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ABSTRACT 

Thermodynamic local-occupation averages and local-number

occupation fluctuations are studied in small-cluster many-body systems 

by introducing a single-site chemical potential at a particular site. 

This procedure allows the study of differential properties of 

thermodynamic functions by providing continuous variation of local 

occupations. The method, which starts from the quantum-mechanical 

grand canonical ensemble, gives a criterion to distinguish particular 

features of the small cluster that are likely to survive in the 

thermodynamic limit from those discontinuities that are characteristic 

of the finiteness of the cluster and the resulting discreteness of the 

energy spectrum. In particular the Matt-insulating state (a 

discontinuity in the chemical potential at a particular occupation) can 
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be clearly tested this way. Similar indications are obtained for spin

polarized states and for particle-pairing conditions. Two four-site 

Hubbard-model clusters-- a ring and a tetrahedron-- are used as 

examples. 

'· ·,, . ~ 

PACS 1990 Numbers 71.10.+x , 71.30.+h, 71.28.+d 
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I. Introduction 

Since its introduction! in 1963 the Hubbard model has been 

frequently used in the literature to investigate a whole range of many

body effects: ferromagnetism, antiferromagnetism, metal-insulator 

transition, charge-density waves and spin-density waves to name only a 

fewl-6. The model has been applied to a variety of lattices of different 

dimensions2.3,7 and general theorems have been proved in some 

cases8. Unfortunately, no three-dimensional macroscopic Hubbard 

system is susceptible to exact treatment. However, considerable 

insight into macroscopic systems can be obtained from the exact 

solution of small subsystems, which, though not expected to unfold the 

whole story, can sometimes provide important clues to the problem. 

This exact small-cluster approach has been used successfully in 

situations where local many-body effects are important: clusters of 

size two to eight9-25, photoemission 13 behavior in Ni, intermediate

valence14.15 behavior in Ce, magnetic behavior16 in Fe, alloying in Cu

Au system 17, many-body effects in a heavy-fermion system 18, 

thermodynamic properties19 , valence-bond formation20 as well as in 

understanding of the two-dimensional (20) electronic properties in 

the Cu-0 planes of high-temperature superconductors21. 

In this contribution we focus on the study of properties of a 

small open subsystem of the cluster, one that exchanges particles with 

the rest of the system, in order to infer the behavior of the global 

properties of the system as a whole. In particular, an attempt is made 

to extract physical properties out of the analysis of the quantum 
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mechanical particle number fluctuation in the subsystem as a function 

of various parameters. Exact calculations were performed on two 

systems: a four-atom linear chain with periodic boundary conditions26 

and a four-atom tetrahedral cluster with periodic boundary conditions, 

the smallest non-trivial fcc cluster. The hamiltonian chosen is the 

Hubbard model with hopping matrix element t > 0 between nearest 

neighbors only and an on-site interaction U, which can be repulsive 

or attractive: 

Ho = - t L (cit Cja + cf/, Cta) + U L fltt flu (1.1 a) 

< ij > C1 i 

where i., J are the atomic site indices, < ... > indicates nearest-neighbor 

pairs and 0' is the spin index. For notational simplicity, henceforth, it 

would be convenient to choose I t I as the unit of energy and express 

Ho, U and temperature Tin dimensionless form : H = Ho I It I, x = 

U/ It I and -r =kaT/ I tl respectively, where ks is Boltzmann's constant. 

Thus the hamiltonian can be recast in the form: 

H = - L (ci/, CJa + cf/, Cia) + x L ~t Au (1.1 b) 

< ij > C1 t 

Since· the many-body correlations are short-ranged in the 

Hubbard model, it is interesting to study the local particle-number 

fluctuation L1 at a particular site, labelled a, as a function of n. x and -r. 

Here, n the average number of electrons at the a-site. is given by 

<<tD>, the ensemble average of~= Fiat+ Aa.t, the particle number 
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operator at the relevant site. The local particle fluctuation L1 is defmed 

as: 

The generalized grand canonical ensemble average of any 

observable g is defmed by : 

<4>> = 
Tr[ ~ exp (- ( H - M~ - J.l fU I 1:} 1 
Tr [ exp (- ( H- M~- J.l fiJI 7:} 1 

a.21 

a.sJ 

where M is the chemical potential associated with the total particle 

number operator f:J =.Lt fit in the system, and J.l is an 'extra' local 

chemical potential associated with the a-site, the usefulness of which 

is discussed below. In these expressions, the subscript i in the 

summation over fit runs over No sites, where No is the total number of 

sites in the system. It should be noted that the ordinary grand 

canonical ensemble corresponds to the particular value J.l = 0. In the 

ensemble with J.l = 0, M is a monotonically increasing function of n. as 

is required by the chemical stability of the system. In view of the 

discussion to follow, it is to be noted that a discontinuity in the 

chemical potential Mat a given value n=n•, Le., 

M+- M- > 0 U.4J 

•,.. where M+ and M- are the values of Mas n• is approached respectively 

from the positive and negative sides, characterizes, by definition, a 

Mott insulator at the occupation n•. 
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II. Calculation and results 

In order to calculate the local particle-number fluctuation .1 for 

general values of n and x. one has to take recourse to numerical 

calculations. To perform the ensemble averages (1.2) it is convenient 

to work in the basis of the eigenstates of the generalized hamiltonian 

H'=(H-M#-J.J.f't). Reduction in the size of the matrices to be diagonalized 

can be achieved by taking note of the following quantities that 

commute with the generalized hamiltonian H': 

· (i) ~ • the total number operator; 

(ii) Sz , the z-component of the total spin-angular momentum; 

(iii) S2, the total spin operator; and 

(iv) the permutation operator of some site-indices. 

For convenience, the calculations reported here have made use 

of the constants of motion (i). (ii) and (iv) only, which reduces the 

original problem of diagonalizing a 256 x 256 matrix to ones of size no 

greater than 18 x 18. Exact analytical results, however, are obtained 

for certain limiting values of n, x and -r. Thus, we have the following 

results: 

.1(n, x=O, -r) = n (2- n) /2 . (II.1) • 

.1(n, x~oo, 't') = n (1 - nJ , 05n51 , 
(n - 1) (2 - n), 15n52 . (II.2) 

' 

.1(n, X~ -oo, 't') = n (2- n) . (II.3) ' 

.1 (n, X, 't' ~oo) = n (2- n) I 2 (II A) 
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It is also straightforward to show that, for bipartite27 lattices L1 

is symmetric about n =1, Le., 

Ll(n, X, 'f) = L1(2 - n, X, 'f) (II.5) 

Equation ai.5) holds for the four-atom ring, but not in general for the 

tetrahedral cluster, because fcc is not a bipartite lattice27. It should be 

noted here that L1 for a fully spin-polarized (loosely speaking 

ferromagnetic) state, for all interaction strengths, assume the value 

equal to that of the x~oo limit as given by equation (II.2). 

We now focus our attention on the zero temperature (-r ~0) 

properties in order to deal with some of the difficulties involved in 

extrapolating small-cluster results to the thermodynamic limit at low 

temperatures. The difficulties arise from the discreteness of the 

energy spectrum of finite clusters. In particular, use is made of the 

additional local chemical potential J.L to distinguish between the 

'genuine' singularities in L1 (those that survive as the number of sites 

is increased up to the thermodynamic limit) and the 'spurious' 

singularities (those that are present only because of the finiteness of 

the cluster). 

We begin with a zero-temperature identity that relates the local 

particle-number fluctuation to a derivative of the ground-state energy : 

A( 0,, _ (1 ) 
2 

iJEa(n,x) 
.u n, X, -r= 1 - n - n + dX (II.6) 

where Ea(n,x) is the ground state energy per site corresponding to 

the occupation n. This result is proven in Appendi:z:-1. It is to be 
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noted that when J.L=O, Le., in the exact grand canonical ensemble 

average, all sites are equivalent, so that n = <<h>>/No is the fractional 

occupation, Le., the number of electrons per site. An important result 

to study the Mott insulator state is obtained by taking the derivative of 

(II. 6) with respect to n and then the difference between values 

obtained by approaching the point of discontinuity from the positive 

and the negative sides: this procedure yields: 

aL1 iJL1 
fa~+ - rad- = 

a 
2 ax (M+- M-) (II. 7) 

where M± = (aEa(n,x) I anJ± , corresponding to the partial derivatives 

on the right and left respectively. Equation (II. 7) establishes a direct 

relationship between the discontinuity in the slope of L1 with that of 

the chemical potential M (both sides of (II. 7) are zero in case of no 

discontinuity). Analyticity as a function of x has been assumed, as 

(M+ - M-) is found to change smoothly with x, except at x=O and at 

other isolated points. 

We concentrate first on an analysis of the two small-cluster 

systems in the exact grand canonical ensemble (JJ.=O). Figures 1 and 2 

display graphical tabulations of the values of the total particle number 

N that contribute to the relevant ground states at each point in the n-x 

plane, for the ring and the tetrahedral cluster respectively when the 

interaction is repulsive (x > 0). Figure 3 gives the corresponding 

description in the attractive interaction (x < OJ case for either 

system. The solid black lines correspond to the values where ground 

states belong to the subspace of a single N. The region in between are 
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'mixed' domains where relevant ground states belong to subspaces of 

more than one N. Several important results associated with the above 

structure follow : 

(i) Results for x~O and x=O are different for finite-cluster systems 

and approach each other only in the thermodynamic limit. This 

discontinuity arises from the presence of several 'accidental 

degeneracies' for the particular value x=O. The singular x=O line is, 

therefore, omitted in Figs. 1, 2 and 3. 

(ii) The local particle fluctuation is a continuous function of n with 

a continuous partial derivative a.1/ an and a negative second 

derivative CJ2.1/ an2 for all regions of phase-space except at the solid 

black (single N) lines. 

(iii) On the solid black lines, where a single N value contributes, 

the local particle fluctuation .1(x, n) exhibit discontinuities in a.1/ an . 

(kinks) as a function of n (for fixed x) with the vertex pointing 

either upwards or downwards. On these lines. the chemical 

potential takes a fmite range of values MN(min} 5 M 5 MN(max) and, 

when plotted as a function of M, kinks in .1(x,M) occur at 

M=MN(min) and M=MN(max). 

(iv) Ground states belonging to all N from 0 to 2No are not, in 

general, sampled as n increases from 0 to 2 for a fiXed x. No odd N, 

for instance, contributes to the ground states for an attractive 

interaction (x<O) for either system. Also for a repulsive interaction 

(.x>O), the N=3 and N=5 states do not contribute for x<4.6 in case 

of the four-atom ring whereas the N=3 state does not contribute for 

any X>O in the tetrahedral cluster. 
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(v) In a white region, where more than a single N contribute, only 

the two N values corresponding to the two solid black lines 

bordering the relevant white region contribute in general. For 

specific models and/or specific values of the parameters, however, 

it is possible to have extra accidental degeneracies, where more 

than two values of N contribute to the ground state. [Such case can 

be seen, for example, in the tetrahedral cluster for 1.25 < n < 2 for 

all X> 0.) 

For fmite clusters, only two behaviors (i.e. negative second 

derivative in a white region and kinks on the solid black lines) of 

L1(x, n) are found, as discussed above. 

As the number of sites No increases, the structures of Figs. 1, 

2 and 3 may change in a number of ways to lead to the following 

possible scenarios in the limit No~oo: 

( 1) The number of solid black lines might increase with the 

attendant rearrangement of the mixed-N contribution and, in the 

thermodynamic limit, the n-x plane may consist of a continuous 

plane of single N contributions, Le., a ''black" plane. 

(2) The number of solid black lines might increase but remain a 

discrete set; in the thermodynamic limit the n-x plane would still 

look similar to Figs. 1, 2 and 3, but possibly with many more solid 

black lines separated by "white"(mixed N) areas. 

(3) In general it is expected in the thermodynamic limit No~oo, 

that, the n-x plane will exhibit regions of 

(3a) continuous N values ("black" areas) 

(3b) continuous admixture of two N values ("white" areas) 

(3c) isolated' lines of single N values (solid black lines) 

10 
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(3d) perhaps regions of dense but discrete black lines (e.g. all 

rational values of n allowed, all irrational ones not present22). 

In the thermodynamic limit (N o~oo), in a "white" region, 

where more than one N contribute, ..1 is always a continuous function, 

with a continuous a..1/ an, and with a negative second derivative 

;;2..1/ an2 . This property is proven in Appendix-D. In a "black" area or 

line, where a single N contributes, there is a possibility of ..1 behaving 

differently: either it may develop positive second derivatives with 

respect to n, discontinuities in a..11 an, -- Le., kinks -- at discrete 

values of n or possibly other types of pathological behavior. Not all 

structures are physically possible, and each requires individual 

analysis. A kink, however, by necessity arises from the discontinuity in 

the slope, which along with (II. 7) implies a Mott insulator. Other 

singular structures may be characteristic of other phases for the values 

(n*, x"') where they appear. 

In the fmite clusters under consideration here, the 

discontinuities in a..1/ an occur only on the solid black lines. This 

behavior is shown in Figures 4 and 5. The discontinuities correspond 

to a single N at a particular value of n, labelled n • . It is along these 

lines that the "local" chemical potential J.L can be effectively used to 

test the stability of the single-N structures and to distinguish between 

kinks that are "genuine" and those that are "spurious" -- Le., induced 

by the finiteness of the cluster. The "local" chemical potential J.L 

allows a local variation of n at the site in question, whereas the value of 

N in the cluster as a whole remains constant. This procedure "opens 

up" the a-site to be less dependent on its environment, which in this 

case is the small cluster. This partial decoupling emphasizes the local 
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aspects of the many-body problem and may shed light into the 

behavior of the system in the thermodynamic limit, when the 

environment becomes macroscopically large. 

The resulting analysis is valid only in "single-N" regions. i.e .• 

along the isolated black lines. or in a black region, -- a finite interval of 

n around n=n • -- if that is the case in the thermodynamic limit. The 

analysis therefore, in the finite clusters, is carried out not only for the 

discrete values of n where a single N contributes, but also in their 

immediate neighborhoods. 

The working assumption is that. by looking at the behavior of 

L1 as a function of n, as J1. is varied from a small negative to a small 

positive value, one can decide whether the structure of dL1/ an at that 

occupation n is genuine or just an effect of the finiteness of the 

cluster. The result of this analysis may produce the following 

situations in the thermodynamic limit : 

(A) The curve L1(n) takes at n=n • one of the limiting forms 

described in (II.l)-(II.3); in particular the form (II.2) is taken for the 

ferromagnetic case. In such a situation, the exact grand canonical 

ensemble (,u=O) itself yields the appropriate limiting form at the 

occupations in question. 

(B) There is a positive second derivative of L1 with respect to nat 

n=n• : this is a strong indication of instability, with the formation, in 

the thermodynamic limit, of an energy gap in the spectrum, i.e., a real 

kink, as shown in (II. 7). 

(C) If L1 exhibits a negative second derivative with respect to n 

several possibilities other than case (A) arise. 
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(Cl) Even though the second derivative with respect to n is 

negative at n=n * , it becomes positive for values of n reasonably close 

ton* 

(C2) The second derivative with respect to n is negative 

everywhere in the immediate vicinity of n=n * . 

Case (A) should be interpreted as a possible magnetic phase at 

n=n*; case (Cl) as a tendency to the formation of a Matt insulator 

state -- in the thermodynamic limit -- at a value of n close or even 

equal to n*: case (C2) as a "spurious" singularity, i.e .•. a consequence of 

the finiteness of the cluster. 

Figures 6 and 7 display the variation of L1 with n on and around 

each of the solid black lines for th.e four-atom ring and the tetrahedral 

cluster respectively, for various fiXed values of x and at zero 

temperature. Both attractive (x<O) and repulsive (.x>O) values of the 

interaction are considered. The case x>O is more interesting and is 

considered first. For the four-atom ring the following features are 

worth noticing : 

(i) The curve L1 versus n has positive second derivative at and 

around n=l (i.e. half-filled band) for all values of x>O (case (B)). This 

indicates a Matt insulator at that concentration, setting in at arbitrarily 

small repulsive interactions, in agreement with the results of Lieb and 

Wu7. Because of its isomorphism26 to lattices in 2D and 3D, this result 

,. seems to indicate a Matt transition for all .x>O at n=l for all bipartite 

lattices27 in one, two or three dimensions. 

It is interesting to note that if the second-nearest neighbor 

hopping is included, the positive second derivative does not appear at 

n=l, for small positive values of x, but only in a small neighborhood of 
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n=1, Le., case (Cl). Whether that happens for n>1 or n<1 depends on 

the relative sign of the second-nearest neighbor to the first-nearest 

neighbor hopping parameters. As x increases, the interval of positive 

second derivative grows, and covers the n=1 point Le., case (B). In any 

case, the formation of a Mott insulator at the n=1 concentration for all 

X>O is clearly indicated by the test. 

(ii) The N=3 (n=O. 75 ) and N=5 (n= 1.25 ) cases exhibit a transition 

to a ferromagnetic state as a function of x for x=x*=18.5. For J.l=O, Le., 

in the exact grand canonical ensemble, as x increases the local 

particle fluctuation L1 discontinuously drops from a value -0.1946 for 

X<X* to the value 0.1875 given by equation ai.2) for X>X* and remains 

constant for any greater value of x. 

(iii) The curve has negative second derivative at and around all other 

solid black lines. They all belong to the case (C2) discussed above 

except for N=1 and N=7. 

(iv) For N=1 and N=7. L1 takes the limiting form given by (II.2) [case 

(A) 1. The reason is a trivial transition to a spin-polarized behavior 

when a single carrier (electron or hole) exists in the finite lattice. For 

larger clusters this property appears at n=1/No and n=2-1/No which, 

in the thermodynamic limit, are the empty n=O and fully occupied n=2 

lattices. 

From the analysis of the four-atom ring, it is possible to state 

that in the seven partial occupations where Matt-insulator singularities 

may occur for the infinite one-dimensional chain or the perfect square 

lattice, only n= 1 should exhibit insulating behavior for all X>O. This 

behavior agrees with the Monte Carlo calculations for the infinite chain 

and the 2D square lattice29,30. 
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The tetrahedral cluster has a more complicated and 

interesting structure. The main features are : 

(i) The structure at n=1 falls in the category (Cl) discussed above. 

For infinitesimal x (>OJ a small portion of the curve has positive 

second derivative at n-1.05. As x increases, the interval of positive 

second derivative gradually grows, and includes the n= 1 point for 

X> 1.2. This result should be considered as a signature of a Matt 

insulator occurring at n=1 for arbitrarily small positive values of x. 

Interestingly, this behavior at n= 1 is similar to the four-atom ring with 

positive second-nearest-neighbor hopping: when the second nearest

neighbor hopping parameter in the ring is equal to the nearest

neighbor hopping parameter, one obtains.a system topologically 

identical to the tetrahedral cluster. 

(ii) There is a transition to a ferromagnetic state for all X>O as a 

function of nat n=1.25 (N=5). The curve around the solid black line at 

this occupation assumes the limiting form of ar.2). This behavior is 

not observed for the ring with second nearest neighbor hopping (:;~: t) 

and seems to be intrinsic to the tetrahedral cluster and possibly to the 

fcc lattice in the thermodynamic limit, of which the tetrahedral 

cluster is the basic building block. 

(iii) The curve Ll(n) has the form ar.2) in the full interval 1.25 5 n 5 

2 . This behavior is related to the accidental degeneracies shown in 

Fig 2. 

(iv) There is the small-cluster induced spin-polarization behavior at 

N=1 (n=0.25) and N=7 (n=1. 75), characteristic of all four-atom 

clusters. 
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In order to ascertain whether a spin-polarized (ferromagnetic) 

state exists at a given occupation in the thermodynamic limit, one 

could use an extension of the analysis with the local chemical potential 

J.l.. Thus, for instance, one could increase n from n= 1 by increasing J.l. 

to the proper value corresponding to n=1.25 while staying within the 

N=4 subspace. One then looks for a 'flow' of the ground state from a 

spin-'unpolarized' state at n=1 to a fully spin-polarized (ferromagnetic) 

state at n=1.25, and as a result whether L1 at n=1.25 assumes a value 

given by ar.2}. The result holds for the tetrahedral cluster, indicating 

that the ferromagnetic transition in the tetrahedral cluster might 

survive in the thermodynamic limit possibly at an occupation close to 

n=1.25. On the other hand, similar analysis at n=0.25 (N=1}, by 

changing the occupation from n=0.5 down to n=0.25 by decreasing J.l. 

while remaining within the N=2 subspace32 shows that the ground 

state does not 'flow' into a spin-polarized state at n=0.25 indicating 

that the transition to a magnetic state is 'spurious', Le., a consequence 

of the finite number of sites in the cluster. Similar analysis by 

decreasing n from n=1 to n=O. 75 while remaining within the N=4 

subspace for X> 18.5 for the four-atom ring does not also result in a 

'flow' into spin-polarized state. This implies that in the 

thermodynamic limit, this transition to a fully spin-polarized 

(ferromagnetic) state does not occur at n=O. 75 (or 1.25) but at 

N=No:t1 in accordance with the results of Nagaoka33. 

For an attractive interaction x<O, on the other hand, the ..1-n 

curve always has a negative second derivative everywhere in the 

vicinity of each solid black line (case (C2)), implying that there are no 

Mott insulators or magnetized states. the only interesting feature is 
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the absence of the N=odd values for either system at all values of x<O. 

This result indicates a tendency of the electrons to pair, which might 

imply superconductivity (Cooper pairing) or physically bound 

bieleetrons, which might lead to Bose-condensation. 

III. Discussion 

By introducing a local chemical potential at a single site of a 

small cluster, the local occupation of that site can be allowed to vary 

with respect to the average site-occupation of the cluster as a whole. 

This partial decoupling of one site from the rest should be more 

sensitive to the local environment of the particular site than to the 

overall size and shape of the cluster. 

This technique has been applied to clusters with varying 

occupation of particles, after the analysis of particular global states has 

been completed. Since the smallness of the cluster allows only a finite 

number of average occupations, the method proposed here introduces 

additional continuity into an essentially discrete system. It is thus 

possible to analyze differential properties of occupations, and analyze 

the local stability of particular solutions, distinguishing behaviors 

which are 'genuine' properties of the system as a whole (those that 

might survive in the thermodynamic limit) from those 'spurious' 

properties which are caused exclusively by the finiteness of the 

cluster. 

Two examples were analyzed. Both are Hubbard models in four

atom clusters with different connectivities : a four-atom ring 

(representative of the infinite chain, 2D square lattice and the bee 
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lattice) and a tetrahedral cluster (representative of the fcc structure). 

The following results were obtained : 

(1) The n=l half-filled band exhibits for all cases 'genuine' Matt

insulating states for all repulsive interactions. 

(2) In bipartite lattices, the inclusion of an arbitrarily small second

nearest neighbor hopping seems to decrease the stability of the Matt

insulating state, although no supression has been observed. 

(3) The intervals 0 .$;n 5 0.25 (0 5n 51 /No for an arbitrary cluster of 

size No) and 1. 75 .$;n .$; 2 (2 - 1 /No .$; n .$; 2) yield trivial uninteresting 

result corresponding to a single electron or a single hole. The states 

are always fully spin-polarized and may or may not represent the 

behavior in the thermodynamic limit. 

(4) The tetrahedral cluster exhibits a ferromagnetic state in the 

interval 1.25 .$;n .$; 2, which remains stable under the test of the flow of 

states with changing local chemical potential J.l. • 

(5) The four-atom ring exhibits a ferromagnetic state at n=O. 75 and 

n=1.25 in the exact grand canonical ensemble (J.l.=O) for X>18.5. Such 

state at the above fractional occupations is the well-known Nagaoka 

ferromagnetic state at N=No ±1 , and is not stable under the applied 

variable J.1. test: in the thermodynamic limit, in accordance with 

Nagaoka's theorem33, this feeble ferromagnet could only occur at n=l, 

Le., only (exactly) at N=No ±1 . 

(6) Attractive interactions lead to 'genuine' instabilities of odd N 

number states and 'genuine' stable conditions for even N. No magnetic 

solutions or Mott insulators appear in this case. Indication of electron 

pairing (Le., either Cooper pairs or bielectrons) is clearly evident. 
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Proof of equation (II. 6) . 

ft2 = fhat + haJ,)2 

= ft + 2 hat fta.J. 

APPENDIX-I 

because hat and fta.J. are projection operators. e.g. fhat J2 = hat 

Thus (!.2) yields : 

At -c=O. 

L1 = <<ft2>> - n2 = n(l- n) + 2 <<hat fta.J. >> . (AI.l) 

N oEa = <H> = <HT> + x :E <fttt ftu > , 
t 

= <HT> + X No <hat ha.J. > , (AI.2) 

where use has been made of the assumption that all the No sites have 

identical occupations and the ground state does not have any 

spontaneously broken symmetry. Le .• there are no spin-density waves 

or spiral spin arrangements. In the equation above. < ... >denotes the 

quantum mechanical expectation in the ground state. HT is the 

(nearest neighbor) hopping part of the hamiltonian H and is 

independent of interaction parameter x. Use of the Feynman-Hellman 
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theorem on (AI.2) together with (AI.1) at zero temperature proves 

result ar. 6). 

APPENDIX-II 

This appendix proves that in a 'white' region (ignoring the 

special case of accidental degeneracies) ..1 has a negative second 

derivative with respect to n. For a given value of x, let n- and n+ (n- < 

~) be the occupations containing the solid black lines that border the 

'white' region in question to the left and right respectively. An 

arbitrary occupation n, and the local particle fluctuation . ..1 at n inside 

the white region (Le., n- < n < ~) are given by the interpolation 

formulas: 

n = A n- + (1 - A) ~ . 
• (AII.1) 

..1 = A <<~2>>- + (1 -A) <<~2>>+ - n2 • 

= A (..1- + n- 2) + (1 - A) (..1+ + ~ 2) - n2, (AII.2) 

where subscripts - and + refer to averages on the solid black lines at 

n- and n+ respectively. Inversion of WI.1) and use of that result in 

(AII.2) yields . 

..1 = 

The first two· terms on the RHS of (AII.3) are linear in n and, 

therefore. 
a2..1 
an2 = -2 < 0. 

which is the result quoted. 
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FIGURE CAPTIONS 

Figure 1. The "solid" (black) lines where a single N contributes to the 

ground state, for the four-atom ring and repulsive interactions (x > 0). 

The white areas are regions where more than one value of N 

contribute. The dashed line indicates the value x=4.6 above which the 

solid lines at N=3 and N=5 appear. Note they-axis (.1) is in the LOG 

scale. 

Figure 2. Same as Figure 1 for the tetrahedral cluster. 

Figure 3. Same as Figure 1 for either cluster and attractive 

interactions (x < 0). 

Figure 4. Quantum mechanical particle fluctuation .1 in the four-atom 

ring at the a-site in the exact grand canonical ensemble (JJ.=O). "Solid" 

black lines where discontinuities in iJ.1/ an occur are drawn. Both 

attractive and repulsive interactions are considered and values of x are 

indicated. 

Figure 5. Same as Figure 4 for the tetrahedral cluster. 

Figure 6. Quantum mechanical particle fluctuation .1 caused by the 

variation of the local chemical potential J.l. at the a-site in the four-atom 

ring on and around the "solid" black lines of Figure 4. Grey areas are 

regions away from the solid black lines where the analysis with non

zero J.l. is not appropriate. 
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Figure 7. Same as Figure 6 for the tetrahedral cluster (Figure 5). 

/'-. 
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