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Abstract 

We show that in the trace formula of Gutzwiller and Balian and 

Bloch, applied to systems of two degrees of freedom, the Maslov index 

arising in the contribution from each periodic orbit is equal to twice 

the number of times the stable and unstable manifolds wind around 

the periodic orbit. As a consequence, we find that the Maslov index 

of a periodic orbit is equal to the Maslov index defined by either its 

stable or its unstable manifold. In this way it becomes apparent that the 

Maslov index occuring in the trace formula is an intrinsic property of the 

periodic orbit, being independent of the coordinates used to find it. In 

contrast to the case of torus quantisation applied to integrable systems, 

where only even Maslov indices appear, we find that odd Maslov indices 

can arise in the trace formula of chaotic systems. These odd Maslov 

indices arise in the contributions of periodic orbits that are hyperbolic 

with reflection. 
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1. Introduction 

In this paper we will examine the geometrical properties of the Maslov index 

appearing in the trace formula of Gutzwiller 1 and Balian and Bloch,2 

1"" T 1 1r p(E) ~-~ 1. cos( -S-a-). 
1rh po's ldet(M- I) ll h 2 

(1.1) 

Here the density of states p(E) of a quantum mechanical system is expressed ap

proximately as a sum over the periodic orbits of the corresponding classical system. 

In this formula M is the stability matrix of the orbit, T is the·period of the primitive 

orbit and a is the Maslov index of the orbit. 

An examination of the derivation of Eq. (1.1) reveals that a is a sum of two 

contributions. The first is the Maslov index of the energy-dependent Green's func

tion, which can be derived from a count of caustics along the periodic orbit. The 

second contribution arises when one takes the trace of the energy-dependent Green's 

function to get the sum over periodic orbits; this contribution is determined by the 

stability matrix M. While correct, the determination of a from this relationship 

is somewhat unsatisfactory because the method is not manifestly phase space in

variant. Each of the contributions to a depends on the phase space coordinates 

being used. On the other hand, the other quantities appearing in Eq. (1.1), T, 

det(M - I) and S, are obviously independent of the canonical coordinates used to 

compute them; we should expect the same to be true for a. It is this problem that 

motivates us to seek a coordinate-free, geometrical interpretation for a. 

We will show that, for systems of two degrees of freedom, a is equal to twice the 

number of times the stable and unstable manifolds wind around the periodic orbit 

over a single traversal of it. We determine the number of windings by following 

the stable and unstable manifolds (which we will often refer to, collectively, as 

the invariant manifolds) as they evolve in surfaces of section that are constructed 

along the length of the orbit. With this interpretation our goal of finding an intrinsic 

determination of a is achieved; the winding number is independent of the coordinate 

system used. 

In fact we can go one step further and remove reference even to the surfaces 

of section. It turns out that periodic orbits have associated to them, in a canoni-
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cally invariant way, a winding number. 3 This follows from the observation that the 

invariant manifolds of periodic orbits are Lagrangian, so that periodic orbits may 

be regarded as closed curves on Lagrangian manifolds. According to a theorem of 

Arnol'd,5 the Maslov index of such a curve is given by a winding number, and as 

such is a canonical and topological invariant. It is natural to conjecture that, in any 

number of dimensions the index a in the trace formula is just this winding number.4 

With our calculations we can prove this in the two-dimensional case. In this way the 

Maslov index is placed on the same footing as say, the the Maslov indices of invari

ant tori, J.£;, that appear in the torus quantisation condition I;= (n; + J.£;/4)h. We 

would like to stress that, until now, it has not been shown that the index occurring 

in the trace formula is a Maslov index in the usual sense. 

A central idea of this paper, due to one of us {JMR), is that periodic orbits 

have winding numbers, and that these are related to Maslov indices. Since the 

completion of the work described in this paper, considerably deeper insight into 

this relationship has been obtained and will be reported on in the future. 3 

The paper is organised as follows. In Sec. {2) we review some of the basics 

that are needed for the derivation of the trace formula. We state the WKB approx

imation for the energy-dependent Green's function and review multidimensional 

WKB theory in preparation for finding the Maslov index of the Green's function. 

In Sec. {3) we examine the Maslov index of the energy-dependent Greens func

tion within the context of multidimensional WKB theory. We show how it can be 

determined from a reduction of the dynamics to surfaces of section that are con

structed along the classical trajectories contributing to the Green's function. In 

Sec. {4) we examine what happens when one computes the trace of the energy

dependent Green's function. Following the original derivation of Gutzwiller1 we 

find that extra contributions to the index arise, over and above the Maslov index of 

the energy-dependent Green's function. In Sec. (5) we interpret the contributions 

to a geometrically in the surfaces of section and find that a is twice the winding 

number of the invariant manifolds in the surfaces of section. Finally, in Sec. (6) we 

explore some of the geometrical aspects of u that make use of the full phase space 

and are independent of the surfaces of section. 

• 
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2. Background material 

In this section we review some of the elementary facts that we will use later on. 

In 2.1 we write down the WKB formula for the energy-dependent Green's function 

and indicate how the trace formula is obtained from it. In 3.2 we state the rules for 

determining Maslov indices in multidimensional WKB theory. 

2.1 Foundations for periodic orbit theory. 

The trace formula Eq (1.1) is based on the following identity relating the density 

of states p(E) of some Hamiltonian H to the trace of its energy dependent Green's 

function, G(x,x', E): 

p(E) =-! Im J dxG(x,x,E). (2.1.1) 

The energy dependent Green's function is defined by 

G(x,x', E) = (xi E ~ H lx'). (2.1.2) 

The basic idea is to use the following semiclassical approximation for G(x, x', E) as 

a sum over classical paths: 

G(x x' E) ~ ...!:._ 1 """D(x x' E)efs(x,x' ,E)-iJ.l'lr/2 
' ' in(21rin)(N-l)/2L- ' ' ' 

(2.1.3) 

where the sum is taken over all the classical trajectories that go from x' to x at 

energy E. N is the number of degrees of freedom, the phase S (x, x', E) is the action 

of the trajectory, 

S(x,x',E) = {xp·dx, 
Jx' 

the amplitude D(x,x',E) is the following (N + 1) x (N + 1) determinant, 

D(x,x', E)= 

a2s 
ax ax' 
a2s 

ax'aE 

.1. 
2 

(2.1.4) 

(2.1.5) 
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and J.L is the Maslov index. Note that each of S, D and J.L depends on the path. In 

this paper, we will be particularly interested in J.L 

The trace formula Eq. (1.1) is obtained by evaluating the integral in Eq.(2.1.1) 

by the stationary phase approximation. In doing so one finds contributions only 

from particular paths, the periodic orbits, and the result is the sum over periodic 

orbits in Eq. (1.1) 

We will not discuss in detail the derivation of Eq. (2.1.3). We just point out 

that the usual derivations begin with the propagator, or time-dependent Green's 

function K(x,x', t), for which an approximation similar to Eq. (2.1.3) can be derived 

from the path integral or from WKB theory. This approximation for K(x,x',t) is 

a sum over classical paths like the one in Eq. (2.1.3), except that the sum is taken 

over trajectories of a given time rather than energy. The energy-dependent Green's 

function is related to the propagator by a Laplace transform in time, which can 

be evaluated by the stationary phase approximation. Doing so yields the sum over 

trajectories of a given energy that we see in Eq. (2.1.3). 

When the classical dynamics is chaotic (as is the case for the systems we want 

to consider) the exponential separation of orbits makes the semiclassical approxi

mations break down after times of order llnli.l. In particular the WKB propagator 

K(x, x', t) is not valid for times t > O(llnli.l). On the other hand, in deriving 

Eq. (2.1.3) one needs to use the WKB propagator for arbitrarily long times. One 

can overcome this problem by giving E a positive imaginary part if. This has the 

effect of introducing an exponential cutoff in time, e-Et/T&, in the Laplace transform 

that relates G(x, x', E) to K(x, x', t), thus removing the effect of long-time orbits. 

Treating the classical dynamics for complex E is fraught with difficulties how

ever and is not something we wish to deal with in this paper. In order to overcome 

the difficulties with long-time orbits we will take the point of view that Eq. (2.1.3) 

should include only orbits that take less than some cutoff time tc - O(llnli.l). In 

addition to errors of higher order in 1i. therefore, Eq. (2.1.3) will contain errors due 

to the neglect of the long-term dynamics. The effect on the trace formula is that 

p(E) is only determined to within a finite resolution D.E ,.... li/tc ,...., O(li/llnlil). 

More precisely, fluctuations in p( E) on energy scales D.E or larger will be faith-

• 
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fully reproduced by the trace formula but fluctuations on finer energy scales will be 
( 

averaged over. 

With these problems in mind we will proceed with the main purpose of this 

paper, which is an examination of the Maslov index. Finding the Maslov index in 

Eq. (2.1.3) by tracing through the derivation outlined above is rather complicated. 

We must first find the Maslov index for the propagator. Having done this, we 

find the index occurring in the energy-dependent Green's function by taking into 

account extra phase contributions that arise in performing the Laplace transform 

by the stationary phase approximation. Writing the Maslov index of the energy

dependent Green's function in terms of the the Maslov index of the propagator like 

this is unnecessarily complicated. While everything else in Eq. (2.1.3) is determined 

completely by the classical trajectories of a fixed energy this approach forces us to 

consider other trajectories in order to find the Maslov index. This seems somewhat 

unnatural. It would much easier if we could determine the Maslov index in the 

energy-dependent Green's function directly, without reference to the propagator. 

We can do this if we realise that Eq. (2.1.3) is a special case of general multidi

mensional WKB approximations for wavefunctions. Within this theory the Maslov 

index is determined entirely by the structure of G(x, x', E) itself, so we do not have 

to deal with the propagator. The theory of multidimensional WKB approximations 

was greatly advanced by Maslov6
' 
7 and it is his approach that we follow in this 

paper. In the following subsection we give a brief description of WKB according to 

Maslov; more complete discussions can be found in Maslov, 6 Maslov and Fedoriuk, 7 

Delos8 or Percival. 9 

We would like to point out that a method has been derived by Mohring, Levit 

and Smilansky, 10
'
11 in which the Maslov index is determined directly for the energy-

. dependent Green's function. They write the energy-dependent Green's function as 

a Laplace transform of the path integral. Evaluating the integrals by the stationary 

phase approximation, they obtain Eq. (2.1.3) with explicit rules for determining the 

Maslov index. Such an approach is not suitable for our purposes however because 

it obscures the underlying geometry that we wish to examine in this paper. We will 

therefore proceed with Maslov's approach. 
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2.2 Some elements of multidimensional WKB theory 

Within the WKB approximation a wavefunction is determined by a Lagrangian 

manifold L (giving the phase of the wavefunction) along with a particle density 

p (giving the amplitude) and a choice of overall phase. The reader who is not 

familiar with Lagrangian manifolds is referred to references 5,6 and 8. Heuristically 

we can think of the wavefunction as being represented by a collection of particles 

distributed over L with the density p. If we want to look at the wavefunction in, 

say, the x-representation we use the following action function, 

S ( l) = /, p · dx, (2.2.1) 

where 'Y is a path on L starting at some reference point lo on L and ending at l on 

L. Because L is Lagrangian, S ( l) does not change under continuous deformations 

of 'Y· This is why we can omit reference to 'Y in S(l). To find the wavefunction 

.P(x0 ) at a given point x 0 in configuration space we add up contributions from all 

the points l in L for which x = x 0 • These will generally be discrete in number so 

we label them with the discrete index b. The wavefunction is 

.P(x) = L jp(x)jt etS(x)-iJjJr/2, 

b 

(2.2.2) 

where p(x) is the particle density in configuration space and J.1. is the Maslov index. 

The density p(x) diverges at configuration space caustics where L has a singular 

projection onto configuration space as two branches of L coalesce (see Fig. (1)). 

At these points the WKB approximation breaks down in the x-representation. It 

can be shown however that there always exists a p- or mixed x-p-representation in 

which the wavefunction is caustic-free. In order that the wavefunction be smooth 

in these representations the Maslov index must differ between the two branches of 

the configuration space representation according to the following prescription. 

First we find a good representation for the wavefunction at the x-space caustic. 

A representation ( x 1 , • • • , x k, p k+ 1 , • • • , p N) is good if the Lagrangian manifold has a 

non-singular projection onto the ( x 1, · • • , x k, p k+ 1, • • • , p N) plane or, equivelently, if 

( x 1, • • • , x k, p k+ 1 , • • • , p N) are good coordinates for the Lagrangian manifold. Then 

c 
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we construct the following symmetric matrix R representing the linearised projec

tion from L to configuration space 

R = a(xk+b ... ,xN). 
8(Pk+l,···,PN) 

(2.2.3) 

On passing through a caustic the projection becomes singular and one or more 

eigenvalues of R passes through 0. The Maslov index is incremented by 1 for every 

eigenvalue of R that goes from negative to positive and is decremented by 1 for 

every eigenvalue going from positive to negative. This rule for the change in J.L 

follows in a straightforward manner from performing the change of representation 

explicitly, using a stationary phase approximation. Usually we expect that every 

representation except the x-representation is good and that only one eigenvalue of 

R passes through 0. 

As described above, this procedure for determining J.L, which is the one most 

directly suggested by the change of representation, is mostly algebraic. It can 

be thought of however, in a way that is much more suggestive of the geometry, 

as arising from following the tangent plane to L as it rotates around in phase 

space on going from one point on L to another. On passing through a caustic 

the plane momentarily intersects momentum space non-trivially, typically along a 

!-dimensional subspace, though at exceptional points this dimensionality may be 

higher. The change in signature of R then measures the 'sense' in which the plane 

passes through momentum space. 

Let us illustrate this in the special case of a phase space of one degree of 

freedom. In this case any one-dimensional curve is a Lagrangian manifold and 

any one-dimensional subspace (i.e., line) a Lagrangian plane. R is just a number, 

ax; 8p, so let us denote it by r instead. It is easy to see that r is positive for 

any line just slightly counter-clockwise of the momentum axis and negative for a 

line just slightly clockwise of it. Therefore the Maslov index is incremented by one 

every time the tangent plane passes through the momentum axis in the clockwise 

sense and decremented by one every time it passes through in the counterclockwise 

sense. The total change in the Maslov index over a whole curve is just the clockwise 

intersection number of the tangent plane with the momentum axis, i.e., the number 

of clockwise crossings minus the number of counterclockwise crossings. 



-10-

It turns out that this particularly simple picture of the Maslov index in one 

degree of freedom is all we need for the periodic orbit sum of a two degree of freedom 

system if we use a reduction of the dynamics to surfaces of section. In the following 

section we outline how this is done for the Maslov index of the Green's function. 

3. The energy-dependent Green's function and its Maslov index 

We will consider G ( x, x', E) as a wavefunction in x, parameterised by x' and E. 

With this point of view we can construct G(x,x', E), just as in the previous section, 

from a Lagrangian manifold L and a particle density that we need not worry about 

for the Maslov index. L is made up of all the trajectories originating from x' at 

energy E. We start with the (N- !)-dimensional initial surface { x = x', H = E} 
and let it flow under H for positive time. In this process Lis swept out (see Fig. (2)). 

One can show that this manifold is Lagrangian and that its action coincides with 

the action of the paths in Eq. (1.1.3), so it does indeed give the phase of G(x,x', E). 

Our aim is to follow the tangent plane to L between x' and x to find J.L. 

Let us focus on the contribution of a particular path to G(x, x', E). It is 

convenient to use the following configuration space coordinates centered on the 

trajectory, as originally introduced by Gutzwiller. The coordinates are (y, z) (which 

we will still denote collectively by x), with the N - 1 coordinates y transverse to 

the path in such a way that y = 0 specifies the path and with z a coordinate 

along the path. Expressed in these coordinates the amplitude D(x, x', E) takes on 

a particularly simple form, 

1 I a2s I! D(x,x',E) = .l. aya , , 
lzz'l:a Y 

(3.1) 

as originally shown by Gutzwiller. 1 It was assumed by Gutzwiller in his original 

derivation of the trace formula that the coordinates (y, z) were orthogonal. It turns 

out however, that this assumption is not necessary; the derivation follows through, 

with minor modifications, for any set of coordinates constructed from the trajectory 

in this way, irrespective of whether they are orthogonal. This is a reflection of 

the fact that the only relevant structure on phase space should be its symplectic 
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structure; any metric properties of configuration space should not affect the final 

results. It also turns out that for Eq. (3.1) to hold, it is not even necessary for (y, z) 
to be tied to the orbit; they can be arbitrary coordinates on configuration space.12 

However, for our purposes it will suffice to apply this formula to path-centered 

coordinates. 

Caustics are signalled by a. divergence of the amplitude in Eq. (3.1), of which 

there are two types. The first occurs when z = 0 (which implies that :X = 0). In 

this case the trajectory stops and forms a cusp in configuration space as it moves 

from one branch of L to another(Fig. 3(b)). (A special case, which often occurs 

in practice, is when the trajectory retraces its path in configuration space. We 

will also refer to this occurance as being a cusp.) This typeof caustic is the only 

possibility in one degree of freedom, where a trajectory is obliged to retrace its path. 

Cusps should not be expected to appear in higher dimensional systems for generic 

Hamiltonians. However, periodic orbits of kinetic-plus-potential Hamiltonians do 

exhibit cusps (in which the trajectory retraces its path), because of time reversal 

symmetry, and therefore orbits with cusps are quite common in applications. 

The second type of caustic occurs when la 2Sjayay'l diverges. In more than 

one degree of freedom this is the most common case and corresponds to the trajec

tory moving between branches of L in configuration space without stopping. 

We will deal only with the second case. If the first case arises and the trajectory 

forms a cusp in configuration space at the caustic, we can treat it as if there were no 

cusp by doing the analysis in the momentum represention. While the intermediate 

results will be different, the final conclusions about the Maslov index in the trace 

formula will be independent of representation. The reason we want to avoid cusps 

is that when they occur the coordinates (y, z) constructed above are ill-defined, as 

are the surfaces of section and their mappings that we will consider presently. 

Let us refer to the set of points in configuration space that correspond to 

caustics of L as the 'caustic surface'. Apart from exceptional singular points the 

caustic surface is a simple ( N -1 )-dimensional surface. The caustic crossings that we 

are considering are such that the trajectory approaches the caustic surface, touches 

it tangentially and moves away again. This means that the z direction is tangent 
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to the caustic surface at the crossing. It is shown in appendix A that this implies 

a good representation for the Green's function at the caustic can always be found 

by choosing z and some combination of the y's and Py 's, i.e., that we never have to 

change representation in the z component. It is this fact that allows us to determine 

the Maslov index by working entirely with the dynamics in surfaces of section that 

we construct as follows. 

At each point z0 along the trajectory we denote by E(zo) the surface of section 

formed by the set {z = z0 ,H = E}. We use (y,py) as canonical coordinates on 

1 E(z0 ). Between any two surfaces of section, E(z') and E(z) say, we can construct 

a symplectic surface of section mapping F(z, z'). By letting z vary continuously 

F(z, z') can be regarded as a Hamiltonian flow in 'time' z, one slight complication 

being that the space in which the flow takes place, E(z), is changing continually as 

one moves forward in z. The linearisation of F(z, z') about the reference trajectory, 

M(z, z'), is a (2N- 2) x (2N- 2) symplectic matrix which we write in block form 

as, 

(3.2) 

so that we have explicitly for initial and final variations ( c5y', c5p~) and ( c5y, c5py), 

respectively, 

c5y = Ac5y1 + Bc5p~, 

c5py = Cc5y' + Dc5p~. 

(3.3a) 

(3.3b) 

The surfaces of section and their mappings are useful because the Jacobian 

matrices R of Eq. (2.2.3) that are used to determine the Maslov index are all taken 

at constant z for the representations that we are considering and so are derivatives 

along the surfaces of section. As a consequence, they can be written in terms of 

M and its elements. Suppose for example that a good representation is (z,py), as 

it will be in most cases. Then J.l. is determined by the change in signature of the 

matrix, 

(3.4) 

where the second equality follows easily from Eq. (3.3). The case of more general 

representations such as ( z, y 1, • • • , y 1c, Pyle+ 1 , • • • , PyN _ 1 ) , can be dealt with by manip-
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ulating submatrices of BD- 1• Caustic crossings occur precisely when B becomes 

singular. This is evident from Eq. (3.4) in the case of typical crossings, but is ac

tually true in general, even when (z, Py) is not a good representation. Physically, 

if e is a null eigenvector of B, then an initial pencil of rays, emerging from x' with 

(8y', 8p~) proportional to the vector (0, e), refocusses at the caustic where (8y, 8py) 

is proportional to (Be, De) = ( 0, De). 

One should note that the initial point of any trajectory lies right on top of 

a highly degenerate caustic for which M = I and therefore R = BD- 1 = 0. 

Because the trajectory starts on this caustic and does not actually pass through 

it one needs to give it special consideration. The increment in J.1. that one assigns 

to this initial caustic is determined as follows: J.l. receives an increment of 1 for 

every negative eigenvalue of R(o+), where R(o+) denotes the R-matrix constructed 

for infinitesimally short times along the orbit. For example if all the eigenvalues 

of R are initially positive (as discussed in appendix B, this is always the case for 

kinetic plus potential systems) then J.l. = 0 initially. It is helpful to note that J.1. is 

determined from this initial caustic as if all of the eigenvalues of R were initially 

infinitesimally positive and the trajectory went cleanly through the caustic. 

One can see that the initial value of J.l. is determined in this way by consid

ering the propagator for short times. In a momentum representation the WKB 

approximation for the propagator is not ambiguous at t = 0 and in fact can be 

written K(p,x',t = 0) = (27rh)Nf2exp(-ip · x'). In transforming to a position 

representation for short but nonzero times one finds that the initial value of the 

Maslov index of the propagator is determined by its Lagrangian manifold according 

to rules similar to those outlined above for the energy-dependent Green's function. 

If the energy-dependent Green's function is then computed from the propagator by 

means of a Laplace transform in time, the stated procedure for finding the initial 

Maslov index of the energy-dependent Green's function is recovered. 

Therefore we have the following algorithm for determining the Maslov index of 

the energy-dependent Green's function. First we construct, all along the trajectory 

from x' to x, the surfaces of section E(z). From them, we find the surface of section 

mappings and their linearisations M. Next, we find those places along the trajectory 

at which the component B of M is singular; these are the caustics. Finally, at 
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each caustic, we add a contribution to J.L according to the signature change of the 

symmetric matrix, BD- 1• In particular one increments J.L by one for every negative 

eigenvalue of BD-1 computed for short times. 

We can view this procedure in a way that is directly connected with the discus

sion of the previous section, concerning the determination of Maslov indices from the 

evolution of Lagrangian planes. Here however, rather than finding the Maslov index 

from the evolution of N-dimensional Lagrangian subspaces of the 2N-dimensional 

phase space, we find the index from the evolution of (N -!)-dimensional Lagrangian 

subspaces of the (2N- 2)-dimensional surfaces of section. The (N -!)-dimensional 

subspaces we speak of are the tangent planes of the intersection of L with the sur

faces of section, at the trajectory. The intersection of L with the surface of section 

E(z'), at the start of the trajectory, coincides with the (N -!)-dimensional momen

tum space of E(z), which we denote by P(z'). The intersection with the surface 

of section E(z), at some later point of the trajectory, is obtained by letting P(z') 
flow forward under F(z,z'), giving F(z,z')P(z'). Linearising about the trajectory, 

we find that L intersects E(z) along the (N- !)-dimensional plane M(z, z')P(z'), 
which we denote by A(z). (M is defined by Eq. (3.3).) At caustics, where B is 

singular, we find that A(z) intersects P(z) nontrivially, along (Be,ne) = (o,ne), 
where e is the null eigenvector of B. As A(z) passes through P(z), J.L is incremented 

according to the sense in which it passes through, as determined by the change in 

signature of BD- 1 • Evidently, we determine J.L from the evolution of A(z) in E(z) in 

exactly the same way that we would determine the index of an (N -!)-dimensional 

wavefunction propagating in time, by following the tangent plane to its Lagrangian 

manifold in the phase space of ( N - 1 )-degrees of freedom. 

By passing to the surface of section dynamics, we have essentially achieved a 

reduction in the number of degrees of freedom, at least as far as the Maslov index is 

concerned. This is a useful picture for determining the geometrical properties of u, 

and it is the point of view we will adopt in the forthcoming sections. In applications 

however, for example if one wanted to numerically analyse the trace formula for a 

kinetic-plus-potential system, it might be better to use a method which does not 

depend on the construction of the (y, z) coordinates and the surfaces of section 

E(z). We outline how this can be done in appendix B. 
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.1 
Finally we note that the prefactor IB 2S/ByBy'l 2 can be written very simply in 

terms of the surface of section mappings. Using the generating function conditions 

on S(x,x',E), we can write a2sjayay' = -ap~jay, which is equal to -B-1 and 

so we can write the Green's function as, 

1 1 1 L exp ( iS(x, x', E) - iJ.t'lr /2) 
G x, X 'E ~ -. 1 • 

( ) tli(27rili)CN-I)/ 2 izz'detBi2 (3.6) 

This completes the discussion on the Green's function. The next step for the 

trace formula is to actually take the trace. This introduces extra contributions to 

the Maslov index that we describe in the next section. 

4. The determination of u 

In this section we discuss the index of the trace formula as it arises in performing 

the trace in Eq. (1.1.1). In 4.1 we show how u arises in taking the trace and in 4.2 

we examine the question of whether the u is constant along an orbit. 
' 

4.1 Taking the trace 

Now let us proceed with evaluating the trace, 

TrG = j dxG(x,x,E), (4.1.1) 

where G(x,x, E) is written as a sum over trajectories x ---+ x, i.e., trajectories 

that close in x-space. We follow here the original derivation of Gutzwiller. 1 Doing 

the integral by the stationary phase approximation yields contributions from the 

periodic orbits, i.e., those trajectories that close in the full phase space. In the 

neighbourhood of each periodic orbit, we find that the integral over x splits up into 

an integral in z along the orbit and one in y transverse to the orbit. 

The integral in y is a complex gaussian 

I I d ( 
i _ B2 S (x, x, E) ) 

.l = yexp 21iy ayay Y . (4.1.2) 
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Wh - . h f Th . W a2S(x,x, E) b . ere y 1s t e transpose o y. e matriX = ayay can e wntten as 

(
a2S(x,x',E) a2S(x,x',E) a2S(x,x',E) a2S(x,x',E)) ( ) 

a 'a ' + a a ' + a 'a + ~.a ' 4
·1.

3 
Y Y Y Y Y Y ..., ;r Y x=x' 

which, using the generating function conditions on S ( x, x', E), can be reduced to 

(4.1.4) 

where these matrices are derived from the surface of section mapping taken once 

fully around the periodic orbit. (We would like to emphasise that this is not quite 

, the same as before. Until now we have considered mappings between different points 

on the orbit.) The transverse integral is then 

• 1!!.=.!1. 
I = (2n1i.) :l eiv1r/2 

.1. jdetWI~ ' 

where the index vis the number of negative eigenvalues ofW. This combines with p,, 

the Maslov index of the Green's function, to give the index, u of the trace formula, 

a. e., 

a=JJ.+v. (4.1.5) 

We are now left with just the longitudinal z integral and the sum, after some 

manipulation, reduces to 

T G _ _!_ ~ I d exp ( f S - iu1r /2) 
r -.L....., t .1' 

ali. po's jdet(M- I) I, 
(4.1.6) 

where dt is the time increment dz/ z (we assume that z is defined in such a direction 

that z > 0) and f denotes an integral around a single iteration of the primitive 

orbit. 

It is customary at this stage of the calculation to note that the integrand is 

constant and to replace f with T, the period of the primitive orbit. However we 

would like to raise the objection that it is not completely obvious that u is constant 

around the orbit, though this seems very natural and ultimately turns out to be 

true. We will examine this question in 4.2. 
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4.2 Is the index constant? 

In previous discussions of the trace formula it has often been implicitly assumed 

that the index u can be obtained by counting caustics of the energy-dependent 

Green's function, or even the time-dependent Green's function K(x,x', t). It is im

portant to realise that this is not true. A count of caustics yields J.L which depends, 

for its definition, on having a preferred set of coordinates in phase space, namely 

those connected with the x-representation in which we compute the Green's func

tion. It should not determine completely something that should be a phase space 

invariant like the index of the trace formula. 

In fact, J.L is not even a property of the orbit since it can depend on the starting 

point of the orbit. We illustrate this with a specific example from the stadium 

billiard. 13
'
14 In Fig. (6) we show an orbit which, depending on the st~rting point, 

can have either one or two caustics. The J.L that we calculate with each of these 

starting points will be different; it will be greater by one for the starting point with 

two caustics. A more detailed analysis of the same orbit would reveal that vis also 

different for these two starting points. 

Therefore we see that neither J.L nor v is an intrinsic property of the orbit alone; 

each depends on where we start the orbit. How is it then that their sum u = J.L + v 

depends only on the orbit? Obviously it must be that they both change at the same 

places on the orbit and change there by equal and opposite amounts. 

The index v changes at those points at which an eigenvalue of W changes 

sign, either by going through 0 or by going through infinity. We note the following 

identity that is used in deriving the trace formula: 

d tW = (- )Ndet(M- I) 
e 1 detB · (4.2.1) 

Since det(M- I) is an invariant of the orbit and in particular never changes sign, 

we see that an eigenvalue of W changes sign at precisely those points at which B 

(computed for a full iteration of the orbit) is singular and does so by going through 

infinity. But it is at these points that J.L changes also. If B is singular a caustic lies 

right on top of the initial/final point of the orbit. If we shift this point a little then 

the caustic will move relative to it. According to whether the orbit closes before 
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or after the trajectory crosses the caustic, a different number of caustics crossings 

and therefore a different Maslov index p, will be assigned to the orbit. A convenient 

terminology is to call points at which a caustic lies on top of the initial/final point 

self-conjugate points. This terminology has been used by Bogomolny15 and Heller. 

Therefore since both p, and v change at the same points it is possible that they 

change in such a way that q is constant. It is easy to demonstrate this explicitly, 

at least in two degrees of freedom, but we will not do it here since it will become 

completely transparent once an interpretation for a as a winding number of the 

stable and unstable manifolds has been developed. For now we note that a is 

indeed constant and write the trace formula as 

TrG = ..;._ L T .l. etS-icnr/2. 

sh po's jdet(M- I)~~~ 
(4.2.2) 

Here, the period T refers to the primitive orbit, whereas S and M refer to the full 

orbit. In the next section we will pursue the the geometrical aspects of a. 

5. Geometrical interpretation for a 

Let us now restrict ourselves to the special case of unstable orbits in systems 

of two degrees of freedom. For these systems, the dimensions of the objects we 

are considering are low enough that we can easily visualise them. We show in this 

section, using geometrical arguments, that the index q for these systems is twice the 

clockwise rotation number of the stable and unstable manifolds around the periodic 

orbit in the surfaces of section E(z). 
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5.1 u is a winding number 

First we observe that for systems of two degrees of freedom the surfaces of 

section are two-dimensional, embedded in the three-dimensional energy shell H = 

E. The linearised surface of section mapping M, between any two surfaces of 

section, is a 2 x 2 matrix so let us denote it by 

M=(: !)· (5.1.1) 

The Lagrangian manifold L, associated with the energy-dependent Green's function,· 

is also a two-dimensional surface in the energy shell and intersects each surface of 

section E(z) along a one-dimensional curve. In the notation of Sec. 3 this curve is 

tangent to the line ..\(z) at the orbit (see Fig. (5)). We obtain ..\(z) by mapping the 

momentum axis of E(z') forward with M(z, z') Therefore it is the line spanned by 

the vector ( b, d). 

Because the surfaces of section E(z) are 2-dimensional and the lines ..\(z) are 

!-dimensional, it is easy to find J.L. We just follow..\= span(b, d) as it rotates around 

in the surfaces of section. Then J.L is the clockwise intersection number of ..\ with 

the momentum axis, just as described for a system of one degree of freedom in 

Sec. 2.2. That is, we increment J.L by one for every clockwise intersection of ..\ or 

(b, d) with the momentum axis and decrement it by one for every counterclockwise 

intersection . 

. Having rotated around in the surfaces of section E(z), the line ..\ finally ends 

up in a direction that is determined by the surface of section matrix M of a full 

iteration of the periodic orbit. Because the orbit is unstable M will have a hyperbolic 

structure that places a priori restrictions on the final direction of ..\ (Fig. (7)). 
More precisely, M has two real eigenvectors, eu and e8 say, corresponding to real 

eigenvalues rand 1/r respectively, where JrJ > 1. The vectors eu and e8 are tangent 

to the unstable and stable manifolds at the orbit. These directions divide the surface 

of section into four quadrants, which we label H, I, J, K, starting clockwise from H, 

containing the upper momentum axis (see Fig.(8)). It is not difficult to see that, 

according as M is hyperbolic (r > 0) or hyperbolic with reflection (r < 0), the 

vector (b, d) ends up in either the same quadrant as it started in, H, or the opposite 
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one, J. Similarly the line .X, which starts out running through the pair of opposing 

quadrants H and J, must end up in the same pair of quadrants. 

The index v depends very simply on where .X finally ends up within the quad

rants Hand J. First we recall that v = 0 if w = (a+ d- 2)/b is positive and v = 1 

if w is negative. Next we note that 

_ a+ d- 2 _ Tr M- 2 _ r + 1/r- 2 
W- - ·- • 

b b b 
(5.1.2) 

Since lr + 1/rl > 2 we conclude that r + 1/r- 2 has the same sign as r + 1/r and 

therefore r. This means that the numerator of w is positive if M is hyperbolic and 

negative if M is hyperbolic with reflection. The denominator~ b, is positive or neg

ative according as the vector ends up to the right or the left of the momentum axis. 

Let us further divide the quadrants Hand J into the sectors H_, H+, J--. and J+ as 
' . 

shown in Fig. (8). The - subscripts indicate the sectors that are clockwise of the 

momentum axis and the + subscripts indicate the sectors that are counterclockwise 

of it. Then we find that w is positive if the vector (b, d) ends up clockwise of the 

momentum axis, in either of the sectors H+ or J +, ( r and b have the same sign) 

and is negative if (b, d) ends up counterclockwise of it, in either of the sectors H_ or 

J _ ( r and b have opposite signs). Equivalently, v = 0 if .X ends up running through 

the sectors H+ and J+, and v = 1 if .X ends up running through the sectors H_ and 

J_. 

Having found the geometrical meanings of p. and v, we next examine their sum 

CT. With an appropriate generalisation of the sectors H, I, J, K to surfaces of 

section at intermediate points along the orbit, we will show that, whereas p. is the 

net number of times that .X passes through the momentum axis, CT is the net number 

of times that .X passes through either of the sectors I and. K. 

The sectors H, I, etc. are defined by the eigenvectors e8 and eu of the surface 

of section mapping for a specific surface of section E(z'). We can extend them 

from this initial surface of section to intermediate surfaces of section by extending 

the vectors e8 and eu. We do this by constructing the vectors e:(z) and e:(z) in 

E(z), which are given the same coordinates relative to the y and Py axes in E(z) 

as eu and e8 have in E(z'). That is, moving around the periodic orbit, e:(z) and 
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e~(z) (and therefore the sectors H, I, etc.) are held rigid with respect to the y 

and Py axes. We would like to stress that this is neither. the most obvious nor 

the most natural extension of e8 and eu. The only intrinsically meaningful way to 

extend e8 and eu is to map them forward with the surface of section mappings. The 

vectors eu(z) = M(z, z')eu(z') and e8 (z) = M(z, z')e 8 (z') defined in this way are 

just the the stable and unstable directions of the intermediate surface of section 

E(z). While eu(z) and e8 (z) are defined independently of any coordinate systems 

that we might choose, the vectors e~(z) and e;(z) depend, for their definition, on 

having the preferred coordinate systems y-py in the surfaces of section E ( z). Such 

non-invariant quantities can be significant however in determining J.L and v because 

J.L and v are in turn coordinate-dependent quantities. 

As we follow A around the orbit we can define J.L for intermediate points, before 

the orbit closes. It is the net number of clockwise intersections of A with the 

momentum axis up to that point. We cannot, strictly speaking, do the same for v 

(and therefore u) as it is defined only in terms of the surface of section matrix for 

the completed orbit. However, with the aforementioned definition of the sectors H, 

I, etc. for points on the periodic orbit other than the initial point, we can artificially 

define v for these intermediate points, according to the positioning of A relative to 

H, I, etc. We define v to be 0 if A is clockwise of the momentum axis, in the sectors 

H+ and J+, and 1 if A is counterclockwise of it, in the sectors H_ and J_. We will 

not bother to define v for A in the other two quadrants, I and K, because A will not 

be in them at the end of the trajectory. 

With this extension of v to intermediate points, u varies very simply as A 

evolves in the surfaces of section. It is clear that as A sweeps through quadrants H 

and J, u remains unchanged, the change in v exactly compensating for the change 

in J.L whenever A passes through the momentum axis. On the other hand, u changes 

by one every time .A passes completely through the quadrants I and K. In fact, taken 

over the whole orbit, u is the clockwise intersection number of A with the quadrants 

I and K. 

We can state this even more simply in terms of the stable and unstable man

ifolds. First let us stress the following rather obvious fact: if A does not coincide 

with any of the invariant manifolds at the initial point, it cannot coincide with them 
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at any other point along the orbit. This is because M, being symplectic, can never 

be singular and so cannot map two distinct directions into one. This implies that 

A sweeps the invariant manifolds along with it as it rotates around in the surfaces 

of section. Therefore the invariant manifolds have the same intersection number 

with the sectors I and K that A has. This intersection number is especially signif

icant for the invariant manifolds because they have the property that they return 

to themselves on going once fully around the orbit. Because they return to them-. 

selves they rotate around in the surfaces of section some half-integer number of 

times, a half-rotation being equal to a rotation of 180°. We can count the number 

of clockwise rotations using the intersections with the quadrants I and K: between 

every clockwise half-rotation there is a single clockwise intersection with I and K. 

Therefore the net number of clockwise half-rotations is equal to the net clockwise 

intersection number with I and K. This implies that u is precisely twice the number 

of times the invariant manifolds rotate around the periodic orbit in the clockwise 

direction. This is the principal result of this paper. 

We wish to point out that, since the space in which the winding number is 

defined is changing throughout the loop, there .is no a priori fixed frame relative to 

which the winding number is measured. Instead, the winding number is obtained 

from the rotation relative to the set of y-p11 axes in succesive surfaces of section. 

(We showed above that it was measured relative to the quadrants H, I, etc, but 

by definition these are held fixed relative to the y-p11 frame.) This is characteristic 

of all Maslov indices; they need, for their definition, a global coordinate system to 

exist on phase space, which in this case corresponds to the (y, z, p 11 , Pz) coordinates 

around the orbit. 

We can generalise the definition of the winding number to be independent of the 

(y, p 11 ) as follows. We measure the winding number relative to any continuous and 

periodic set of vectors e(z) in the surfaces of section E(z) which has the property 

that the Lagrangian planes spanned by e(z) and the fiow vector of the Hamiltonian 

have a zero Maslov index on going once around the periodic orbit. The justification 

for this comes when we show in a later section, by lifting the calculation from the 

surfaces of section to the full phase space, that u is actually given by the rotation 

of the two dimensional invariant manifolds relative to the p-x frame. In doing this 

·'" 
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we remove all reference to the choice of y and z as configuration space coordinates. 

In fact a is computed from the invariant manifolds in exactly the same way that we 

compute for example, the Maslov index of invariant tori in torus quantisation. In 

this sense a is truly a Maslov index. 

5.2 Remarks 

With this interpretation of a as a winding number of the invariant manifolds 

a number of facts become obvious that are not at all clear if we simply regard a as 

being the sum of J..L and v. 

First it is now obvious that a does not depend on the starting point on the 

orbit, since the number of times the invariant manifolds wind around is the same 

no matter where we start. We were therefore justified in replacing f dt by T in 

Eq. (4.1.6). 

Next we observe that if the orbit is iterated more than once, a scales directly 

with the number of iterations, that is, if a0 is the index of a primitive orbit, a 

increments by a0 for every successive iteration of it. This is a trivial consequence of 

the fact that a is a winding number; the invariant manifolds make a0 half-rotations 

during each iteration of the primitive orbit, independently of the history of the orbit. 

This property of a is not obvious from a = J..L + v because neither f.L nor v scales with 

the number of iterations. The contributions J.L and v do not increment by the same 

amount in each iteration because each of them depends on the history of the orbit. 

For example J..L is determined by the refocussing of a pencil of trajectories emerging 

from the initial point x' of the first iteration of the primitive orbit. These trajectories 

will refocus at different places along, say, the second iteration of the primitive orbit 

than they did in the first because the trajectories starting the second iteration will 

already have been dispersed on passing through the primitive orbit the first time. In 

particular there is no reason why there should even be the same number of caustics 

in each iteration. For example, in the orbit of Fig. (6(a)) there is just one caustic in 

the first iteration whereas two caustics will occur in a second iteration of the same 

orbit. Just as J..L does not scale with the number of iterations so it is that v does 

not scale with the number of iterations either. This is obvious because v can only 

,·· p~ 



be 0 or 1 and cannot therefore increase indefinitely. Since neither J.L nor v scales 

with the number of iterations it is not easy to see directly that their sum 0' = J.L + v 

does, this becomes apparent only after we realise that 0' is a winding number. In 

fact, to our knowledge, there has not been a proof of this fact until now, though in 

previous discussions of the trace formula it has been taken for granted that this is 

the case. 

Finally we note that 0' is odd if and only if the orbit is hyperbolic with reflection. 

0' is odd precisely when the invariant manifolds make some half-integer number of 

rotations. In this case a vector, e say, along an invariant manifold ends up, on being 

propagated once around the orbit, pointing in the opposite direction to the one in 

which it started. Clearly this is the case if and only if the orbit is hyperbolic with 

reflection. The fact that 0' can be odd for orbits that are hyperbolic with reflection 

is a direct consequence of the non-orientability of the invariant manifolds of such 

orbits. These invariant manifolds are like two-dimensional strips that have an odd 

number of twists put in them and which are then glued at the ends, so topologically 

they are like Mobius strips. It can be shown 16 that Maslov indices defined for closed 

curves on a Lagrangian manifold can be odd only if the the Lagrangian manifold is 

non-orientable. In the next section we show how 0' is a Maslov index defined in the 

usual way by the invariant manifolds. 

6. Extensions and further observations 

In this section we will explore some of the ramifications of the results derived 

in the previous section. In 6.1 we examine how 0' may be interpreted in the full 

phase space and in 6.2 we show that 0' may be regarded as the winding number of 

the periodic orbit. 
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6.1 a as a Maslov index in the full phase space 

In Sec. 3 we showed how the Maslov index of the energy-dependent Green's 

function, J.L, could be found by following the Lagrangian manifold, L, in the surfaces 

of section. In this section we go in the opposite direction. That is, we lift a from the 

surfaces of section to show that it is the Maslov index of the invariant manifolds, 

defined in the full phase space. For notational convenience we will often refer only 

to the unstable manifold in what follows, everything we say about the unstable 

manifold will hold equally well for the stable manifold. 

As we have noted already, the unstable manifold is a two-dimensional La

grangian manifold that intersects each surface of section !:: ( z) along a one dimen

sional curv-e that is tangent to the vector eu(z) at the periodic orbit. Its Maslov 

index along any closed curve, such as the periodic orbit that defines it, is determined 

by the rotation of the two-dimensional tangent plane in the four-dimensional phase 

space relative to the momentum plane. The Maslov index receives a contribution 

every time the tangent plane passes through momentum space, just as described 

in Sec. 2. We could determine the Maslov index along the periodic orbit, just as 

we determined the Maslov index of the energy-dependent Green's function in Sec. 

3, by dealing with the caustics in the (z,p 11 ) representation. This would lead to 

the prescription of following the unstable manifold in the surfaces of section: the 

Maslov index is the number of clockwise intersections of the tangent vector to the 

unstable manifold, eu(z), with the p 11 axis of !::(z) minus the number of counter

clockwise intersections. This is exactly the prescription we found in the previous 

section for determining a. Therefore a is the Maslov index of the unstable (and 

stable) manifold taken around the periodic orbit. 

One might well ask why it is useful to know that a is a Maslov index in the · 

full phase space. This interpretation is certainly more complicated computationally 

than the surface of section picture, since we need to deal with a phase space of 

two degrees of freedom rather than the _one degree of freedom of the surfaces of 

section. One reason it is useful is that, when we regard a as a Maslov index of the 

invariant manifolds, it is not tied up with any particular set of coodinates, such as 

the (y, z, p 11 , Pz) coordina'tes, or any unnecessary phase space structures, such as the 
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surfaces of section L:(z), which we would need otherwise. For example, caustics that 

occur at configuration space cusps are difficult to deal with in the surface of section 

picture because the coordinates (y, z, Py, Pz) break down there, but are easily dealt 

with in the full phase space picture since we are free to choose any configuration 

space coordinates (x1,x2) along with their momenta (Pl!P2), in examining the 

caustic. Another reason is that the Maslov index is very well understood and an 

extensive theory exists for it that we can apply to u. For example it was possible in 

the previous section to observe that odd u can exist for orbits that are hyperbolic 

with reflection only because their invariant manifolds are non-orientible. 

One can also see that, for Hamiltonians of the form kinetic plus potential, 

it is possible to determine u from a simple count of the caustics of the invariant 

manifolds. (More generally it can be shown5
'
10

'
11 that the Maslov index defined by 

any Lagrangian manifold which evolves under the flow of a kinetic-plus-potential 

Hamiltonian increases along trajectories.) The caustics of the invariant manifolds 

correspond precisely to the self-conjugate points; every self-conjugate point is on a 

caustic of either the stable or the unstable manifold, and vice versa. The number 

of self-conjugate points is therefore equal to the number of caustics of the stable 

manifold plus the number of caustics of the unstable manifold. Therefore u, which 

is equal to the number of caustics of either of the invariant manifolds, is equal 

to half the number of self-conjugate points. Similar observations have been made 

previously by Bogomolny. 15 

Finally, the fact that u corresponds to the winding number of the invariant 

manifolds in the full phase space admits an immediate generalisation to higher 

dimensions. This generalisation, which follows from the application of a theorem of 

Arnol'd, is discussed in the next section. 

6.2 Connection with Arnol'd's theory 

The main result of Sec. (5), namely that in two dimensions the Maslov index 

m the trace formula is equal to the winding number of the invariant manifolds, 

admits a generalisation to higher dimensions. This follows from the observation, 

implicit in the preceding analysis, that an unstable periodic orbit has associated 
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to it, in a canonically invariant way, a winding number. 4 The argument is as fol

lows. It is straightforward to show that the invariant manifolds of unstable orbits 

are Lagrangian, just as the KAM tori which surround stable orbits are Lagrangian. 

Therefore, an unstable periodic orbit may be regarded as a closed curve on a La

grangian manifold. 

Arnol'd has shown that the Maslov index of a closed curve on a Lagrangian 

manifold is an intrinsic property of the curve, and is a topogical invariant. The 

argument is based on associating to the original curve, 1(t), a new curve A(t) in 

the abstract space of Lagrangian planes, which we denote by A. It turns out that A 

has a nontrivial topology, and in particular has the fundamental group of a circle. 

This means that one can choose in A a fundamental closed curve A(t) that cannot 

be contracted to a point, so that any closed curve, such as A(t), can be continuously 

deformed into some number n of iterations of X(t). Arnol'd has shown that n, the 

. winding number of A is precisely the Maslov index of 1(t) (provided the sense of'X(t) 
is correctly chosen). This is because the set of Lagrangian planes that have non

trivial intersection with momentum space, C say, (these correspond to caustics), 

partition A in such a way that the intersection number of a closed curve with C 

(this is the Maslov index) is equal to the winding number of the curve. 

It is easy to see how this works in one degree of freedom. Here phase space is a 

two-dimensional plane and the Lagrangian planes are precisely the one-dimensional 

subspaces. We can parameterise a Lagrangian plane A by the angle ¢ it makes 

with the x-axis. ¢ ranges from 0 to 1r, and the angles 0 and 1r are identified, since 

they both correspond to the plane along the x-axis. Thus A can be mapped onto 

the unit circle according to A --+ 2¢. (On the unit circle the angle ¢ increases 

counterclockwise according to the usual convention.) For the fundamental closed 

curve X(t) we take a single clockwise winding of the unit circle. The Maslov index of 

of a curve A(t) is then given by the net number of times it passes through ¢ = 1r /2 

in the clockwise direction. For closed curves this is just equal to the number of 

clockwise windings. We have already seen that this is so in the case of the Maslov 

of the invariant manifolds when we follow them in the one degree of freedom surfaces 

of section. 

The most familiar application of Arnol'd's theorem is in the torus (or EBK) 
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quantisation conditions, where the Maslov indices are the winding numbers of the 

tangent planes along the angle contours on invariant tori. Since unstable periodic 

orbits may also be regarded as closed curves on Lagrangian manifolds, they also 

have, according to Arnol'd's theorem, a winding number. This winding number is 

a canonical invariant, and is additive with the number of iterations of the orbit. It 

is natural to conjecture that in more than two dimensions, the index of the trace 

formula is still given by this winding number. 

7. Conclusions 

In this paper we have demonstrated that, in two degrees of freedom, the Maslov 

index appearing in the trace formula has a phase space invariant meaning as the 

Maslov index of the stable and unstable manifolds or, alternatively, as a winding 

number of the stable and unstable manifolds in surfaces of section (or even the full 

phase space, using Arnol'd's construction). In doing so we have placed the Maslov 

index on an equal footing with the other classical quantities appearing in the trace 

formula. These are the action of the orbit S, the period of the primitive orbit T and 

the quantity det(M- I) which is derived from the surface of section mapping M, 

all of which are invariant under canonical changes of coordinates in phase space. 

That the invariance of the Maslov index is not obvious from the usual deriva

tions of the trace formula is an unsatisfactory feature of these derivations. One 

would hope that it should be possible to derive the trace formula in such a way 

that its canonical invariance is obvious from the start. Such a derivation would 

hopefully be simpler and more transparent than the one discussed in this paper, 

which is the only one that has been presented to .date. One of us 12 has in fact 

found a formulation in which trace formulas are found in a phase space invariant 

way. Hopefully this approach might lead to a more transparent demonstration of 

the facts presented in this paper. 

While our arguments apply to two dimensions, it should be true in any number 

of dimensions that the Maslov index in the trace formula is an intrinsic property of 

the periodic orbits. We have conjectured that this index is the winding number of 

the invariant manifolds. This remains to be proved. 
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Appendix A 

In this appendix we show that configuration space coordinates that run along 

the caustic surface at a caustic crossing can always be chosen to be part of a good 

representation at the caustic. In particular, this means that, for the coordinates 

(y, z) defined in Sec. 3, a good ·representation can always be found in which z 
rather than Pz is used. Because there is little added difficulty in doing so, we 

deal in this appendix with the more general case of configuration space coordi

nates (x1 , • • ·, XN ), for which (x1 , • • ·, xk) are parallel to the caustic surface. In this 

case we want to show that a good representation can always be found in the form 

(xb · · ·, Xk, Xk+l or Pk+b · · ·, XN or PN ). The proof of this is based on the following· 

proposition. 

Proposition: At a caustic, with configuration space coordinates (x 1, · • · ,xN) 

as described above, the tangent plane to the Lagrangian manifold that defines the 

caustic, intersects momentum space P along some subspace of the Pk+b · · · ,pN 

plane. 

The proof goes as follows. Let us denote the tangent plane by A and the basis 

vectors defined by the phase space coordinate system (x1,···,xN,Pl,···,pN) by 

xl' ... 'p N. Then each of the basis vectors xl' ... 'Xk is contained in the projection 

of A onto configuration space. That is, we can write 

(Al) 

for each i :5 k, where li is in A and ei is in P. Now let eo= E ai Pi be an arbitrary 
i 

vector in Ao = A n P. Using the fact that 

where [, ] denotes the symplectic form, we find that, for i :5 k, 

ai= [xi, eo] 

= [li, eo]+ [ ei, eo] 

= 0+0. 

(A2) 

(A3) 
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The product [li, eo] is zero because li and eo are both in the Lagrangian plane >. 
and [ei, eo] = 0 because ei and eo are both in the Lagrangian plane P. Therefore 

we can conclude that eo is in the Pk+b · · • ,PN plane, as required. 

Because >.o is contained in the Pk+h · · • ,pN plane, it follows from an argument 

of Arnol'd's 5
'
17 that (x 17 · · · ,xk) can be chosen as part of a good representation. 

We present the argument here for the sake of completeness. 

Let us suppose that ).0 = ). n P is m-dimensional. Because it is m-dimensional 

it follows that >.a is tranverse in P to at least one (N- m)-dimen~ional coordinate 

plane r, which is spanned by N - m of the p-axes. Because >.a is contained in 

the plane spanned by the Pk+h · · · ,pN axes we can further conclude that T may be 

chosen so as to contain the Pl, · · · , Pk axes. Without loss of generality we can assume 

that Tis the plane spanned by the Pl, .. ;,pk,Pk+l,···,PN-m axes. We wish to 

show that a good representation is x 1, •
1 

• ·, XN-m,PN-m+b • · ·, PN· (Note that this 

representation includes x~, · · ·, Xk.) We do this by showing that ). is transverse to 

the plane a spanned by the Pb · · ·, PN-m, XN-m+b · • ·, XN axes i.e., that >.na = 0. 

The following facts are straightforward consequences of the definitions: 

>.a+ r = P, (A4(a)) 

[>.,>.a] = 0, (A4(b)) 

[a, r) = 0, (A4(c)) 

where >.a+ r denotes the direct sum of >.a and r. A4(a) holds because r is trans

verse to >.a in P, by definition, A4(b) follows because >.a is contained in >., which 

is Lagrangian, and finally A4(c) holds because r is contained in a, which is also 

Lagrangian. All three of these together imply that 

0 = [>. n a,>.0 + r] = [>. n a,P). (Al.S) 

Therefore ). n a is contained in the skew-orthogonal complement of P. However, 

because P is Lagrangian, its skew-orthogonal complement is just P itself. We can 
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.An a= (.An a) n P 

=(.An P) n a 

= .Ao n a 

=0 

It follows that .A is transverse to a, so xl,···,XN-m,PN-m+b""",PN IS a good 

representation. 

Appendix B 

In this appendix we describe two practical methods for determining a that 

have been useful in numerical computations. The first method is useful for kinetic

plus-potential systems because it works even when the periodic orbits have cusps. 

The second method applies specifically to billiard systems and makes use of the 

fact that, for such systems, the surface of section mappings are easily computed 

analytically from the geometry of the periodic orbits. In each of these methods, a 

is determined from the formula a = J.l. + v rather than from the interpretation of a 

as the Maslov index of the invariant manifolds. 

Let us begin with a discussion of the determination of a for kinetic-plus

potential systems. As discussed in Sec. 3 the surfaces of section and their mappings 

will often be ill-defined on of the periodic orbits of these systems. For a system

atic treatment of the Maslov index in these systems it is therefore desirable to use 

a method which does not rely on the construction of the surfaces of section. To 

this end we will describe how to determine the Maslov index of an invariant La

grangian manifold by propagating a frame of N vectors, tangent to the manifold, 

along a trajectory. This procedure can be applied to the Lagrangian manifold L 

of the energy-dependent Green's function, to determine J.l. in a = J.l. + v. By using 

this construction, J.l. is determined without reference to the surfaces of section. The 

remaining contribution, v, is easily found from a reduction of the dynamics to a 

single surface of section, constructed at the initial/final point of the periodic orbit. 

Because it relies on the construction of just a single surface of section, this method 

should not be expected to fail for a kinetic-plus-potential system. 
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The first step in determining J1. is to find N vectors that are tangent to the La

grangian manifold at a reference point. For the energy-dependent Green's function 

the reference point is at the initial point, x', of the contributing trajectory. The N 

vectors we choose are the flow vector of the Hamiltonian XH, which is tangent to L 

because Lis invariant, and an additional N -1 vectors, (et, ···,eN-d, which span 

the initial surface { H = E,x = x' }. Assuming that XN =/= 0 we choose the vectors 

ei to be such that their only non-zero components are ~Pi= 1 and ~PN = -xdxN. 
The component ~p N is chosen .so that an infinites~mal displacement along ei con

serves energy. These N vectors span the tangent plane to L at the initial point of the 

trajectory. We find a basis for the tangent plane to L at subsequent points on the 

trajectory by propagating ( et, ···,eN ~ 1 , XH) along it with the linearised dynamics. 

We denote the frame ofvectors obtained in this way by (e1(t),··· ,eN-1(t),XH(t)). 
This frame of vectors completely determines J.L. 

Let us arrange theN vectors in the frame (e 1(t),···,eN_ 1(t),XH(t)) so that 

they are the columns of a 2N x N matrix T. Separating the x and p components, 

we can regard T as being made up of the N x N matrices U and V. That is we 

write 

T = ( : ) - (:: 
(Cl) 

VN-1 

where ui and Vi are, respectively, the configuration space and momentum space 

components of ei, and XH = (x,p). The symmetric matrix R of Eq. (2.2.3), whose 

changes in signature determine the Maslov index, is obtained from T according to 

R = uv- 1
• (C2) 

In writing this equation for R, we have used the p representation, which is a good 

representation provided V is invertible. We can see that Eq. (A3.2) holds by noting 

that an alternative basis for the Lagrangian plane is obtained by selecting the col

umn vectors of the matrix T' = TV - 1 • (The columns of T' are linear combinations 

of the vectors (e 1 (t), · · ·, eN_I(t), XH(t)).) Noting that 

T' = ( 
uv- 1 

I 
(C3) 
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we can just read off the relationship R = 8x/ 8p = uv- 1
• 

The caustics occur when U is singular. A null eigenvector of U specifies the 

components, in the basis ( e 1 ( t), · · · , eN _ 1 ( t), X H ( t)), of a vector in the intersection 

of the Lagrangian plane with momentum space. For general Hamiltonians we must 

follow the eigenvalues of the matrix R in order to determine the contribution to the 

Maslov index from caustics. There is a significant simplification however, in the case 

that the Hamiltonian is of the type, kinetic plus potential, because for such systems 

it can be shown 5 ' 
10

'
11 that the Maslov index always increments at caustic crossings. 

The Maslov index over the whole trajectory can therefore be obtained simply by 

counting the number of places at which the condition det U = 0 is satisfied. Finding 

and counting the zeros of det U is much easier than following the eigenvalues of R. 

Having found J.L for a periodic orbit, we next determine v. The first step in 

determining v is to locate the periodic orbit on some surface of section, which is 

formed by setting a configuration space coordinate to a constant value. Very often 

the periodic orbits are found in the first place by means of a search in such a surface 

of section, so this may be done already. Without loss of generality we can suppose 

that the surface of section is specified by XN = 0. The surface of section must 

be chosen so that the periodic orbit crosses it transversely in configuration space, 

so we are at liberty to choose the y coordinates of Sec. 3 so that they coincide 

locally with the coordinates (x 1 , • • ·, XN-d at the surface of section. The surface of 

section x N = 0, with its coordinates ( x 1 , • • ·, x N _I), then coincides with the surface 

of section z = const., with its coordinates y. We can therefore determine v from 

the surface of section matrix M, constructed from the surface of section XN = 0 

using the coordinates ( x 1 , • • • , x N _I); it is the number of negative eigenvalues of the 

symmetric matrix W = n- 1A + DB-1 - n-1 - iJ-1, where A, etc, are the block 

entries of M, as defined by Eq. (3.2). 

Suppose now that one wanted to determine q numerically for some list of 

periodic orbits. Then according to the calculations above we have the following 

algorithm. First one fi.nds each periodic orbit in some surface of section of the form 

x N = 0. Having done this, one propagates the N vectors ( e 1, · · · , eN -1, X H) along 

the orbit, beginning at the surface of section. The initial values for the vectors 

( e 1, • • • , eN _ 1) are along the momentum axes of the surface of section. They are 
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propagated using the linearised equations of motion, 

(C4) 

where H" is the matrix of second derivatives of H, evaluated on the orbit, and J is 

the unit symplectic matrix. It is not necessary to integrate any differential equations 

explicitly for XH since it is determined everywhere by Hamilton's equations. From 

the configuration space components of ei(t) and XH(t) one then constructs the 

matrices U(t) along the orbit. The Maslov index J.L is equal to the number of zeros 

of the function det U(t). The next step is to find the surface of section matrix M. 
To do this one propagates an additional N -1 vectors around the orbit, whose initial 

values are along the x-axes of the surface of section; together with ei these vectors 

completely determine M. The index v is then the number of negative eigenvalues 

of the matrix W, computed from M. Finally one computes u = J.L + v. 

By a slight modification of the procedure described above, according to which 

we determined the Maslov index J.L of the energy-dependent Green's function, we 

can determine u directly as the Maslov index of the invariant manifolds. The only 

difference is that we choose the vectors ei, in the initial surface of section, to be 

say, the unstable eigenvectors of M, rather than choosing them to be along the 

momentum axes of the surface of section. With this choice for the initial vectors, 

the frame ( e 1 , • • · , eN _ 1 , X H) spans the tangent plane of the unstable manifold along 

the orbit. For general Hamiltonians u is determined by the changes in signature of 

the matrix R = UV - 1 , constructed from this frame. For Hamiltonians that are of 

the form, kinetic plus potential, u is simply the number of zeros of det U taken over 

one iteration of the orbit. 

Alternatively, it can be shown 4 '
5 that u is the winding number of the following 

closed curve in the complex plane, 

z(t) = det{ (U- iV)(U + iV)- 1 
}, (C5) 

which in turn is equal to the winding number of the curve 

(C6) 
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Though this second curve is not closed, it does return to its initial direction in 

the complex plane and therefore has a well-defined winding number. If one were 

to apply the full phase space method to u for a general hamiltonian it would be 

advantageous to use Eq (C6), which requires us to keep track of a single complex 

number z'(t), rather than the analysis based on R, which requires us to keep track 

of N eigenvalues. For kinetic plus potential systems however there is no practical 

advantage to be gained in using Eq. (C6). 

The disadvantage of following the invariant manifolds as outlined above is that 

we need to follow the periodic orbit twice in order to determine u. A preliminary 

iteration is needed to find the surface of section matrix M and once this is done, 

and the eigenvectors of M have been obtained, we need to iterate the orbit a second 

time in order to propagate the vectors ei. On the other hand, using the method 

described above, in which J.L and v are determined seperately, the vectors ei are 

found as part of the procedure for determining M and just one iteration of the 

periodic orbit is needed. However, if computing time is not a problem or if M is 

known already, the method of following the invariant manifolds may be easier to 

implement; it is certainly more pleasing aesthetically. 

The methods discussed in this paper, employing surfaces of section constructed 

along the length of the periodic orbits, are well suited to billiard systems. This is 

because, given the lengths of the straight line segments and the angles of incidence 

at reflections, one can compute analytically the surface of section mappings for a 

given orbit. 

In a billiard system the trajectories in configuration space consist of straight line 

segments connecting reflections from the boundary. In a two-dimensional billiard 

the straight line segments can be used as the basis for a rectangular coordinate 

system in the following way. We let y be the perpendicular distance from the 

trajectory and z be the distance along it; these coordinates define surfaces of section 

~(z) specified by the condition z = const. We construct the linearised surface of 

section mappings M between these surfaces of section as follows. The mapping 

between two surfaces of section on the same straight line segment, separated by a 
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distance L, is the following free particle shear in the (y,py) coordinates, 

Mtrans = ( ~ ~) = (~ Lfp) 
1 ' 

(C7) 

where t = Ljp is the time taken to go from one surface of section to the other 

with velocity p. The mapping that takes a surface of section that lies just before a 

reflection to one that lies just after it is 

( 
-1 

Mrefl = 2pj pcos 6 (C8) 

where. p is the radius of curvature of the boundary at the point of reflection and 6 is 

the angle of incidence of the trajectory there. The mapping between two arbitrary 

surfaces of section can now be built up from a sequence of translational segments, 

interspersed with reflections from the boundary a follows: 

M = MtransMrefl • • • Mrefi.Mtrans• (C9) 

In this way we can analytically construct the surface of section mappings from a 

knowledge of the basic geometry of the orbit. 

Let us now consider the Maslov index p. of the energy-dependent Green's func

tion. Unlike the case of smooth systems, the Maslov index in billiards is not de

termined solely by caustics; p. must be incremented by 2 at every reflection from 

the boundary. These contributions from the boundary are such that the Green's 

function satisfy the boundary condition that it vanish there. The increment of p. by 

two gives the corresponding two branches of the Green's function a phase difference 

of 1r at the boundary, so that they cancel there making the Green's function vanish. 

In addition to the contributions from reflections, one also has co~tributions from 

regular internal caustics. These are determined by the vanishing of the b component 

of the surface of section matrix M, asdescribed in Sec. 3. Because b varies linearly 

with distance along the straight line segments, there can be at most one caustic 

between every reflection. One therefore needs only to check whether b has changed 

sign on going from one reflection to the next. An added simplification is that, be

cause the dynamics is like that of a free particle in the interior of the billiard, the 



-97-

Maslov index always increments at caustics, so J1. is obtained from a simple count 

of the zeros of b. 

It is sometimes useful to think of the problem of finding caustics in terms 

of geometrical optics. The reflections from the boundary are like reflections from 

spherical mirrors that have an effective focal length of ~pcos fJ. The caustics are 

then the images formed when an object is placed at the initial point of the orbit; 

the caustics are a result of the focussing that occurs after trajectories reflect from 

the boundary. In this picture for example it is obvious that a boundary that is 

made up entirely of dispersing, concave inward, components will not give rise to 

internal caustics. For such systems, J1. is just twice the number of reflections. A 

system whose boundary has focussing components, such as the stadium, 13
'
14 will 

have internal caustics however, and these need to be taken into account for a full 

evaluation of the Maslov index. 

Finally, the index v is computed from the surface of section matrix taken from 

a full iteration of the periodic orbit as described in Sec. 4. The trace formula index 

is then u = J1. + v. 

Just as discussed for the previous case of kinetic-plus-potential Hamiltonians, 

one can apply similar methods to obtain the index u from the evolution of the· 

invariant manifolds. If an eigenvector of M is propagated around the orbit, the 

index u is equal to the number of times the eigenvector passes through the Py-axis 

plus twice the number of reflections from the boundary. Once again however, this 

method has the disadvantage that it necessitates following the dynamics around the 

periodic orbit twice; once to find M and a second time to propagate the invariant 

manifolds. 

Acknowledgements 

This work was supported by the Director, Office of Energy Research, Office 

of Basic Energy Sciences, of the U.S. Department of Energy under contract No. 

DE-AC03-76SF00098, and by the National Science Foundation under Grant No. 

NSF -PYI-84-51276. 



-98-

References 

1. M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 

(1970); 12, 343 (1971). 

2. R. Balian and C. Bloch, Ann. Phys. (N.Y.) 60, 401 (1970); 63, 592 (1971); 

69, 76 (1972); 85, 514 (1974). 

3. J. M. Robbins, To be published 

4. J. M. Robbins, Ph.D. Thesis, University of California. Berkeley (1989). 

5. V. I. Arnol'd, functional Anal. Appl. 1, 1 (1967). 

6. V. P. Maslov, Theorie des Perturbations et Methodes Asymptotiques (Dunod, 

Paris, 1972). 

7. V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum 

Mechanics (Reidel, Boston, 1981). 

8. J. B. Delos, Adv. Chern. Phys. 65, 161 (1965). 

9. I. C. Percival, Adv. Chern. Phys. 36, 1 (1977). 

10. S. Levit, K. Mohring, U. Smilansky and T. Dreyfus, Ann. Phys. 114, 223 

(1978). 

11. K. Mohring, S. Levit and U. Smilansky, Ann. Phys. 127, 198 (1980). 

12. R. G. Littlejohn, Submitted to J. Math. Phys. 

13. S. W. McDonald, Lawrence Berkeley·Laboratory Report No. LBL-14837, 1983 

(unpublished). 

14. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979). 

15. E. B. Bogomolny, Physica D, 31, 169 (1988). 

16. J. M. Souriau, C. Rendus Acad. Sci. 276, 1025 (1973). 

17. V. I. Amol'd, Mathematical Methods of Classical Mechanics (Springer, New 

York, 1978). 

•. 



-99-

Figure Captions 

Fig.l The singular projection of a Lagrangian manifold onto configuration space 

as the two branches b = 1 and b = 2 coalesce at a caustic. 

Fig.2 Shown here for the case of two degrees of freedom, the Lagrangian manifold 

L is swept out by the iniital surface {x = x'} in the three-dimensional 

energy shell { H = E}. 

Fig.3 Illustrated in the case of two degrees of freedom are, (a) a typical caustic 

crossing, (b) a degenerate caustic crossing in which the trajectory comes 

to rest and forms a cusp in configuration space. 

Fig.4 The mapping F(z, z') carries the surface of section E(z') into the surface 

of section E(z) using the flow in a neighbourhood of the orbit. 

Fig.S The Lagrangian manifold L intersects a surface of section along the tangent 

plane A at the periodic orbit. 

Fig.6 In (a) a starting point on the diamond periodic orbit of the stadium billiard 

is chosen for which there is just one caustic. A slightly different starting 

point of the same orbit in (b) gives two caustics. 

Fig. 7 The final position of the line A is determined by the hyperbolic structure 

of the surface of section mapping near the periodic orbit. 

Fig.S The division of the surface of section into the sectors H, I, J and K by 

the stable and unstable manifolds is illustrated in (a). The dependence of 

1/ on the final position of A within the sectors H and J is shown in (b). 
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