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A Brier Overview or Vortex Methods 

In the past 10-15 years, vortex methods have been applied to a variety of fluid flow problems. 

The essential aspect of these methods is the focus on the vorticity of a flow, which is the local 

"twist" of the fluid. In an incompressible fluid, the time evolution of vorticity dictates the essential 

physics of the unfolding flow. 

A. Velocity vs. Vorticity. 

Traditionally, flow is described by the Navier-Stokes equations. which are written in tenns of 

the fluid velocity at any point, and express Newton's law that force equals mass times acceleration. 

Since the vorticity ~ is defined to be the curl of the velocity (~ = Vxu). the vorticity may be 

derived from knowledge of the fluid velocity. For our purposes, the reverse observation will be 

equally important the velocity may be detennmed from the vorticity by means of a Biot-Savart 

integral. 

Equations of motion in tenns of velocity are especially convenient when boundary conditions 

are introduced. Imagine flow in a vessel or around an objecL Suppose we divide the velocity u into 

a component un nonnal to the wall and a component U-c tangential to the wall. Then the statement 

Un = 0 on solid walls means fluid cannot pass through the obstacle, and U-c = 0 enforces that fluid in 

direct contact with the wall must itself not slip along the wall. The boundary conditions for the vor

ticity are not as straightforward. 

Given this, why have vortex methods, which approximate the solution to the equations of 

motion written in terms of vorticity evolution, proved so valuable? The answer is because fluid vor

ticity often lies in concentrated regions of the flow. The situation is analogous to the gravitational 

field induced by the planets. The mass of the solar system is concentrated in relatively few places, 

and it is easier to focus on the positions and strengths of these masses at any time rather than the 

evolving gravitational field at any point in space. -Thus, a vorticity formulation reduces the 

.. 
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mathematical description to its essential components. Fwthermore, the physical meaning of the 

tangential boundary conditions becomes apparent; by requiring that solid walls "grab" onto the flow, 

a large shearing vorticity must be imparted to the flow. Thus, the boundary conditions both confine 

the flow (un = 0) and add vorticity (u"t = 0). 

In two special cases, a vorticity fonnulation becomes particularly simple. If the flow is invis

cid, that is, one in which vorticity does not diffuse due to viscosity or "friction" in the flow, patches 

of vorticity are self-advected and move without diffusing. In addition, in the absence of any vorti

city (~ = 0), the problem reduces to one of potential flow requiring the solution of Laplace's equa

tion in the given domain. 

B. Numerical Approximations 

There are only a few explicit solutions to the equations of motion. Consequently, the goal of 

a numerical algorithm is to provide an efficient approximation to the solution of these equations, 

together with a systematic way of refining the approximation to increase the accuracy of the results. 

An approximation based on a vorticity fonnulation can focus computational resources on following 

the limited amount of vorticity in the system, rather than the velocity u which exists everywhere. 

The first numerical calculation of a flow using an approximation to the vorticity equations is 

due to Rosenhead[191], who studied·the evolution of a vortex sheet Imagine one inviscid fluid on 

top of another one, each initially moving with constant (but different) speed. Since ~ = Vxu, the 

vorticity is initially zero everywhere except along the infinitely thin boundary between the two. This 

interface is unstable to small perturbations and rolls up into large spiral structures as the flow 

evolves. As an example, the flow above and below an airfoil meet as they exit the trailing edge, 

with the top flow moving faster than the bottom one. The vortex sheet that comes off the wing rolls 

up into a complicated pattern. 

Since the velocity may be recovered from the vorticity, and the flow is assumed inviscid, all 

of the dynamics are contained in the evolution of this infinitely thin sheet of vorticity. (In a real 
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physical flow, the sheet has a finite thickness). Rosenhead approximated the motion of the vortex 

sheet by discretizing the infinite line of vorticity into a finite number of discrete point vortices. Each 

point vortex induced a velocity field of the form llr, where r was distance to the vortex. By super

position, the evolution of a finite collection of point vortices initially placed along the line where 

; -:#. 0 could be calculated. Thirty years before the advect of large-scale computing, Rosenhead com

puted the motion of this finite collection of points by hand, and produced a reasonable portrait of 

the rollup of a vortex sheet 

As clever as this work was, it contained two subtle complications. Fll'St, point vortices induce 

a singular velocity field; as r~O. their velocities becomes infinite. Second, vortex sheets develop a 

singularity as they evolve, even starting from smooth initial data. Thus, singular objects were being 

used to follow an object that develops a singularity. Attempts to improve on this calculation by 

using more discrete vortices revealed numerous instabilities and breakdowns, see, for example, the 

paper by Birkhoff[39]. The source of these instabilities was not evident For the most part, vortex 

techniques, i.e., the systematic resolution of vorticity into a finite number of objects which would be 

more accurate with more elements, were considered unworkable. 

C. Modern Vort~x Methods 

The introduction of modem vortex methods as a practical technique began with the calcula

tions of flow past a cylinder by Chorin[57]. Several factors contributed to the success of these cal

culations. First, discrete vortex elements, called vortex "blobs", were used which induced a bounded 

velocity field with finite kinetic energy. Second, the diffusion of vorticity was simulated by means 

of a random walk imposed on the vortex trajectories. Third, the ~slip (u-t = 0) tangential velocity 

boundary condition was enforced by the creation of new vorticity: while numerous techniques had 

previously created single discrete point vortex elements at boundary separation points in response to 

a Kuua condition, see Clements and Maul[67], this·represented the first approximation to the appli-
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cation of the no-slip condition around the entire body. Finally, the method was applied to viscous 

flow past a cylinder, where integrated quantities such as the drag could be calculated and compared 

to physical experiments. 

Since that time, vortex methods have become a practical tool for computing a wide variety of 

engineering flows. In recent years, they have been applied to external flows past cylinders, wedges 

and blunt objects, flow inside pistons, flame propagation and turbulent combustion, ship design, 

thermal bubbles, blood flow in the heart, flow past buildings, and flow in the mantle. They provide 

tools for studying what happens in more pathological problems, such as vortex sheets in two dimen

sions and vortex rings and filaments in three dimensions. In addition, they link together a variety of 

other techniques for approximating vorticity, such as point vortex methods, vortex-in-cell algo

rithms, and discrete Kutta-condition models. Finally, mathematical interest in proving convergence 

of this algorithm has provided the setting for significant theoretical insight into the underlying equa

tions. 

D. Outline 

In this paper, we will review some past work in the evolution of vortex methods. No review 

can be exhaustive or all-inclusive, and undou~tably we have missed important work. However, we 

hope to survey the major themes. With few exceptions, we have focussed on reviewed articles. We 

apologize in advance for omissions, and hope that such work can be brought to our attention. 

A collection of excellent review articles on a variety of topics related to vortex methods and 

vortex motion have appeared in recent years, and have served as guides for this review. An early 

review by Clements and Maul[67] discusses vortex shedding by discrete vortices for Kutta condi

tions. Leonard[142,143] has written two comprehensive reviews of work in vortex methods. 

Saffman and Baker[195] review some more theoretical aspects of vortex motion. Vortex shedding 

from bluff bodies in a variety of settings has been covered by Bearman[34] and Bearman and Gra-
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ham[36]. and vortex flows in aerodynamics by Smith[214]. Some more theoretical work in vonex 

filaments has been provided by Widnal1[234]. and vonex breakdown by Hall[112] and Leibo

vich[141]. A full discussion of the motion of few point vortices and vonex patches is given by 

Aref[9] and Aref and Kambe[13]. and more general perspectives by Aref[lO] and Zabusky[237]. A 

review of the field of computational fluid mechanics is provided by Rizzi and Engquist[190]. and 

the field of particle simulations in electromagnetism. which is related to general particle methods. 

by Buneman et. al.[48]. An excellent overview of the importance of vorticity is provided by 

Saffman[194]. and a clear exposition on the mathematical theory behind vorticity formulations and 

vortex motion was given by Majda[150]. Finally. a recent review by Majda[149] discusses the inter

play between numerical and theoretical components of vortex methods and computational tech

niques. 

.. 
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The outline of this paper is as follows: 

Outline 

I. Introduction 
,_ A. Velocity vs. Vorticity 

B. Numerical Methods 
C. Modem Vortex Methods 
D. Outline 

ll. Equations of Motion 
A. Navier-Stokes Equations and the Vorticity Transport Equation 
B. Lagrangian Perspective: Particle Trajectories 
C. Modem Vortex Methods: Approximating the Lagrangian Particle Trajectories 

ITI. Developments in Numerical Approximation to the Equations of Motion 
A. Free Space Inviscid Flows: Smoothing and Accuracy 
B. Viscous, Incompressible Flow 
C. Boundary Conditions 
D. Fast Summation Methods 

IV. Physical Problems 
A. Vortex Sheets 
B. Vortex Pairing/Mixing/Shear Layers/Two Fluids 
C. External and Internal Flows: Cylinders/Bluff Bodies/Chambers 
D. Reactive Flows: Combustion/Flame Propagation 
E. Three Dimensions: Filaments/Rings/Shear Layers 
F. Turbulence Studies/Physics 

V. Example: Modeling of Flow over a Backward-Facing Step 
A. "Convergence" of a Random Method Applied to an Unstable Problem 
B. Experimental and Numerical Results 
C. Summary of Convergence Results 

VI. Concluding Remarks 
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ll. Equations of Motion 

In this section, we discuss the fonnulation and approximations underlying vortex methods. 

This explanation benefits from considerable hindsight. and follows the discussion by Anderson and 

C.Greengard[6] and Majda[149]. 

A. The Navier-Stokes and Vorticity Transport Equations 

The Navier-Stokes equations for incompressible, viscous flow in a region D with boundary 

aD are 

Du 1 L -=-VP +- V-u 
Dt R 

V·u=O inD 

u=O on av 

inD (2.1) 

(2.2) 

Here, P = P (x,t) is the pressure, R is the Reynolds number, u = u(x,t) is the three-dimensional 

velocity vector at xeR 3, and (D!Dt) is the material derivative 

v a 
-=-+u·V 
Dt at 

Equation (2.1) is an expression of Newton's law F = ma, while Eqn. (2.2) states that the flow is 

incompressible. The boundary conditions require that both the nonnal and tangential components of 

u vanish on solid walls. 

We define the vorticity vector ~ as ~ = Vxu. The curl of Eqn. (2.1), together with a few vee-

tor identities, result in the Vorticity Transport Equation 

nr. 1 
.!::.:2. = (~·V)u +- V2~ 
Dt R 

(2.3) 

Equation (2.3) states the material derivative ~~ of vorticity depends on two tenns: vortex 

stretching (~· V)u and vorticity diffusion (l!R) V2~. In the limit of infinite Reynolds number, the 

diffusion tenn disappears, and only the nonnal boundary condition can be imposed, see Chorin and 

--·- --
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Marsden[63]. In the special case of two-dimensional flow, the vorticity vector ~ is normal to the 

velocity u and the term (~·V)u vanishes. These comments are summarized in the chart below. 

Viscous 

In viscid 

3-D 

n~ 1 
~ =~·V)u+- V2~ 
Dt R 

u=O on oD 

Q..S_ = (~·V)u 
Dt 

UN= 0 on oD 

2-D 

u=O on oD 

UN= 0 on oD 

~~ In order to "close" Eqn. (2.3), we must recover u from the vorticity. Given that 

V·u =0 ~=Vxu 

there exists a vector function 'f'(x) such that u = VX'f' and 

(2.4) 

(2.5) 

In three dimensions, 'I' is known as the velocity potential; in two dimensions, ,. is called the stream 

function, and both ~ and 'I' are normal to the plane of motion. We see that ,. satisfies a Poisson 

equation with the vorticity distribution as the right-hand-side. This means that we may write 'If', and 

consequently the velocity u, in terms of~ by making use of the fundamental solution to the Laplace 

operator Vl. Recall that the solution to Eqn. (2.5) is given by 

"''(x,t) = JL(x-z)~(z)dz (2.6) 

where 

{ 
;-,! log I x I xe R 

2
} 

L(x)= 1 1 
41t TxT xeR3 
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Since u = VX'f', we have that 

u(x,t) = JK (x - z~(z)dz (2.7) 

where the kernel K is defined by 

1 (-x2,Xt) 
xeR 2 

21t lx 12 
K(x) = 

{-~. XJ -z,} 1 
0 xeR 3 

4x lx 13 Xt 

.%2 -Xt 0 

(2.8) 

where_x=(Xt.····xN) for N=2,3. Thus we have the following closed system for the evolution of~. 

namely 

n~ 1 
.!:::.:2.. = (~ · V)u + - V2~ 
Dt R 

(2.9) 

u(x,t) = JK(x- z)~(z)dz (2.10) 

where K is given in Eqn. (2.8). We note that the kernel K is singular in both two and three dimen-

sions. 

B. Lagrangian Perspective 

Equations (2.9),(2.10) are an Eulerian fonnulation ofthe vorticity equations. That is, if we 

are given ~(x,O) at each point x in the domain at t=O, they describe the change of~ at any point x. 

Suppose, on the other hand, we view the initial condition ~(x,O) as describing the vorticity of 

the particle initially located at x, and follow the motion of particles located at all possible starting 

points. This leads to a Lagrangian fonnulation for the particle trajectories, which we now fonnu-

late. Throughout this section, we shall assume that the flow is inviscid. 

Let X(a,t) give the position X at timet of that particle initially located at a. Then the parti~ 

cle trajectory is described by the initial value problem 

dX(a,t) = u(X(a,t),t) 
dt 

(2.11) 
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= J K(X(a,t)- z)~(z)dz 

= f K (X( a,t) - X(p,t)) ~(X(p,t ),t )d p 

X(a,O) =a (2.12) 

where we have replaced the dummy variable z into the trajectory form by the change of variable 

z = X(p,t) and used the incompressibility of the flow to imply that panicle trajectories conserve 

volume and thus the Jacobian of the trnnsfonnation is one. 

Equations (2.11),(2.12) describe the evolution of a particle. The integrand depends on the 

positions of all other particles; as well as their vorticity. Thus, we must provide a recipe for com-

puting the vorticity ~(X(p,t),t). For three-dimensional flow, recall that 

QS. = (~·V)u 
Dt 

( Thus, one straightforward technique, suggested in Anderson and C.Greengard[6], is to add an addi

tional equation for the rate of change of vorticity for the particle following the trajectory X(a,t ), 

namely 

ds(X~~,t),t) = ~(x(a,r),t)·Vu (2.13) 

= (~(X(a,t),t)·V) J K(X(a,t)- X(p,r))~(X(p,r),r)dp. 

Alternatively, as suggested by Beale and Majda[32], one can use that 

~(X(a,t ),t) = [V a X(a,t )]~(X(a,O),O) (2.14) 

, see Chorin and Marsden[63]. The difference is that that Eqn. (2.13) is an expression for the time 

derivative of the vorticity in term of the velocity, whereas Eqn. (2.14) directly descn"bes the vorti-

city in terms of the spatial derivative of the particle trajectory. 

In two-dimensional flow, the additional equation necessary to calculate the vorticity of the 

moving particles is trivial. Since ~~ = 0, we may directly write that 

~(X(a,t),t) = ~(X(a,O),O) (2.16) 
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C. Modern Vortex Methods: Approximating the Lagrangian Particle Trajectories 

The above equations, while mathematically correct, are difficult to approximate numerically. 

The difficulty occurs because the kernel is singular in both two and three space dimensions. Thus, if 

particles come close together, they can exen exttemely large velocities on one another. The idea 

behind modern vortex methods is to smooth the kernel to limit this singular interaction. The first 

vortex blob calculations set the magniwde of the velocity inside a given cut-off size 8 to be con-

stant, thus eliminating the singularity. A large number of smoothed kernels have been constructed 

since then, providing vortex methods of various orders of accuracy. A fuller discussion of the tech-

niques for choosing the smoothing function is discussed by the anicle by Hald in this book. For the 

rest of this section, we shall simply assume that the kernel K has been replaced by an appropriate 

smoothed kernel K6 • 

( The basic idea behind vortex methods is to discretize in both space and time the initial value 

problem described by 

(PARTICLE UPDATE) dX~~,t) = f K6(X(a,t)"- X(IJ,t))~(X(IJ,t),t)diJ (2.16) 

d s(X~,t),l) = (~(X(a,t),t)·V) I Kr,(X(a,r)- X(JJ,t)) ~(X(IJ,t ),t)d p 

(VORTICITY UPDATE): 

{
X(a,t) =a 

(INlTIAL CONDmONS): ~(X(a,O),O) 

or 

~(X(a,t),t) = [Va X(a,r)]~(X(a.O)) 

~(X(a,r ),t) = ~(X(a,O),O) 

Initial positions of particles} 
Initial vorticity of particles 

Given an initial vorticity distribution ~(x,O), we begin by constructing a lattice A11 in R N, 

N=2,3, with mesh size h. Let jh be the mesh points of A11
, where j is any N -tuple with integer 

coefficients. The motion of the set of panicles originally located on the nodes of this lattice may be 

in 3D 

in2D 
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approximated by a discrete approximation to 

(PARTICLE UPDATE) : dX(jh,t) - L K6(X(jh,t)- X(ih,t))l;(X(ih,t),t)hN 
dt - LlaeAAI 

(2.17) 

d s(XGh ,t ),t) = (li(x(jh .t ).t )· v) L K, (X(jh .t) - X(ih .t )) l;(X(ih .t ).t )h N 
~ Llae~ 

(VORTICITY UPDATE): 

{
X(jh .t) = jh 

(INITIAL CONDmONS): l;(X(jh ,O),O) 

or 

l;(X(jh .t ).t) = [V~ X(jh .t )]-l;(X(jh ,0),0) 

l;(X(jh ,t ),t) = l;(X(jh ,0),0) 

Initial positions of particles on grid} 
Initial vorticity of particles on grid 

Here, the operator Vf11 refers to a finite difference operator on the mesh. 

Equations (2.17) form a finite number of coupled differential equations for initial vorticity 

with compact support. Finally, the time derivative is approximated by a suitable finite difference 

operator to provide a complete algorithm for updating the positions of the particles in time. This 

completely specifies the vortex method for inviscid flow. 

in 3D 

in2D 
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lll. Developments in Numerical Approximations to the Equations of Motion 

In this section, we discuss some of the advances made in numerical approximations based on 

Eqns. (2.17). 

A. Free Space Inviscid Flows: Smoothing and Accuracy 

We begin by discussing inviscid flow in free space. In the previous section, the equations of 

motion for viscous, incompressible flow in free space were approximated by a finite set of ordinary 

differential equations for the panicle trajectories. The kernel K given in Eqn. (2.8) is singular, and 

thus particles that come close together exert large velocities on each other. The idea behind modem 

vortex methods is to smooth the kernel to limit this singular interaction. How does one construct 

this smoothed kernel K 6 '! One possibility is as follows. Consider two-dimensional flow, and let I (x) 

be a radially symmetric function such that f l(x)dx=l. Define 
R2 

1 X 
ft,(x) =-1(-) a2 a (3.1) 

As a -+0, I 6 (x) approaches the Dirac delta function. Thus, we define the kernel by the convolution 

K6 (x) = K*J,(x) = f K(x-x')ft,(x')dx 
Ra 

(3.2) 

As a -+0, K6 -+ K. 

The accuracy of the vortex method depends on several factors: (1) h. the size of the mesh 

size used in the discretization of the initial vorticity distribution, (2) a, the amount of smoothing in 

Eqn. (3.1), (3) the choice of smoothing function 1, and (4) the time step Ill used solving the ordi-

nary differential equations for the particle trajectories. Since the introduction of smoothed vortex 

methods, theory has been developed studying accwacy as a function of these parametezs and con-

vergence. 

Hald and Del Prete[111] constructed the first proof of the convergence of vortex methods in 

two dimensions. They considered several types of smoothed kernels, including the one. used in 
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practice by Chorin, and established short time convergence. This was followed by the seminal paper 

in vortex theory, Hald's 1979 proof of long-time convergence of the vortex approximation, see 

Hald[109]. In this paper, Hald analyzed the relation between h, a and the rate of convergence. His 

main result is as follows: 

(Hald 1979): If h = o2, then for a certain class of smoothing functions, the difference between the 
computed particle ttajectories and the exact particle ttajectories is of 0 (h ~. 

Thus, as one uses more vortex elements to resolve an initial vorticity approximation (that is, as 

h -+0), linking the smoothing size to the number of vortices yields convergence of the position of 

the vortices to their exact ttajectories. 

On the basis of this work, Beale and Majda[32,33], showed that carefully designed vortex 

methods for smooth inviscid flow could provide results of any desired degree of accuracy in both 

two and three dimensions. Their three-dimensional vortex method (Eqn. 2.14) updates three-

dimensional vortex stretching by computing derivatives along the particle paths. These papers were 

responsible for starting the major interest in the theory of vortex methods. The proofs were techni-

eat, and much of the work that followed has been aimed at simplifying the arguments. Cottet[72], 

using work on particle methods for the Vlasov-Poisson equation by Cottet and Raviart[73], gave a 

stronger and simpler consistency argument, followed by an even simpler consistency argument by 

Anderson and C.Greengard[6]. Anderson and Greengard also suggested a different three-dimensional 

stretching algorithm, namely the one given in Eqn. (2.13), in which the kernel is explicitly 

differentiated. In addition, they provide the compact form of the Beale-Majda three-dimensional 

scheme given in Eqn. (2.14), as well as a convergence proof which takes into account the time step 

error along in the integration along particle ttajectories. Hald[110] then showed convergence for an 

extremely wide class of tw~dimensional methods, requiring only Holder continuity in the vorticity 

field, as well as fourth order convergence for the classical Runge-Kutta techniques for the ordinary 

differential equations integration. Proofs of the three-dimensional method with explicit 
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differentiation also have been provided by Beale[29] and C.Greengard[102]. 

In tandem with these theoretical investigations were numerical convergence studies of the 

actual accuracy obtained in practice (see, for example, those performed by Sethian and Ghoniem 

[208]. Beale and Majda [30] showed how to construct explicit velocity kernels for high order accu

rate methods, and verified the increased accuracy on a test problem of the evolution of radially 

symmetric patch of vorticity. Perlman [174] made a careful, detailed study of the optimal choice of 

8 compared to h in practice for short and long time ftow. 

B. Viscous, Incompressible Flow 

The extension of vortex methods to viscous flow requires treatment of the viscous diffusion 

term (11R)V2; in Eqn. (2.9). The Lagrangian formulation summarized in Eqn. (2.17) assumes an 

inviscid formulation and yields a set of ordinary differential equations for the particle trajectories. 

The addition of viscosity generates a set of stochastic differential equations, in which the diffusion 

term joins the right-hand-side of Eqn. (2.16), and represents a probabilistic perturbation away from 

the deterministic particle paths described by the inviscid case. The motion of a continuum of parti

cles along trajectories with both a deterministic and probabilistic component constitutes an exact 

solution to the viscous equations of motion. No approximation is involved until the infinite system 

is reduced to a finite number of particles. A good introduction to the stochastic differential equation 

view of vortex methods was given by Chang[51]. 

Numerical approximation to the infinite set of stochastic ordinary differential equations for the 

vorticity evolution usually begins with "operator splitting". For simplicity, consider the vorticity 

transport equation (2.9) for two-dimensional flow, namely 

a,~= -(u·~ + (1/R) V2~ (3.3) 

where we have decomposed the total derivative into its two components. Suppose we discretize the 

problem in time but riot in space, i.e., we consider the evolution of a system of particles with 

discrete time step l::J. Let ~" be the approximate vorticity distribution at time nl::J • Suppose we 
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decompose the vorticity update o,; into twO tenns as follows. Let ~I be the solution at time Step 

(n+1)..1t of the pure advection equation 

(3.4) 

with~~". The solution to this equation is approximated by integration along particle ttajectories 

using Eqn. (2.16). Similarly, let;::' be the approximate solution to the diffusion equation 

(3.5) 

with ;:.:.r~". If we let ;"+1 = ;.:;.,1 + ;::' at the end of the time step, we should get a solution to 

Eqn. (3.3) as ..1t ~o. This technique is known as "operator splitting". Some analysis of the effect of 

operator splitting was provided by Beale and Majda[31]. 

How do we solve the vorticity diffusion equation (3.5)? Since the advection term has been 

fonnulated in a Lagrangian setting, it is desirable to provide a Lagrangian approach to the heat 

equation. An infinite collection of particles undergoing Brownian motion yields a solution to the 

heat equation, see Feller[86]. Thus, to accomplish both advection and diffusion, Chorin[57] updated 

the positions of the infinite system of particles by (1) advancing them by their induced velocity 

field and (2) adding an appropriately chosen random step. 

It might seem, at first glance, that such a method is highly inaccurate, since a relatively large 

number of particles are needed to adequately approximate the diffusion equation. However, note 

that the random motion is being applied to approximate the evolution of vorticity, not velocity. The 

Biot-Savart integration acts to smooth the solution, and accurate solutions can therefore be obtained 

with a reasonable number of particles. A variety of numerical experiments have been perfonned to 

examine the error associated with a random walk solution to the diffusion equation in the context of 

vortex methods, see, for example, Ghonieim and Shennan[lOO], Milinazzo and Safiman[l61], 

Sethian and Ghoniem[208]. Detailed calculations by Roberts[187] verify convergence of Chorin's 

original random walk algorithm applied to a model problem. 
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One can thing of other ways to approximate the diffusion equation (3.4). One possibility is a 

finite difference approximation. However, the introduction of a grid and the process of interpolating 

vorticity to the grid and back can result in considerable smoothing, known as "artificial viscosity". 

Thus, the major feature of a Lagrangian representation may be compromised, and the size of the 

Reynolds number can be limited by the grid resolution. Another proposed approach is core spread-

ing, in which the core of each vortex element spreads as an exact solution to the diffusion equation. 

This technique was used by Kuwahara and Takami [136] in their early vortex work. However, 

C.Greengard [103] has shown that while the vorticity is corrected diffused in such techniques, it is 

advected incorrectly, and the limit of the computed solution will not be a solution of the Navier-

Stokes equations. 

Convergence of the random vortex method is measured in terms of expected values and vari-

ances. Due to the stochastic nature of the equations, probabilistic techniques come into play. As a 

test problem, Hald[108] studied _an approximation based on a random walk to a particular reaction-

diffusion equation, and showed that the expected value of the computed solution tended to the 

correct solution, and that the variance tended to zero as the number of particles was increased. 

Marchioro and Pulvirenti[153] gave a proof of weak convergence of the two-dimensional random 

vortex method. This was followed by Goodman[101] who provided a stronger proof of conver-

gence. The state-of-the-art in the analysis of the random vortex method has been developed recently 

by Long[147]. He has succeeded in showing realistic convergence rates for the random vortex 

method in both two and three space dimensions. 

C. Boundary Conditions 

(1) Normal Boundary Conditions 

For both inviscid and viscous flow, the addition of the normal boundary condition on solid 

walls is not difficult. Given a region D, suppose we require that u·n = 0 on the boundary iJD, where 

n is the inward normal vector. Let uvor(x, t) be the velocity field obtained from the distribution of 

vorticity. Suppose we. find a potential flow Upac = v~ such that (upac+UvOI')·D = 0 on CJD. Then 
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superposition of the vorticity flow Uvor with the potential flow 11pct yields a flow which satisfies the 

nonnal boundary condition by construction and has the same vorticity (since Vxupor = VxV~ = 0). 
\ 

For a simple geometry, finding the potential function ~ is fairly straightforward Although 

this potential function must be found at every time step, it is usually a minor part of the calculation, 

compared to the vortex-vortex interaction. Some of the earliest calculations used the method of 

images, such as calculations of flow past a cylinder, see Cheer[52], Chorin[57]. Other possibilities 

are confonnal mapping to the upper half plane followed by the method of images, see Ghoniem, 

Chorin and Oppenheim[94], and fast Poisson solvers, Sethian[206]. In the case of complex 

geometries, considerable work may be involved. Finally, appropriate inflow and outflow conditions 

may be difficult to pose, (see the discussion in Section IV.). 

(2) Tangential Boundary Conditions 

The addition of the tangential no-slip condition (u·'t=O) ('tis the unit tangent to solid walls) 

on iJD for viscous flow adds considerable complication. A thin ttansition wne, known as the boun-

dory layer, must develop between the vanishing tangential velocity at the wall and the rapidly mov-

ing flow some distance away from the wall, see Batchelor[27] and Schlicting[203]. By way of 

explanation, let u = (u , v) and suppose that the .r axis is tangential to the wall. Then iJuliJy, which is 

the derivative of the tangential velocity in the direction nonnal to the wall, must be large. On the 

other hand, iJvtiJ.r, which is the derivative of the normal velocity along the wall, is small, since, by 

the addition of the potential flow, v is zero along the .r-axis. Since vorticity is defined by 

; =iJvliJ.r- iJuliJy, the tangential boundary condition is a major source of vorticity in the flow. At 

large Reynolds numbers, particularly in the case of bluff bodies, streamlines break away near the 

sides of the body and enclose the fluid behind the body in an unsteady manner. This phenomena is 

known as "boundary layer separation", and leads to the downstream shedding of large physical vor-

tices. 

One way to approximate this effect is to release physical vortices into the flow from a 

predetermined separation point A "Kutta condition" can be used to impose an a priori estimate of 
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the strength of the shed vortices. One such technique views the separation point as a source of an 

array of line vortices. For example, this model was used to study the periodic wake past a cylinder, 

see Abernathy and K.ronauer[l], Gerrard[91], Sarpkaya[201]. An early, detailed set of calculations 

which created physical vortices for flow past bluff bodies is desaibed in Clements[66], and a 

review of such techniques may be found in Clements and Maul[67]. Further discussion of boundary 

layer theory can be found in Batchelor[27] and Schlicting[203]. 

In Chorin[57], vorticity creation was extended to the entire boundary through the following 

technique. The length of boundary was broken into intervals, and within each interval a smoothed 

vortex "blob" was created at each time step. The strength of the blob was chosen to nullify the 

tangential velocity. and hence, by construction, satisfy the no-slip condition. There are two advan

tages to this technique. First, no a priori assumption about the location of the separation point is 

made, since the entire body acts as a line source of vorticity. Second, since vortex elements with 

smoothed velocity fields are used, more vortices may be used to resolve the vortex sheet along the 

boundary while avoiding the instabilities that plague point vortex approximations. 

The technique of adding vortex blobs at the boundary in response to the no-slip condition is 

not very accurate. Part of this inaccuracy occurs because a small motion displacement in newly 

created vortex elements can cause significant variation in the tangential velocity at the next time 

step. Thus, large counterrotating vortices must be created at the next time step to enforce the no-slip 

condition. This can result in a large number of vortices near the boundary with one sign essentially 

balanced by a large number of vortices of opposite sign. Since the vortex-vortex interaction is 

expensive, this soon proves unworkable. 

There are still further sources of inaccuracy if one tries to use vortex blobs to satisfy the no

slip boundary condition, as can be seen from the following argument. see Chorin[60]. The no-slip 

condition requires that we create a vortex sheet along the .x-axis of sttength U. Then we might ima

gine that the velocity at (.x, y) right above the wall should be +U, and at (.x ,-y) right below_ the 

wall should be -U . By the definition of the vorticity in the Navier-Stokes equation. we have that 
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~ (x ,y )=dvtax - autay. Note that ~ (x ,y) * ~ (x, -y ), thus substantial inaccuracy results from using 

vortex blobs to approximate this boundary condition. In order to remedy this situation, an alterna

tive was introduced in Chorin[61]. Close to smooth solid walls, the Navier-Stokes equations can be 

replaced by the Prandtl boundary layer equations, which are derived under the assumption that 

avtax c: autay, and that diffusion of vorticity occurs mostly in a direction normal to the wall. The 

vorticity in the boundary layer is then discretized by finite length vortex sheets. The jump in the 

tangential velocity across the sheet determines its strength. Just as for the vortex blobs, the velocity 

of each sheet can be constructed by summing the influence of all sheets located in a narrow neigh

borhood nearby, (see Chorin[61], Sethian[206], for the equations of motion). In Chorin[61], this 

algorithm was used to approximate flow past a semi-infinite flat plate. Cheer[52] coupled vortex 

sheets in the boundary to vortex blobs in the interior to study flow past a cylinder. Sheets became 

blobs when they moved more than a certain distance away from the wall, and vice versa; in both 

cases, conservation of circulation was maintained. Other applications using this hybrid algorithm of 

vortex sheets and vortex blobs include flow past a backward facing step by Ghoniem, Chorin and 

Oppenheim[94] and flow in a closed cavity by Sethian[206]. A hybrid algorithm which used vortex 

sheets in the boundary coupled to finite differences in the interior was studied by Shestakov[211]. 

An extension of the solid wall vortex sheet creation algorithm to three-dimensional flow is 

described in Chorin[60]. 

There is some controversy over the use of the Prandtl boundary layer equations near the wall 

coupled to the vortex blob Navier-Stokes solver in the interior. Two issues are often raised. First. 

the Prandtl boundary layer equations do not apply when separation occurs, thus, at least formally, 

they cannot be used in such situations. Second. the edge of the boundary layer is not well-defined, 

and the use of a fixed transition point from sheets to blobs may not match the size of the physical 

boundary layer. We believe that an appropriate viewpoint is to interpret the use of the Prandtl boun

dary layer equations and vortex sheet discretization as merely a numerical device to get vorticity off 

the boundary and into the main part of the flow. The size of this zone does not correspond to the 
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size of the physical boundary layer. Along these lines, interesting studies have been performed by 

Teng[224,225], in which vortices whose ellipticity varies with distance from the wall were used to 

approximate vorticity throughout the flow, thus providing a smooth transition from the wall to the 

interior. 

Proving convergence of a random vortex method with creation of vorticity at the boundary is 

a difficult problem. Some theoretical work on this topic is provided by Benfatto and Pulvirenti[37]. 

Hald[107] studied a particular vorticity creation algorithm for the equations of free convection near 

a boundary discussed by Ghoniem and Sherman[lOO] in their survey paper. Hald showed that both 

the pointwise and least squares error of the computed solution tended to zero as the time step went 

to zero and the number of particles increased. For the random sheet method discussed above, 

numerical convergence tests have been performed by Puckett[180]. The convergence properties of 

the complete random vortex element method applied to a test problem of flow ovet a backward fac

ing step have been studied in Sethian and Ghoniem[208]. 

D. Fast Summation Methods: 

The approximation of the vorticity into N discrete vortex elements leads to an N -body prob

lem, namely that each vortex interacts with each of the others. This is an 0 (N~ algorithm, which is 

expensive for large N. Several authors have investigated fast summation algorithms to lower the 

operation count. 

A straightforw~d approach is to solve directly for the stream function by introducing a finite 

difference grid. In this technique, the discrete vorticity field is interpolated to neighboring grid 

points, and a fast Poisson solver is used to find the stream function at grid points. Finite difference 

approximations then yield the velocity field at the grid points, which is then interpolated back to the 

vortex locations. This "vortex-in-cell" technique has an operation count of 0 (NlogN), and was used 

in some of the earliest vortex calculations, see Christianson[64] and Christianson and Zabusky[65]. 

It has a long history, and is a major component of many N -body calculations in a variety of areas, 
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see Eastwood and Hockney[85]. It is related to the panicle-in-cell techniques invented by Har

low[ll3] and Harlow[114]. More recent applications of vortex-in-cell techniques to problems in 

fluid mechanics are described in Leonard[143], Baker[18], Tryggvason[226]. 

The process of interpolating ~e vorticity onto a mesh can introduce significant inaccuracy 

into the computation of vortex interaction. In the close interaction between neighboring vortices, the 

smearing of vorticity onto an intennediate mesh can introduce artificial viscosity which dominates 

_the real physical viscosity in the system. As a compromise between the direct N -body method and 

the grid-based fast Poisson solution, various techniques have been developed to divide the computa

tion into near and far field effects. One set of techniques uses fast solvers for the contributions of 

far away effects, and direct summation for the nearby elements. For a summary of such p3M 

(particle-panicle, particle-mesh} techniques, see Hockney and Eastwood[119]. One such algorithm 

in the context of vortex methods was given in Anderson[4] using in part ideas in Mayo[155]. Other 

work in this type of fast summation method may be found in Appel[8], Barnes and Hut(24], 

Boris[41]. Recently, a fast summation technique using a multi-pole expansion was developed by L. 

Greengard and Rokhlin for the far particles, see Carrier, L.Greengard and Rokhlin[50], L.Greengard 

and Rokhlin[104]. Further advances in rapid summation techniques have come from the use of 

computers with parallel architectures, significantly reducing the computational time, see Baden[l7]. 

' / .. ~ 
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IV. Physical Problems 

In this section, we provide references for the application of vortex methods to particular phy

sical problems. Each of these applications has a vast literature, and are topics of ongoing interest as 

well as, in some cases, controversy. It is presumptuous, and probably well-nigh impossible, to 

presume that all the issues can be straightened out and presented in a concise, linear manner. Our 

goal is to summarize the topics of interest in each area, sketch some of the variations on vonex 

methods that ha-ye been used to attack the problems, and provide a few references. 

A. Vortex Sheets 

Many flows are characterized by sharp changes of velocity in narrow zones. For example, in 

parallel shear flow, the vorticity is concentrated in a narrow transition region between the two mov-

ing fluids. In the limit, the thickness of this shear layer goes to zero, and suggest the study of "vor-

tex sheets". In this two-dimensional flow problem, the vorticity is zero everywhere excect along an 

infinitely thin line or curve. As an example, flow around· the trailing edge of a wing forms a vortex 

sheet whose strength depends on the given wing design. The ensuing motion and roll-up of the vor-

tex sheet affects both the drag on the wing and the flight of following aircrafL 
( 

The first numerical study of vortex sheets using vortex methods was due to Rosenhead[l91], 

who discretized a vortex sheet into a small number (N •10) of point vortices placed along an initial 

curve with periodic boundary conditions. The results obtained using this technique were physically 

reasonable, This was followed by a calculation by Westwater[232] of a finite vortex sheet carrying 

elliptically varying circulation, (the "elliptically loaded wing"). In both of these calculations, the 

positions of the point vortices were updated in time using Euler's method and the vortex sheet was 

reconstructed by interpolating through the point vortices. Later attempts to achieve better results 

using more points and more accurate time integration schemes failed. Contrary to expectation, the 

calculations produced irregular point vortex motion; see, for example, the calculations by Bir-

khoff[39]. As discussed earlier, this cast doubt on the validity of vortex methods. -The difficulties 
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steinmed both from the use of singular point vortices and from the subtle natme of the vortex sheet 

evolution equation. In particular, a workable numerical algorithm must be able to handle potential 

singularities in an evolving vortex sheeL 

Since these initial calculations, a variety of techniques have been tried to obtain a more accu

rate picture of the roll-up phenomenon and to understand the nature of the singularity that develops. 

The equations of motion for the evolving sheet are usually written in tenns of a complex curve in 

two-dimensional flow, see Birkhofl139]. The curve's motion is given by a nonlinear 

integrodifferential equation involving a Cauchy principal value integral. The various approaches 

may be broadly divided into two groups; those that attempt a higher order accurate discretization of 

the singular integral, and those that instead desingularize the integral before discretization. 

A good starting point is the review article by Saffman and Baker[195]. Some other papers 

concerning numerical, asymptotic, and theoretical aspects of vortex sheets, are Anderson[5], 

Baker[18], Baker[19], Baker, Meiron and Orszag[20], Chorin and Bernard[62], DiPerna and 

Majda[79], DiPerna and Majda[80], Fink and Soh[88], Guiraud and Zeytounian[106], Higdon and 

Pozrikidis[117], Kaden[l25], Krasny[l33] Krasny[l34], Krasny[135], Kuwahara and Takami[136], 

Mangler and Weber[l52]. Moore[I65], Moore[166], Moore[167], Pullin[182], Pullin[183], Pullin 

and Phillips[185], Schwartz[204], Vandervooren[231]. 

B. Vortex Pairing/Mixing/Shear Layerslfwo Fluids 

The goal of many vortex calculations is to understand fundamental questions about mixing, 

shearing, and transport. As a practical example, consider two chemical solutions which must be ade

quately mixed before use. What is the most efficient means to accomplish this mixing? Some possi

bilities are agitators placed in the containers or aimed injection streams. The large vortex structures 

created by such mechanisms determine the mixing, and some configurations are more efficient than 

others. This leads to fundamental questions of vortex interactions. A wide array of theoretical, 

numerical, and experimental investigations have been undertaken, for example, Brown and 

Roshko[46] have provided detailed experimental analysis of large coherent structures in turbulent 
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shear layers. 

One set of model problems analyze the stability of complicated shapes and distributions of 

vorticity, including the interaction of patches of constant vorticity. Of particular interest is the effect 

of mutually induced velocity on neighboring patches and the intenwining of bounding contours. 

Another model problem is the vortex street. which idealizes the wake shed behind a stationary 

cylinder placed in a uniform flow. Here, the stability and la1er coalescence of vorticity initially 

organized in two infinite parallel rows of opposite signed vortices is studied to analyze the roll-up 

of vortex strucwres and oscillating wake patterns. 

To begin, .some experimental studies of vortex pairing have been performed by Winant and 

Browand [236], and of vortex stability in a rotating fluid by Griffiths and Linden [105]. The interac

tion of a pair of vortices has been studied in several different settings. Saffman[193] sb.ldied the 

approach of such a pair to a plane surface, and Saffman and Szeto[199] studied steady equilibrium 

shapes for two equal uniform vortices rotating about each other. Pierrehumbert[175], using a relaxa

tion method, found a family of steady pairs which can move through a fluid without change of 

shape; Saffman and Tanveer[200] enlarged the class of possible solutions. Dritschel[83] provided 

equilibrium shapes for two to eight corotating uniform vortices. 

An early numerical point vortex study of vortex motion is due to Christiansen[64), who sb.l

died the merger of two corotating patches of vorticity. This was followed by a calculation by Chris

tiansen and Zabusky[65] of the motion and merger of an asymmetric four vortex system. In order to 

study in more detail the motion of patches of constant vorticity in two dimensions, Zabusky, 

Hughes and Roberts[238] introduced the method of "contour dynamics". The idea behind this 

method is as follows. Rather than follow the evolution of vorticity, which is the underlying notion 

in the vortex methods described in Section III, suppose that (1) vorticity is distributed on a com

pact set and (2) vorticity may be subdivided into distinct regions of with constant magnib.lde within 

each patch. Let 'Y; be the contour that bounds patch i. By using the Biot-Savart law, an evolution 

equation for the moving contours 'Y; can be derived, see Zabuslcy, Hughes and Robens[238]. The 
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goal of contour dynamics algorithms, which reduces the dimension of the problem by one, is to 

accurately follow the motion of the contours, captwing the interaction of the patches of vorticity. 

The contours are followed by a marker particle technique in which the contour is represented by 

points distributed along the curve, and appropriate finite difference approximations are used to com

pute the ensuing motion. Calculations using contour dynamics include the coherence of stretched 

vortices by Jacobs and Pullin[124], and Pullin and Jacobs(184], plasma cloud dynamics by Over

man, Zabusky and Ossakow[I72], interacting patches by Dritschel[82], and Overman and Zabu

sky[171], the Kelvin-Helmholtz instability by.Pozrikidis and Higdon[179], and the dynamics of vor

ticity fronts by Stem and Pratt[220]. As a by-product, detailed technology has been developed on 

the frontier of marker particle technology for front tracking, see Dritschell[81], Zabusky and Over

man[239]. However, in the application of this technology to problems in fluid mechanics, there are 

significant limitations. Bounding contours can only have meaning for inviscid, two-dimensional 

flow. Merger is impossible for such flow as a simple consequence of the reversibility of the flow 

map which forces each contour to stay closed. Any attempt to introduce viscosity to the bounding 

contours is an ad-hoc adjustment in the contours, rather than in the vorticity itself. 

As mentioned earlier, vortex streets have been used as model problem to analyze vortex roll

up and the wake developmenL Baker, Saffman and Sheffield [22] srudied the strucrure of a linear 

array of hollow vortices of finite cross-section, in which the vorticity of each vortex is concentrated 

just on the boundary. This was followed by a series of papers by Saffman and Schatzman[196], 

Saffman and Schatzman[197], Saffman and Schatzman[198]. which investigate questions of vortex 

street stability as a function of spacing parameters, vortex strengths, and core size. The stability of 

two infinite parallel rows of finite core vortices was also srudied by Kida[128], whose work was 

revisited by Meiron, Saffman and Schatzman[157]. Calculations of roll-up into vortex streets using 

a large number of point vortices was performed by Aref and Siggia[14]. The stability of vortex 

arrays in three dimensions has been studied by Robinson and Saffman[l89]. Other papers in this 

areas are Bromilow and Clements[44], Ferziger[87]. 
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Shear flows are significantly more complicated mechanisms for mixing. Imagine two fluids, 

moving at different speeds and parallel to a splitter plate separating the two. When the edge of the 

plate is reached, shearing is introduced as the differentially moving fluids come in contacL It has 

been srudied in the detail in the laboratory, see Batt[28], Bradshaw[43], Browand[45], Brown and 

Roshko[46], Freymuth[89], Freymuth, Banf and Palmer[90], Ho and Huang[118], Pui and 

Gartshome[l81], Winant and Browand[236]. In a series of papers, Corcos, Lin and Sherman, see 

Corcos and Lin[69], Corcos and Sherman[70,71], Lin and Corcos[l44] srudied various aspects of 

the mixing layer and unstable free shear layers using a variety of mathematical techniques. Analysis 

of the dynamics of stretched vortices is provided by Neu[l69,170]. Some theoretical investigations 

may be found in Moore and Saffman[l68], Pierrehumben and Widnall[l77]. Vortex methods 

applied to shear flows and the mixing layer have achieved considerable success; we refer the 

interested reader to numerical calculations in Acton[2], Aref and Siggia[l4], Ghoniem and Ng[98]. 

Heidarneijad and Ghoniem[IIS], Inoue[l22], Inoue and Leonard[l23], Meiburg[l56], Meng[l59], 

Meng and Thomson[l60]. 

A variety of problems involve following the complicated interface that develops between two 

regions of flow, such as between fluids of differing density and/or viscosity. One example is the 

Rayleigh-Taylor instability, which occurs when a light fluid is pushing a heavier fluid. Rather than 

remain flat, the interface can develop long spikes which can reconnect or break away into bubbles. 

Some examples where this instability can occur are in the collapse of a massive star, the· laser 

implosion of deuterium-tritium fusion targets, and the electtomagnetic implosion of a metal liner. A 

simple example is the novelty-store toy in which fluids of differing densities are trapped between 

two glass plates. By upending the apparatus, the lighter fluid rises to the top and long spikes form 

in the interface. Bubbles can break off from the interface and merge with other bubbles. The inter

face between the two fluids becomes highly complex, breaking into numerous different parts with 

wildly varying shapes. 
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In their most complicated form, the equations of motion are the equations of full viscous. 

compressible flow plus interface effects. Some important factors conttolling the growth of instability 

are (1) the density ratio. which governs the growth of small amplirude perturbations (2) surface 

tension. which stabilizes wavelengths shorter than a critical wavelength (3) the viscosity. which 

reduces growth rate and regularizes the flow (4) compressibility, which reduces growth rate, and 

{5) heterogeneity. which can excite instabilities of various wavelengths. For an overview of some 

work on the Rayleigh-Taylor instability, see Sharp[210]. 

Vortex methods have been applied to many of these problems. One technique is to reformu-

late the problem as a boundary integral, and discretize the boundary integral by a collection of 

vortex-like objects along the interface. The integral is desingularized to smooth the propagating 

interface. An early study of the Rayleigh-Taylor instability and the Saffman-Taylor instability may 

be found in Meng and Thomson[160]. Variations on vortex techniques and coupling to other 

numerical methods applied to Kelvin-Helmholtz and Rayleigh-Taylor problems may be found in 

Baker, Meiron and Orszag[20]. Baker. Meiron and Orszag[21]. Kerr[127]. Pullin[183]. Tryggva-

son[226]. Applications to Hele-Shaw flow may be found in [Tryggvason and Aref[227], Tryggvason 

and Aref[228]. The motion of a cylinder of fluid was sbldied in Rottman, Simpson and 

Stansby[192] using vortex sheets, vortex blobs and vortex-in cell methods, and inviscid flow about a 

rising cylinder was studied in Telste[223]. 

The extension of vortex methods to complicated flows with variable density is not sttaightfor-

ward. Begin with the Navier-Stokes equations (2.1). namely 

Du VP -=--
Dt p 

(4.1) 

Here we have ignored viscosity and included the density term. Taking the curl of Eqn. (4.1) pro-

duces the vorticity transport equation. If the density is constant. the curl of the right-hand-side van-

ishes, since p may be factored out and we have the vector identity VxVP = 0. In genezal, however, 

the baroclinic term VxVP = 0 is not zero, and somewhat difficult to handle in the context of vortex 

methods. Under the assumption of small density variation. Anderson[S] used the Boussinesq 
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approximation to the baroclinic tenn on the right-hand-side and developed a vortex method for the 

transport of density.gradientS in the flow, similar to the advection of velocity gradients (that is, vor

ticity) by traditidnal vortex methods. Using this technique, he perfonned detailed calculations of a 

rising thennal. His calculations show the spiral arms of the rising thermals. This refinement 

approach between h and a was later used in the study of vortex sheets by Krasny[134,135]. The 

extension of vortex methods to problems with large density variations (the "baroclinic" tenn) 

remains an open question. Such an extension would be particularly valuable in a variety of 

phenomena. such as density jumps across propagating flames. One approach has been suggested by 

Ghoniem and Givi[96]. 

C. External and Internal Flows: Cylinders/Bluff Bodies/Chambers 

As discussed earlier, boundary conditions on solid walls produce a thin boundary layer where 

velocity gradients can be large. Traditional finite difference schemes often require prohibitively 

small meshes in order to accurately capture the mechanisms at the boundary. The grid-free approach 

of vortex methods offers an alternative in a variety of engineering applications. 

There are three categories of flows involving solid bodies. First are external flows around 

bluff bodies. Some examples are flows past cylinder, airfoils, Oat plates, and wedges. The second 

category contains inlet/outlet flows, in which confining walls trap much of the flow, and inlet/outlet 

conditions are required. Examples are flow over a backward-facing step and flow through choked 

nozzles. In the third category are internal flows in completely confined regions, such as pistons and 

driven cavities. In each of these areas, the fundamental questions are about the development of large 

eddies, wakes, and mixing. \ 

In all cases, a potential flow must be found which, through superposition with the induced 

velocity field, satisfies the nonnal boundary condition on solid walls. In the case of flow past a 

cylinder, (or, by conformal mapping, an airfoil), this might be accomplished through the method of 
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images. In the case of flow in a rectangular region a fast Poisson solver can be used. However, 

given more complicated geometries, the solution of this potential problem can require significant 

attention. In the case of inlet/outlet flows, correct boundary conditions may not be obvious. Care 

must be taken at outlets to pose correct boundary conditions which are neither inconsistent with the 

flow dynamics nor unnecessarily restrict or influence flow upstream of the exit 

There is another source of difficulty. In response to the no-slip condition, vortices are created 

at the boundary which then enter the flow regime. In inler/outlet flows, vortices can leave and no 

longer influence the region of interest In external flows, one might assume that vortices far enough 

away from the solid body do not influence the flow and may be discarded with little effect How

ever, in internal flows, such as driven cavities, the number of vortices must increase. Eventually, 

this number can grow so large that computing the mutual vortex interaction is prohibitively expen

sive. This is one of the reasons why fast summation methods of the vortex interaction are of great 

importance, even for two-dimensional flows. Ideally, one would like to have a technique for com

bining vortices at some point to reduce the number. However, significant error is usually introduced 

when this is done. 

As an introduction, we refer the interested reader to vortex calculations sbldying flow past 

cylinders, see Cheer[52], Chorin[57], Kimura and Tsutahara[129], Laitone[137], Smith and 

Stansby[216], Stansby and Dixon[219], Vanderveg and DeBoom[230], flow past airfoils, see Basu 

and Hancock[25], Basuki and Graham[26], Cheer{52], Katz[126], flow past blunt bodies, see Bear

man and Fackrel[35], Boldman, Brinch and Goldstein[40], Clements[66], Smith and Stansby[215], 

Stansby[218], flow over a backward-facing step, see Ghoniem, Chorin and Oppenheim[94], 

Ghoniem and Gagnon[95], Ghoniem and Sethian[99], Sethian and Ghoniem[208], flow past a flat 

plate, see Chorin[61], Chorin[60], Inoue[121], Kiya and Arie[130], Kiya, Sasaki and Arie[l31], 

Sarpkaya[202], flow past a bed. see Smith and Stansby[217], flow past buildings, see Summers, 

Hanson and Wilson[221], flow past immersible elastic boundaries, see Mendez[158], flow past in 

hean valves, see McCracken and Peskin[148], and flow in closed chambers, see Sethian[206], Shes-



32 

takov[211], Sung, Latione and Patterson[222]. 

D. Reactive Flow: Combustion!Fiame Propagation/Plasmas 

In reactive flows that occur in turbulent combustion, one important problem is the interaction 

~een the hydrodynamics and the propagating flame. Much of the efficiency of combustion comes 

from the large-scale mixing effects of the flow, which brings more reactants in contact with the 

flame, promoting shoner combustion times. The equations of turbulent combustion are complex, 

since the full Navier-Stokes equations must be coupled to complete reaction chemistry models of 

combustion. Fortunately, in many situations, the problem can be simplified. Since the chemistry 

time scale is fast relative to the hydrodynamic scale, the assumption of premixed turbulent combus

tion is often made. Under this model, the flame is taken as infinitely thin, pressure fluctuations are 

neglected, the Mach number is assumed small, and combustion is characterized by a single-step 

irreversible chemical reaction taking place at a constant rate. In this simplified model, the central 

issues are the feedback mechanisms between the propagating ftame and the developing eddy struc

tures. 

Even with these assumptions, the underlying physical mechanisms remain formidable. The 

total velocity field is affected by a number of components. From a purely hydrodynamic side, the 

flow dynamics are controlled by the confinement geometry (which may be moving, as in a piston), 

initial vorticity distribution, and inlet/outlet conditions. The flame burns at a speed which may 

depend on the local curvature and pressure changes within the vessel. As the flame burns, it acts as 

a source of specific volume as reactants are converted to products, and an elliptic exothermic velo

city field results which affects the entire flow dynamics. At the same time, vorticity is shed along 

the flame front, which adds a rotational velocity field which globally influences the flow. 

Vortex methods have been used to isolate the components of this process to understand the 

controlling mechanisms and interactions. They have been coupled to flame propagation algorithms 

to study the effects of mixing and fluid transpon on flame dynamics in a variety of combustion set

tings. In particular, the effects of such factors as Reynolds number, confinement geometries, inflow 

.. 



33 

and outflow conditions, exothennic heat release, vorticity shedding along flames, pressure changes 

in confined vessels, and curvature-dependent flame speeds have been addressed. We refer the reader 

to Chorin[55], Ghoniem, Chorin and Oppenheim[94], Ghoniem, Chen and Oppenheim[93], 

Ghoniem and Givi[96], Ghoniem and Knio[71], Majda and Sethian[151], Sethian[206], 

Sethian [207]. 

E. Three Dimensions: Filaments/Rings/Shear Layers 

In three dimensions, vortex stretching occurs. Consequently, discrete vortex elements must be 

adaptively added to the calculation in order to maintain accuracy as filaments stretch and contort. 

This can create a large number of vortex elements, hence fast summation techniques to compute the 

vortex-vortex interactions are valuable. 

Three popular model problems for srudy in three dimensions are vortex filaments, vortex 

rings, and shear layers. Vortex methods have been used to study the stability of an evolving vortex 

filaments, the breakdown of the solution, and the concentration of vorticity into smaller sets. Some 

papers are the numerical calculations in Chorin[53], Chorin[54], Chorin[60], Siggia[212], and the 

theoretical discussion in Tsai and Widnall[229], Widnall[233], Neu[169]. Further theoretical investi

gations into three-dimensional stability and calculations using vortex methods may be found in 

Moin, Leonard and Kim[162], Liu, Tavantzis and Ting[145], Pierrehumbert[176], Aref and Flin

chem[12], Pumir and Siggia[l86]. 

For vortex rings, vortex methods have been used to study the instabilities that develop on a 

single ring, and the merger of two rings which exhibit "leap-frogging" as each ring induces a velo

city on the other. Some work on the theoretical, numerical and experimental issues can be found in 

Anderson and Greengard[7], Del Prete[75], Dhanak and DeBerbardinis[78], Knio and 

Ghoniem[132], Maxworthy[154], Leonard[142]. 

.:·; 
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Finally, the analysis of three-dimensional shear layers using vortex methods may be found in 

Ashurst and Meiburg[16], Knio and Ghoniem[132], with some theoretical and experimental studies 

in Agui and Hesselink[3], Landman and Saffman[l38], Lasheras and Choi[140], Robinson and 

Saffman[l88]. Some theoretical issues are diScussed in Corcos and Lin[69], Corcos and Sher

man[70], Lin and Corcos[144]. and analysis of the dynamics of stretched v<Xtices may be found in 

Neu[170]. Additional three-dimensional vorticity calculations may be found in Chorin[60], Couet. 

Buneman and Leonard[74]. 

F. Turbulence Studies/Physics 

A number of interesting experiments have been conducted to numeriCally analyze some of the 

more theoretical issues in turbulence, such as folding, intennittency, possible fractalization of vorti

city, and the cascade of energy through various scales. Studies have included estimation of Haus

dorff dimensions for flows using filament methods, energy statistics of large numbers of point vor

tices, sub-grid lattice models to produce inertial range exponents and inertial range statistics, and 

chaotic motion of point vortices driven by unsteady agitators. As a starting point we refer the 

interested reader to Aref[ll], Chorin[53], Chorin[54], Chorin[56], Chorin[58], Chorin[59], Pointin 

and Lundgren[178], Siggia and Aref[213]. 

Lastly, we mention some related work of interest First. there are similarities between some of 

the techniques in vortex methods and those in large plasma simulations. We refer the interested 

reader to Barnes, Kamimura, Leboef and Tajima[23], Birdsall and Langdon[38], Brunei, Leboef, 

Tajima and Dawson[47], Cohen, Langdon and Friedman[68], Denavit[76], Hewett and Lang

don[116], Langdon, Cohen and Friedman[139]. A few papers involving particle/grid methods in 

other areas are Loewenstein and Matthews[146], Brackbill and Ruppel[42], Dukowicz[84], 

Monaghan and Gingold[164]. Some general papers in the area of particle methods may be found in 

Monaghan[l63], Eastwood and Hockney[85], Gingold and Monaghan[92], Hackney and East

wood[119], Williamson[235]. Finally, we mention the connection between vortex methods and 

superfluid turbulence explored by Buttke[49]. This relationship is analyzed in detail in an article 
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elsewhere in this volume. 
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V. Measuring the Accuracy or a Random Vortex Simulation 

A. "Convergence" or a Random Method Applied to an Unstable Flow 

The difficulty associated with measuring the accmacy of the random vonex method lies in 

both the method itself and the physical problem under study. For example, imagine flow past a 

cylinder. Suppose we compare a very local, sensitive quantity, such as the velocity at a particular 

point in the flow, with an integrated quantity, such as the drag. At low enough Reynolds numbers, 

measurements of both the velocity and the drag one body diameter downstteam are repeatable from 

one laboratory experiment to the next In this regime,. the flow can be viewed as deterministic on 

the smallest scales. On the other hand, at a much higher Reynolds number, an oscillatory wake 

develops. Pointwise, instantaneous probe measurements vary wildly between physical experiments, 

whereas the drag is suitably averaged so that it remains unchanged from one experiment to the next 

One the smallest scales, this flow is "random", on the largest, it is predictable. 

What quantities, structures, and flow attributes can one find on the middle scales to measure 

this "repeatability" issue? Suppose one had a numerical method that supposedly "solved" the equa

tions of motion describing the flow. What would one expect the method to do? Certainly it should 

predict the largest scales. More detailed than that, it is as much a question about the flow regime as 

it is about the numerical algorithm. 

It was with this in mind that we have analyzed the accmacy of random vortex methods. In 

Sethian and Ghoniem [208], we studied two-dimensional viscous flow over a backward-facing step . 

. The assumption of two-dimensional flow ignores such three-dimensional effects as vortex stretching. 

This is a significant limitation. However, the issue of repeatability of the smallest scales remains, 

and convergence of the two-dimensional vortex method is itself a complex question. 

We began with a study of laminar flow, where the solution is smooth and steady and we can 

expect convergence to pointwise, instantaneous values. Other methods are more economical in this 

regime, however the point of the study was to examine the convergence of the vortex method. We 
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then increased the Reynolds number, through the transition regime where unsteady flow occurs ·into, 

the turbulent regime. At each stage, we measured the effects of refining numerical parameters on the 

computed solution. 

We chose to study flow over a backward facing step because of the wealth of experimental 

data available. The results of numerous laboratory experiments, see Annaly, Durst and Pereira[lS], 

Denham and Patrick[77], Honji[120], Periaux[173], are described in Sethian and Ghoniem[208] and 

summarized as follows. Within the laminar regime, the flow is stable, and there are experimentally 

measured values for the location of the reattachment point and the recirculation zone size and 

shape. Thus, "converged" numerical quantities and experimental data can be compared. In the tran-

sitional and turbulent regime, laboratory experiments yield integrated quantities such as the aver-

aged recirculation zone length and averaged velocity profiles which can be compared with numeri-

cal calculations. In addition, there is a periodic and regular pattern to the generation and develop-

ment of coherent eddy structures which which should not change under refinement of numerical 

parameters. 

B. Summary or Convergence Results 

The results of extensive numerical experiments of this ftow over a step, are described in detail 

in Sethian and Ghoniem [208]. Details of the code itself may be found in Ghoniem, Chorin and 

Oppenheim [94]. We may summarize the results our convergence study as follows. 

In the laminar regime, where there is a steady, stable, recirculating profile, we found the fol-

lowing. 

1) The variance around computed means decays in inverse proportion to the number of vortex 
elements. 

2) The computed means converge pointwise to a time>independent profile. 

3) The calculations accurately predict the experimentally measured relationship between Rey
nolds number and the size and length of the recirculation zone. 

4) The accuracy primarily depends on the number of vortex elements. The time step, boun
dary layer resolution are of secondary imponance. 
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In the transitional/turbulent regime, physical experiments indicate a periodic mechanism of eddy 

shedding downstream of the recirculation bubble, and coherent tmveling eddy structures. Here, we 

found the following. 

1) The calculations accmately predicted the qualitative large-scale mechanisms of the flow 
dynamics, which remained unchanged as the numerical parameters were refined. 

2) The calculations produced numerically converged values for integrated. global quantities, 
such as eddy size, shape, shedding frequency and avemge velocity profiles. 

3) As above, the accuracy primarily depends on the number of vortex elements. In addition, 
there was a critical empirical relationship between the number of elements and the time step. 

We may interpret these results as follows. Within the laminar regime, the mndom vortex 

method accumtely predicts pointwise, instantaneous measurements. Because it is a probabilistic 

method, one studies variances and means, Nonetheless, accumte calculation of the relevant quanti-

ties can be achieved. While vortex methods may not be the method of choice in this regime, they 

can be expected to converge to the correct solution under parameter.refinemenL 

In the turbulent regime, our conclusions are somewhat more guarded. Results indicate that the 

larger scales (average velocity profiles, shedding frequency, size and shape of eddies) are accurately 

modeled, and converge as numerical parameters are refined. In this sense, vortex methods can be 

used to predict periodic flow dynamics, as well as large-scale averaged, intergmted quantities. 

Note that one is getting more than might natumlly come out of more traditional turbulence 

closure mOdels approaches to the problem. Vortex methods allow one to compute the transitory, 

periodic dynamics of the flow, Iather than just the average profile. Indeed, in many engineering · 

situations, it is the large-scale transitory dynamics that are crucial for mixing and stress/pressure 

fluctuations. Turbulence-closure models can average out these effects, masking the most interesting 

features of the flow. 

What does one get for refining numerical parameters? We suspect that the answer depends on 

the equations themselves, and summarize some the arguments discussed in Sethian[205]. Our 

experience indicates that one can obtain fairly good predictions of such integrated quantities as 
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average velocity profiles and eddy shedding size and frequencies. On the other hand. a tremendous 

amount of computational effon might be necessary to get a significant improvemenL 

We suggest that this insensitivity to funher numerical refinement lies in the equations of 

motion as much as the method. In tmbulent flow, small-scale pertmbations organize themselves and 

pass energy on to the larger scales. Most finite difference approximations to turbulent flow 

oversmooth the calculation, inhibiting the natural growth of these perturbations. On the other hand, 

in a random vortex approximation, the numbex of vatex elements and particular string of random 

numbers chosen represent perturbations to the smaller scales. These perturbations organize them-

selves and pass energy to the larger scales. Thus, we argue that refining numerical parameters 

merely serves to inject a different set of small-scale perturbations to the flow. The most important 

requirement is to to calculate the flow with a resolution greater (that is, on a smaller scaler) than the 

"repeatability' scale of the flow. Put another way, if excitations below a certain size organize them-

selves into large structures somewhat independent of the particular excitation, then it might not be 

worth a tremendous amount of effon to excite the flow on a significantly finer scale. 
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VI. Concluding Remarks 

In this article, we have described some of the central themes in the design and application of 

vortex methods. In the next few years, a major focus of interest will be the practical application of 

vortex methods to realistic three-dimensional flows. Due to the shear complexity of such flows, the 

intricate folding and stretching of vorticity will require a large number of discrete vortex elements 

to adequately resolve the solution. Thus, research in fast summation methods for efficiently com

puting vortex interactions will be an important element of a practical vortex algorithm, as well as 

some ·son or" vortex amalgamation technique, in which vortex motion on the smallest scales is 

homogenized to reduce the total number of vortex elements. 

Acknowledgements: The author would like to thank 0. Hald and R. Krasny for helpful comments. 
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