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ABSTRACT 

LBL-29150 

The frequency spectral characteristics, bias and variance of images reconstructed from real Positron Emission Tomography 
(PET) data have been studied. Feasible images obtained from statistically based reconstruction methods have been compared 
to Filtered Backprojection (FBP) images. Feasible images have been described as those images that are compatible with the 
measured data by consideration of the Poisson nature of the emission process. The results show that the spectral 
characteristics of reconstructions obtained by statistically based methods are at least as good as those obtained by the FBP 
methods. With some exceptions, statistically based reconstructions do not exhibit abnormal amounts of bias. The most 
significant difference between the two groups of reconstructions is in the image variance, where the statistically based 
methods yield substantially smaller variances in the regions with smaller image intensity than the FBP images. · 

1. IN1RODUCTION 

Maximum Likelihood Estimator (MLE), Bayesian methods with a variety of prior distributions and the method of sieves 
are being investigated as methods for reconstructing Emission Tomography (ET) images at a number of institutions. The 

· number of publications reporting theoretical and experimental results in those areas of work is already too large to reference 
here. Although there is general agreement that the images recovered by those statistically based methods are "superior" to 
Filtered Backprojection (FBP) images, there appears to be little that is specifically known on what that superiority consists 
in. In this paper we shall report the results of an extensive analysis of three main groups of variables that can characterize 
images: their frequency spectrum, bias and variance. 

We take for granted that statistically based reconstruction methods can incorporate in the transition matrix space variant 
point spread functions, "missing cones" of projection data, corrections for absorption and detector gains, Compton scattering 
in the detectors and the consequent crystal penetration, fack of collinearity of the two annihilation y-rays in Positron 
Emission Tomography (PET), etc., and that the incorporation of those factors into the transition matrix represents a practical 
advantage over FBP methods of reconstruction. The more fundamental benefit of statistically based reconstruction methods 
should stem, however, from the fact that the correct Poisson distribution that governs radioactive disintegration is used to 
define the target function to be maximized by the reconstruction algorithms. FBP methods implicitly assume that 
distribution is Gaussian with a single, unspecified, standard deviation. I We shall show that, for the methods investigated in 
the present work, the principal advantage of the statistical methods appears due to the utilization of the Poisson distribution, 
although we do not have a proof. 

In the selection of images reconstructed by statistically based methods we have chosen feasible images exclusively. It is 
)Veil known that the MLE method, as implemented, for example, from the EM algorithm by Shepp and Vardi,2 yields 
unacceptably noisy images if the iterative process is allowed to continue past a certain number of iterations. Llacer and 
Veklerov3 have described feasible images as those images that, if they were a radiation field, could have generated the initial 

.. projection data by the Poisson process that governs radioactive decay. Formal definitions of feasibility, as well as a practical 
test that has been used in the work reported in this paper can be found in Ref. 3. This paper will first describe the selection 
of data and of filters for the FBP reconstructions, the selection of methods and parameters for the statistically based 
reconstructions, will show and evaluate the image frequency spectra of the various groups of images, will give a practical 
definition of bias for PET images, and show representative results of bias and variance analysis. 



2. SELECTION OF DATA AND RECONSTRUCTION METHODS 

2.1 Selection of data 

Statistically based methods of reconstruction depend on the specification of a transition matrix whose elements contain 
probabilities that y-rays emitted from a specific pixel will be detected by a specific detector "tube". A tube can be defined by 
a particular collimator hole in Single Photon Emission Tomography (SPET) or a pair of detectors in Positron Emission .. 
Tomography (PET), for example. In computer simulation studies the characteristics of that transition matrix can be made 
identical to the actual probabilities of y-ray emission, but in practice the transition matrix can only be approximated. Monte 
Carlo methods can be used to calculate useful approximations to the true transition matrix, as has been done by Llacer et al. .. 
4.5 for small positron emission cameras, by Floyd et at.6 for SPET and by Veklerov et at.? for PET. It has been found, 
however, that even Monte Carlo approximations can be sufficiently different from the real instrument transition matrices that 
strict tests for image feasibility fail unless they are relaxed by the introduction of an adjustable parameter that quantifies the 
accuracy with which the transition matrix is known.3 

Because of the expected inaccuracy of transition matrices, we decided that the current study of image characteristics 
should be based on real PET data, so that the comparison of imaging algorithms is carried out closer to what clinical practice 
is likely to encounter. PET data of the Hoffman brain phantomS from the ECAT-III instrument that was in use at the UCLA 
School of Medicine were obtained for this study. That brain phantom mimics Fluoro-dioxi-glucose (FDG) brain studies, 
which constitute the most common application of PET in a clinical setting. FDG studies may not be, however, those that 
benefit most from statistically based algorithms, as will be discussed below. 

One set of projection data with 55 million (SSM) counts was obtained as a reference and ten sets with 1 million (1M) 
counts each were obtained as independent data sets. The number of counts in the latter sets was selected as representative of 
typical brain studies with the ECAT-III. Figure 1 shows the o~tline of the Hoffman brain phantom. The ratio of activities 
between the regions in black and those in white in the interior of the phantom is approximately 4.5: 1. Although the activity 
ratio in the phantom can be controlled quite accurately, the actual ratio measured by the tomograph is not well known due to 
different solid angles seen by the detector crystals from different positions in the imaging plane. This will impose a serious 
limitation when attempting to measure bias in the images, as will be discussed below. 

Fig. 1: Outline of the Hoffman brain phantom. 

The data for the reconstructions were corrected for background by 
the standard method of subtracting an estimate obtained by delayed 
coincidences in the PET instrument, with negative counts set to zero. 
With less than 5% background counts, this results in a small 
distortion to the Poisson distribution of the original projection data. 
The ECAT-III instrument has a sampling distance of 3.05 mm at the 
center of the field. Reconstructions were carried out in a 128 x 128 
grid with pixel dimensions of 2.033 x 2.033 mm. 

2.2 Filtered Backprojection methods 

All the filtered backprojection reconstructions were carried out · 
using algorithms from the RECLBL library.9 The backprojector 
BIN, that allows the use of different projection bin and pixel sizes, 
was used for all the reconstructions. A full bandwidth Shepp-Logan 
filter in configuration space was used for the reconstructions with 

identifier "sl". The rest of the FBP reconstructions were carried out by filtering in frequency domain. The filter types and 
parameters used are described in Table I. Filter "slfl" corresponds to the filter that radiologists at the UCLA School of 
Medicine have found empirically to give the most useful clinical information for brain images with 1M counts. Both the 
"slfl" and "slf2" filters are not part of the RECLBL library but were synthesized for the current study. The parameters for 
the Butterworth filter "bwO", which is part of that library and allows non-integer filter orders, 10 were selected by the method 
described in Ref. 9 to enhance slightly the intermediate frequency part of the pass band over the "slfl" filter, but cutting a 
substantial part of the higher frequency noise. Figure 2 shows the filter functions for the "slfl" and "bwO" filters. 
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TABLE I - Parameters for FBP reconstructions 
Identifier Filter Parameters 

ramp Ramp, freq. domain 
sl Shepp-Logan, conf. space 

slfl Shepp-Logan, freq. domain fc = 0.65 Hz/cm 
slf2 ditto fc = 0.57 Hz/cm 
bwO Butterworth, freq. domain fp = 0.82, fs = 1.64 Hz/cm 

• 2.3 Statistically based reconstructions 

• 

As indicated above, feasible or nearly feasible images have been used for the statistically based reconstructions. Using 
the methods described in Ref. 3 for the feasibility tests, a number of reconstruction methods have been investigated. The 
MLE method described in Ref. 2 has been used in two different forms: 1) "simple MLE", in which absorption and detector 
gain corrections were used to multiply the original projection data before reconstruction, and 2) "asymmetric MLE" in which 
the corrections are used to modify the transition matrix elements in a more strict adherence to the definition of such a matrix. 

§ ..... ..... 
(.) 

= ..8 
0.15 

0.10 

0.05 

0.0 

slfl 
bwO 

0.5 1.0 1.5 

Frequency, Hz/cm 
Fig. 2: Relative response of the Shepp-Logan filter "slfl" and the 

Butterworth filter "bwO". 

This method, in effect, breaks up the 8-
fold symmetry of the transition matrix, a 
characteristic that we use to reduce the 
amount of storage for that matrix, but 
preserves the Poisson or near-Poisson 
nature of the projection data. For the 1M 
counts data sets, both methods of 
reconstruction were carried to 30 
iterations, where our tests indicated the . 
onset of feasiblity of the recovered image. 
Feasible images were also obtained by 
carrying out the above iterative procedures 
to 50 iterations, where the images are 
beginning to leave the feasibility region, 
signaled by an increase of the noise level 
in the high activity regions, and filtering 
back to feasibility with a Gaussian 
filter.ll For the SSM count reference data 
set, the number of iterations to feasibility 
was higher, as will be shown below. A 
Maximum a Posteriori method (FMAPE) 
with entropy prior12 has also been used to 

recover feasible images. The Bayesian algorithm seeks to obtain an image that maximizes a product of entropy and 
likelihood, with one weight parameter (M) that can be adjusted for convergence to feasible images. Finally, the method of 
sieves13 has been used to obtain feasible images by adjustment of the sieve and resolution kernels to yield noise-free images 
that converged to feasible or nearly feasible images. 

The values of the sieve and resolution kernels were chosen after a search for parameter values yielding feasible images was 
made. 14 The strictly feasible images obtained tended to be excessively noisy (note that we consider feasibility a necessary 
condition for an image, but not a sufficient condition). The sieve images obtained with the parameters of Table II were very 
close to being feasible, having a slightly oversmoothed appearance . 
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Table II - Parameters for statistically based reconstructions 
Identifier Method Parameters 

30 Simple MLE, 30 its. 
50_0.7 ditto, 50 its. Post filtering cr = 1.42 mm (0.7 pixels) 
a_30 Asymmetric MLE, 30 its . 

a_50_0.7 ditto, 50 its. Post filtering cr = 1.42 mm (0.7 pixels) 
bbg_150_0.5 FMAPE, 150 its . ila = 900, post filtering cr = 1.01 mm 

s1 sieves, 300 its. crs = 1.83, crr = 1.83 mm 
s2 ditto crs = 2.23 , crr = 0.93 mm 
s3 ditto crs = 2.23, crr = 1.62 mm 

3. IMAGE FREQUENCY SPECTRA 

We use a standard definition of Image Frequency Spectrum (IFS): the magnitude of the 2-dimensional Fourier transform 
of an image. We avoid the use of the term Power Spectral Density, or Spectral Density, because this term is more properly 
reserved for the Fourier transform of the autocorrelation function of a stationary, or quasi-stationary random process. 
Reconstructed images from a single phantom have a random (noise) part and a deterministic (image) part and are not 
stationary. In this study we will compare the frequency spectrum of a reference image (SSM counts) reconstructed with the 
"sl" filter to the spectra of images reconstructed by various methods. The emphasis is in obtaining the frequency spectrum of 
the deterministic (image) part of the reconstructions, to see how well image features are treated by each method. Using the 
"sl" filter for the reference image results in an image with excellent feature contents and somewhat lower noise than with the 
ramp filter. The "sl" filter also avoids the characteristic "ringing" of the latter filter. Figure 3 shows the reference image. 

For a linear method of reconstruction, one could emphasize the 
image features by adding the ten independent projection data sets, 
carrying out one single reconstruction and then obtaining the IFS. 
For the non-linear statistical methods of reconstruction, we have no 
assurance that the results of that study would be equivalent to 
carrying out ten separate reconstructions, adding up the images and 
then obtaining the IFS. For that reason we have carried out the IFS 
study by the latter method, except where noted, which is correct for 
both linear and non-linear methods of reconstruction. 

The 2-dimensional IFS's are not convenient to present in a 
printed form. It appears sufficient to examine one-dimensional cuts 
through the two-dimensional spectra. The x-frequency axis will 
therefore be shown for all the images to be described in this section. 

Figure 4 shows the IFS of the reference image in comparison 
with those of 4 independent 1M images, also reconstructed by the 
"sl" filter. It is apparent that image features are beginning to be 

XBB 90G_4730 obscured by noise in the 1M reconstructions at frequencies above 
approximately 0.8 Hz/cm. We do not know up to what frequency 

Fig. 3: Reference FBP image from a 55 million the SSM image conveys image features, but we can expect those 
cou~t da~a set. Shepp-Logan filter in features to be present up to frequencies above the onset of noise in 
configuration space. the 1M images. The empirical choice of the "slfl" filter by the users 

of ECA T-III brain images at UCLA is then consistent with the above finding, as seen from Fig. 2. The choice of the "bwO" 
filter is also well justified. It will reconstruct better image features at the edge of the region where noise becomes dominant, 
and it cuts off more rapidly than the "slfl" filter at higher frequencies . 

-4-

.. 

• 



• 

• 

(1) 2 0 
::s 
~ 
:> 

] 
(.) 

& 
IZl 1 0 

0 
....-< 
b.() 
0 

......-< 

--- sl filter, 55M cmmts 
sl filter, 1M counts 

- 2 - 1 0 

frequency (Hz/cm) 

1 2 
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The "simple MLE" and the "asymmetric MLE" reconstructions do not show any significant differences in behavior in the 
frequency domain and only the latter reconstructions results are shown here. Figure 5 shows a comparison of the IFS of the 
reference image with the IFS's of feasible reconstructions by the different statistically based reconstruction methods. The 
most significant difference is in a noticeable increase of the spectra of the feasible images between 0.7 and 1.2 Hz/cm with 
respect to the reference. This may account for the apparent higher sharpness of MLE reconstructions when compared to FBP 
results filtered to a similar noise level. 

The results of Fig. 5 can be summarized by indicating that frequency spectra of feasible images exhibit strong 
similarities, independent of the reconstruction method. Those methods that use a final filtering operation, including the 
method of sieves, show a decreased spectrum at the high frequencies, where reconstruction noise would be dominant at 1M 
counts. An increase in image sharpness with respect to the reference FBP image is also noticed at the intermediate 
frequencies. These observations are consistent with an examination of images and do not seem to favor any specific method 
of statistically based image reconstruction over the others. 

4. BIAS ANALYSIS 

Bias has a well defined meaning in Statistics and, in the imaging context, could be described as differences between the 
expected value of reconstructed pixel intensities and the correct values. In the case of tomographic reconstructions, in which 
filtering of high frequencies is a necessity, the above definition of bias is not practical, since all edges in the image would 
show bias. A more practical definition can be devised as the difference between the expected average value in extended 
uniform regions, away from edges, and the correct average values for those regions. 

XBB 906-4731 

Fig. 6: Hoffman brain phantom image, showing the 
9 ROI's obtained from three main areas for 
bias analysis. 

The Hoffman brain phantom has been designed with two levels of 
activity, simulating grey and white matter. Regions corresponding 
to the two levels can be used to define ratios of activities which the 
reconstructed images should reproduce accurately. In the present 
study, as indicated earlier, the correct ratios seen by the tomographic 
instrument are not well known, except that they should be in the 
vicinity of 4.5:1. As a consequence, we do not have an accurate way 
of assessing the bias caused by the different reconstruction methods. 
It should be mentioned that reconstructions carried out by both FBP 
and statistical methods with data generated by computer simulation 
and reconstructed with exact transition matrices have been found to 
show no significant bias. 

In spite of the difficulties just indicated, it has been possible to 
carry out an approximate bias analysis which allows us to draw some 
interesting conclusions. Figure 6 shows the Hoffman brain phantom 
with 3 main areas: al placed in the hot large region shown, a2 in the 
cool large white matter area and a3 in the narrow cool white matter 
area. Each of the three main areas has been sampled in three different 
manners, by generating slightly different regions-of-interest (ROI's) 
to encompass in one case some neighboring pixels that were not 
considered in another case. The resulting 9 ROI's are shown in 
Figure 6. The generation of 3 ROT's from each main area allows to 
estimate the variability of the measurement caused by setting specific 
limits to the ROI. 
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Fig. 7: Mean and standard deviation of the ratios of hot/cold regions for reconstruction methods and 
parameters of Table III. Top: Hot/large cold region (al/a2); Bottom: Hot/narrow cold region (al/a3). 

For each method of reconstruction, nine different activity ratios can be obtained by dividing the average activity in the 
ROI's at al by those at a2, and nine more ratios can be obtained by dividing the activities at al by those at a3. The mean 
and standard deviation of each group of 9 ratios has been obtained and is shown in Fig. 7. In order to decrease the effect of 
noise as much as possible in this study, the reference SSM count data set was used exclusively. The different methods and 
parameters shown in Table III were used for the reconstructions. 
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The ratios for the larger regions al/a2 are all different from each other, and the only meaningful observation that cau be 
made is that, in the asymmetric MLE reconstructions (as in the Simple MLE not shown), the values of the ratios at 
iterations corresponding to the onset of feasibility (50 to 100 its. for 55M counts) have not reached their final values. At 
iteration 300 and beyond, the ratio al/a2 does not differ substantially from those obtained by other methods of 
reconstruction. 

Table III - Methods and parameters used for bias analysis, 55 M count data set 
Identifier Method Parameters 

ramp FBP- Ramp filter 
sl FBP - Shepp-Logan, config. space 

slfl FBP - Shepp-Logan, freq. domain fc = 0.65 Hz/cm 
bwO FBP- Butterworth, freq. domain fp = 0.82, f5 = 1.64 Hz/cm 
a_ 50 Asymmetric MLE, 50 its. 

a_100_0.6 ditto, 100 its. Post filtering, a = 1.23 mm 
a_300_0.7 ditto, 300 its. Post filtering, a = 1.42 mm 

bbb_300_0.6 FMAPE, 300 its. Post filtering, a = 1.23 mm 
s1 sieves, 1000 its. as = 1.83, ar = 1.83 mm 
s2 sieves, 500 its. a5 = 2.23, ar = 0.93 mm 
s3 ditto as= 2.23, ar = 1.62 mm 

The situation for the ratios of regions al/a3 in the Asymmetric MLE reconstructions is the same as above, but in 
addition, other effects can be noticed in other reconstructions. Region a3, being a narrow valley between high intensity 
regions, can be expected to be sensitive to excessive smoothing and to "ringing". In going from the ramp reconstruction to 
the sl and further to the slfl, the reduction of the ratio indicates that the smoothing caused by filtering with lower bandpass 
affects the image values at the valley a3. The bwO results with the Butterworth filter, as well as the s2 results with the sieve 
method show the opposite effect: there is an exaggeration in the depth of the narrow valley. This "ringing" effect can be 
expected from the Butterworth fllter when its high frequency response drops too rapidly. This effect is particularly noticeable 
if the ratio fJfp of the filter is made smaller than approximately 2.0, making the filter order larger than approximately 6.0. 
Ringing is also seen in sieve reconstructions when the difference between the sieve kernel and resolution kernel parameters is 
too high. The ratio for the s3 reconstruction is closer to the ramp results, for example, than that of s2. The low value of the 
al/a3 ratio for the sl reconstruction is not understood at this time. 

A preliminary conclusion from the limited bias study is, then, that the use of a Butterworth filter for FBP 
reconstructions, as well as sieves for a statistically based method has to be considered carefully. A "ringing" image will have 
a very attractive appearance as long as the effect is not excessive, but image values may be in error in narrow regions, hot or 
cold. A second point that can be made is that MLE reconstructions stopped at the onset of feasibility have not yet attained 
the final value of activity in all their regions. It is preferable to iterate past the onset of feasibility, when the image begins to 
become noisy and filter back to feasibility with a small Gaussian kernel. 

5. VARIANCE ANALYSIS 

The pixel-by-pixel variance of reconstructions from 10 independent 1M count data sets has been examined for the FBP 
and statistical methods discussed above. The process has been carried out in the following steps: 

1) The reference 55M count data set has been reconstructed by the "sl" method and a histogram of number of pixels 
having a certain number of counts vs. number of counts in a pixel has been constructed. The histogram is shown in 
Fig. 8 for the pixels inside the perimeter of the brain phantom. For example, there were approximately 25 pixels that 
contained 40,000 counts. 

2) All the pixels in the brain phantom image were classified into three regions and labels were affixed to each pixel for: 
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a) High intensity pixels, i.e., having more than 30,000 counts/pixel. 
b) Low intensity pixels within the brain, i.e., having between 10,000 and 20,000 counts/pixel, and 
c) All low intensity pixels, within and outside the brain, i.e., from 0 - 20,000 counts/pixel in the SSM count image. 

3) The ten independent data sets were reconstructed by the different methods and parameters of Table III. 

4) The pixel-by-pixel means and standard deviations for each ensemble of 10 images were calculated, separating the 
pixels according to the classification of 2), and 

S) Histograms of number of pixels having a certain value of Standard Deviacion (SD) vs. SD were made for each of the 
classifications of 2) and each method of reconstruction. 
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Fig. 8: Histogram of number of pixels vs. pixel intensity (counts) for 
the SSM reference image. 

The obtained results can be classified into two 
main groups: FBP images and statistically based 
images, with small variations within each group 
depending on filtering, number of iterations and 
somewhat depending on the actual reconstruction 
method. The results for the 10 independent images 
reconstructed by FBP, using the slfl filter and the 
asymmetric MLE at iteration 30, soon after the 
onset of feasibility, will be shown as representative 
of the two groups of results. 

Figure 9 shows the FBP results on the left, and 
the MLE results on the right for the pixels 
corresponding to the high intensity regions in the 
image. The statistical parameters for the SD 
histograms are shown on the plots. It is observed 
that the two methods of reconstruction do not 
show much difference in the high intensity regions. 
Figure 10 shows the corresponding sets of 
histograms for the low intensity regions within the 
brain phantom. The difference between the FBP 
and MLE methods is quite evident, with a 
substantial decrease in the variance of the MLE 
results. Finally, Fig. 11 shows the corresponding 
histograms for the low intensity regions inside and 
outside the brain, including the pixels outside the 
brain phantom, which, in principle, should not 
have any counts. The difference between the two 
methods of reconstruction is very marked. 

It is interesting to show the "variance images", i.e., images whose pixel intensity is proportional to the SD of the 10 
image pixels with respect to their mean. Figure 12 shows on the lef,t the variance image for the FBP reconstructions and, 
on the right, the corresponding image for the MLE reconstruction. The FBP image shows no significant features, in 
agreement with a variance which is uniform in both the high and low intensity regions within the phantom. The MLE 
image, however, shows a very clear structure, corresponding to the findings of smaller variance in the less intense regions of 
the phantom . 
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Fig. 10: SD Histograms for 1M reconstructions, FBP on the left, MLE on the right 
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Fig. 11: SD Histograms for 1M reconstructions. The histograms include the region outside the brain phantom, where there 
are no expected counts. 
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Fig. 12: SD images for the FBP, left and MLE, right, from the 10 independent 1M count reconstructions. 

The fact that the variance decreases when the number of counts in a region decreases appears to indicate that the utilization 
of the Poisson distribution in the statistically based reconstructions, in contrast to the implicit Gaussian assumption of the 
FBP, is causing the better results. It would be interesting to test whether an EM algorithm based on a Gaussian 
distribution, with a positivity constraint, would also give better results. 
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6. CONCLUSIONS 

The analysis of image frequency spectra, bias and variance presented above give some indications as to what is "superior" 
about statistically based reconstruction algorithms in contrast to FBP for the Emission Tomography problem: 

1) By chasing feasible images, statistically based algorithms provide images that can be sharper than FBP images 
without paying a significant penalty in noise. 

2) The use of feasible MLE images obtained by iterating the EM algorithm past the onset of feasibility and filtering 
slightly results in images with no more bias than FBP images. Similar good results can be obtained by using the 
Bayesian algorithm with entropy prior. 

3) Feasible images obtained by any of the acceptable statistically based methods have lower variance in the regions of 
lower intensity than the FBP images. Lesions in those regions should be more detectable and the time variation of 
isotope uptake in regions other than the more intense regions should be more accurate when obtained from statistically 
based reconstructions. 

We feel that the above study places us in the position to initiate an ROC study in an appropriate collaboration with some 
knowledge of what we can attempt to prove. It will be interesting to see how. the advantages described above translate 
themselves at the time of carrying out a medical diagnostic. It is interesting to note that FDG studies are likely to benefit 
less from statistically based reconstruction methods than other studies. FDG brain studies will always contain lesions 
(hotter or colder than the surroundings) in areas with a substantial number of counts. Other kinds of studies in which one 
wants to observe and/or measure low activity features in cold surroundings, even in the presence of hot areas elsewhere, 
should take better advantage of the lower variance characteristics of the statistically based reconstructions. 
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