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We investigate the properties of non-rotating as well as rotating 

neutron stars in the framework of Einstein's theory of general 

relativity. The nuclear equation of state of neutron star matter 

(electrically charge neutral many-baryon/lepton system) is calcu­

lated for the relativistic Hartree- and Hartree-Fock approxima­

tions. The influence of two-particle correlations on the equation 

of state is taken into account, too. An important result is that 

the limiting rotational frequency of a neutron star is set by insta­

bility modes caused by gravitational radiation reaction, which set 

in well below the Keplerian frequency. 

1 INTRODUCTION 

The number of observed pulsars has increased very rapidly during the last 

few years. Up to date about 500 pulsars are known. The fastest of them have ro-
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tational periods in the millisecond range, e.g. P(PSR 1937+21)=1.558 msec (i.e. 

Ofp = 0 1937+21 = 4033 s-1
) and P(PSR 1957+20)=1.6 msec1 . The pulsar PSR 

1913+16, whose mass has been very accurately determined to be (1.442±0.003) 

M8 , rotates at a period of P(PSR 1913+16)=59.0 msec. Figure 1 gives an 

overview of the number of observed pulsars as a function of their periods2 • 
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Fig. 1 Distribution of pulsar periods. The fastest pulsars 
have periods of 1.6 msec. 

An estimate of the average energy density € of a millisecond pulsar shows 

that its value has to be about as large or larger than nuclear density,3 i.e. 

€ ~ fo ~ 2.5 · 1014 g/cm3 where fo is the saturation density of normal nuclear 

matter. Since the energy density increases monotonically toward the center on 

the star, the central density must be even higher. Therefore the sources of 

pulsars are interpreted as rotating (and highly magnetized) neutron stars. The 

analysis of the properties of these objects is consequently of great interest. 

For the construction of realistic neutron star models one has to resort to 

Einstein's theory of general relativity. Einstein's curvature tensor QIL 11 is coupled 

to the stress-energy density tensor TIL 11 of matter ( G denotes the gravitational 

constant): 

(1.1) 

The source term of Eq. (1.1), i.e. the tensor TIL 11 , is derivable from tf!e star's 
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matter Lagrangian Cm,3 - 5 

for each matter field x. (1.2) 

The Lagrangian Cm of Eq. (1.2) is a rather complicated function of various 

baryon (p, n, 'E±,o, A, :::;o,-, ~ ++,+,o,-), meson (a,w, 1r, (!, ... )and lepton ( e-, Jl-) 

fields4 - 7 in the case of neutron star matter. Nuclear many-body physics and 

astrophysics are connected through Eqs. (1.1) and (1.2): 3 Once the equation of 

state (EOS), i.e. the functional dependence of pressure P on energy density t, 

P( t), of the many-body system has been calculated from the Lagrangian of Eq. 

(1.2), the source term of Eq. (1.1) is determined (T = T( t, P( c)) and Einstein's 

field equations can be solved for the properties of neutron stars. 

2 NEUTRON STARS 

Neutron stars are objects of highly compressed matter. Typical densities in 

the cores of massive collapsed star models are4 •5 f2 < 10 g0 . Therefore the geom­

etry of space-time is changed considerably from flat space over the dimensions 

of the star ( ~ 60%; it changes however only by ~ 10-19 of this over the spacing 

of nucleons in the star )3 . 

2.1 NON-ROTATING STARS 

For a static spherically symmetric star, the line element has the following 

form 

(2.1) 

where <P(r) and .A(r) are metric functions which are solutions to Einstein's 

equations. In this special case, the stellar structure equations have the form 

(Oppenheimer-Volkoff equations ): 8 

2 d ( ) Gm(r)dm(r) 47rr p r =-
2 r [ 1 P(r)] [ 47rr

3
P(r)l [ _ 2m(r)G](-l ) + ( ) 1 + ( ) 1 2.2 t r m r r 

dm( r) = 47r r2 t( r) dr . (2.3) 

Equations (2.2) and (2.3) are to be integrated outward from the origin (r = 0, 

m(r = 0) = 0) of the star after picking a value of the central energy density 
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€c = €(r = 0) till the pressure P(r) vanishes. This defines the radius Rs of the 

spherical star (P(r = Rs) = 0) and its total gravitational mass Ms (= m(R8 )). 

2.2 ROTATING STARS 

The treatment of rotating neutron stars in the framework of general relativity 

is much more complicated than the non-rotating case9 • An adequate method, 

developed by Hartle, 10 is based on a perturbation solution on the Schwarzschild 

metric. Expanded through second order in the star's rotational velocity n, it 

can be written as 

ds2 = -e2 vdt2 + e2 t/J (d</>- wdt) 2 + e2 ~' dfP + e2 >.dr2 + 0 (~:). (2.4) 
c 

The frequency w is the angular velocity of the local inertial frame and depends 

on the radial coordinate r. It is proportional to n (dragging of the local iner­

tial frame). The velocity S1 is a constant throughout the star's fluid (uniform 

rotation). Equation (2.4) is correct up to terms O(S13 /S1~), with the "critical" 

velocity nc given by 

This corresponds to the Newtonian balance of centrifuge and gravity. The metric 

functions in the perturbed line element of Eq. (2.4) have the form (for details, 

see Refs. 10-12) 

e2
v = e2<I>[1 + 2 (ho + h2P2)], 

e2 t/J = r 2 sin28[1 + 2 (v2- h2) P2], 

e2 ~-' = r 2[1 + 2 (v2- h2) P2], 

2>. (· 2 mo +m2P2) e = 1 +- 2mG r 1---
r 

( 2mG)-1 

1--- . 
, r 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

The monopole and quadrupole functions h0 , m 0 and h2 , m 2 , v2 , respectively, 

occuring in Eqs. (2.6)-(2.9) describe the deviation from spherical symmetry. 

They are given as solutions of coupled sets of differential equations which will 

not be given here for the purpose of brevity10 - 12 . 
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An absolute upper limit on stable neutron star rotation is set by the Kepler 

frequency nK, which is the maximum frequency a star can have before mass 

loss at the equator sets in (mass shedding). The general relativistic expression 

for nK, denoted by n~R, depends on the underlying metric of Eq. (2.4), i.e.9 

w' 
V =- et/J-v 

2'1/J' 
(2.10) 

which is to be evaluated at the star's equator ( c=1 in our units, primes denote 

derivatives with respect to the radial coordinate). 

3 NEUTRON STAR MATTER 

This Section deals with the determination of the equation of state of neu­

tron star matter. From theoretical investigations4 -
7 it is known that the basic 

constituents of such matter are protons, neutrons, and heavier baryons (i.e. 

"±,o A o;:"O,- .6. ++,±,o) interacting via the exchange of scalar- vector- and 
LJ ' ' ...... ' ' ' 

isovector mesons (a,w, 1r, {!, ... ). A certain number of leptons are necessary in 

order to keep the whole system electrically charge neutral4 . A realistic determi­

nation of the EOS has been the subject of much effort for many years without 

a general consensus13 • The models of neutron (and nuclear) matter treated so 

far differ mainly in the density dependence of pressure, P( f.). One can hope to 

shed light on the functional dependence of P( f.) by applying different equations 

of state for solving the stellar structure equations of Section 2 since knowledge 

of P(€) over a large density range f. (i.e. f.< 10€0 ; f.o ~ 140 MeV/fm3 is the 

energy density of normal nuclear matter at saturation) is necessary, and the bulk 

properties of the resulting star configurations are known to depend sensitively 

on the EOS3-S,IJ-Is. In this work, we use EOSs calculated for the relativistic 

Hartee and Hartree-Fock approximation for charge neutral many-baryon/lepton 

neutron star matter4
'
5

• As a special feature, we take the influence of two­

particle correlations on the EOS into account12 ,15 . To achieve this goal, one has 

to go beyond the above approximation schemes and to introduce an effective 

interaction16 (two-body potential, scattering (T) matrix) in neutron matter. 
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3.1 MATHEMATICAL TREATMENT 

It has been shown elsewhere how the relativistic Hartree, Hartree-Fock, and 

so-called A (Brueckner-type two-body correlations) approximations can be de­

rived from the Martin-Schwinger hierarchy16• The latter couples the 2n-point 

Green's functions, 9n(1, .. , n; 1', .. , n'), with respect to all orders of n ( =1,2, .. ) 

with each other and can be truncated via an appropriate factorization procedure 

of higher-order Green's functions. In the case of the relativistic A 00 approxima­

tion, this leads to the following integral equation for the T matrix: 16 

T = V - Vex + J V ( 9~ 9~ ] T . (3.1) 

The quantity v sums the meson-exchange potentials describing the nucleon­

nucleon interaction in free space (direct- and exchange term). We have used 

the coupling strenghts and masses of the H EA 17 and Bonn 18 models for the 

calculation of the T matrix in matter15 . The functions 9~ in Eq. (3.1) denote 

the free two-point Green's propagator which results from the full 91 propagator 

(see Eq. (3.4) below) by setting the mass-operator (self-energy) :E equal to 

zero. Physically, the latter quantity plays the role of an effective single-particle 

potential which takes the influence of the nuclear background-medium on the 

propagation of a certain baryon (described by 9B) in matter into account. In 

the case of the A method, the self-energy is given by16 

:E A = i J [ tr (T 91) - T 91 ] . (3.2) 

Because of the difficulties of the A approximation, 15•16 we have treated this 

method forB= n only, i.e., restriction to neutrons as the only present baryons 

in neutron star matter. We will see in the discussion that this is a reasonably 

good approximation for matter up to4 •5 g :.::::: 2 g0 • This density value therefore 

sets the upper limit of the applicability of the A method (for the determination of 

a realistic neutron star matter EOS). (Other reasons restricting the application 

of this method are discussed in Refs. 15,16.) The full many-body problem (i.e. 

lepton-baryon population) is treated in the framework of the relativistic Hartree­

Fock method. It results formally by replacing the full T matrix of Eq. (3.1) by 

its "Born" term v -vex. Re-expressed in terms of free meson propagators, .6. M, 
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the self-energy is then given by5
•
15 

J ( tr ( ~ M gf') - ~ M gf' ] . ~B,HF = 

M=(f,W rr,o B'=p,n,E±,o,A,::::o.- ,Ll ++.+.o.-

(3.3) 

Since the coupling parameters of neither the H EA nor the Bonn potential sat­

urate nuclear matter in the Hartree-Fock description, one is forced to re-adjust 

them such that the bulk properties of nuclear matter at saturation (binding 

energy, compression modulus, effective mass, charge symmetry coefficient) can 

be reproduced4 •5 • The baryon propagators gf in Eqs. (3.2) and (3.3) satisfy 

Dyson's equation, 

(3.4) 

which in turn terminates the set of equations that is to be solved self-consistently, 

subject to additional constraints like charge neutrality4 •5 • As in the non-relati­

vistic theory, it is sufficient for the calculations of the properties of the system to 

determine the so-called spectral function. One can deduce the following spectral 

representation for the Fourier transformed baryon propagator:5 •16 

B JL -j+oo a8 (w,p) 
g 1 (p ) - -oo d W W - (pO - J-L B) ( 1 + i 1J) • (3.5) 

The rather complicated many-body problem is then shifted toward.calculating 

~B in combination with the spectral functions a8 . The EOS can be expressed 

in terms of these functions alone and follows therefore immediately once self­

consistent solutions of Eqs. (3.1)-(3.5) have been found5 •12 •16 . 

3.2 EQUATIONS OF STATE 

Our equations of state, calculated as outlined in the foregoing Subsection, 

can be classified as follows: 

(a) a relativistic Hartree EOS4
•
5 (denoted by HV) calculated for electrically 

charge neutral neutron star matter (at zero temperature) in generalized (3 equi­

librium, allowing for the population of hyperon/baryon states with masses lower 

or equal to mLl, 

(b) a relativistic Hartree-Fock EOS5 (denoted by H FV) calculated for matter 
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under the same conditions as given in (a), 

(c) a relativistic EOS calculated for pure neutron matter at densities 0.02 < 
12 jfm - 3 < 0.28 which takes into account two - particle correlations (in the so­

called A 00 approximation) using the Machleidt-Holinde-Elster Bonn potential 

and is combined with the HV EOS for 0.28 < 12/ fm-3 < 1.2. The EOS calcu­

lated in this way is denoted by A ~onn + HV, 15 and 

(d) a relativistic EOS similar to (c), but using the Holinde-Erkelenz-Alzetta 

(HEA) potential. It is denoted by A~EA +HFV 15 . 

For the neutron star calculations presented here, equations of state (a)-( d) 

have been combined with the ones of Harrison and Wheeler for the outer surface 

of the star, and Negele and Vautherin for the inner surface region. Table 1 gives 

an overview over the EOSs: 

Table 1 Equations of state of this work 

Model Equation of state 
(Interactions) 

Mass density range Composition 
[g/cm3

] 

Aoo 
Bonn 

Aoo 
HEA 

HV 

HFV 

Harrison-Wheeler 7.8 < € < 1011 

Negele-Vautherin 

Relativistic A 00 approximation 1013 < € < 5 · 1014 

(T matrix); based on the Bonn 
meson-exchange potential 
(u,w, 1r, g, TJ, b) 
Same; based on the HEA 1013 < E < 5 . 1014 

meson-exchange potential 
(u,w, 1r, g, TJ, b, </>) 
Relativistic Hartree approxi- 1013 < E < 9. 1015 

mation (u,w, g) 
Relativistic Hartree-Fock ap- 1013 < E < 9. 1015 

proximation ( u, w, 1r, 12) 

4 RESULTS 

Crystalline; light 
metals, electron gas 
Crystalline; heavy 
metals, relativistic 
electron gas 
Neutrons 

Neutrons 

The equations of state, i.e. pressure P versus energy density E, calculated 

for the relativistic A 00 , Hartree (HV) and Hartree-Fock (H FV) approximations 

are graphically depicted in Fig. 2 over a wide range of energy densities E 
5

• The 
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symbols €0 , fHFV, and fHV denote the energy density of normal nuclear mat­

ter and those values at which the population of hyperons for the H FV (~-) and 

-HV 

-.- AOOBoilll 

,.,. 
/ 

7· 
;l 

/' 
//. 

N 
~~· 

HFV 

60 100 600 1000 

E [MeV/fm3
] 

6000 

Fig. 2 Neutron star matter equations of state of this 
work. 

HV (A hyperon) EOSs sets in, respectively. One sees that at large densities the 

EOSs stay causal (P(€) = € is the stiffest possible EOS). This is an important 

constraint on a realistic EOS. It should be noted that the constraint of causality 

is in general a problem for non-relativistic treatments6 • Characteristic for the 

inclusion of two-particle correlations is the reduction of pressure ("softening") 

at a given value of € relative to Hartree and Hartree-Fock EOSs15 •16 . This is 

demonstrated in Figure 2 for the A '}Jonn EOS. 

The lepton-baryon compositions of a neutron star calculated for the HV and 

H FV EOSs are shown in Figs. 3 and 4, respectively4 •5 . The vertical axes give 

the densities of leptons (e\ .X = e-, f-l-) and baryons (e 8 , B = p, n, .. ) relative 

to the total baryon density e (= L:B e8). As already mentioned in Section 

3, at small nuclear densities neutron star matter is composed of nearly 100% 

neutrons. At larger e values however, the lepton-baryon populations calculated 

for HV and H FV are radically different5 . In the former case the A particle pos-

10 
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sesses the lowest threshold of the more massive baryon states (that are allowed 

to become populated in the framework of a self-consistent solution of Eqs. (3.3)­

(3.5); universal coupling is assumed throughout4
•
19

) . 

1 o-4 LUJ...L.W.u...uu.J...uw...I.LL.Jc..w...J...LJ...L..Uc..w...LL..U 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

p [fm-3
] 

Fig. 3 Lepton-baryon pop­
ulation in neutron star mat­
ter calculated for HV. 

1o-4 L..J..J...L.W..JJ.L.JL..L.L.LJ..J...u..J......._J.....L.J,.L.W..W....LL..U 

0.00 0.25 0.50 0. 75 1.00 1.25 1.50 

p [fm-3
] 

Fig. 4 Lepton-baryon pop­
ulation in neutron star mat­
ter calculated for H FV. 

The actual threshold density is (/'• ~ 0.28 fm- 3 . In contrast to this, the ~­

state becomes populated first in the case of the H FV EOS, (Jr. ~ 0.22 fm- 3 . 

With increasing values of(] the more massive baryon states become successively 

populated, depending on charge and isospin of the particle in question. (Nega­

tively charged baryons are "charge-favored" and baryons having the same isospin 

projection as the neutron are "isospin-unfavored" .4 ) 

Table 2 summarizes the bulk parameters of our non-rotaing (spherical) neu­

tron star studies for the four EOSs under consideration.15 That quantity that 

is most sensitive against the softening caused by two-particle correlations is the 

star's radius (third row). 

11 



Table 2 Bulk properties of non-rotating maximum mass neutron stars (taken 
from Ref. 15) 

HV A~onn + HV HFV A~EA+HFV 

log(Ec/(g · cm-3
)] 15.37 15.37 15.38 15.38 

Ms/MG 1.976 1.969 2.198 2.195 
Rs (km] 11.34 10.97 10.70 10.63 
log(I/(g · cm2 )] t 45.31 45.30 45.38 45.38 
z 0.4355 0.4593 0.5945 0.6018 

t The symbols I and z denote the moment of inertia and fractional redshift, 
respectively. 

The influence of rotation on the properties of neutron stars is shown in Table 

3 for stars rotating at their mass limits (i.e., [dMjdEh-=0 and [dMjdE]E>£ <0)15 . 

These values have been calculated under the assumption that the Keplerian 

frequency n~R, defined in Eq. (2.10), determines the upper limit of stable neu­

tron star rotation (which may however not be true, see below). An important 

result is that Hartle's method predicts a mass increase due to rotation at the 

mass limit of about !:::,.M / Ms ~ 20%, depending on the underlying EOS. This 

finding is in very good agreement with the results obtained by Friedman, Ipser, 

and Parker,9 who solve Einstein's field equations exactly, and may give a hint 

Table 3 Influence of rotation on the properties of neutron stars rotating at the 
mass limit (taken from Ref. 15). 

HV A~onn + HV HFV A~EA + HFV 
ncR 

K (104 ~] 0.92 0.98 1.18 1.19 

log(Ec/(g · cm-3
)] 15.15 15.15 15.23 15.23 

M/M0 2.26 2.25 2.52 2.51 
l:::,.M/Ms 0.20 0.20 0.18 0.18 
Req (km] t 14.8 14.2 13.0 12.9 
Rp (km] 10.2 9.6 9.0 8.9 
log(I/(g · cm2

)] 45.36 45.35 45.39 45.39 
VeJ 0.55 0.56 0.64 0.64 

t By Req and Rp we denote the equatorial and polar radius, respectively. 
t The orbital velocity of a mass point located at the star's equator is denoted 
by Veq· 
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that Hartle's formalism - developed originally for "slowly" rotating, massive ob­

jects - can be applied for the investigation of rotating star configurations with 

rotational frequencies of R: 104 s-1 
. 

0 
::!I 

.......... 

2.25 

2.00 

::!I 1.75 

1.50 

1.25 

14.6 14.8 15.0 15.2 15.4 

log [€0 / (g/cm3
)] 

Fig. 5 Gravitational star mass vs. central energy density 
for star models HV and A~onn + HV. 

15.6 

Figure 5 displays the gravitational neutron star mass as a function of central 

energy density for both the non-rotating (the two lower lying curves) as well as 

rotating star models HV and A ~ann + HV. The upper lying curves show the 

increase of mass due to rotation at the limiting (Keplerian) frequency. Two­

particle correlations lead to neutron stars with smaller equatorial radii (5th row 

of Table 3). Thereby these stars will rotate at higher rotational frequencies when 

reaching the instability point at which mass shedding sets in. 

Figure 6 exhibits the Kepler angular velocity nx:.R as a function of gravi­

tational mass of the rotating neutron star15 . Different EOSs lead to a quite 

different dependence of nx:.R on M. 

13 
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Fig. 6 Keplerian frequency vs. rotational neutron star 
mass. 

The end point of each sequence marked by a cross denotes the maximum Kep­

lerian frequency compatible with the underlying EOS (the corresponding values 

are given in the first and third row of Table 3). 

Up to now we have assumed that the Keplerian frequency, determined at the 

neutron star's mass limit, sets the limit of stable rotation. Other types of insta­

bilities however may already set in at lower rotational velocities. A dominant role 

is played by the so-called non-axisymmetric dynamical instabilities. These are 

excited by gravitational radiation-reaction and moderated by viscosity20 . The 

corresponding instability frequencies, n~, depend on the order of the instability 

mode (subscript m) and on viscosity (superscript v)15
•
20

• The latter depends 

on the star's temperature. We assume values for v in the range of 0 < v < 200 

cm2s-1 . For th~ purpose of orientation, v ~ 100 cm2s-1 corresponds to a fluid 

temperature ofT ~ 109 K. For decreasing temperatures, v(T) increases rapidly 

like vex T- 2 • A value of v ~ 200 cm2s-1 may serve as a rough upper bound on 

viscosity of ("cold") neutron star matter. 
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AOOHEA+HFV 

HV 

Otp-

M=1.5 M0 

I I 
HFV 

AOOBonn+HV 

Aooaonn+HV 

VooHE4+HFV 

HFV ~ .(' 

3000 4000 5000 6000 7000 8000 
Instability frequencies om, [s-1

] and oGRK [s-1
] 

Fig. 7 Instability frequencies n~ and n~.n for different 
EOSs. 

Figure 7 shows the calculated instability frequencies n~ in comparison with 

the Keplerian values for the different EOSs15 . The underlying star model has 

a gravitational mass of M = 1.5 M0 ( cf. MpsR(1913+l6))· The frequencies n~ 

are shown for modes m = 3, 4, 5, 6. It follows that the maximum rotational 

frequency of stable neutron star rotation is clearly set by the n~=,;>4 mode (left 

lying crosses), which is roughly 40% smaller than n~R for the same EOS, and not 

by the Keplerian frequency. One sees that the HV EOS may not be compatible 

with the existence of rotating neutron stars at frequencies ~ nfp _ 1.6 msec 

(Sect. 1) and having gravitational masses of M ~ 1.5 M0 as a slowly rotating 

star. 

5 SUMMARY 

We have studied the properties of non-rotating as well as rotating relativistic 

neutron stars. The properties of the former follow from the Oppenheimer-Volkoff 

equations. The treatment of rotating neutron stars is much more complicated. 

Our investigation is based on Hartle's formalism. This method solves Einstein's 

general relativistic field equations by means of a perturbation solution on the 

15 



Schwarzschild metric of spherically symmetric, non-rotating massiv~ objects. 

It turns out that when using a proper method for constructing the limiting 

rotational frequency of a neutron star, Hartle's formalism leads to results for 

its bulk properties (especially its gravitational mass) that are of comparable 

size with those obtained by solving Einstein's equations exactly15 . A detailed 

investigation of the instability modes caused by gravitational radiation-reaction 

shows that this mechanism sets the upper limit on stable neutron star rotation 

(for a young and therefore hot star), and not the Keplerian frequency. 

Our investigaton is based on "realistic" neutron matter equations of state, 

which incorporate the essential physical features of electrically charge neutral 

high-density matter in f3 stable equilibrium (i.e., baryon/lepton population, 

causality). An additional basic feature of our EOSs is the inclusion of two­

particle correlations over a certain density range by introducing a relativistic 

scattering (T) matrix in matter. The masses and coupling strenghts of the 

H EA and Bonn meson-excha~ge potentials are used for its calculation in the 

so-called A 00 approximation. Our EOSs allow for a systematic investigation 

of the influence of different many-body treatments (i.e. Hartree, Hartree-Fock, 

A 00 ) on the bulk properties of (non-) rotating neutron stars. 
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