundary flux-line attraction. The parameters adopted in the reported calculation 

are physically reasonable, and yield results which agree well with experimental obser-

vations. 
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FIGURE CAPTIONS 

Figure 1 

Histogram of the energy distribution of 100 cases with random initial conditions 

corresponding to 2 twin boundaries in the unit cell, for a flux-line density of (a) 4 lines 

per unit cell; (b) 9 lines per unit cell; and (c) 16 lines per unit cell. The energies are in 

units of U 0, defined in the text. 

Figure 2 

Histogram of the energy distribution of 100 cases with random initial conditions 

corresponding to 4 twin boundaries in the unit cell, for a flux-line density of (a) 4 lines 

per unit cell; (b) 9 lines per unit cell; and (c) 16 lines per unit cell. The energies are in 

units of U 0, defined in the text. 

Figure 3 
... 

Histogram of the energy distribution of 100 cases with random initial conditions 

corresponding to 8 twin boundaries in the unit cell, for a flux-line density of (a) 4 lines 

per unit cell; (b) 9 lines per unit cell; and (c) 16 lines per unit cell. The energies are in 
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units of U 0, defined in the text. 

Figure 4 

Histogram of the energy distribution of 100 cases with random initial conditions 

corresponding to 18 twin boundaries in the unit cell, for a flux-line density of (a) 4 

lines per unit cell; (b) 9 lines per unit cell; and (c) 16 lines per unit cell. The energies 

are in units of U 0, defined in the text. 

FigureS 

The pair-correlation function corresponding to the perfect crystal (no twin boun-

daries) and 16 flux lines per unit cell. The pattern is a set of sixteen delta functions 

with perfect hexagonal symmetry. 

Figure 6 

The· pair-correlation function for the 100 cases corresponding to 2 twin boun-

daries and 16 flux lines per unit cell. The pattern exhibits mirror symmetry and dis-

torted but clear hexagonal symmetry. 
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Figure 7 

The pair-correlation function for the 100 cases corresponding to 4 twin boun-

.-
daries and 16 flux lines per unit cell. The pattern exhibits mirror symmetry and dis-

,. 

torted but clear and pronounced hexagonal symmetry 

Figure 8 

The pair-correlation function for the 100 cases corresponding to 8 twin boun-

daries and 16 flux lines per unit cell. The pattern exhibits essentially only mirror sym-

metry. 

Figure 9 

The pair-correlation function for the 100 cases corresponding to 18 twin boun-

daries and 16 flux lines per unit cell. The pattern exhibits mirror symmetry and, with 

the exception of a repulsive, distorted "hard core", much less pronounced features and 

an essentially uniform distribution 
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Figure 10 

Four characteristic local-minimum flux-line arrangements corresponding to 2 twin 

boundaries and 4 flux lines per unit hexagonal cell. (a) A minimum-energy pattern 

' 
with the 4 flux lines lying on the twin boundaries and forming a distorted Abrikosov 

hexagonal lattice. (b) An intermediate-energy, distorted hexagonal pattern with only 

one line not on a twin boundary. (c) A higher-energy arrangement of distorted hexago-

nal symmetry, with 2 lines on twin boundaries and the other 2 caught in between. (d) 

A very-high-energy metastable structure, a perfect Abrikosov hexagonal lattice, with 

all 4 lines caught self-consistently away from twin boundaries. 

Figure 11 

A typical metastable configuration corresponding to 2 twin boundaries and 16 flux 

lines. Nine flux lines lie on the twin boundaries and" and seven far from them. The 

twin boundaries are highly· "populated" and have become repulsive to the other lines. 

This is a typical pattern observed experimentally when the density of twin boundaries 

is relatively low and the magnetic flux is relatively high. 
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Figure 12 

A typical metastable configuration corresponding to 18 twin boundaries and 16 

flux lines. All flux lines lie on the twin boundaries. The twin boundaries are only 

sparsely "populated" and can accommodate more lines. This is a typical pattern 

observed experimentally when the density of twin boundaries is relatively high and the 

magnetic flux is relatively low. 
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