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ABSTRACT 

Zinc is the most commonly used battery electrode, and zinc primary batteries have found 

numerous applications. The zinc electrode is electrochemically reversible in alkaline electro-

lytes, and there is a strong incentive to develop a practical secondary battery based on this metal. 

However, secondary batteries that use zinc electrodes typically exhibit short lifetimes, because of 

problems with zinc material redistribution and undesirable zinc morphologies that form during 

recharge. There has been a world-wide effort to develop a long-lived secondary alkaline zinc 

electrode, and marked improvements in cell lifetimes have resulted. This article reviews these 

efforts, paying particular attention to R&D during the period 1975-1990. 
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INTRODUCTION 

Zinc has been used by human cultures throughout recorded history, and it is a high-volume 

metal (1). World-wide production of zinc was about 7 million tons during 1989, including 

345,000 tons of zinc produced in the U.S. (2). The U.S. now consumes about 1.34 million tons of 

zinc per year, half of which is used in galvanizing and electrogalvanizing for corrosion protec

tion. Other uses of zinc include die casting, brass, zinc oxide (pigments) and battery electrodes. 

It is the use of zinc in battery electrodes, which represents only a small fraction of its current con

sumption, that is the subject of this review. 

Batteries have long been recognized for their capacity to efficiently convert and store electr

ical energy. Batteries now find use in a myriad of devices, and the world-wide market for bat

teries is expected to grow along with our increasing use of electricity and electrical devices. 

Also, there are exciting new technologies that will use advanced batteries. For example, large

scale energy storage technologies, such as electric vehicles or electric utility load leveling, can 

provide needed flexibility in the choice of primary fuels for energy generation. Advanced 

rechargeable batteries are the leading candidates for such applications (3). Other new uses for 

rechargeable batteries include power sources for cordless power tools, video equipment, com

munications equipment, lap-top computers, etc. Much of the recent R&D on advanced recharge

able batteries has been driven by such applications, and secondary zinc electrodes have received 

considerable attention for the same reason. 

The status of R&D on the zinc electrode has been addressed by prior reviews ( 4-9), and the 

reader should consult these references for a discussion of earlier work on primary and secondary 

cells, including those that use acidic or neutral electrolytes (e.g., Zn/Br2,). The present work 

addresses the secondary alkaline zinc e~ectrode and focuses on R&D during the period 1975-

1990. 
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APPLICATIONS OF SECONDARY ALKALINE ZINC ELECTRODES 

Zinc is the most commonly used battery electrode because of its low equilibrium potential, 

reversibility, compatibility with aqueous electrolytes, low equivalent weight, high specific energy 

and volumetric energy density, abundance, low cost, low toxicity, and ease of handling. Primary 

Zn-electrode batteries are preferred where moderate specific energy and low manufacturing costs 

are important considerations. For applications where moderate specific energy, high specific 

power, high energy efficiency, low toxicity and low life-cycle costs are important, rechargeable 

Zn-electrode batteries are attractive candidates. These applications include all kinds of electric 

vehicles (automobiles, vans, material-handling equipment, tanks, etc.) and portable electric

powered equipment. The advantages of electric vehicles, compared to internal-combustion

engine vehicles, are well documented: a) the use of petroleum-derived fuels can be avoided, 

b) exhaust emissions are greatly reduced, and c) thermal and audible signatures are minimized. 

Lead-acid (Pb/PbOz) and Cd/NiOOH batteries are now the preferred energy storage devices for 

portable power applications. Substitution of Zn-electrode batteries will not only result in better 

performance, but also afford reduced toxic disposal problems. 

Secondary alkaline zinc batteries have not received serious consideration for applications 

such as utility load leveling, which require very long battery lifetimes. 

SECONDARY ALKALINE ZINC CELLS 

The use of primary Zn-electrode batteries is widespread, but secondary Zn-electrode bat

teries have not penetrated commercial markets. The Zn electrode has been coupled with 

numerous electrolyte/positive-electrode combinations in an international search for a high

performance, long-lived secondary battery. An alkaline-electrolyte battery is desirable because of 

the inherent electrochemical reversibility (low overpotential) of the Zn electrode, the high ionic 

conductivity of the electrolyte, good low-temperature performance, and the availability of 

rugged, compact, non-toxic and long-lived positive electrodes (e.g., NiOOH and MnOz). 
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However, Zn electrodes have found only limited use in secondary batteries, with both alkaline 

and acidic electrolytes. A fundamental problem is the short and unpredictable lifetime of the Zn 

electrode when it is subjected to charge-discharge cycling. This problem has been traced to the 

redistribution of Zn active material (shape change) and the fonnation of unwanted Zn electrode 

morphologies (dendrites, filamentary growths, nodules) during recharge. These phenomena are 

linked to two important characteristics of Zn: (a) its high solubility in common battery electro

lytes, and (b) its rapid electrochemical kinetics. 

The design features of various secondary alkaline zinc cells that have been investigated dur

ing the past 15 years are summarized in the following sections. 

Zinc/Nickel Oxide 

The Zn/K.OH/NiOOH cell is based on dissolution-precipitation reactions at the Zn elec

trode: 

Zn(OH)j- = ZnO + 20H- + H20 

The NiOOH electrode reaction during discharge is: 

and the overall cell reaction is: 

Zn + 2NiOOH + H20 = ZnO + 2Ni(OH)z 

(1) 

(2) 

(3) 

(4) 

The reverse reactions occur during cell recharge. A plot of the time dependence of Zn/NiOOH 

cell voltage and electrode potentials during a typical charge-discharge cycle is shown in Fig. 1. 

Most of the cell voltage loss is associated with the NiOOH electrode, whereas the Zn electrode 

exhibits a small overpotential. The average cell discharge voltage is about 1.65 V, and the 

theoretical cell specific energy is 326 Wh/kg. 
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Figure 1. Zn/NiOOH cell voltage and electrode potentials dwing a charge-discharge cycle. 

Cell voltage 
................. NiOOH electrode potential (vs Hg/HgO) 
---------- Zn electrode potential (vs Hg/HgO) 

The cell is charged at a constant current of 0.225 A for 0<t<6.8 h, followed by a constant-voltage charge at 
1.93 V for 6.8<t<8.4 h, an open-circuit period for 8.4<t<8.9 h, and a constant-current discharge at 0.5 A for 
8.9<t<12.2 h. 

The Zn/NiOOH battery is recognized for its high specific energy of 55-80 Whlkg (depend-

ing on cell design), excellent peak specific power of 260-170 W/kg at 0-80% DOD (10), good 

low-temperature performance, and moderate self-discharge rate (<0.8%/day). Figure 2 shows a 

plot of specific energy vs specific power (Ragone plot) for a 4-cell 144-Ah Zn/NiOOH module 

that was constructed by General Motors/Delco Remy (10). Good power-energy characteristics 

are maintained, even at ooc. Many versions of this promising system were investigated during 

the 1970s and 1980s, and Table 1 lists the organizations and approaches that have been used. 

Four basic cell designs have been developed: a) vented static-electrolyte, b) sealed static-

electrolyte, c) vibrating electrode, and d) flowing electrolyte. Important cell construction features 

for these designs are described in the following four paragraphs. 
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Figure 2. Plot of specific power vs specific energy for a 4-cell 144-Ah Zn/NiOOH module that was con
structed by General Motors/Delco Remy (10). 

Initial module temperature 24 °C 
----------- Initial module temperature 0°C 

Vented static-electrolyte cells: Cells of this type are designed to be capacity-limited by the 

NiOOH positive electrode, which is typically a porous sintered structure formed by either an elec-

trochemical or chemical precipitation process. The porous Zn electrode is usually prepared by 

applying a polymer-bonded paste of ZnO to a screen or mesh current collector, using a quantity 

of ZnO equivalent to two-to-four times the stoichiometric amount of active NiOOH. It has been 

shown that the Zn/Ni mass ratio has a significant effect on cell lifetime (25,44,45), as does the 

Zn/electrolyte mass ratio (46). The electrolyte is usually an aqueous solution containing 20-35 

wt% KOH and 1 wt% LiOH, and is saturated with ZnO (about 1M). When an excess amount of 

electrolyte is used (flooded-electrolyte configuration), the height of the electrolyte meniscus can 

have a significant effect on the rate and extent of Zn material redistribution (33,47-49). Most cell 

designs call for a minimum amount of electrolyte, barely enough to wet the electrodes and pro-

vide an ionic conduction path. Microporous separator materials serve to retard Zn dendrite 
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Table 1. Zn/NiOOH Cell and Battery Development 

Organization Features 

General Motors Ca additions 
1ow-KOH electrolyte 
pasted-rolled electrodes 

Gould Zn-selective separator 
voltage-limited charging 

Energy Research pasted-rolled electrodes 
foil current collector 

Exide vibrating Zn electrode 

Yardney multilayer separator 

Rockwell rotating -shutter separator 

Eagle Picher cellophane separator 

DAUG* Ca additions 

LBL modified electrolyte 
voltage-limited charging 
Ca additions 

Electrochimica modified electrolyte 
modified electrode 

Labcom pulsed charging 
pressure-limited charging 

Sorapec pulsed charging 
Pb additive 
flowing electrolyte 

Lucas polymer-bonded Ni electrode 

Yuasa sealed cells 

San yo sealed cells 
metal oxide additives 

Japan Storage sealed cells 
Battery Zn electrode additives 

• Deutsche Automobilgesellschaft ForschungslaboratoriiDil 

•• 25-Ahcell 
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growth, and wicking materials are used to help wet the electrodes. Modest overcharging is 

required to accommodate the inherent inefficiency of the NiOOH electrode, and this type of cell 

is vented to the atmosphere to allow release of the 0 2 gas formed during the charging process. 

This 0 2 loss causes an imbalance between the negative and positive electrode states of charge. A 

proper balance can be restored by completely discharging the cell, and then charging until an ade-

quate Zn metal reserve is established. A cell pack is constructed by sandwiching alternate nega-

tive and positive electrodes, which are held under compression, and the packing pressure is an 

important design parameter (50). A diagram of a typical cell arrangement is shown in Fig. 3. 

Although the electrodes are usually aligned in registry to one another, the use of off-center align-

ment and differently sized electrodes has been touted to improve cell cycle-life performance 

(51,52). 

NiOOH 
Electrode 

Zn 
Electrode 

Wicks 

Tabs 

Figure 3. Typical Zn/NiOOH cell construction. 
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Sealed static-electrolyte cells: The development of a sealed Zn/NiOOH cell is necessary for 

battery applications that require low maintenance and safe operation (53-56). Most of the design 

features of sealed cells are similar to those described above for vented cells. Sealed cell construc

tion requires the efficient transfer of 0 2 from the NiOOH electrode (where it is evolved on over

charge) to the Zn electrode. Cell designs that include gas passageways (57) and optimized 

wicking/absorbing materials (58-60) have been developed for this purpose. Also, a H2 recombi

nation device may be needed for long-lived cells. Such devices have been incorporated as auxili

ary (third) electrodes (61-67), or as catalysts contained in the NiOOH electrode (68). Auxiliary 

electrodes have also been used to dissolve residual Zn deposits (69-72), react with excess 0 2 (73), 

and serve intermittently as extra positive electrodes (74-77). 

Vibrating-electrode cells: Cells of this type were developed by AGA-Tudor (78-81), Soviet 

investigators (82,83) and Exide (22,84). A cam arrangement was used to vibrate a planar Zn 

electrode, typically at a frequency of 20 Hz and an amplitude of 1.5-2.5 mm. Zinc/nickel oxide 

batteries as large as 20 kWh were constructed. Agitation of the electrolyte resulted in uniform 

zincate-ion concentrations, which effectively eliminated the Zn active material redistribution 

problem. Lifetimes greater than 1000 cycles were obtained on single cells, however the specific 

energy was typically less than 50 Wh/kg, because of the heavy mechanical parts and the excess 

volume of electrolyte that were required. Design variations of this concept include Zn/NiOOH 

cells with rotating "shutter" separators (26), moving sheet and rotating electrodes (85). These cell 

types are no longer under development. 

Flowing-electrolyte cells: Cells using flowing electrolyte have been developed by Sorapec 

and Renault (39,86,87). An original concept was the use of Zn-coated polymer "beads," which 

were circulated through the negative-electrode compartment by flowing electrolyte. Single-cell 

lifetimes greater than 1000 cycles were obtained, however this line of investigation was aban

doned because of problems with cell complexity, parasitic Zn deposits, and cost (39). Other vari

ations of flowing-electrolyte Zn/NiOOH cells have also been investigated (88,89). 
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The above descriptions of static-electrolyte Zn/NiOOH cells correspond to what might be 

called a baseline Zn/NiOOH technology. Cells constructed in this way can be expected to fail 

after about 100 deep-discharge cycles, usually by capacity loss caused by Zn active material 

redistribution or cell shorting by Zn dendrite penetration through the separator to the NiOOH 

electrode. The cell modifications that incorporate vibrating electrodes or flowing electrolyte have 

been successful in extending cell and battery lifetimes; however these designs increase system 

complexity and degrade the battery specific energy. 

The Zn electrode fabrication procedures and new cell components that are described in the 

later sections of this manuscript can result in improved cell lifetimes, with less mechanical com

plexity than for the mechanical flow systems described above. These improvements can lead to 

Zn/NiOOH cells with improved lifetimes (>100 cycles), and suggest that numerous small-battery 

applications may lie ahead for Zn/NiOOH. However, the extented lifetime that is required for 

significant penetration into commercial electric vehicle markets has not yet been demonstrated. 

Some recent reviews have addressed Zn/NiOOH battery development issues (90,91). 

Zinc/Air 

Primary Zn/air batteries are commercially available, and they are used for applications 

where high specific energy is important and low discharge rates are acceptable, e.g., powering 

hearing aids and remote signal lights. Small Zn/air cells can be designed to deliver about 

300 Wh/kg (92), and they are well suited for such applications. 

The secondary Zn/KOH/air cell is based on the same discharge reactions as those at the Zn 

electrode in the Zn/NiOOH cell [Eqs. (1) and (2)] and the following reaction at the air electrode: 

(5) 

and the overall cell reaction is: 

Zn + 1h 02 = ZnO (6) 
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Because equilibrium conditions may not be reached during a typical cell discharge, the reaction 

product may be Zn(OH):z rather than ZnO. The reversible cell voltage is 1.65 V, whereas the 

average cell discharge voltage is about 1.2 V. The theoretical cell specific energy is 1200 Wh/kg. 

Various secondary Zn/air cell designs have been investigated during the past fifteen years. These 

are listed in Table 2 and described in the following sections. 

Table 2. Zn/Air Cell and Battery Development. 

Organization Features Size Cell/ References 
Battery 

Leesona Moos mechanical recharge lkW battery 93 

Gulf General Atomic mechanical recharge 20kW battery 94 

General Motors mechanical recharge 35kWh battery 95 

Alsthom Zn slurry - - 96 

Sony Zn slurry 3kW battery 97 
mechanical recharge 

CGE Zn slurry 15kW battery 98-100 
electrical recharge 

Sorapec Zn-coated particles - cell 101 

Pinnacle Research Institute Zn slurry - cell 102,103 
fluidized-bed recharge 

Lawrence Berlceley Laboratory Zn particulate bed 120Wh cell 104 
solutal natural convection 
mechanical recharge 

Yuasa electrically rechargeable - - 105 
third electrode 

Lawrence Berlceley Laboratory reticulated Zn electrode 2W cell 106-108 
flowing electrolyte 
bifunctional air electrode 

10 



Mechanically rechargeable consolidated-electrode cells: Zinc/air batteries can be configured 

to accept replacement Zn anodes, so that the battery can be operated by adding metal plates and 

fresh electrolyte ("mechanical" recharging) and removing the oxidized Zn product as a highly 

concentrated electrolyte phase. The major advantages of this cell design are a) the air electrode 

need only reduce 0 2, thereby avoiding life-limiting corrosion processes in the bifunctional air 

electrode, and b) it may be possible to develop a cell design that pennits easy replacement of the 

Zn electrodes, suggesting rapid "refueling" of an electric vehicle battery. General Motors built 

and tested a 32-kWh mechanically rechargeable Zn/air battery that delivered 73-121 Wh/kg at 

70-80°C, depending on the discharge rate (95). There were difficulties with the mechanical 

recharging process, however, and mechanically rechargeable consolidated-electrode Zn/air bat-

tery development has not continued. 

Mechanically rechargeable particulate-electrode cells: The negative electrode in this type of 

cell can be a Zn-KOH slurry, a fluidized bed of Zn-containing particles, or a packed bed of Zn 

particles. Most cell designs call for the regeneration of the particles and/or slurry to be perfonned 

outside the cell in a separate electrolysis compartment.* This design thereby avoids the problem 

of instability of the air electrode in the bifunctional mode. The Compagnie Generale d 'Electricite 

(CGE) design employed a cylindrical geometry, with the Zn-KOH slurry circulated inside the cell 

(98). The cell discharge product (K2Zn(OH)4-supersaturated KOH electrolyte) was fed into a 

separate electrolysis unit where Zn dendrites were deposited onto a metal substrate, and subse-

quently scraped off to re-fonn the slurry. The CGE Zn/air battery system was projected to deliver 

about 90 Wh/kg and 120 W/kg (based on the use ofhigh-perfonnance Orreduction electrodes), 

however the overall energy efficiency was low, -40% (100). 

Pinnacle Research Institute (PRI) has developed advanced components for the slurry Zn/air 

cell (102,103). A novel feature was the use of a separate fluidized-bed scraped rotating-cylinder 

• Some Ul/air system designs include the discharge cell and the slurry-regeneration cell on-board an electric vehicle. Titis kind 
of system has been termed "electrically rechargeable." 
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recharge cell. Zinc was electrodeposited on an inert substrate (Mg or glassy carbon), which was 

rotated and scraped by fixed blades to remove Zn dendrites. PRI was able to produce dendritic 

Zn, which was subsequently discharged in a parallel-plate slurry Zn/air discharge cell. 

A novel particulate-electrode Zn/air cell under development at the Lawrence Berkeley 

Laboratory (104) uses natural convection, driven by concentration gradients, to provide the 

necessary electrolytic mass transfer rates in a stationary bed of Zn particles. The cell 

configuration is shown in Fig. 4. This design represents a considerable reduction of the complex-

ity associated with pumping slurries or maintaining a fluidized bed. Also, large discharge capaci-

ties have been obtained, >500 Ah/1, which is about twice as large as that obtained using other 

Zn/air cell designs. 

Anolyte 

Zinc 
Particles 

I ,., 
•··--"--"··~ 
1·:-~·::::.:-:~:::::: 

,-.-.-.-. . -.-----. 

t:~ 

+ 

....--- - Air Out 

Catholyte 

Air Electrode 

Separator 

._ 
- Air In 

Figure 4. Packed-bed Zn/air cell configuration. 

12 



Electrically rechargeable consolidated-electrode cells: The negative electrode in this type of 

Zn/air cell is typically a porous, polymer-bonded Zn-ZnO sheet, which is similar to the Zn elec

trode in the static-electrolyte Zn/NiOOH cells described above. The positive electrode can be a 

bifunctional air electrode, which reduces 0 2 during cell discharge and evolves 0 2 during cell 

charge. The short lifetime of bifunctional air electrodes has led to three-electrode Zn/air cell 

designs, where the Zn electrode is positioned between the Orreduction electrode and the 

Orevolution electrode (the so-called third electrode). Cells of this kind were developed by 

Yuasa Battery Co. (105) to avoid subjecting bifunctional air electrodes to damaging high overpo

tentials during cell charge. During charge, when the third electrode is evolving 0 2, Zn-containing 

electrolyte is circulated in the gap between the Orreduction electrode and the Zn electrode, and 

Zn-free electrolyte is circulated between the Orevolution electrode and the Zn electrode. Zinc is 

thereby preferentially deposited on the side of the Zn electrode facing the 0 2-reduction electrode. 

During discharge, the Orevolution electrode is electrically isolated from the cell. Zinc electrode 

discharge capacities of 300-400 mAh/cm2 were obtained. 

A novel version of the electrically rechargeable Zn/air cell has been developed at the 

Lawrence Berkeley Laboratory (106-108). The cell incorporates a porous, flow-through reticu

lated electrode for Zn deposition/dissolution, and a bifunctional air electrode with a corrosion

resistant graphitic carbon substrate. More than 600 cycles were obtained on the Zn electrode 

(when cycled opposite a NiOOH electrode), with no apparent structural changes, which demon

strated that this type of cell design can avoid problems such as Zn active material redistribution 

and dendrite growth. The Zn electrode discharge capacity was -200 mAh/cm2, and novel 

corrosion-resistant carbon materials were used as the substrate for the bifunctional air electrode. 

Projected Zn/air battery performance parameters were 110 Wh/k.g, 140 W/kg and 60% (DC-DC) 

energy efficiency, and the materials costs were estimated to be -$20/k.Wh (106). 

The suitability of the various Zn/air battery designs for electric vehicle applications have 

been analyzed in recent reports. One report concluded that static-electrolyte electrically 
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rechargeable systems are most appropriate for such applications (109), whereas the other repon 

favored the use of mechanically rechargeable slurry-electrolyte systems (110). Two reviews have 

addressed Zn/air battery R&D (111,112). 

Zinc/Silver Oxide 

The Zn/KOH/AgO battery is based on the cell discharge reaction 

Zn+AgO=ZnO+Ag (1) 

where the electrochemical and chemical reactions at the Zn electrode are the same as those for the 

Zn/NiOOH cell, Eqs. (1) and (2). The intermediate species Ag20 is formed as AgO is reduced 

during discharge, resulting in a two-plateau cell voltage-time discharge curve. The average cell 

discharge voltage is about 1.55 V, and the theoretical cell specific energy is 440 Wh/kg. The 

characteristics of Zn/AgO cells have been described in several reviews (113-115), and the con

struction of Zn/AgO cells is similar to Zn/NiOOH cells. The AgO electrode is prepared by sinter

ing or pressing Ag powder onto a Ag grid, and a Ag grid is often used as the substrate for the Zn 

electrode. Cellophane separators are used, along with a nylon wick wrapped around each elec

trode. The rate of degradation of the cellophane separator decreases as the electrolyte KOH con

centration is increased, and the electrolyte composition is -45 wt% KOH for this reason. 

Zinc/silver oxide batteries have been developed by Energy Research ( 116, 117), General 

Motors (118), Electric Storage Battery (119), Manin Marietta (120-122), and Yardney (123,124). 

Zinc/silver oxide cell performance exceeds that of Zn/NiOOH cells; specific energies greater than 

100 Wh/kg have been demonstrated. Also, Zn/AgO batteries can be discharged at high rates. A 

full battery discharge can be carried out in only eight minutes, i.e., the 8C rate (114). However, 

the lifetime of these cells is shoner than Zn/NiOOH cells, particularly so when the Zn/AgO cell is 

designed to maximize energy content. Zinc/silver oxide cells suffer not only from Zn electrode 

material redistribution and dendrite shorting, but also from Ag migration and penetration of the 

separator (114, 125). 
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Zinc/Manganese Dioxide 

Primary alkaline cells based on the Zn/Mn02 couple find a myriad of uses, however 

attempts to develop a rechargeable Zn/KOH/Mn~ cell have met with only limited success. A 

fundamental problem is the reaction of soluble Zn species with Mn02 to form a mixed Zn-Mn 

oxide phase that is not rechargeable. Recent efforts have focussed on the addition of various 

oxides to the Mn02 electrode to alter its physical structure and avoid the formation of the mixed 

Zn-Mn oxide phase. Compounds such as Ti02 (126,127) and Bi20 3 (128) have been used for this 

purpose. Other strategies include special heat-treatment regimens for the Mn02 electrode (129) 

and the addition of Ag powder to the Mn~ electrode (130); these procedures are intended to 

reduce the degree of positive-electrode swelling that accompanies cell cycling. 

Zinc/ F erricyanide 

The Zn/NaOH/Na~e(CN)6 battery is based on the same negative-electrode reactions as in 

the Zn/NiOOH battery [Eqs. (1) and (2)], and the following liquid-phase redox reaction at the 

positive electrode, written for cell discharge: 

(2) 

i.e., the reduction of ferricyanide ion to ferrocyanide ion. This system was developed at 

Lockheed Missiles & Space Co. (131,132) for load leveling and solar photovoltaic energy 

storage applications. The Zn/Na~e(CN)6 system employed a "flow by" Zn electrode: the Zn 

active material was deposited as the metal when the battery was charged, and it was stored as 

soluble Na2Zn(OH)4 in a reservoir that can be remote from the cell stack. It was proposed to 

operate the cell stack at temperatures somewhat higher than the ambient-temperature reservoir, 

thereby promoting the precipitation of ZnO when Na2Zn(OH)4-supersaturated electrolyte was fed 

to the reservoir. This scheme led to a more-compact system, although it required solids-handling 

procedures. A separate reservoir stored the soluble Na3Fe(CN)6 and N~Fe(CN)6 species. Care

ful control of the electrolyte flow rate was needed to maintain a compact Zn deposit, and periodic 
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stripping and redeposition of the Zn was necessary to avoid unwanted growths. This system is a 

hybrid between a true redox battery, where all active materials are soluble in the electrolyte, and a 

conventional battery. A conceptual diagram of a Zn/Na3Fe(CN)6 system is shown in Fig. 5. 

Porous Carbon 
Electrode 

+ 

Sodium Ferricyanide/ 
Ferrocyanide Solution 

•Fj;.o!t-- Cadmium 
Substrate 

Sodium Zincate 
Solution 

Figure 5. Zinc/Ferricyanide conceptual design. 

Lockheed constructed and tested cells as large as 1000 cm2, although most tests were per-

formed with 60-cm2 cells. More than 1400 cycles were obtained at -70% (DC-DC) energy 

efficiency for a Zn capacity density of 70 mAh/cm2, using Nafion membranes. Zinc capacity 

densities as high as 200 mA/cm2 were obtained in other cells, and cell discharge voltages of about 

1.6 V were typical. Alternative, less-expensive membranes and solids-handling procedures were 

under investigation when Lockheed's effort was discontinued. 

RECENT R&D ON SECONDARY CELL COMPONENTS 

Zinc Electrode Fabrication 

Consolidated porous Zn electrodes have been fabricated by pasting (13,133-135), slurry 

precipitation (33), powder compression (136), electrodeposition (137), sintering (138-141), 
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rolling (12,20,142-144) and cementing (145). The electrode may be prepared as a mixture ofZn 

and ZnO particles, or it may contain only ZnO particles. In the latter case, the electrode must be 

"formed" by slowly charging it to reduce a portion of the ZnO to Zn. The final Zn:ZnO ratio is 

selected to provide adequate reseiVes of ZnO and Zn when the cell is fully charged and 

discharged, respectively. The Zn-ZnO particle sizes range from 0.1 to 10 J.L (146-151). Granular 

particle shapes are commonly used in polymer-bonded Zn electrodes, however acicular crystal

line particles were claimed to give extended Zn/NiOOH cell lifetimes (152). The electrode pore 

size and pore size distribution are recognized as important parameters in determining electrode 

performance and capacity loss rates (153,154). An optimum porosity of 64% has been identified 

(153), and porosities of 60-75% are common for polymer-bonded Zn electrodes. A novel 

Zn-electrode fabrication recipe uses particles with a layer of ZnO surrounding a Zn core, rather 

than a mixture of pure Zn and ZnO particles, and a Zn electrode constructed with such particles 

exhibited an extended lifetime (155). Another unusual construction technique is to encapsulate 

C4H10 inside hollow polymeric particles, and incorporate the particles in the electrode mix. The 

C4H10 is released when the electrode is heated, and the resulting porous structure is said to exhibit 

improved stability (156). 

Zinc electrode wetting is enhanced by incorporating fibrous materials in the electrode struc

ture and placing wicking materials (also termed interseparators or absorbers) next to the elec

trode. Fibers are usually dispersed in the Zn electrode mix, however directionally shrinkable 

fiber sheets have been used (157). A wide variety of fibrous materials have been investigated, 

including cellulose (158,159), polyolefin (160), polyamide (161,162), sodium ligninsulfonate 

(163), acrylonitrile-vinyl chloride (164), glass (165), Ti02 (166), A120 3 (167,168), carbon (169-

171), and Zn (172,173). Fibers are typically used to enhance wetting of the electrode, however 

hydrophobic polyolefin fibers were used to promote greater access of 0 2 to the Zn electrode 

(160), and mixtures of hydrophobic and hydrophilic fibers have also been incorporated in the Zn 

electrode (174). An interesting tradeoff in Zn electrode fabrication strategies is the selection of 
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an optimum degree of wetting for sealed-cell designs. If the electrode is flooded with electrolyte, 

the transfer of 0 2 gas from the NiOOH electrode (evolved during overcharge) to the Zn electrode 

is impeded, which limits the rate of Zn-02 recombination. However, if too little electrolyte is pro

vided, there may be incomplete utilization of the Zn electrode active material. 

The order in which the components of the Zn electrode are assembled can also play a role in 

the performance and longevity of the cell. Many Zn electrode recipes call for layered structures, 

where the individual layers are of differing composition. For example, incorporating extra metal 

oxide additive in the outer layer of a Zn electrode appears to extend Zn/NiOOH cell lifetimes, 

compared to a uniform dispersion of the metal oxide throughout the electrode. Applying thin 

inorganic (175-177) and organic (178,179) compound coatings to the Zn electrode also appears to 

be beneficial. Other strategies include placing an electrolyte absorber in the center of the Zn elec

trode, rather than on the surface (180), using layers of additive-containing Zn active materials 

with charging voltages that differ from one another by >10 mY (181), and incorporating an outer 

layer that contains extra wetting agent (182). Each of these strategies tends to extend Zn/NiOOH 

cell lifetime. 

Other electrode fabrication procedures include a) non-uniform material dispersions, for 

example providing extra metal-oxide additives (183-185), polymeric binder (186), rubber (187) 

or Zn-ZnO active material (188) near the periphery of the electrode, b) using porous frames or 

other means to alter the local ionic conductivity near the edges of the electrode (189,190), and 

c) creating a grooved electrode surface to facilitate the removal of gas bubbles (191). 

The Zn electrode current collector must exhibit a sufficiently high electronic conductivity to 

avoid excessive ohmic potential losses at high current densities, yet be lightweight and inexpen

sive. Typical current collectors are high-area sheets such as expanded metal Cu foil* (12,31) or 

perforated Cu foil (12,134,192-194). Solid foil current collectors have been used (20), however 

• Manufactured by Exmet Co., Bridgeport cr. 
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perforated foil current collectors are much more common, and optimum perforation sizes and dis

tributions have been identified (193,194). Sponge (88,106,133,195,196), net (197) and pocket

plate (198) current collectors have also been used. Copper current collectors can be coated with a 

high-Hroverpotential metal, such as Pb (31), Cd (199), In (200), Sn (201) or Bi (202) to prevent 

Cu dissolution during overdischarge. Organic compounds, such as polyvinyl alcohol (203) and 

carboxymethyl cellulose (204) have also been used as protective coatings for current collectors. 

A strategy to slow the rate of Zn electrode shape change is to apply Fe(OH):z at the edges of the 

current collector (205), thereby increasing the rate of local H2 evolution at the electrode edges 

and altering the overall current density distribution. Most current collector designs provide a fine 

grid structure that supports a uniform dispersion of active material (111). A unusual current col

lector design uses 30-mm2 compartments to hold the Zn active material, thereby providing a 

degree of isolation from adjacent regions of the electrode and slowing the rate of shape change 

(206). Another unusual current collector design provides thin, vertical polytetratluoroethylene 

(PTFE) strips on the current collector (207). These strips create local channels that permit 

evolved gasses to escape. 

flow-by Zn electrodes have been prepared by electrodeposition onto a planar metallic sub

strate (131), and high-porosity Zn electrodes have been prepared by electrodeposition onto reticu

lated (sponge) current collectors (106,195). Unconsolidated Zn electrodes are prepared as assem

blies of particles, such as Zn electrodeposited onto Cd-coated plastic particles (101), or dendritic 

Zn scraped from an inert current collector (98-100,102,103). 

Zinc Electrode Composition 

The typical Zn electrode composition is >90 wt% Zn plus ZnO, <5 wt% polymeric binder, 

and <5 wt% metal oxide additive. Numerous inorganic chemical species have been combined 

with Zn-ZnO to form secondary battery electrodes with improved properties. The touted 

beneficial effects of these additives include a) suppression of H2 formation, b) reduction of Zn 

19 



species solubility, c) co-deposition of additives to form compact Zn layers, e.g., dendrite suppres

sion, d) creation of a metallic substrate that is more conducive to the electrodeposition of com

pact Zn, e) more-uniform current density distribution, f) improved wetting of the Zn electrode 

structure, g) increased electronic conductivity of the Zn electrode, h) complexation of soluble Zn 

species to reduce their mobility, i) increased utilization of the Zn electrode active material, and J) 

retention of desirable porous structures, e.g., by using "fillers" and "pore-formers." These 

modifications to the Zn electrode are discussed in the following paragraphs, and Table 3 lists 

most of the inorganic additives that have been investigated during the past 15 years. 

The need to suppress H2 formation is critical for both primary and secondary Zn batteries. 

Mercuric oxide has long been the favored primary-battery additive for this purpose. However, 

environmental pressures have spurred a world-wide effort to identify a less-toxic alternative addi

tive. For secondary battery applications, HgO is an undesirable Hrsuppression additive not only 

for environmental reasons, but also because it tends to accelerate Zn active material redistribution 

(259). Numerous metals and metal compounds have been evaluated as H2 suppressants, and 

these are identified in Table 3. Of these compounds, the oxides and hydroxides of Cd, Pb, Sn, In, 

Tl and Bi would appear to be the most popular, based on the frequency of their appearance in the 

patent literature. Battery developers in the U.S. (General Motors, Yardney, Energy Research) and 

Japan (Sanyo, Matsushita, Hitachi, Toshiba, Furukawa, etc.) have been particularly active in this 

area. These compounds have been favored not only for their capacity to suppress H2 formation, 

but also for their beneficial effect on cell lifetimes. At least two mechanisms have been proposed 

to explain the improved cell lifetimes observed using such compounds as electrode additives. 

First, if the additive is present as the reduced metal, it may serve as an ideal substrate that pro

motes the formation of compact, thin Zn deposits via electrodeposition. The compounds of 

metals more noble than Zn would be expected to be present in their reduced form, which has been 

shown to be the case for TI20 3 and Bi20 3 (91). Second, the incorporation of metallic deposits in 

the Zn-ZnO mix enhances the electronic conductivity and polarizability of the electrode. 
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Table 3. References to Investigations of Zinc Electrode Inorganic Additives. 

Cation Pure Element, Oxide or Hydroxide Halide Oxyanion 

Ag 150,208,209 - -
AI 167,210 - -
Ba 185,210-212 213 -
Be 185 - -
Bi 42,157,203,209,213-226 - -
Carbon 166,171,206,220,221,235,250,251,253,254 - -

256,262 

Ca 12, 13,30,32,33,42, 135,157-159,163,164,168, 213 219 (carbonate) 
177,183,191,197,202,203,211,212,218,219, 252 (silicate) 
223-225,227-251 

Cd 21,44,45,148, 152,161,168,185,186,188,193, - 255 (sulfate) 
199,209;111;120,226,236,237,242,250,255-266 

Ce 220 - -
Co 268 - -
Cs 269 - -
Cu 239,240,267 - -
Fe 270 - -
Ga 209,210,222,271,272 - -
Hg * - -
In 171,175,181,184,209-211,222,226,243-245,252, - -

259-261,269,271-293 

K - - 267 (sulfate) 

La 185 - -

Li 292 - -
Mg 212,241,267,294-296 - -

• The references to HgO additions are too numerous to list in this table. See, for example, reference 259 for a discussion of 
HgO additions to the Zn electrode. 
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Table 3 (cont'd). 

Cation Pure Element, Oxide or Hydroxide Halide Oxyanion 

Na - - 267 (sulfate) 

Pb 12,21 '139,158, 159,173,209,212,220,222, - -
236,259,260,267,280,281,297-299 

Rb 289 - -
Si 182,282 - -
Sn 209,220,226,246,264,265,283,298,300,301 - -
Sr 284 - -

Ti 166,212,220,266,301,303-305 - -

T1 135' 149' 176,181,210,222,226,236,243, - -
247,259,260,269,285-293,299 

v 220 - -
Zn - 302,307 302,306 (titanate) 

Zr 139,185,212 - 138 (sulfate) 

This effect provides a more-unifonn current density distribution and promotes Zn deposition near 

the current collector, rather than near the separator. 

Investigators have long known that Ca is a beneficial additive to the Zn electrode (227-229). 

When Ca(Oflh is added to ZnO in alkaline electrolyte, an insoluble calcium zincate compound is 

fonned, thereby "trapping" the soluble K2Zn(OH)4 species. Investigations (308) have shown that 

the calcium zincate compound stoichiometry is Ca(0Hh.2Zn(0Hh2H20. This compound is 

most effective in reducing K2Zn(OH)4 solubility in -20 wt% KOH electrolyte (309), and kinetic 

studies showed that high-rate charge/discharge processes may be limited by the rate of calcium 

zincate fonnation/decomposition (310). Additions of 10%, 25%, and 40% Ca(OHh to the Zn 

electrode were evaluated by Jain et al (33); only the intennediate composition gave marked 

improvement in cell endurance. X-ray analysis demonstrated that the discharged negative elec-

trode was unifonnly covered with a calcium zincate compound. The low solubility of calcium 

zincate in KOH accounts for the reduced rate of Zn redistribution of the 25 wt% Ca(OHh 
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electrode. The microstructures of the calcium zincate compound and the ordinary ZnO discharge 

product are compared in Fig. 6. Other alkaline-earth metal hydroxides such as Ba(OH)2 and 

Mg(OH)z have been used, as well as calcium oxide, citrate, carbonate, fluoride and silicate com-

pounds. 

Other materials listed in Table 3 include various carbons (acetylene black, graphite, 

powders, etc.), and metal hydroxides, halides, sulfates and titanates. These materials may act to 

reduce K2Zn(OH)4 solubility, enhance electronic conductivity, provide an improved substrate for 

Zn electrodeposition, act as "fillers", and/or improve electrode wetting. 

Polytetrafluoroethylene (PfFE) is by far the most commonly used organic additive, and it 

serves as a binder to impart strength to the Zn electrode. Polyvinyl alcohol (PV A) is also used 

for this purpose. The other organic compounds that have been added to the Zn electrode may 

also act as binders, suppress Zn dendrite initiation and propagation, act as fillers, improve elec-

trode wetting, and/or complex soluble Zn species. These materials are listed in Table 4. 

Figure 6. Microstructures of the discharge product on two Zn electrodes. The left-hand side shows the 
typical ZnO discharge product on a "standard" Zn electrode, and the right-hand side shows the discharge 
product on a Zn electrode containing 25 wt% Ca(OH)2• The stoichiometry of this product is probably 
Ca(OH)z.2Zn(OH)z.2H20. 
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Table 4. References to Investigations of Zinc Electrode Organic Additives. 

Compound References 

acrylic acid - ethylene copolymer 312 

acrylamide - acrylic acid - 317 
methylenebisacrylamide copolymer 

acrylic acid - diacetone acrylamide 314 
copolymer 

acrylonitrile - vinyl chloride polymer 164 

benzene 311 

Carbo wax 267 

carbazole 254 

cellulose, cellulose acetate, hydroxyalkyl 158,220,238,254,267,313,319,320 
cellulose, carboxymethyl cellulose 

carboxylated styrene- butadiene 316 

calcium citrate 329 

calcium glutonate, sodium glutonate 237,326 

calcium ligninsulfonate, sodium ligninsulfonate 163,235,330 

dextrin 220 

methyl methacrylate - acrylonitrile 156 

piperonaldehyde 220 

polyacetylene 179,263,331 

polyacrylate 319 

polyacrylamide 315 

polyamide 162,307,315,327 

polyethylene, polyethylene oxide 53,238,257 

polyethyleneimine 318 

polymethacrylic acid 324 

polystyrene 178,325 

polytetrafluoroethylene numerous references; see, for example, 334-336 
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Table4 (cont'd.) 

Compound References 

polyvinyl alcohol 53,164,183,191,212,249,257,279,285,307,327,333 

polyvinylidene fluoride 163 

polyvinyl glycol 324 

styrene 311 

styrene -maleic anhydride copolymer 332 

various surfactants 53 

tetraalkylammonium, ammonium compounds 323 

thiourea 321 

trihydroxybenzene 253 

trihydnoxyfluorone 322 

Electrolyte Composition 

The favored electrolyte composition for secondary Zn/NiOOH, Zn/air, Zn/AgO and 

Zn!Mn02 cells is 20-45 wt% KOH. The choice of KOH concentration reflects a compromise 

between conflicting requirements. In general, -30 wt% KOH is desirable because the ionic con-

ductivity is near a maximum at this concentration. Also, the positive electrodes tend to deliver 

maximum capacities at high KOH concentrations, and the rate of oxidative degradation of certain 

separator materials is slower at higher KOH concentrations. Both of these trends favor the choice 

of high KOH concentrations. 

However, the ZnO contained in the negative electnode is highly soluble in concentrated 

KOH electrolyte, and this high solubility exacerbates Zn redistribution. Therefore, there is a 

strong incentive to select lower KOH concentrations to reduce Zn species solubility.* The lower 

limits of KOH concentration that support NiOOH, AgO, 0 2 and Mn02 electrode operation have 

• An exception is the strategy for choosing the electrolyte composition in Zn/air cells where the Zn electrode operates as an 
electrode of the first kind. In this case, the specific energy of the battery is proportional to the quantity of Zn that can be dissolved in 
the electrolyte, so there is an incentive to choose a high KOH concentration. 
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not been investigated in detail. However, it has been shown that the NiOOH electrode can func

tion in 15-20 wt% KOH (31). A useful strategy is to operate the cell at as low a KOH concentra

tion that can be tolerated by the positive electrode, and add indifferent supporting electrolyte to 

provide adequate ionic conductivity. The solubility of Zn species can then be minimized without 

a significant degradation of battery specific power. 

Table 5 lists many of the electrolyte compositions that have been investigated for possible 

use in secondary Zn cells. Alternative electrolytes, such as those containing fluoride, borate, 

phosphate, arsenate, and carbonate ions, have been shown to exhibit reduced Zn species solubility 

and extend Zn/NiOOH cell cycle life. The solubility of ZnO in alkaline-fluoride electrolyte (15 

wt% KOH - 15 wt% KF) is only one-fourth of its solubility in 30 wt% electrolyte, and the Zn 

redistribution rate in model Zn/KOH-KF/NiOOH cells was shown by Nichols et al (31) to be a 

factor of four slower than that of cells cycled in 30 wt% KOH. Zinc electrodes cycled in electro

lytes with low KOH content had a desirable porous structure (-0.5 J.L particle size). 

Most developers of Zn/NiOOH batteries add -1 wt% LiOH to the KOH electrolyte; the 

LiOH addition enhances NiOOH electrode charge acceptance. Sodium hydroxide additions to 

KOH electrolyte have been shown to extend Zn/NiOOH cell lifetimes when the cell is cycled at 

>50°C (352,353). Table 5 lists the numerous metal oxides that have been tried as electrolyte 

additives. Many of these additives are only sparingly soluble in aqueous electrolytes, so they 

probably function similarly to additives included in the electrode mixture. For example, lead 

salts and certain other compounds are known to suppress Zn dendrite growth when added to the 

electrolyte. Other electrolyte additives have been investigated as Zn complexing agents, such as 

EDTA (361) and caprolactam (360). Mixed organic-inorganic electrolytes (CH30H-KOH) were 

used by Dzieciuch et al (125) to suppress the solubility of Zn species in Zn/Mn02 cells, and there 

has been one study of polymer electrolytes (317). 
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Table 5. References to Various Electrolyte Compositions used in Zinc Secondary Cells. 

Composition* References 

KOH-KF 31,32,307,327,337-340 

K3B03, K2HB03, Na3B03, Na2HB03 31,34-36,337,339,341-343 

K~04, K2HP04, Na3P04, Na2HP04 34-36,337,341,342,344 

K3As04 34-36,341,342 

KOH-K2C03, Na0H-Na2C03 345-349 

KOH-K3Fe(CN)6, Na0H-Na3Fe(CN)6 131,132,350 

KOH-In(OH)3 278,293,351 

KOH-K2Si03, NaOH-Na2Si03 100,102,103,321,337 

NaOH additions 352,353 

LiOH additions 278,354,355 

Li02CH additions 356 

Na2S, Na2S203 additions 321 

CdO additions 357 

PbO additions 172,358 

TeO additions 358 

FeO additions 290 

GeO additions 288 

CoOH additions 293 

sorbitol additions 102,103 

ammonium compound additions 359 

capro1actam additions 360 

EDT A additions 361 

KOH-CH30H 125 

polymer electrolyte 317 

• Entries labeled "additions" imply additions to aqueous KOH electrolyte. 

27 



Most Zn/air cell designs rely on high concentrations of Zn in the electrolyte to attain high battery 

specific energy, so compositions have been selected to provide high Zn species solubility. Sili

cate additions had been considered to be most effective in this regard*, and it was reported that 

extremely high Zn concentrations could be obtained in Sioj--containing alkaline electrolytes 

(362). This report prompted investigations of the structure of such electrolytes, however other 

studies have confirmed only modest increases of Zn solubilities in Siof--containing electrolytes 

(102). The mechanism for enhanced Zn solubility appears to be silicate adsorption on ZnO parti

cles, which blocks further Zn precipitation (363). A recent investigation of alternative agents to 

enhance the solubility of Zn identified LiOH as a beneficial additive (103). 

Iron compounds are generally recognized as harmful contaminants in secondary alkaline Zn 

cells, because they can catalyze H2 evolution on the Zn electrode and thereby complicate sealed

cell operation. Methods for the removal of Fe impurities from alkaline electrolytes have been 

investigated (364). 

Separators 

Separators provide a barrier to Zn dendrite growth, and can play an important role in deter

mining the transport of species between the negative and positive electrode compartments. A 

review by Bennion (365) provided a thoughtful analysis of the separator properties that are 

required for a long-lived Zn/NiOOH cell, and included an extensive bibliography of separator 

R&D before 1980. 

The separators used in secondary alkaline Zn cells range from the coarse screens in 

Zn/Na3Fe(CN)6 cells (366), which are primarily intended to alter the electrolyte flow pattern, to 

highly selective cation-exchange membranes such as Nation, used in the same cell. Table 6lists 

many of the separator materials that have been investigated during the past 15 years. Micro

porous separators are commonly used in Zn/NiOOH, Zn/AgO, Zn/Mn02 and Zn/air cells. 

• Discussed in the "Fundamental Studies" section of this review. 
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Table 6. References to Separator R&D. 

Type/Composition References 

Organic Microporous Separators 

polypropylene 52,367-369 

Vinylon 368 

polyethylene 192 

polytetraftuoroethylene 370 

cellulose acetate- polyphenolquinoxaline 371,372 

Nylon 42,103,369,373 

polyvinyl alcohol 374,375 

cellophane 18,29 

polystyrene 376 

acrylonitrile-vinyl chloride 224 

polyamide 219,248,377 

Jnorganics and Impregnated/Coated Polyolefins 

metals, metal oxides, metal hydroxides* 21,116-118,172,377-387 

polyvinyl alcohol 42,157,223,224,385 

H3B03 42,157,223,224,385 

H20 388 

surfactants, gels 389-391 

Daramic (Si02fpolyethylene) 104 

inorganic/organic 392,393 

asbestos, Zr02 cloth 98,106 

Ion-exchange Membranes 

radiation grafted 394 

supported liquid 395,396 

anion exchange 397 

• AgO, Al2~. Ba(OH):z, CaO, Ca(OH):z, Cd, Ce02, CuO, FeO, MgO, MgSi03, Ni, Sr(OH)z. 
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The rate of Zn material redistribution is slower in Zn/NiOOH cells using microporous separators, 

compared to Zn/NiOOH cells using ion-exchange membrane separators (367). Microporous 

separators provide a barrier to Zn dendrite propagation, but exhibit little selectivity in the tran

sport of ionic species. The separator material pore size and tortuosity play an important role in 

determining its effectiveness in resisting Zn dendrite penetration; small pore sizes are preferred 

(367). Polypropylene has been the favored microporous separator material in Zn/NiOOH batteries 

(12), and cellophane has been the material of choice for 'ill/AgO battery separators (114). How

ever: cellophane undergoes oxidative degradation in KOH electrolyte, particularly at lower con

centrations (371). Mixtures of cellulose acetate and polyphenolquinoxaline are more stable than 

cellophane (372). Electrically rechargeable 'ill/air cells using bifunctional air electrodes place 

severe demands on the separator material. The separator must not only provide a barrier to Zn 

dendrite growth, but also withstand chemical attack by the peroxyl ions generated at the air elec

trode. Asbestos and Zr02 cloth separators have been used in such cells (106). 

Composite separator systems have been investigated in an attempt to combine favorable 

properties of different materials. Microporous polymers have been impregnated or coated with 

various metals, metal oxides, metal hydroxides, silicates, liquids and surfactants. Metals such as 

Ni, Cd and Mn (21,116-118,378,379,387) have been coated onto polyolefin separator materials, 

and they may slow Zn dendrite propagation by oxidizing the tip of the dendrite when it reaches 

the separator. Other metal compounds may act similarly, provide some selectivity against 

Zn(OH)]- ions, and/or simply serve as "fillers." Surfactants have been used to promote wetting 

of the separator, thereby increasing its ionic conductivity (389). An interesting composite is the 

inorganic-organic separator (392). These materials have typically used Si02 or AI20 3 with a 

polyvinyl alcohol binder, but they tend to be brittle. Combinations such as polyvinyl pyridine 

with MgSi03-ZrSi~ on an asbestos substrate tend to be more flexible (393). 

Ion-exchange membranes have been produced by various methods, including radiation 

grafting ionic groups onto polymeric substrate materials (394). Cation-exchange groups such as 
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acrylic ions are typically used (395), although many other negatively charged moieties are suit-

able. Cell lifetimes have not generally been improved by using cation-exchange membranes, 

probably because of water transport problems, which may cause rapid active material redistribu-

tion* and dehydration of the Zn electrode. Bennion has stated that anion-exchange membranes 

would be superior to cation-exchange membranes (365). Supported-liquid membranes, which are 

anion-exchange organic liquids (e.g., crown ethers, hydrocarbons, amines) constrained in a 

microporous polymeric material (396,397), and chemically prepared anion-exchange membranes 

have been developed (398). Unfortunately these efforts have not succeeded in producing a stable 

material, although they represent promising avenues of investigation. 

Multilayer separator systems have been developed, with the layers exhibiting different tran-

sport properties (25). One variation of this approach used a multilayer, fibrous separator system 

with the separators aligned so that the fibers were oriented in different directions (399). In 

another version, the separator layers had different pore sizes, with the smallest pore sizes in the 

separator layer closest to the Zn electrode ( 400). 

Cell Charging 

Numerous investigators have evaluated charging modes that differ from simple DC current. 

Direct-current charging can lead to high overpotentials on the Zn electrode near the end of 

charge, which can lead to dendrite formation and cell shorting. The simplest non-DC charge 

waveform is termed "taper charging," and calls for a constant current early in charge, until a cer-

tain cell voltage is reached*, after which a constant cell voltage (and decreasing current) is 

applied or the charging process is halted (30,401-403). This procedure helps avoid high Zn elec-

trode overpotentials at the end of charge, thereby slowing the rate of Zn dendrite initiation and 

propagation. The cell pressure has also been used to trigger charge termination (37). 

• Osmotic pmnping theory of Zn material redistribution, to be discussed in the section on mathematical modeling. 

• The inflection point in the charging voltage-time curve may also be used (401). 
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The use of auxiliary electrodes during cell charging was discussed in a previous section of 

this review (see references 69-77). Placement of a diode and a properly sized resistor between 

the Zn electrode and a Hrabsorbing auxiliary electrode has been used to control pressure build

up in Zn/NiOOH cells during charge (405). 

Pulse charging has long been recognized as a means of extending the lifetime of secondary 

Zn cells (406,407). Pulse current, pulse-reverse current, alternating current superimposed on 

direct current, alternating voltage, alternating voltage superimposed on constant voltage, and 

other forms of non-DC charging have been investigated (21,32,37,38,39,42,87,127,408-412). 

The effectiveness of pulse-charging depends on parameters such as the frequency, peak current 

density (pcd), and on-time/off-time ratios. For example, high-frequency pulse charging was 

found to have little effect on the lifetime of Zn/NiOOH cells (408), whereas low-frequency 

pulse-current charging (<10Hz) has been shown to have a marked effect on Zn/NiOOH cell capa

city retention (37,38,412). Katz et al (412) analyzed the Zn electrode from a Zn/NiOOH cell 

pulse-charged at 30 ms on/90 ms off (8.3 Hz) at a pcd of 15.7 mNcm2, for 125 deep-discharge 

cycles. Scanning electron micrographs showed that the pulse-charged Zn electrode had a more 

densely textured surface than a constant-current charged electrode. This effect may be attributed 

to the more-numerous nucleation sites generated during pulse-charging (413,414). 

The use of vibrating electrodes and other means to agitate the electrolyte during charging 

was discussed in the earlier section of this review that discussed Zn/NiOOH cell designs. 

Another novel charging method is to sparge the electrolyte with gas bubbles to mix the electro

lyte (415). 

32 



FUNDAMENTALSTUDffiS 

Cell Thermodynamics 

The Zn electrode equilibrates with Zn(OH)]- ion in strong alkaline electrolyte, as shown on 

the Pourbaix diagram for this system ( 416). The activity coefficients for the common alkaline 

electrolytes used with Zn electrodes have been recently tabulated (417). The rest potential of the 

Zn electrode in various compositions of alkaline electrolytes has been measured by several work

ers (418-420), and a recent investigation by Isaacson et al covered a range of KOH and 

K2Zn(OH)4 (up to and including the K2Zn(OH)4 saturation value) at various temperatures (421). 

Chen and Gibbard (422) measured the Zn/NiOOH thermoneutral potential to be 1.86 V, which 

implies that the cell should be nearly isothermal during charge, but may require cooling during 

high-rate discharge 

Zinc Electrodeposition 

Numerous investigators have studied the kinetics of Zn deposition from alkaline electrolyte 

(423-428), and detailed mechanisms have been proposed. Reported values of the exchange 

current density for Zn electrodeposition range over two orders of magnitude (1-100 mNcm2), 

probably because of variations in the smoothness of the Zn electrode. Reaction orders in the 

linear and Tafel overpotential regions have been determined (429-431), and rotating-disk studies 

of Zn electrodeposition at solid and polymer-bonded porous electrodes have been carried out by 

Hampson et al (433-435), who also extended their investigations to include cycling studies (435). 

Investigations of the impedance characteristics of Zn electrodeposition led to the conclusion that 

there is an autocatalytic step involving a Zn surface species {436-438). 

Most of these investigations of Zn electrodeposition were carried out at solid Zn electrodes 

with large volumes of electrolyte. Cyclic voltammograms show that the reduction process in 

pasted Zn electrodes, in a minimum amount of electrolyte, differs from that at solid electrodes in 
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K2Zn(OH)4-containing electrolyte (299). A long-standing question is the mechanism for reduc

tion of ZnO to Zn, which may proceed by a solid-state (439) or solution-precipitation (440,441) 

mechanisms. There is evidence that the direct solid-state mechanism accounts for only a small 

fraction of the reduction current ( 439). There has been one study of ZnO crystallization in 

K2Zn(OH)4-containing electrolyte using an isotope tracing method (442). 

An interesting phenomenon is the oscillation of the Zn electrode potential observed at high 

current densities during Zn electrodeposition (443). It was postulated that the oscillations are 

caused by local depletion of Zn species in the electrolyte. The resulting concentration overpoten

tialleads to H2 evolution, which stirs the electrolyte and replenishes the local Zn species concen

tration, thereby establishing a periodic process (444). The H2 overpotential (445) and rates of H2 

evolution ( 446) have been measured on Zn and various Zn alloys. 

The morphology of Zn electrodeposited from alkaline electrolyte depends strongly on the 

electrode overpotential and the degree of electrolyte stirring. In general, mossy Zn is obtained at 

low overpotentials, epitaxial Zn layers are obtained at moderate overpotentials, boulder-type 

deposits are obtained at high overpotentials, and dendritic Zn is obtained at the limiting current. 

The indentity and structure of the substrate also has a strong effect on the Zn deposit character. 

Investigations of Zn electrodeposition on various substrates have been carried out, including Cu, 

Au, Cd, Zn, Pb, Tl, Sn, In, Ag, carbon and steel (447-455). Studies by McBreen et al (447-450) 

have shown that Cu substrates produce hexagonal Zn deposits oriented parallel to the basal plane; 

Pb, In and Sn substrates produce compact Zn oriented perpendicular to the basal plane; and Cd 

substrates produce Zn deposits of intermediate character. These investigations have encouraged 

the use of Pb and Cd substrates for secondary Zn battery electrodes. 

The characterization, understanding and control of Zn dendrite initiation and propagation 

has been a subject of study in many laboratories, for many years. Recent investigations have 

focussed on the critical overpotential for Zn dendrite formation (456), and the use of impedance 
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measurements to characterize dendritic Zn growth (457). Various Pb salts have been effective in 

controlling Zn dendrites (457-459), along with substances like antimony, glue, polyethylene 

glycol, surfactants, and various other organic compounds (324,459-462). 

Zinc deposition from alkaline electrolytes has been studied using in situ Raman spectros

copy (463) and video microscopy (464). The texture of porous Zn electrodes has been character

ized by impedance techniques (465-467). 

Zinc Electrodissolution 

The characteristics of Zn electrodissolution detennine the specific power and capacity of 

both primary and secondary alkaline Zn batteries, and have thus received considerable attention. 

The kinetics and mechanism of active Zn electrodissolution have been studied by several groups 

(424,427,468-470). The pasted Zn electrode exhibits only a small overpotential, even during 

high-current discharge. In general, active Zn dissolution is followed by the precipitation of two 

different types of films: the so-called Type I film, which is porous and non-passive, and the 

Type II film, which is coherent and passive. Zinc passivation has been characterized by various 

techniques (471-479), and the onset of passivation depends strongly on the electrolyte flow rate 

(103,470,471,479) and the presence of certain ionic species in the electrolyte, particularly Sio:f

(102,103,362,478-481) and u+ (103). A study by Liu et al (475) showed that Zn is not likely to 

passivate in porous electrodes discharged at moderate rates, so long as a high specific surface area 

is maintained (as the electrode is cycled, material redistribution and "densification" tend to reduce 

the specific surface area of the Zn active material). Ellipsometry and coulometry have been used 

to study Type I passive films on Zn in alkaline (482-484) and neutral (485) electrolytes. The 

effect of coj- ions on Zn electrodissolution has been characterized using cyclic voltarnmetry 

(486,487). 

A particularly useful experimental apparatus for the study of Type I film fonnation is a so

called model pore electrode. This electrode is constructed so that a thin film of electrolyte lies on 
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a planar Zn electrode, and a transparent cover glass permits in situ microscopy of the electrode 

surface as electrodissolution proceeds. This technique was first used by Katan and his co-workers 

to study Type I film formation on Zn (488-491), and has since been used by others (492,493). 

The film precipitation is seen as a "front" that moves from the mouth of the pore to its root as the 

discharge proceeds. Weaver et al have extended this technique by using probe beam deflection to 

measure local concentration gradients in the pore (493). Figure 7 shows a schematic diagram of a 

model pore cell with probe beam deflection. One optical investigation of Zn particle movement 

in a restricted electrolyte-filled tube showed that fragmented dendritic Zn clusters could migrate 

rapidly in an electric field (494). This observation provides a possible mechanism to explain the 

rapid rate of Zn material movement that is sometimes seen in secondary cells. A related study of 

Zn species diffusion was done by Kautz and May ( 495). 

Transparent Cover Glass Position Detector 

Anode Cathode 

Probe Beam Insulator 

Figure 7. Schematic diagram of a model pore electrode with probe beam deflection to measure local con
centration gradients. 

Zinc Corrosion 

Little fundamental research has been carried out on Zn corrosion in alkaline electrolytes 

during the past 15 years. An interesting investigation of Zn corrosion showed that Zn alloys that 
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are corrosion-resistant in sheet or rod fonn may be susceptible to corrosion when prepared as 

high-area porous electrodes (496). There has also been a survey of the effect of various additives 

on Zn porous electrode corrosion rates ( 497). 

Electrolyte Properties 

Many of the basic physicochemical properties of KOH-K2Zn(OH)4 have been tabulated 

(498). The ionic conductivity of KOH-K2Zn(OH)4 mixtures has been measured over a wide tem

perature range (499), and has been recently measured in K2Zn(OHksupersaturated solutions 

(500). The solubility of ZnO and Zn(OHh in KOH is known to be a strong function of the KOH 

concentration (501,502); it varies approximately as the square of KOH concentration. Electrodis

solution of Zn in alkaline electrolytes can produce Zn(OH)]- concentrations at least three times 

the saturation value, and many months may be required for equilibrium to be attained, when ZnO 

is the final solid product (503). There is a strong incentive to understand the structure of 

KOH-K2Zn(OH)4 solutions, to develop means of reducing the Zn solubility (for Zn electrodes of 

the second kind) and increasing the Zn solubility (for Zn electrodes of the first kind). There has 

been considerable interest in the structure of the Zn species in concentrated alkali (362,363, 

478-481,503-510), including measurements of the electrolyte ionic conductivity (500), uv spectra 

(506,507), refractive index (493,508), extended X-ray fine structure (363), and Raman spectra 

(509,510). It is now well established that the Zn(OH)]- ion has a tetrahedral structure, with 

hydroxy-bridged aggregates at high concentrations (510). 

Carbonate ions have been considered to be detrimental to the operation of secondary Zn 

cells (346), however recent work has shown that carbonate additions extend the lifetime of 

Zn/NiOOH cells (345,347). Good methods have been developed for the rapid detennination of 

the co}- content of alkaline-zinc electrolytes (511), and the carbonation of zincate solutions has 

been investigated (512). 
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Mathematical and Phenomenological Models 

Perhaps the most vexing problem facing developers of secondary Zn cells is active material 

redistribution (shape change) on the Zn electrode, and shape change is the focus of many of the 

mathematical and phenomenological models that have been developed. The shape change prob

lem has been recognized for years, and many of the investigations described in the previous sec

tions of this review may be regarded as "fixes" for shape change. However, none of these "fixes" 

has worked to the extent that shape change can be controlled in quiescent electrolyte. It is 

instructive to consider various models that have been proposed to explain the phenomenon of 

shape change: 

1. Osmotic Pumping. Choi, Bennion and Newman proposed that electrolyte 

flows generated by osmotic pressure gradients in Zn/ AgO cells with ion

exchange membrane separators lead to Zn shape change (513). During charge, 

K2Zn(0Hklean electrolyte flows from the center of the cell toward the reser

voir region near the edges of the electrode, and during discharge K2Zn(OH)4-

supersaturated electrolyte flows from the reservoir region toward the center of 

the cell. The net result is a rapid transfer of Zn from the edges of the cell 

toward the center. A detailed phenomenological model was developed, and 

experimental measurements on model cells confirmed key aspects of the 

model (514). 

2. Nonuniform Current Distribution. McBreen proposed that the degree of 

nonuniformity of the current density in Zn!KOH/NiOOH cells is unequal 

between charge and discharge, which leads to concentration differences that 

vary between charge and discharge (515). Experiments with sectioned elec

trodes confirmed the nonuniformities in current density distribution. 
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3. Autocatalytic Zinc Dissolution. McKubre proposed that the kinetics of Zn dis

solution in KOH electrolyte includes an autocatalytic step, whereby the pres

ence of Zn(OH)(- ion catalyzes further Zn dissolution (516). Zn dissolution 

would be enhanced near electrode edges where the local current density is 

high, leading to a gradual loss of Zn material from the electrode periphery. 

4. Nonuniform Current Efficiency. Energy Research Corporation proposed a 

model whereby the difference between the Oir concentration near the elec

trode periphery and the Oir concentration near the center of the electrode 

causes H2 evolution at the electrode periphery during charge, thereby reducing 

the local current efficiency for Zn electrodeposition (20). During discharge, 

the Zn dissolution rate is greater near the electrode periphery. The net result is 

more Zn deposition at the electrode center and less near the periphery. 

5. Local Zinc Oxidation. Oxygen gas generated at the NiOOH electrode is more 

readily transported to the periphery of the Zn electrode, compared to the cen

tral region of the electrode. The 0 2 gas then oxidizes Zn (to soluble ZnO) 

more rapidly at the electrode periphery, leading to gradual loss of Zn material 

from the edges of the electrode. 

It is possible that there are Zn electrode structures and modes of Zn electrode operation for which 

each of the models is valid, and it is also possible that shape change is a combination of effects. 

It is disconcerting that none of the models predicts "reverse" shape change, i.e., movement of Zn 

from the center of the electrode toward the edges. Figure 8 shows both types of shape change in 

Zn/NiOOH cells that are identical, save for the electrolyte composition. 
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Figure 8. Shape change patterns on Zn electrodes from two different Zn/NiOOH cells. The electrode on 
the left-hand side was cycled in a Zn/NiOOH cell with 31 wt% KOH electrolyte for 106 cycles, and the 
electrode on the right-hand side was cycled in a Zn/NiOOH cell with 3.5 M KOH - 3.3 M KF electrolyte 
for 280 cycles. 

Mathematical models of the processes in Zn alkaline secondary cells have addressed tran-

sport processes in the vertical direction* (Choi et a/, op.cit.) and the horizontal direction 

(517 ,518). This horizontal-direction model predicted that Zn precipitation could lead to loss of 

capacity by pore plugging. Miller eta/ have developed a comprehensive one-dimensional (verti-

cal direction) model of the Zn/NiOOH cell that accounts for non-uniform current density distribu-

tion (519). Isaacson eta/ developed a two-dimensional mathematical model of the Zn/NiOOH 

cell that predicts local reaction profiles in the Zn electrode (520). Gu used empirical current-

voltage data to predict Zn/NiOOH cell performance as a function of key parameters (521) . 

Other mathematical models have addressed transport processes in the separators of Zn/ AgO 

cells (522) and the current distribution in Zn/NiOOH and Zn/AgO cells (523-528). Investigators 

at Argonne National Laboratory used sectioned electrodes to confirm predictions of current den-

sity distribution (524), and the results showed a penetration depth of only -5x10-3 em. It is well 

known that 1-mm-thick Zn electrodes have high active material utilization, and the movement of 

a reaction front through the electrode during discharge can explain the discrepancy. There has 

* Parallel to the plane of the electrodes. 
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been one mathematical model of the vibrating Zn electrode (529), which confinns the reason for 

using such electrodes, i.e., to avoid steep concentration gradients. 

Zinc Species Migration to the Positive Electrode 

It has been recognized that Zn species migration to the positive electrode in Zn/NiOOH 

cells can lead to capacity loss (530-532). Proposed mechanisms for the observed capacity loss 

include mechanical blocking of the NiOOH electrode by precipitated ZnO or Zn(OHh, fonnation 

of a Zn-Ni oxide compound (533), or enhanced swelling of the NiOOH active material caused by 

the presence of Zn(OH)j- in the electrolye-filled pores of the NiOOH electrode (diffusion hin

drance). There does not appear to be conclusive evidence to favor one mechanism over another. 

Chemical analyses of NiOOH electrodes recovered from cycled Zn/NiOOH cells show substan

tial Zn content (18). X-ray fluorescence analyses of cycled NiOOH electrodes from Zn/NiOOH 

cells revealed a nonunifonn distribution of Zn in the NiOOH electrode, with greater Zn content 

near the center of the NiOOH electrode (534). 

It has also been reported (535) that ZnO precipitates in the air electrode in Zn/air batteries, 

resulting in unwanted changes in the air electrode wetting properties and pore structure. This 

problem can occur near the end of charge when the electrolyte becomes less alkaline because of 

local H20 generation at the air electrode, and near the end of discharge when the electrolyte can 

become supersaturated in K2Zn(OH)4, thereby promoting ZnO precipitation. Zinc precipitation 

also occurs in AgO electrodes (532) and Mn02 electrodes (128). 

There have been fundamental investigations of the effect of Zn species on the electrochemi

cal behavior ofNi(OH)z films (536,537). 

Cell Cycle-Life Performance 

Numerous cycle-life tests of secondary Zn cells are described in the previously cited refer

ences to battery development and cell component R&D. Most of these tests were of an empirical 
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nature, aimed at identifying components and configurations that maximize cell cycle-life perfor-

mance. 

Seiger performed a study of the lifetime of several battery systems as a function of depth of 

discharge, and concluded that the cycle life of a Zn/NiOOH cell is a strong function of its depth 

of discharge, with shallow depths of discharge leading to greatly enhanced lifetimes (538). The 

lifetime of a 95-Ah Zn/NiOOH cell, cycled at various depths of discharge, is shown in Fig. 9, 

along with the total charge throughput. It can be concluded that cycling a Zn/NiOOH cell at shal-

low depths of discharge will extend its lifetime, and result in increased energy delivery. 
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Figure 9. Lifetime and charge throughput of a 95-Ah Zn/NiOOH cell constructed by Yardney Electric 
Corporation, cycled at various depths of discharge (538). 

Cycle life 
----------- Charge throughput 

Hamby et al sampled electrolyte concentrations in secondary Zn cells to test features of the 

osmotic pumping theory of shape change (439,540). Hendrikx et al measured local electrode 

potentials to estimate the extent of shape change (541) and Isaacson et al measured Zn and Cd 

micro-reference-electrode potentials to derive local KOH and K2Zn(OH)4 concentrations in a 
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porous Zn electrode (542). The rate and extent of Zn electrode material redistribution have been 

measured by several investigators (31,32,514,515,543-548), including cells with controlled 

current distribution (545), and using radiotracer techniques (547-549). 

There have been few reports of controlled test of cells that combine several features that are 

known to individually extend Zn cell lifetimes. Adler et al (32) prepared cells that combine three 

of the modifications discussed above in a single cell. Pulse-charging, alkaline-fluoride electro

lyte, and a 25 wt% Ca(OHh electrode can extend the cycle-life of the Zn/NiOOH cell well 

beyond its present limits. Some data for a pulsed-charged ZnCa/KOH-KF/NiOOH cell are shown 

in Fig. 10. This·cell exhibits superior capacity retention, compared to a Zn/KOH/NiOOH cell 

charged under constant-current conditions. These results are particularly interesting because the 

Ca(OHh and KF additions were compensated by reducing the Zn and KOH content so that the 

advanced ZnCa/KOH-KF/NiOOH cell has nearly the same specific energy (Wh!kg) as its stan

dard Zn/KOH/NiOOH counterpart. However, these results are not reproducible, apparently 

because of difficulty in forming calcium-zincate compounds in fluoride-containing electrolytes; 

CaF2 formation is thermodynamically favored over calcium zincate. Cairns et al are evaluating 

other reduced-Zn-solubility electrolytes that favor the formation of insoluble calcium zincate 

compounds. 
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Figure 10. Cycle-life performance of a pulse-charged Zn-Ca/KOH-KF/NiOOH cell (32). Standard 
constant-current-charged Zn/KOH/NiOOH cells typically lose >30% of their original capacity after about 
I()() cycles. 

FUTURE PROSPECTS 

Significant increases in the lifetime of Zn/NiOOH cells have poised this technology for 

entry into commercial portable power applications, however longer lifetimes are needed before a 

viable electric vehicle battery can be built Recent investigations of the pulse power characteris-

tics of NiOOH electrodes (550) confirm that the Zn/NiOOH cell is suitable for high-power appli-

cations as well. 

Tests of new designs for Zn/air cells suggest that the Zn electrode may not be the life-

limiting component However, the voltage efficiency and lifetime of the bifunctional air elec-

trode must be improved before electrically rechargeable Zn/air cells can be in widespread use. 

Some interesting new designs of mechanically rechargeable Zn/air cells have been developed, 

and they will be useful for special-purpose applications. 
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Zinc/silver oxide batteries continue to be the system of choice for selected defense applica

tions, however their high cost and short lifetime will continue to preclude their use in commercial 

markets. 

Secondary alkaline Zn cell R&D has made great strides during the past fifteen years. There 

is strong interest in cells of this type, and we can expect similar advances during the years ahead. 
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