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Abstract 

The Keplerian velocity as well as those frequencies at which instability against 
gravitational radiation-reaction sets in are calculated for rotating neutron star 
models of gravitational mass 1.5M0. The investigation is based on four different, 
realistic neutron star matter equations of state. Our results indicate that the 
gravitational radiation instability sets in well below (i.e., 63-71% of) the Keplerian 
frequency, and that neutron stars are limited to rotational periods greater than 
about 1 msec. In young and therefore hot (T ~ 101° K) neutron stars the m = 
5 (±1) modes and in old stars, after being spun up and reheated by mass accretion, 
them= 4 and/or m = 3 modes may set the limit on stable rotation. 
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A fundamental problem encountered in the treatment of rotating neutron stars 

is the question of stability of these objects. Obviously, an absolute upper bound 

on stable rotation is set by the (1) Keplerian frequency, nx:R' which is defined 

by the balance between gravitational and centrifugal forces at the star's equator 

(by GR we denote its general relativistic expression, see Eq. (2) below). 1 Stars 

cannot rotate at velocities higher than the Keplerian value since they would shed 

mass at their equators. Other types of instabilities have their origin in the onset 

of (2) axisymmetric differential rotation of the star's matter,2
•
3 and the growth of 

(3) non-axisymmetric instability modes that are driven by gravitational radiation

reaction. 4 - 8 The latter instability can be stabilized by viscosity. 9 - 14 Lindblom has 

suggested that this gravitational driven instability is probably completely damped 

out in sufficiently cold neutron stars (T < 107 K) by virtue of their large viscosity.15 

Below this temperature another secular instability can occur that is ( 4) driven by 

viscosity. 

In this Letter we shall concentrate on the problem of stable rotation of newly 

formed (and therefore hot, i.e. T ~ 101° K) neutron stars as well as on estimating 

the critical angular velocity of rotating neutron stars that have been spun up by 

mass accretion from a companion and thereby reheated toT~ 108 - 109 K. Our 

investigation is therefore based on items (1) and (3). We need not investigate 

items (2) and (4) which are irrelevant for young and also reheated stars having 

temperatures that lie in the above given range (small viscosities). 

The determination of viscosity (denoted by v) of neutron star matter is a 

cumbersome and not yet completely solved problem.11 •16 - 18 Typical values of v 

discussed in the literature7 •
17 are v(T) ~ 100 cm2 s-1 for a temperature ofT~ 109 

K. The temperature of a newly formed neutron star is expected to be about 1010 

K after the initial burst of neutrino emission. 19 •20 The cooling to about 109 K may 

take place within the first two years. 20 As the star cools, the viscosity increases 

rapidly like17 v(T) <X T-2 . 

Our determination of nX:R for a given neutron star matter equation of state 

(EOS) has been outlined in detail in Refs. 21,22. The task is to solve Einstein's 

field equations of general relativity for a rotating, massive object. This can be ac

complished by either a direct numerical treatment1 or resorting to the development 
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of a perturbation solution on the Schwarzschild metric23 •24 (Hartle's method), i.e. 

ds2 = -e2
" dt2 + e2 

'1/J (d<P- w dt)2 + e2 ~-' dfP + e2 >..dr2 + 0 (~:). (1) 
c 

The quantity w in Eq. (1) is the angular velocity of the local inertial frame . 

It is proportional to n, the star's rotational frequency. The critical velocity, 

nc = ...; MsG I R~' is defined in terms of the gravitational mass and radius, Ms 

and Rs respectively, of the corresponding non-rotating (same central energy den

sity) star model. In the framework of Hartle's method one makes an ansatz for the 

metric functions v, '1/J, J-L, and>. that is based on the Minkowskian metric (valid for a 

spherically symmetric object) but "corrected" for deformation by the introduction 

of so-called monopole and quadrupole perturbation functions. The latter are solu

tions of sets of coupled differential equations derivable from Einstein's equations. 

The resulting set of relations is known as Hartle's stellar structure equations. 22 - 24 

The Kepler frequency, given by1 (primes refer to derivatives with respect to 

the radial coordinate) 

w' 
V =- e'I/J-" 

2'1/J' 
(2) 

can be calculated once the metric functions are known. These are given as so

lutions of Hartle's stellar structure equations. The construction of star models 

rotating at f2 = f2%R by means of a self-consistent treatment has been performed 

elsewhere. 21 •22 An important result is that Hartle's method leads to results for the 

bulk properties (e.g. mass and Keplerian frequency) of the treated star models 

that are in good agreement with those obtained by an exact solution of Einstein's 

equations. 1 •21 •22 

The essential input quantity for constructing star models is the equation of 

state of neutron star matter. Since densities in the cores of neutron stars are 

up to ten times as large as the density of normal nuclear matter,1 •21 •25 - 28 we 

employ a relativistic hadron field theory involving p n :E±,o A =0 ·- ~ ++,+,o,-
' ' ' ''--' ' 

interacting through the exchange of a,w, 1r, e mesons. 21 •22 •25 - 27 A number of lep

tons is necessary to achieve the important constraint of electrical charge neutral

ity of neutron star matter.25 This theory is solved in the relativistic Hartree25 - 28 

and Hartree-Fock21
•
22

•26 approximations. The corresponding EOSs are denoted 
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by HV and H FV, respectively. 26 Furthermore we apply the relativistic ladder 

approximation29 (T matrix treatment) in order to take the influence of (Brueckner

type) two-particle correlations on the EOS into account. To this the Bonn 30 and 

H EA 31 meson-exchange potentials served as an input. We denote the respective 

EOSs by A'l-?onn + HV and A~EA + HFV.21
•
22 

TABLE I. Rotating neutron star properties at the mass limit calculated for neutron 
star equations of state HV, A '1-?onn + HV, H FV, A~ EA + H FV. The entries are 
(from top to bottom): central energy density in units of normal nuclear matter 
density, Eo ( = 140 MeV /fm3), Kepler frequency, gravitational mass, equatorial 
and polar radii, stability parameter calculated for f2 = n~R, redshift in back- and 
forward direction, redshift at the pole. 

HV A'l-?onn + HV HFV A~EA+HFV 

Ec/Eo 5.71 5.71 6.79 6.79 
[ Ec/ Eo ]nonrot t 9.29 9.29 9.64 9.64 
n~R · [104 ~1 0.92 0.98 1.18 1.19 
M/M0 2.26 2.25 2.52 2.51 
Req [km] 14.8 14.2 13.0 12.9 
Rp [km] 10.2 9.6 9.0 8.9 
tK t 0.11 0.12 0.13 0.13 
ZB 2.23 2.31 2.99 3.02 
ZF -0.69 -0.70 -0.74 -0.75 
Zp 0.79 0.90 1.59 1.64 

t) [Ec/Eo]nonrot refers to the value of the central energy density of the non-rotating 
maximum mass star. 
t) The stability parameter t is defined by t = T / I W I, T = J2n, W = Mproper + 
T-M. 1 

Table I contains the bulk properties of rotating neutron stars at the mass limit 

calculated for our four different EOSs. The values of the limiting Keplerian fre

quencies are shifted due to the inclusion of two-particle correlations from 9200 s-1 

(HV) and 11800 s-1 (H FV) to slightly larger values of 9800 s-1 (A~0onn + HV) 

and 11900 s - 1 (A~ E A + H FV), respectively. 13 The mass increase due to rotation 

is about 20% (18%) for HV (H FV) relative to the non-rotating value. We find 

maximum mass values of2.26 M0 (2.52 M0) for HV (HFV) which remain nearly 

unchanged if correlations are included ( cf. fourth row of Table I). 
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A characteristic feature encountered in the treatment of rotating neutron 

star models is the decrease of the central energy density, Ec, relative to the non

rotating star configuration.1
•21 •22 In our case, the Ec values drop from Ec::::: 9.3Eo 

and Ec ::::: 9.6 Eo 
21 •22 •25 •

26 to 5. 7 Eo ( HV) and 6.8 Eo ( H FV), respectively, in the 

case of rotation at the mass limit ( cf. Table I and Fig.1 ). Energy densities as large 

as ::::: 10 Eo in the cores of massive non-rotating neutron star models are known to be 

typical. 1•25 - 28 However they make the use of an EOS originally derived for matter 

which consists of individual baryons and mesons rather questionable. 27
•32 •

33 More 

likely a phase transition to quark matter in the core of the more massive stars 

with high central densities occurs.34•35 The situation is less extreme for rotating 

neutron stars because of their somewhat smaller central energy densities and also 

for less massive stars lying in the range of measured masses. For stars of these 

masses ("" 1.5MG) the central densities of our models are 3-4 nuclear density. 

In Fig. 1 we exhibit the dependence of gravitational star mass on central 

energy density, M(Ec), for the HV and A~onn + HV EOSs. 

For certain values of Ec, the corresponding Keplerian frequencies are drawn 

Ill. The mass increase caused by rotation at n = n~R is shown by the two upper 

lying curves. 

Next we turn our interest to the instability modes that correspond to item (3). 

These are related to star oscillation modes having angular dependence ei m <P, where 

</> denotes the azimuthal angle and m is a spherical harmonic index. It has been 

shown by Lindblom and Hiscock12 that viscosity tends to suppress the instability 

modes related to (3) in sufficiently slowly rotating stars. The frequencies at which 

these instabilities set in, denoted by n~' can be obtained from ( ll indicates the 

viscosity dependence of the frequencies )13 

(3) 
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FIG. 1. Gravitational star mass as a function of central energy density (in units of 
fo) for star models constructed from A'lfonn +HV and HV (i.e., with and without 

. the inclusion of two-particle correlations, respectively). The two (lower) upper 
lying curves refer to (non-) rotating star models. The Keplerian frequencies are 
given for a number of fc values. 

with 

Tg,m 
2 (m- 1) [(2m+ 1)!!]2 ( 2m+ 1 ) m n-2(m+l) R-(2m+l) ( 4) 
3 (m+1)(m+2) 2m(m-1) c 

8 
' 

Tv,m = (2m + 1 )( m - 1) v · 
(5) 

The two latter equations (4) and (5) give the gravitational growth time scale (rg,m) 

of the instability mode of order m and the time scale that determines the rate 

at which this particular mode is damped by virtue of viscosity ( Tv,m), respec

tively. A characteristic feature of this treatment is that n~ of Eq. (3) merely 

depends on the spherical star properties, Rs and M 8 • The functions Om and 

i'm contain information about the pulsation of the rotating star models and are 

difficult to determine.13•18 A reasonable first step is to replace them by their cor

responding Maclaurin spheroid functions,13•18 Om and /m, i.e. a(nm) ::::::: am(nm) 
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and i(f2m) ~ lm(f2m)· Since the latter do not depend strongly on the angu

lar velocity nm, this motivates the approximation21 am(f2m) ~ am(O) = 1 and 

lm(f2m) ~ lm(O) = 1 (cf. Ref. 13)). In this Letter we do not apply this approx

imation scheme but rather take am(f2m) and lm(f2m) as calculated in Ref. 36 

(for the oscillations of rapidly rotating inhomogeneous Newtonian stellar models; 
(, 

polytropic index n=1) and Ref. 13 (for uniform-density Maclaurin spheroids, i.e. 

n=O), respectively. Managan has shown that n~ depends much more strongly on 

the EOS and the mass of the neutron star model (through f2c and rg,m, see Eqs. 

(3),(4)) than on the polytropic index assumed in calculating am. 14 

TABLE II. Properties of rotating neutron star models of gravitational mass M = 
1.5 M0 rotating at their Keplerian frequencies, f!~R. The entries are explained in 
Table I. 

HV A'1Ronn + HV HFV A~EA +HFV 

fc/fo 2.09 2.42 2.75 2.85 
[ fc/ fo ]nonrot t 2.93 3.11 3.61 3.64 
f!GR 

K [104 ~] 0.56 0.69 0.69 0.73 
Req [km] 17.3 15.3 15.8 15.2 
Rp [km] 11.8 10.2 10.3 9.9 
tK 0.096 0.107 0.105 0.107 
ZB 1.21 1.39 1.40 1.42 
ZF -0.55 -0.58 -0.58 -0.58 
Zp 0.30 0.38 0.38 0.40 

t) [fc/fo]nonrot refers to the non-rotating 1.5 M0 star model. 

The numerical outcome of this treatment is shown in Fig. 2 and Tables II and III 

for a rotating neutron star model of M = 1.5 M0 ( c£.37 MpsR I913+1 6 ). 

One clearly sees from Fig. 2 that all rotational instability periods, P~ ( = 27r /!1~), 

referring to modes m = 3, 4, 5, 6 and viscosities ranging from ~ 0 (hot star) up 

to 200 cm2s-1 (which may serve as a rough upper bound on v(T) of a somewhat 

cooled neutron star, i.e. T ~ 109 K) are located well above the Keplerian periods, 

p~R; specifically it follows that for v ~ 0 the m = 5 modes (periods P~~5 ) 

possess the largest periods (lowest frequencies) and therefore are excited first. 

The numerical outcome is summarized in the second through fourth rows of Table 
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FIG. 2. Critical rotational periods P~ and p~R at which instability against grav
itational radiation-reaction and mass shedding sets in, respectively. The periods 
P~ are shown for instability modes m = 3, 4, 5, 6 for the four equations of state 
of this work. The right lying crosses denote the minimum stable rotational peri
ods (maximum frequencies) calculated from our EOSs for young and therefore hot 
neutron stars. The tick marks refer to viscosities v =0,1,10,100, and 200 cm2 s-1 

(in this order from right to left). The dots give p~R. 

III. According to this, them= 5(±1) modes can be expected to set the limit on 

stable neutron star rotation for all EOSs under consideration. That is to say, hot 

neutron stars cannot rotate at periods shorter than this limit (marked by crosses 

in Fig. 2). Of the four realistic models studied, three can rotate stably at periods 

as small as 1.56 msec (PSR 1913+16). The model that is stable at the smallest 

period, 1.27 msec, is A~ EA + H FV. 

The Keplerian periods are clearly smaller than P~~5 for all EOSs under consid

eration and irrelevant as far as the discussion of stable rotation is concerned. One 

finds for the corresponding rotational frequencies n~=::?5 ~(0.63-0. 71) n~R. For the 

purpose of comparison, we have also calculated the limiting rotational periods for 

the EOSs used by Lindblom.13 It turned out that the p~=::?5 periods set again the 

limit on stable rotation. The critical rotational frequencies n::=::?5 are in this case 

related to the corresponding Keplerian velocities by ~(0. 70-0.80) n~R. Finally we 

make a comparison with the empirical formula n(T) ~ 0.86 i1max ( for T ~ 1010 

K) of Ipser and Lindblom36 for estimating n~~4 ,5 . 15 Here, nmax denotes a max-
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imum frequency that is related to the Keplerian velocity by !!max ~ 0.93 n~R. 

From this one gets n~~4,5 ~ (0.86) . (0.93) n~R ~ 0.80 n~R. In other words, 

the maximum stable rotational frequency that a newly born neutron star can 

have is roughly 20% smaller than the Keplerian value, for the models studied by 

these authors. Taking into account the fact that the amount of the reduction 

depends rather sensitively on the assumed initial temperature of the neutron star 

(T = 5 · 101° K leads to a~ 77% reduction) as well as on the underlying EOS, it 

seems likely that the actual limiting frequency of a newly born star may lie in the 

range 0.65 < n~~4,5;n~R < 0.85. Our investigation, based on the equations of 

state we use, as described earlier and in ref. 21 , suggests that the limit lies closer 

to the lower part of this range. 

The instability parameter, t (defined in Table I), corresponding to the above m=5 

mode is rather insensitive to different equations of state. It has values of 0.043 :S: 

t~~5 :S: 0.046 (see Table III). 

TABLE III. Properties of a neutron star of gravitational mass M = 1.5 M0 ro
tating at its maximum possible angular velocity, n~~5' calculated for the four 
different equations of state of this work. 

HV A~onn + HV HFV AWEA+HFV 

fc/fo 2.50 2.65 3.35 3.43 
nv=O m=4 [~)t 4063 4442 4900 5053 
nv=O m=5 [~] 3987 4364 4789 4936 
nv=O m=6 [~] 4060 4448 4872 5020 
tv=O m=5 0.043 0.046 0.045 0.045 
log[I/(fcm2

)] 45.25 45.22 45.18 45.16 
Req km] 15.36 13.98 13.44 13.09 
Rp [km] 13.11 11.97 11.50 11.22 
ZB 1.44 1.57 1.64 1.69 
ZF -0.59 -0.61 -0.62 -0.63 
Zp 0.25 0.28 0.29 0.30 

t) The frequencies n~=O refer to zero-viscosity instability modes of order m 
4,5,6. 

It should be noted that one obtains for rotation at the mass limit tK ~ 0.12 

(cf. seventh row of Table I), and tK ~ 0.10 for theM= 1.5M0 mass model (cf. 

sixth row of Table II). Only in the former case the stability parameter would come 
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close to that value at which instability against a bar mode (i.e., m = 2) is expected 

to set in (::::::: 0.14). 

In our earlier investigation21 the above mentioned approximation scheme, 

am = 1 and rm = 1, was applied for the calculation of P~. A comparison of 

both cases shows that the changes with respect to p~=O lmin (crosses in Fig. 2) 

are smaller than 9%. One obtains however deviations for larger viscosities which 

are the larger the larger v is. This behavior becomes clear from Eqs. (3)-(5), 

since then the ·angular velocity dependence of both a(f!m) and r(r!m) becomes 

important. 

Up to now we have discussed the onset of instability modes of young and 

therefore hot neutron stars (v ::::::: 0). The limits derived apply therefore to any 

pulsar whose thermal history since birth has involved only cooling, since while hot 

it would have spun down by gravitational radiation until viscosity, at its present or 

some intermediate temperature, damped the instability. For colder neutron stars 

(T::::::: 109 K, v::::::: 200 cm2s-1 )- whose present angular velocities are reached by the 

spin-up process of old neutron stars driven by mass accretion from a companion 

-it follows from Fig. 2 that them= 4 and/or m = 3 instability modes, P~~~.~' 

possess the largest rotational periods and thus set the limit on stable rotation in 

this case. We stress that this conclusion however may only be true if the above 

mentioned axisymmetric differential rotation instability, item (2), occurs at smaller 

rotational periods than those given by P~~~.~. 

In summary, we have presented an investigation of stable neutron star rota

tion by assuming that the limiting frequency is determined by either the Keplerian 

velocity (f!~R) or instability modes (f!~) caused by the emission of gravitational 

radiation that are damped by the presence of viscosity. We find that in the case 

of a newly formed (hot) rotating neutron star for all four equations of state un

der consideration the maximum rotational frequency is set by the gravitationally 

excited m = 5 instability mode. These are (at most) between 63 and 71% of the 

Keplerian frequencies and set therefore the limit on stable neutron star rotation. 

For neutron stars that have been spun up and reheated to temperatures T ::::::: 109 

K by the accretion of mass from a companion, we find that the limit on stable 

rotation is set by the m = 4 and/or m = 3 instability modes. 

The indication of this work is that gravitation radiation-reaction instabilities 

set a lower limit of a little more than 1 msec (1.27 msec for our models) on the 
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rotation period of realistic relativistic neutron star models. This has possibly very 

important implications for the nature of any pulsar that is found to have a shorter 

period. 38 For example Sawyer39 has calculated that the viscosity of quark matter 

is many orders of magnitude greater than that of neutron matter, so that for a 

quark star the smaller Kepler period would set the lower limit. 
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