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ABSTRACT 

A new theory of Low Energy Electron Diffraction (LEED) is presented in which the 

relevant multiple scattering equations are solved in the angular momentum representation 

within the framework of real-space multiple scattering theory (RS-MST). This approach 

avoids the plane wave basis used in many conventional LEED techniques and its associated 

limitations when applied to the calculation of LEED intensities from open surfaces con

taining small bulk interplanar spacings. In particular, high Miller index, stepped surfaces 

which lie beyond the present capabilities of conventional LEED, can now be treated in a 

relatively efficient and convergent manner. The new theory is tested by evaluating I-V 

spectra from the (100), (311), (331) surfaces of Cu which are compared with the results of 

a layer doubling (LD) LEED calculation. Excellent agreement is obtained in the (100) and 

(311) cases, for which the LD approach is expected to be applicable. The (311) surface is 

about the highest index fcc surface which can reasonably be attempted with the existing 

approaches. The results obtained for the case of the (331) surface using the LD and the 

RS-MST approaches agree up to about E = 100eV, beyond which the LD process fails to 

converge. We discuss and contrast the convergence properties of both methods. 
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I. INTRODUCTION 

Steps at single-crystal surfaces are known or suspected to be important models for 

understanding processes in many technologies. Yet the atomic-scale structure of steps and 

adsorbates thereon has hardly been studied: there is a substantial lack of knowledge of 

interlayer spacings, bond lengths and bond angles at stepped surfaces. 

Steps are a very important case of surface defects. There is ample evidence that they 

can strongly influence certain chemical reactions in heterogeneous catalysis, by providing 

active sites for bond breaking and bond formation, or even perhaps by interfering with sur-

face diffusion 1 . Necessary reaction intermediates may well require certain step structures 

for their existence. Steps are also prominently implicated in crystal growth, by providing 

nucleation centers and by enabling an orderly growth process1 • Steps may furthermore 

affect the mechanical properties of solids, through the pinning of dislocations and crack 

propagation. 

Atomic-height steps are the prime example of defects at surfaces which can be created 

and controlled at will, in contrast with point defects, which exist in too many varieties. 

Steps are common on most experimentally-prepared surfaces. Scanning tunneling mi

croscopy has shown 3 that they usually cover a much larger fraction of a well-prepared 

surface than point defects. This is because many point defects at surfaces (e.g. the emer-

gence points of bulk screw dislocations) necessarily require surface steps for their existence: 

thus these point defects are accompanied at any surface by much larger step defects. 

For surface studies, relatively regular arrays of steps are prepared by intentionally 

cutting a bulk crystalline sample at well-defined "vicinal" orientations near a close-packed 

crystallographic orientation. Each vicinal orientation implies a different type of step struc-

ture, e.g. terraces of variable width with (111) orientation and step faces with (100) 

orientation, or steps that are kinked (i.e. not straight on the atomic scale )1 •4 •5 . 
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Low-energy electron diffraction (LEED) patterns have provided considerable informa-

tion on the qualitative nature of such steps6•7 • For instance, it is found that steps on many 

metal surfaces often have a single-atom height, while many semiconductor surfaces tend to 

have a double-atom height (as is easily understood from the possible terminations of the 

respective bulk lattices). Field-ion microscopy (FIM)8 and scanning tunneling microscopy 

(STM? have delivered graphical confirmation of such results. STM has elucidated qualita-

tive step structures at semiconductor surfaces, where ambiguities in the bulk termination 

lead to several a priori possible structures9
• In addition, STM has shown how prevalent 

wide-terrace steps are on many surfaces that appear step-free to LEED, because of the 

limited instrumental response (coherence length parallel to the surface) of LEED. 

The atomic-scale structure of steps and of adsorbates thereon has received little atten-

tion, compared to the structure of low-Miller index surfaces. In the case of clean stepped 

surfaces, only a few experiments have been able to determine atomic positions with any 

precision. These are primarily LEED analyses on surfaces like fcc(311) and (331), and 

bcc(210), (211) or (310)2•10 : these surfaces have very narrow terraces, so that the successive 

steps presumably interact electronically and the terraces cannot accommodate adsorbates 

away from the steps. 

Various kinds of theory have been applied to clean stepped surfaces, but few have at-

tempted to optimize atomic positions. Such theories are usually empirical or semiempirical 

due to the geometrical complexity of steps. One study that did obtain atomic relaxations 

has shown that complex multilayer relaxations occur, with atomic displacements both 

perpendicular and parallel to the surface11 • Such displacements have already been found 

experimentally in less stepped surfaces, such as fcc(311) and bcc(211 )10 • Another study 

analyzed possible multi-atom height structures of steps at semiconductor surfaces 12 . 

In the case of adsorbates on stepped surfaces, structural analyses have been performed· 

in only a few cases. One example is the adsorption of oxygen on Cu( 410), as studied by 
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angle-resolved photoelectron diffraction, in which the location of oxygen atoms in the 

step and on the terrace were determined13 . Another example is the adsorption of CO 

on stepped Pd surfaces, investigated with electron-stimulated desorption - ion angular 

distribution (ESDIAD) 14 : the CO molecules were found to be intact and inclined from 

the terrace normal toward the macroscopic surface normal, but the point of adsorption 

(e.g. whether at the top of the step or in the in-step region) could not be determined. In 

certain cases (as with CO adsorption), high-resolution electron energy loss spectroscopy 

(HREELS) has been used to determine the mode of bonding of an adsorbate to a stepped 

surface15 • A few theoretical studies of adsorption at steps have been performed, also using 

empirical or semiempirical methods16 • 

To date, most theoretical calculations of LEED I-V spectra have been based upon 

a layer Korringa-Kohn-Rostoker method in which the semi-infinite surface is partitioned 

into layers of atom:s parallel to the surface. The LEED wavefunction is described in a 

mixed basis; a spherical wave expansion within each atomic layer and as a set of plane 

waves propagating between the layers. After all intra-layer multiple scattering has been 

taken into account each layer can be regarded as a scatterer of plane waves, characterised 

by transmission and reflection matrices expressesd within a plane-wave basis. The layers 

can then be coupled together by solving the multiple scattering equations for the one

dimensional stack oflayers to produce the reflectivity of a semi-infinite system. Techniques 

such as the perturbative renormalised forward scattering or the usual layer doubling can be 

adopted to produce exponential rates of convergence in the reflectivity. Thus, providing 

the scattering between layers can be described by a small number of plane waves, this 

approa<;h will provide an excellent solution to the LEED problem. A detailed discussion 

of this solution can be found in the book by Pendry17 and we refer the reader to this 

work. However, the cutoff in the plane wave basis set is often very large, leading to 

the inversion of large matrices and a computational bottleneck in the LEED calculation. 

-5-
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Unlike the angular momentum basis set, whose size is determined by the energy of the 

LEED electron, the plane wave basis set size is determined by the surface geometry and 

can vary dramatically from surface to surface on the same material. 

Convergence deteriorates rapidly for surfaces with increasing Miller index, in such a 

way that calculations beyond the (311) surface of many fcc metals may not be feasible using 

conventional theory. The root cause of this effect is the fact that stepped surfaces present 

relatively large two-dimensional unit cells coupled with narrow interlayer spacings and low 

symmetry1 •5 . This combination is fatal to the otherwise efficient plane-wave expansion 

used in many LEED theories17•18 . Indeed, with smaller interlayer spacings in particular, 

the number of plane waves that must be included grows extremely fast, while numerical 

convergence cannot be maintained. The most robust plane-wave algorithms, layer doubling 

and the Bloch-wave method17•18 , often diverge for interlayer spacings below about 1A: for 

reference, Cu(331) has a bulk interlayer spacing of 0.83A. 

The difficulties associated with the closely-spaced layers can immediately be seen 

by examining the form of the plane wave basis functions coupling the layers. The basis 

functions coupling two layers separated by the vector c = (ell, Cz) converge uniformly 

provided the z component of the interlayer spacing is non-zero, since for large 2-d reciprocal 

lattice vectors (g) they take the form 

as g ~ oo. (1) 

where k is the component of the incident electron wavevector parallel to the surface. Thus, 

while exponentially convergent, the rate clearly depends on the size of Cz. In systems where 

Cz is small, many vectors are required to converge the interlayer scattering to a prescribed 

accuracy. Two further factors work against this basis for closely-spaced layers. First, 

the number of 2-d reciprocal lattice vectors scales as l9max 12 thus exacerbating rates of 

convergence. Second, for surfaces with increasing Miller indices, stacking layers together 
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results not only in the smaller spacing between layers but also in increasing the size of 

the 2-d layer unit cell and hence decreasing the magnitude of the g vectors. Therefore, 

reducing the spacing Cz by half, would require the increase of l9maxl by a factor of 2, and 

the total number of beams needed would scale by a factor of 8, due to the larger l9maxl 

and the smaller reciprocal vectors, and resulting in a 216 fold increase in the computing 

time. These factors have limited structural determinations by LEED to low Miller index 

surfaces. 

Conventional spherical-wave expansion methods like giant-matrix inversion 17 •18 do 

not help much, because they lead to excessively large matrix dimensions and computing 

times. Typically, one would represent the surface by a finite number of atomic layers (par

allel to the surface). This number grows inversely with the interlayer spacing to maintain 

a constant depth determined by the electronic mean-free path. And the matrix dimensions 

grow in proportion to the n~mber of these layers, leading to large matrix inversion times, 

for instance. 

Thus a new theory is needed. Several approaches have already been proposed. One 

is based on bundles of chains of atoms parallel to the steps19 : first the scattering within 

one chain of atoms is calculated (using cylindrical waves), after which many such chains 

are bundled together to form a step. Two other methods combine the plane-wave and 

spherical-wave expansions in such a way as to generate effectively larger interlayer spacings 

between groups of layers20 •21 , bundled together to form a step. The chain method has no 

requirement for periodicity within the' surface and therefore has been used to evaluate 

diffuse LEED intensities19 . Whilst the chain approach is ideal for dealing with disordered 

step arrays, its inability to exploit periodicity makes this technique relatively inefficient 

when applied to well ordered surfaces. Two alternative methods employ the spherical wave 

basis to combine together a few atomic planes and then proceed to treat the surface as a 

stack of these "composite" layers separated by an effectively larger interlayer spacing20
•
21

. 
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This technique improves convergence with respect to the actual interplanar spacing but 

still employs a plane wave basis, the number of components of which scales as the area 

of the surface unit cell. In effect, these methods reduce the number of evanscent. waves 

needed in a conventional LEED calculation by increasing the effective layer spacing, at 

the expense of the computational effort required to build the composite layers from their 

constituent atomic planes. 

In this work we propose a new approach to the analysis of LEED spectra that dispenses 

completely with plarie waves (except of course in the trivial propagation through vacuum 

from the electron gun to the surface and back to the detector). Within the surface, it only 

uses spherical waves and strongly reduces the scaling problems of the earlier methods. 

The new approach is b~sed on the real-space multiple scattering theory (RS-MST) which 

was first developed for and applied to electronic band-structure problems22 •23 • RS-MST 

. uses the principle of the removal invariance which holds for semi-infinite periodic lattices: 

removing a layer from the free end of such a lattice does not change the electronic states 

(except for a trivial phase factor), because the resulting surface is identical to the original 

one being merely displaced with respect to that by a single layer. This removal invariance 

provides a self-consistency condition for the electronic states, which can be solved numer-

ically. Our application to LEED will be carried out in the spirit of layer doubling, but in 

the spherical-wave basis rather than in the plane-wave basis. The present work will provide 

both more details of the method and its extension to the calculation of LEED I-V curves. 

In this paper, we will formulate the calculation of the surface reflectivity solely in terms of 

matrices evaluated in an angular momentum basis. We stress that the solution presented 

here is equally applicable to both low and high Miller index surfaces, since the use of the 

plane wave basis set is not needed to couple layers together. But our work is primarily 

aimed towards the interpretation of LEED intensities from clean or adsorbate-covered high 

Miller index surfaces. 
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II. THEORY 

A. Removal Invariance 

The new theory exploits the semi-infinite periodicity of the unrelaxed surface, and 

enables us to avoid the plane wave basis and its associated problems. The simplest possible 

surface is one of equidistant planes of atoms, and thus corresponds to the ideal bulk 

termination of the crystal. In general, however, the selvedge will undergo some form of 

restructuring, exhibiting planar relaxation perpendicular and/or parallel to the surface 

and perhaps reconstruction of the first few atomic layers, and may also involve adsorbates. 

Such deviations from the ideal semi-infinite bulk lattice can be incorporated in at least two 

ways. We may construct the surface of the semi-infinite ideal bulk termination joined to a 

slab of a few atomic planes representative of the restructured selvedge. Alternatively we 

can consider the actual surface as a structural distortion of the bulk termination amenable 

to treatment by a perturbative approach such as Tensor LEED24 •25 • Either way the crucial 

ingredient is a description of the ideal bulk termination. Once this has been obtained, the 

true surface can easily be solved as outlined above. 

The bulk termination of an ideal crystal exhibits a universal property, a consequence of 

the semi-infinite periodicity perpendicular to the surface. In simplest terms it implies that 

the reflectivity of the crystal is unchanged (within a trivial phase factor) if an atomic plane 

is peeled away from the surface. More generally, we can say that the full scattering t:-matrix 

of the system is invariant with respect to the-removal of any finite number of layers from the 

surface. This removal inva.riance property is the foundation of our new approach to LEED 

theory. In the next section we derive an expression for the reflectivity of the entire surface 

within a purely angular momentum basis. We then use the removal invariance property to 

-9-
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construct a self-consistent equation for the full t-matrix, Green function and consequently 

the reflectivity of the surface. Finally we present a general method for the self consistent 

solution of this non-linear equation within an angular momentum representation. 

B. The Surface Reflectivity 

In this section we derive an expression for the reflectivity ·of a surface in a purely 

angular momentum basis. To this end, we consider the Schrodinger equation for the 

wavefunction tf; associated with an incident electron beam on a surface, 

Htf; = Etf; (2) 

The Hamiltonian H can be split into the free-space Hamiltonian H 0 and the potential V 

representing the surface. 

H = Ho + V (3) 

The Green function associated with Ho is 

Go.= (E- Ho)-1 (4) 

where E, which can be complex, contains an imaginary part i€ ( € ~ o+). This ensures 

that the correct, causal, boundary conditions are satisfied by G and related parameters 

entering multiple scattering theory. The corresponding wavefunction x is the solution of 

Hox =Ex (5) 

The (LEED) wayefunction arising from the scattering of x by the surface potential V is 

given by the well-known Lippmann-Schwinger equation, 

tf;(r) = x(r) + J d3r'd3r"Go(r,r')T(r',r")x(r") 
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where Tis the total (full) scattering matrix of the surface in the real space representation 

T(r, r") = V(r)8(r- r") + j d3 r 1 V(r)G0 (r, r 1)T(r1
, r") (7) 

In a LEED experiment, an incident free-electron beam of energy E and parallel momentum 

ku impinges upon the surface 

x(r) = L u: eiKt·r (8) 
g 

where 

(9) 

and 

(10) 

g is a two-dimensional reciprocal lattice vector of the surface, "' = v'E and the + (-) sign 

indicates the waves propagating into (out of) the surface. We use the Rydberg atomic 

units throughout, where 1Ry ~ 13.6 eV. 

The total LEED wavefunction is then 

'1/J(r) = L u: eiKt·r + J d3r 1d3r"G0(r, r 1)T(r1
, r") L u: eiKt·r" (11) 

g g 

Into this equation we now substitute the free-particle Green function expressed as an 

integral in a linear momentum representation 

I 3 I e · 1 J 
ik1 ·(r-r') 

Go(r, r) = (211")3 d k E -lkll2 (12) 

which upon partitioning the double integral in (11) into a summation over cell integrals 

can be cast in the form, 

(13) 
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where Tij is the scattering path operator26 , defined by, 

(14) 

The cell coordinates r~ (rj) denote the same points as r' (r") but measured with respect 

to an origin at the center of the corresponding cell. At this point we consider cells of 

arbitrary shape containing each atomic center. In practice we will make the muffin-tin 

approximation of spherically symmetric cells surrounded by interstitial regions of constant 

potential. 

Since we assume that the surface is divided into layers parallel to the surface we can 

group the summation in (13) over layers and cells within the same layer. Thus cell i is 

labelled by two indices i and I, which denote cell i of layer I. In this notation then Ri, 

measures the distance to the center of cell i within layer I, from the origin, C1, in the 

same layer (CI would also correspond to a cell center). This leads to the expression, 

g 

where r1, is now measured with respect to the origin of cell i in layer I. The summations 

over i,j are within layers I, J, respectively. Note that the integrals over the unit cells are 

the same within each layer since 2-d periodicity has been assumed, thus allowing us to 

take them out of the summations over i,j. 

The 2-d periodicity parallel to the surface implies that the summation over i, j in the 

above expression becomes 

(16) 
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where the ku is the component of momentum parallel to the surface, and A is the area of the 

surface unit cell. Integrating over k' we obtain an expression for the LEED wavefunction 

'tj;(r) in the constant potential region between any two layers Nand N + 1, 

'1/J(r) = L u:eiKt·r 

g 

Using the expansion of plane waves into spherical waves, 

eiK·r = 47r L i 1jc(x:r)YL(K)Yi~(r) 
L 

(18) 

where jc is a spherical Bessel function, the integrals over the unit cells in (17) can be 

directly transformed into an expansion over the angular momentum states 

'tj;(r) = L u: eiKt·r 

g 

8 2. + 
~ u+ 7r t "'""' iK 1 ·(r-Cr) iK+.cJ"'""' ·1

1-ly (KA + )Y* (KA +) LL
1 (k ) - L.....t g AK I L.....t e s e s L.....t t L gl £1 g riJ II , (19) 

gg 1 J g z I5,N LL' 

"'""'u+ 81r
2
i "'""' iK-1 ·(r-Cr) iK+·CJ "(""' ·1

1 -ly (KA- )Y* (KA +) LL
1 (k ) - L.....t g AK I L.....t e s e s L.....t t L gl £1 g r I J II 

gg1J g z I>N . LL1 

where rfJ' (kn) are the angular momentum matrix elements of the scattering path operator 

between layers I and J, given by: 

(20) 

Outside the surface the LEED wavefunction consists of the incident and reflected plane 

waves 

z<O (21) 
g gl, 
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Now the reflection matrix of the surfaceR is defined as 

V-- ~R-+u+ g' - L-1 g'g g ' 
g 

(22) 

and a single incident beam g carrying unit current the intensity reflected into each LEED 

beam g' is given by the expression, 

(23) 

Comparing (19) and (22) we obtain the relation between the coefficient of reflection in 

the plane wave representation, R;,!, and the scattering path operator in the angular 

momentum representation, rff' (ku ), 

8 2· 
R-+ = _ 11" Z ~ -iK;,·Cr iKt·CJ ~ ·l'-l-v (KA ±)Y* (KA +) LL'(k ) 

g'g AK+ L-1 e e L-1 z .z L g' L' g TJ J II . 
g'z IJ . LL' 

(24) 

Considering, for a moment, (24) we see that the reflectivity of the surface has been ex-

pressed in a angular momentum represenation projected onto plane wave states. In partie-

ular it is the TJJ(ku)'s which contain all the information concerning the multiple scattering 

within the surface. This is evident from the kinematic limit in which for the case of only 

one atom per unit cell we have, 

8 2. 

R-+ _ 11" Z ~ -iK±,.cr iK+·CJ ~ ·l'-ly (KA ±)Y* (KA +)tl ~ ~ 
g'g - -A K± L-1 e s e s L-1 z L g' L' g LullUJ J 

"' g'z IJ LL' 

(25) 

where t{ is the atomic t-matrix of the atom in layer I. Comparing (24) and (25) we 

can clearly see that in the dynamical limit the "bare" single-center atomic t-matrices are 

replaced with the two-center scattering path operators TJ J(ku) which describe the complex 

multiple scattering paths linking the two atomic layers I and J. More importantly, we have 

acheived our original aim; the removal of the plane wave basis from the multiple scattering 

expressions and the associated calculations. Now the plane wave states are· only needed 
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to project out the elements of TJ J(kn) onto the reflected and incident LEED beams, while 

the multiple scattering paths are summed entirely in an angular momentum basis. 

Equation (24) forms the foundation of our new LEED theory. The central problem 

which remains is the determination of TJ J(kn) for the entire semi-infinite surface. It is 

this task which will occupy us in the next section. To simplify notation we consider only 

one atom-type per layer, so that the site labels refer to atoms rather than unit cells. The 

generalisation to many atoms per cell is straightforward. In this case extra indices labelling 

inequivalent atoms within each cell are needed. 

C. The Self-Consistent Equation 

The scattering path operator, Tij, connecting cells i and j among a collection of scat-

terers can be related to the atomic scattering t-matrices, ti, by the so-called the equation 

of motion26 , 

Tij :::::: tiOij + L tiGikTkj, 

k=h 

(26) 

where Gik are the propagators (structure constants) between cells i and k. We regard 

each quantity in (26) as a matrix with indices LL' associated with angular momentum 

states. We now make use of the two-dimensional periodicity parallel to the surface and 

use a lattice Fourier transformation to obtain, 

TIJ(k 11 ) = [71ay(kn)]I8IJ + hay(kn)h L GIK(ku)rKJ(ku), 
K#-J 

(27) 

where upper case subscripts are layer indices and an isolated layer is represented by the 

quantity, 

(28) 
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with the interplanar (and intraplanar when I = J) propagators defined as 

G 1 J(kll) = _!_ L G(Rij )eik·R;j, i in layer I and j in layer J, (29) 
N .. 

z,J 

where N is the number of unit cells in the layer and the limit N--+- oo is taken. Therefore, 

the formal solution for TJ J(kil) from (28) is the inverse of the matrix, 

(30) 

For layered systems, the inversion of (27) is an effective one-dimensional problem for each 

incident beam direction. In a conventional plane wave basis this inversion can be accom-

plished approximately by the layer doubling technique. 

In the angular momentum representation the appropriate approach is to obtain a 

self-consistency condition to determine the reflectivity of the half solid. To do this we 

use the property of removal invariance in the presence of semi-infinite periodicity22 • We 

imagine replacing the half solid with a single renormalised layer which is constructed in 

such a way as to possess the scattering properties of the entire half solid. In practice, a 

more rapidly convergent procedure is to consider a stack of layers, I= 1, ... , N, with the 

Nth (deepest) layer being renormalized and the remaining N - 1 layers being bare atomic 

planes described by 1lay. Typically we need only 2 or 3 layers to represent the entire half 

solid as will be made clear later in this paper. 

This stack of layers is described by a matrix, T, with both angular momentum and 

layer indices. Adding one more bare layer, T lay, to the top of the stack, we obtain a system 

represented by the N + 1 layers, 

T.. 
_ T lay 

( 

-1 

+1 = -G' 
-G )-1 
T-1 (31) 
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where G (G') is the row (column) vectors formed from the interlayer propagators between 

the layer represented by 7lay(ku) and those represented by T(k), and are given by 

G = (Got (ku ), Go2 (ku ), ... , GoN(ku) ), (32) 

·and a similar construct for the column vector G'. The property of removal in variance 

implies that this N + 1 layer stack should represent the same half solid as the original N 

layer stack. Symbolically, 

(33) 

A schematic representation of this equation is shown in Fig. 1. Equation (33) forms the 

basis of our self-consistency condition for T. However, we note that in a mixed site-

angular momentum representation the dimension of 7+1 is larger than that ofT since 7+1 

represents a stack of N + 1 layers and T a stack of only N layers. A proper equation 

can be obtained if we fold the two layers furthest from the surface (the renormalized layer 

and the layer immediately above it) into a new layer to obtain a N layer stack which is 

identical to the original stack. Therefore, we have a self-consistent equation for the matrix 

T, 

T(k) = (f 
0 0 

g(-LJ 
I 0 0 

I 0 ( 7lay(~)-1 cr 0 I 0 

-G' T(k)- 1 

I 
0 I 

0 0 
0 0 g( -Rto) 

(34) 

where g(-R 1 J) is the angular momentum representation of the translation operator asso-

ciated with the vector R1 J which connects the origins of the layers I and J. This quantity 

satisfies the property, 

g( -r)G(R) = G(R)g( -r) = G(R + r), IRI > lrl (35) 
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The rectangular matrices, 

0 I .. . 
9= .. . 

(

I 0 ··· 

. . . . . . 
0 0 ... 

(36) 

in Eq. (34) and the corresponding matrix 9' are called contraction matrices27 , because 

they reduce a given square matrix with dimension given by the number of columns of g to 

one with the dimension of the number of rows of Q. Utilizing the contraction matrices and 

the property of removal invariance, we transform the problem of finding the reflectivity of 

an infinite number of layers into one for a finite number of layers. It now only remains to 

solve (34) for T(k). 

D. Solution of the Self-Consistent Equation 

The problem of solving the non-linear matrix equation, Eq. (34), can be formulated 

as finding the zeroes of the matrix function 

:F(T) = T - 9 ( !d, -G I 
A ) -1 

T-1 9. (37) 

with an initial guess T(o). We now present a fast iteration scheme27 for the solution of 

Eq. (37) based on the Newton-Raphson method. The derivative of the equation can be 

written formally as the sum of two direct products, 

:F' = I®I 

- g ( !d, -G )-1 ( 0 ) tO. ( 0 (T(n))-1) ( _MGA' (T(n))-1 (T(n))-1 VY 

We recall that the Newton-Raphson method for solving a matrix equation, :F(x) = 0, 

where :F is a matrix function of the matrix unknown x, consists in the iteration of the 

equation 

(39) 
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where :F'(x) is the derivative of :F(x) with respect to x. The roots of :F(x) are given by the 

converged values, x<=). If we define n<n) = x<n) - x<n+1)' then n<n) can be solved from 

the equation :F(x<n)) = :F'(x<n)) · n<n). Therefore the solution of (39) can be obtained by 

iterating 

(40) 

where the correction term 1J(n) can be determined from the solution of the equation, 

:F(T(n)) = v<n) 

-Q ( !6, -G 0 (n) (n) -1 M 
A )-1 ( ) ( 

(T(n))-1 (T<n))-1 'D ( 0 (T ) ) -G' 
-G I A )-1 

(T(n))-1 g 
(41) 

We now see that the original problem has been-converted to one requiring the solution 

of a linear equation of the form 

x-AxB =F (42) 

where xis the unknown matrix (i.e., D(n) in (41), and A, Band Fare constant matrices 

which can be readily evaluated from (41). Although this equation can be solved by the 

time consuming inversion of the matrix I 0 I - A 0 B; a much more efficient approach is 

to diagonalize matrices A and B, 

A= PaP-1
, B = Q(JQ-1 (43) 

where a and (3 are diagonal matrices with elements "a:iOij and f3iOij, respectively; then a 

change of variable x' = p-1 xQ leads . .to the equation, 

x' - ax' (3 = F' (44) 

where F' = p-1 FQ. Now, the solution of the original equation becomes straightforward, 

I F/j 
X··= 

IJ 1 - O!if3j (45) 

x = Px'Q-1 

-19-



E. Convergence 

In this section we wish to discuss the convergence of our new theory with respect 

to the angular momentum expansions in the self-consistent equation, Eq. (34). Consider 

first the question of the scattering of electrons from a single object such as an atom. The 

potential, in this case, is spatially bounded and at LEED energies one can argue that 

those partial waves are scattered most prominently whose angular momentum, l, is less 

than the classical angular momentum"' VER, where R corresponds to the radial extent 
• 

of the scatterer. Thus, only spherical waves for which 1 < VER enter the description 

of the scattering process. The matrix elements of the atomic t-matrix associated with 

higher angular momentum states fall off rapidly to zero thus allowing l truncations at 

Zmax "'JER. In the calculation of the slab T matrix, found by inverting equation (30), all 

l values can be truncated at the atomic lmax· This can most easily be justified by generating 

the multiple scattering series, found by iterating the scattering path operator equation of 

motion, Eq. (26), and observing that each term involves products of Green's functions 

with atomic t-matrices sandwiched in between. Indeed, the slab could- in principle be 

made as large as possible, providing that the corresponding matrix could be inverted, with 

the same l truncation at the atomic value. However, in the solution of the self-consistent 

equation, Eq. (34), a similar multiple scattering expansion involves the products gG, given 

by Eq. (35), which replaces the exact Green's function for the layers separated beyond 

the maximum spacing inside the cluster. This product contains an internal! summation, 

which does not have an atomic t factor to justify a truncation. We note that this problem 

does not arise in the plane wave expansion for interlayer propagation since the Green's 

functions are diagonal in the plane wave basis. However, provided that the argument of g 

is smaller than that of G, formally the products are uniformly convergent in the angular 

momentum expansion. 
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Upon expanding Eq. (34), to generate a multiple scattering series, we find that the 

solution treats exactly all multiple scattering paths within any N nearest neighbor layers, 

with all multiple scattering terms between layers further apart represented by the products 

of Green's functions, which involve internal summations over angular momentum states 

that are truncated at a finite l. We can further improve this treatment by ensuring that 

the equation exactly reproduces all terms up to and including scatterings within N + 1 

layers by defining 

g( -Rot) = [Gon(k))-1 Go,n+t(k) (46) 

with an analogous construction for g( -R1o). ~his implies that g is now k dependent. 

The Green's functions, at complex energy, have an exponential tail arising from the spher

ical Hankel functions, and thus it is more important to have an accurate calculation of 

nearer, rather than more distant interplanar Green's functions, which is what ·equation 

( 46) achieves. Furthermore, we have found that this condition is numerically superior 

to performing a N + 1-layer calculation with the exact matrix elements of g, although 

both reproduce the exact multiple scattering terms within any N + 1 nearest neighbor 

layers. One possible reason for this is that the renormalisation of g, specified by equa

tion (46), may improve the unitarity condition g( -R01 )g( -R10 ) = I, by including, in 

a self-consistent manner, the contributions of the neglected higher angular momentum 

channels. The complexity of the equations, though, makes it hard to provide any rigorous 

justification of this empirical observation. In essence, convergence is ensured provided that 

the bare cluster of N sites is a sufficiently good approximation to the true semi-infinite 

system. Then, the iterative solution to the non-linear self-consistent equation (34) is well 

behaved. Extensive numerical tests at both LEED and band energies indicate that with 

the constraint on g represented by equation ( 46), acceptable convergence is attained for 

N ~2 with l truncated at the atomic value. There is a balance, however, between the 
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cluster size and the l truncation with smaller clusters typically needing larger l basis sets 

and vice-versa. In the case of more open surfaces, characterized by closely-spaced layers, 

we have found that a few more layers may be required. This is not too surprising. For 

high Miller index surfaces, atoms in two layers a few interplanar spacings apart can still be 

close to each other thus contributing strongly to the multiple scattering effects. Therefore, 

errors made in approximating the Green's functions connecting these sites will tend to be 

more important. One can estimate the number of layers needed from the following simple 

relation: 

N czv'Im E"" constant (47) 

In this equation N, Cz, E refer to the "bare" cluster size, z-component of the interplanar 

spacing and the LEED electron energy (which is complex). As mentioned above, N=2 

with l truncated at the atomic value is sufficient for most close packed surfaces. This 

establishes a scaling relation between the number of layers, N, to be used in representing 

the half solid and the interplanar spacing. However, the resulting increase in N for high 

Miller index surfaces is slow and nowhere near as dramatic as the increase in plane wave 

basis set size encountered in the conventional LEED theory. For example, halving the 

interplanar spacing would require the inclusion of at most twice the number of layers in 

the self-consistent equation. Therefore the dimension of the whole matrix is scaled by a 

factor of 2 and the computation time is scaled by a factor of 23 = 8, a rather affordable 

factor compared with the factor of 216 for the plane wave expansion, as discussed in the 

introduction. 
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III. RESULTS 

In this section we present LEED I-V spectra for Cu fcc surfaces obtained with the 

new RS-MST as well as conventional LEED theory. In all calculations the atomic Cu 

phase shifts are obtained from solving the Schrodinger equation for the potential provided 

by Moruzzi, Janak and Williams28 • We found that six atomic phase shifts (lmax = 5) 

were sufficient for energies below 70e V, and lmax = 6 was required from 70e V to 200e V. 

In the RS-MST calculations, the angular momentum expansions for the "bare" layers 

(i.e., the elements of the t-matrix corresponding to the first N - 1 layers in the self-

consistency condition) were truncated at the atomic lmax, while the truncation for the 

renormalized layer, layer N, is lma.x + 1 to improve convergence. We used N = 2 for the 

(100) surface, N = 3 for the (311) surface, and N = 4 for the (331) surface in Eq. (34), 

roughly corresponding to the scaling law Nc:: =constant (Eq. (47)) where C:: is the z-

component of the interplanar spacing. To further improve the speed and accuracy in the 

RS-MST calculations, we used explicitly the mirror symmetry which exists in all surfaces 

studied. In tl?-e layer doubling calculations, no symmetry was utilized. 

Figure 2 shows I-V curves for (00) and (10) LEED beams calculated for a Cu(lOO) sur-

face using both the layer doubling and the real-space multiple scattering theory methods. 

The results obtained are in excellent agreement over the whole energy range, illustrating 

the accuracy of the new approach. Similar I-V curves have been calculated for Cu(311) 

and are illustrated in Fig: 3. This system has an interplanar spacing of about 1.09A. The 

comparison between the LEED results and those obtained from the RS-MST calculation 

are in good agreement, although some numerical difficulties were encountered at the high 

energy end of the spectrum, atE~ 165eV. These seem to be associated with errors in the 

calculation of the interplanar propagators, Eq. (29), which is currently evaluated through 
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a real space summation, and becomes less accurate at high energies. This affects the sta-

bility of (34). This instability may be amplified by the matrix inversion subroutines used 

to evaluate the translation operator, Eq. ( 46). These difficulties may be avoided by using a 

more stable inversion algorithm such as singular value decomposition rather than the more 

usual LU decompositiom, and better schemes of calculating the interplanar propagators. 

In Fig. 4, we present I-V curves for the Cu(331) surface, with an interplanar spacing 

of 0.83A, obtained through both the layer doubling and the new approach. In this case 

the layer doubling results show some indication of numerical instability near Bragg peaks, 

E ~ 50eV, and the convergence of the layer doubling process becomes very sluggish, 

eventually failing to converge at some energies, e.g., E ~ 120e V. For other energies near 

this region the intensity shows rather oscillatory behavior and occasional spikes, whose 

width is less than the minimum allowed, which is dictated by the imaginary part of the 

energy. The layer doubling and RS-MST results agree well up to this point, where the 

disagreement becomes evident (dashed vs. solid line). However, again due to inaccuracies 

in obtaining the interplanar propagators, as in the case of (311) surface, at high energies, 

E > 130eV, numerical instabilities prevented us from obtaining accurate solutions of (34). 

We estimated the computing time on a CRAY-2 computer by various schemes. At the 

low energy end of the spectrum, E ~ 35eV, for a Cu(311) surface, the number of beams 

(plane waves) needed in a layer doubling calculation is about 71, and the computing time 

is about 18 seconds per energy. The same calculation for the Cu(331) surface requires 153 

beams and takes about 85 seconds per energy. The symmetrized RS-MST calculations at 

.35eV with a 3-layer (N = 3) self-consistency condition for the (311) surface takes about 

35 seconds per energy. For the (331) surface it is necessary to use a 4-layer calculation, 

which takes about 65 seconds per energy. At the high end of the spectrum, E > 150eV, 

the layer doubling calculations for the (311) surface require 99 beams and 35 seconds 

per energy, respectively. According to the scaling law discussed after Eq. (1), the layer 
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doubling calculation for a (331) surface requires 199 beams and about 4 minutes per energy. 

However, because of an insufficiently small decay factor, the process does not converge. In 

the case of the RS-MST approach, the computing time for a 3-layer, lmax = 6 calculation 

for the (311) surface at E ~ 150eV is about 75 seconds per energy. A 4-layer calculation 

necessary for the (331) surface roughly doubles that time. 

IV. DISCUSSION 

In this paper we have presented a new method for the calculation of LEED I-V curves. 

The technique is based on equations expressed entirely in terms of matrices in the angular 

momentum representation. A self-consistent equation' for characterising the scattering of 

electrons from a semi-infinite periodic half-space (surface) has been derived and stable 

algorithms for obtaining solutions of this non-linear equation have been presented. The 

technique, unlike conventional LEED theory, is equally applicable to both low and high 

Miller index surfaces since increase of the matrix size associated with decreasing inter

planar spacing are much more modest than in conventional LEED calculations. The new 

method has been tested on Cu (100), (311) and (331) stepped surfaces. where excellent 

agreement between old and new methods was obtained. The (311) surface is probably 

the highest Miller index surface which can be analysed reasonably within the conventional 

LEED theory, taking into account the possibility of layer relaxations and stronger multiple 

scattering in some metals. In the case of the (331) surface, the computation time for the 

RS-MST method is comparable to that of the layer doubling method, but in this case the 

latter begins to show difficulties of convergence. 

Numerical difficulties were encountered at high energies (E ~ 165eV) in the RS-MST 

calculations for high Miller index surfaces. We believe that these diffi<mlties were caused 
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by instabilities of the numerical schemes used in the calculations, and they are not inherent 

in the method itself. Schemes for improving the numerical aspects of the calculation are 

currently under consideration. At the same time, because there are more beams for each 

energy in the case of high Miller index surfaces, a lower energy range may be sufficient 

for a complete determination of the stucture of the surface. In addition, one may also use 

"rocking curves" (intensity versus incident beam angles) instead of IV spectra and so one 

may have to perform calculations at only one energy point. 

The computation time of RS-MST scales more favorably than that of layer doubl~ng, 

as discussed at the end of Section II and demonstrated by the numerical calculations. Yet 

the computation time still increases considerably as the Miller index increases. However, 

the substrate calculation, which is the topic of this paper, is done only once before any 

surface geometrical modifications like relaxation or adsorbates are added. The substrate 

reflection can be used again and again as the surface structure is varied through many 

geometries. 

We note again that there is no underlying conceptual barrier for· the application of the 

RS-MST method to high index stepped surfaces, in contrast to the limitations associated 

with the use of a plane wave basis. Therefore, this method provides an extremely promising 

way for providing accurate structural determination of stepped surfaces. 
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FIGURE CAPTIONS 

Fig. 1. Schematic illustration of Eq. (33). Here N = 3, and the quantities T and T+1 

represent stacks of 3 and 4 layers, respectively. 

Fig. 2. Comparison of LEED intensities of the Cu(100) clean surface obtained by the layer 

doubling (LD) and the RS-MST method, (a) (00) beam and (b) (10) beam. The solid 

curves depict the results ofRS-MST and the dashed curves depict the results of layer 

doubling. 

Fig. 3. Comparison of LEED intensities of the Cu(311) clean surface obtained by the layer 

doubling (LD) and the RS-MST method, (a) (00) beam, (b) (10) beam and (c) (10) 

beam. The solid curves depict the results of RS-MST and the dashed curves depict 

the results of layer doubling. 

Fig. 4. Comparison of LEED intensities of the Cu(331) clean surface obtained by the layer 

doubling (LD) and the RS-MST method, (a) (00) beam, (b) (10) beam and (c) (10) 

beam. The solid curves depict the results of RS-MST and the dashed curves depict 

the results of layer doubling. 
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