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ABSTRACT 

An understanding of the mechanical and hydraulic properties of fractures has 

become increasingly important in various problems, particularly those involving under-

ground waste isolation and production from fractured oil reservoirs. 

A typical fracture consists of asperity regions where the two rock surfaces are in 

contact, surrounded by regions where the two surfaces are separated by an aperture 

that may vary from point to point. When fluid flow through such a fracture, it not 

only must flow around the contact areas, but also has a tendency to preferentially flow 

through the channels with the largest apertures, since hydraulic conductance is locally 

proportional to the aperture cubed (Brown, 1987). The permeability therefore depends 

on the amount of contact area, the spatial distribution of the contact areas, as well as 

the aperture (Chen, Zimmerman, and Cook, 1989). All ofthese parameters are, in turn, 

functions of the stress to which the fracture is subjected. 

There are two aspects of my analysis using a boundary element technique. The 

first part is an attempt to compute separately the tortuosity and the stiffness induced 

by the contact area. The second part has to do with hydromechanical coupling between 

stress, stiffness, and hydraulic conductivity of fractures. 

For the hydromechanical coupling, I start by generating fractures with random 

aperture distributions, and which have a certain of statistical correlation between the 
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aperture at different locations. The hydraulic conductivity of the fracture is then com-

puted. An increment of normal stress is then applied to the fracture, and its deforma-

tion is calculated. In some locations, the aperture decreases, while at other points the 

deformation may be large enough to create new contact area. After the new fracture 

geometry is found, the permeability is recalculated. Thus I determine the relationship 

between normal stress, average aperture, joint stiffness, and permeability. 

These simulations should provide insight into the coupled hydromechanical 

behavior of fractures. For example, one interesting result is that the relationship 

between permeability and average aperture does not follow the "cubic law". If realistic 

aperture distributions can be found, this procedure could be used to predict permeabil-

ity and stiffness. 

N. G. W. Cook 

Thesis Committee Chairman 
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CHAPTER 1 

INTRODUCTION 

1.1. MOTIVATION AND PURPOSE 

It is a common phenomenon that low permeability rock masses. contain countless 

fractures and joints on all dimensional scales. Investigators (Louis 1976) divide rock 

masses into the following groups (Fig. 1-1) with respect to their hydraulic properties: 

( 1 ), homogenous porous media containing small pores; this group comprises 

jointed rock masses that have been laid down at great depths; 

· (2) porous jointed media in which the joints determine the hydraulic properties 

of the rock mass; 

. (3) porous media containing impermeable barriers, in which joints are filled with 

· a fine impervious material (e.g. clay); fluid can flow through such media 

only through rock bJ;idges which provide hydraulic connections; 

( 4) porous media containing small channels found in large- joints filled with an 

impervious material through which water can flow; 

(5) karstic media containing wide passages and caverns of various geometrical 

forms, created by the solution and removal of the rock by underground water 

flowing through it. 

Rock masses most often occur as jointed porous media (Fig. 1-1b). The remaining 

types are rarely encountered; karstic media must be considered separately. Fracture

dominated flow in many jointed media with low matrix permiability has become 

increasingly important in various problems of geotechnical interest, particularly those 
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Fig. (1-1) Kind of media occurring in rock masses (after Louis, 1976): (a) porous medium, 

(b) porous jointed medium, (c) porous medium with impervious barriers (1-rock bridge), 

(d) porous medium containing channels (2-channel) (e) karstic medium. 

N 
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involving underground waste isolation. Forexample, it is crucial to the assessment of 

the risks of underground disposal of nuclear waste. If rock masses were truly solid, 

burying waste underground would be risk free. But, because there _are discontinuities 

(joints, faults, cleavage, bedding etc.) in rock, nucle~ wastes might e~cape from a 
' ' ' 

underground repository by traveling through discontinuities in the rock. If the waste 

. travels far enough, aquifers or rivers and lakes could be contaminated. The risk of .. , ' ,·, ' . -

underground disposal dep~nds on how far wastes ~avel, and how economical the 

engineering of underground disposal is. To ,assess the risk, we have to predict the 

amount of fluid flow through a network of fractures, or calculate the flow through a 

particular complex fracture or fault. In either case, an understanding of the mechanical 

and hydraulic properties of single fracture is required because the hydraulic and 

mechanical properties of a jointed rock mass depend on the hydraulic conductivity of a 

·. single joint. 

To predict flow through a fracture, engineers often use the familiar cubic law: 

Q=h 3 IVP It 12J.1 . (1-1) 

where h is fracture aperture, IV P I is the magnitude of the fluid pressure ·gradient, and 

Jl is the viscosity of the fluid. The cubic law is derived from the Navier-Stokes equa-

tion for incompressible flow, in which the fracture is assumed to be a planar channel 

with parallel sides; flow within this channel is considered to be viscous laminar flow 

with no-slip boundary conditions. From the derivation of equation 1~1, we know that 

the velocity profile for this flow is parabolic, with zero velocity at the upper and lower 

surfaces in order to satisfy the no-slip boundary condition·. The total fluid flux Q, 

which ·is found by integrating the velocity across the thickness of the channel, varies as 
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the cube of the separation h between the plates. 

The cubic law has been widely used, but experiments show it is not sufficient to 

describe flow through most fractures in rock. Raven and Gale (1985) performed exper-

iments on flow in tension fractures using homogeneous samples of granite, basalt and 

marble, and found that their results did not follow the cubic law. In analysis of fracture 

displacement and fluid flow data from the comprehensive lab experiments, Pyrak-Nolte 

et al. (1987) suggested a power-law relationship between flow and displacement, but 

the power differed greatly from a cubic law representation. 

Deviations from the cubic law are expected, and the reasons that the cubic law 

. -
breaks down can be explained. The deviation comes from the hypothesis that assumes 

the planar surfaces remain parallel. In another words, in the hypothesis fracture aper-

tures are constant, surfaces are smooth, and the top and the bottom surfaces are not in 

contact at any point of the fracture. On the contrary, in reality apertures change along 

the fracture, surfaces are rough, and a fracture has contact points or areas. When a 

fracture is stressed, the void space of a fracture deforms and a change in contact area 

takes place; the change in void geometry and increase in contact area then causes a 

change in the hydraulic and mechanical properties of the fracture. 

We can understand why the cubic law is not sufficient; however, to better 

describe flow through a fracture, we have to do more investigation to account for the 

effect of fracture roughness. This work is devoted to relating the mechanical properties 

of the fractured rock to the geometrical characterization of the rough-walled fracture. 

Then the equation describing flow through a fracture with smooth parallel walls can be 

modified to include the effect of the contact areas of the fracture surfaces. If realistic 



5 

ap~rture distributions can be found, the numerical simulation procedure could be used 

to predict the flow rate as a function of normal stress and roughness parameters. 

1.2. APPROACH 

There are two approaches in scientific and engineering research. Experiments in 

the field and in the lab are the most important and fundamental type of research. The 

second approach is to develop analytical solutions for problems. However, analytical 

solutions are only easily derived when the mathematical region is homogeneous, when 

the geometry is simple, when. the boundary conditions are relatively straightforward, 

and when . the governing partial differential equations . are linear. In recent years, the 

numerical te~hnique has now reached such a stage of development and popularity that 

one might well doubt whether there is any other approach which can offer comparable 

power, versatility and simplicity. The latter techniques permit us to work on quantita

tive aspects of realistic problems in engineering and applied science where the boun

dary geometry of the region of interest is far too complex for analytical solutions to be 

feasible. Since there are investigators working on in situ and laboratory experiments, 

and analytical solutions are precluded due to the complex geometry of fracture void 

space and irregular boundary conditions, an approximate solution using a numerical 

method becomes the only feasible way to solve complex problems that account for 

diverse fracture hydromechanical properties, with the precision and resolution needed 

for this study. 

Numerical methods can be divided into two distinct classes: those that require 

approximations to be made throughout the region of interest, and those that require 



6 

approximations to be made only on the boundary of the region. Finite difference and 

finite element methods fall in the first class. Boundary element methods constitute the 

second class. Up to now no one has used the boundary element method in three 

dimensions to study the hydraulic and mechanical properties of fractures. I have 

developed two computer programs using the boundary element method to numerically 

simulate fracture deformation and flow through the fracture. I chose the boundary ele

ment method as the numerical solution technique because the method has these advan

tages: 

(1) Only the surface or boundary, rather than whole body or region, is required 

to be discretized for the boundary element method. Therefore, preparing and 

checking the input data is simplified. This is a very important point in prac

tice. The advantage is obvious for my coupled computer programs because 

the fracture deformation program and the flow program share the same very 

complex rough-walled fracture boundary. The output of the fracture defor

mation program provides the input to the flow program directly. 

(2) Boundary element method reduces the dimensionality of the basic process by 

one, i.e. only two-dimensional surface-integral equations arise for three 

dimension problems. It means that boundary element methods lead to a 

much smaller system of algebraic equations than a finite element solution for 

the same problem. From the computational point of view, much less com

puter storage and computer time will be required by the boundary element 

method. This advantage is particularly important for the three-dimensional 

problem where we take into account the effect of randomly distributed 
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contact areas on fracture stiffness and flow tortuosity. 

(3) Boundary element methods are particularly attractive for simulating the frac

ture deformation problem, which may be expressed as an exterior boundary 

value problem, where the fracture rough-walled surfaces define the boundary 

of a fracture in an infinite space. Boundary element methods do not impose 

restrictions on the size of the solution region (i.e., the region may be 

extended out to infinity.). 

I focus the content of my thesis on the results obtained from the numerical simu

lations, even though I spent more than 60% my research time on developing and vali

dating the boundary element method computer programs. Results are presented in 

chapters 4, and 5. Two computer programs are listed in the Appendix, with instruc

tions for their use. 
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CHAPTER 2 

REVIEW OF PREVIOUS WORK 

The effect of fracture geometry on mechanical and hydraulical properties of many 

rock masses has been studied experimentally and theoretically by many researchers and 

engineers. Fracture mechanical properties can be characterised by a specific stiffness, 

which is defined as the slope of a tangent to the curve relating the average closure 

between the two surfaces of a fracture to the stress across the fracture, at a given 

stress. 

2.1. MECHANICAL DEFORMATION 

The deformation of the asperities of contact and apertures between two 'rough sur-

faces of a fracture in response to normal stress across the fracture is a matter of great 

practical and theoretical significance. 

Goodman (1976) has done experiments of measuring fracture closure as a func-

tion of normal stress on artificially induced tensile fracture. Two types of measure-

ments were made. In one case, "mated" fractures were used, in which the two halves 

of the core were placed in the same relative position that they occupied before fractur-. . 

ing the core, so that the hills and valleys of the two fracture surfaces were comple- ~ 

ments of one another. In the other case, the experiments were done with "unmated" 

fractures, in which the two surfaces were rotated from their original position relative to 

one another, and removed uncorrelated for all wavelengths. As would be expected, he 

found that unmated surfaces showed much greater fracture closure, and ·resulted in 

much lower fracture stiffness, than did the mated surfaces. He also proposed an 
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empirical relationship between the fracture closure and the normal stress in the fol-

lowing dimensionless form: 

a-~ = c[ d ]t 
~ dm -d 

(2-1) 

where 

a = the normal effective stress, 

~ = an initial, low "seating" stress, 

d = the joint closure, 

dm = the maximum joint closure, 

t = an exponent. 

C = a constant 

Mated and unmated fractures follow the same relationship but with different constants 

c and t. 

Swan (1983) measured normal stiffness in slate joints. Essentially, his method fol-

lows that used by Goodman (1976) in that a correction is made to the stiffness data 

obtained from an inclusively defined joints. The experiments in which joints have been 

deformed under normal stress exhibited a logarithmic load-deformation behaviour, as 

found by Goodman (1976), in all but a few cases within the range 0 < a< 20 MPa. 

He indicated that a simple linear relationship between stiffness and stress is appropri-

ate, even taking into account aperture effects. 

Bandis at al. (1983) collected fresh and weathered joint samples from exposures 

of five rock types in the United Kindom, namely slate, dolerite, limestone, siltstone 

and sandstone. They conducted laboratory investigations of the deformation 
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characteristics of the natural, unfilled rock joints under normal loading. The following 

hyperbolic function fit their data well for mated surfaces 

d 1 
a= = ---

a-~d _a-~ 
d 

(2-2) 

where a and d are as defined in equation 2-1 and a and~ are constants. Equation 2-2 

implies that for very large values of a ( -+oo ), d must tend to the limiting value a/~, 

herice the maximum fracture closure dm defines the asymptote a/~. Also, the specific 

stiffness of the joint, lC, at any level of a was found from the derivative of equation 2-

2 

aa 1 
K=-=----

CJd a(l-~d)2 
a 

(2-3) 

from which the initial normal stiffness K0 . (as cr=O) is given by the inverse of a, so 

that the specific stiffness at any stress becomes 

lC=---- (2-4) 

For unmated joints, they established the following exponential empirical relation-

ship between joint stiffness and closure. 

Ina= C + Jd 

from which the specific stiffness becomes 

ocr 
K=-=JCJ 

CJd 

(2-5) 

(2-6) 

so that unmated joints with uncorrelated upper and lower surfaces exhibited 
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proportionality between normal stress and stiffness. 

Raven and Gale (1985) collected five granite core samples (0.100, 0.150, 0.193, 

0.245, and 0.294 m dia) with the natural fracture plane located halfway along the core 

length. These cores were collected using a rock bolting, overcoring technique to ensure 

minimal disturbance of the fracture plane during sampling. In the process of the uniax

ial compression testing, fracture and rock deformation across the fracture plane and the 

applied load were measured. The maximum axial stress is 30 MPa. They indicated that 

the most notable feature of the fracture closure-stress curves during loading and 

unloading is the highly non-linear behaviour with pronounced hysteresis and permanent 

deformation and that non-linear behaviour is compatible with the mechanics of fracture 

deformation. As load is applied across the fracture plane, the fracture closes, rapidly 

increasing the number of contact points which distributes load, and decreases closure 

rate. They calculated the normal fracture stiffness by differentiating the normal stress

deformation curves, and indicated that the normal stiffness-stress relations were 

approximately linear, particularly at normal stress less than 15-20 MPa. However with 

increasing load cycle ·the change in normal stiffness-stress relation decreases with . 

increasing sample size, and the stiffnesses are not linear functions of stress except for 

the smallest sample. 

Pyrak-Nolte et al. (1987) summarized and analyzed results of a comprehensive 

laboratory study of the mechanical displacement, permeability, and void geometry of 

single rock fractures in a quartz monzonite. Though typically very non-linear, their 

closure-stress curves show very little hysteresis. It means that the rock, including the 

asperities of contact between the fracture surfaces and the voids adjacent to these 
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asperities, deforms reversibly, that is, elastically. They found that specific stiffness is 

not proportional to stress as it would be expected by equation 2-6 and that even at a 

stress of 85 MPa, the joints continued to close and the stiffness remained finite. The 

finite stiffness at the highest values of stress is explained by the fact that there still are 

open voids between the surfaces of the fractures at these stresses. 

Pyrak-Nolte et al. (1987) developed a metal-injection technique that provided 

quantitative data on the precise geometry of the void spaces between the fracture sur

faces and the areas of contact at different stresses. The metal casts of the void 

geometry corresponding to the normal stress were examined using both a scanning 

electron microscope and photographic techniques. Images of each of the two fracture 

surfaces were superimposed to form a composite image of the contact area and void 

geometry. Percent contact area - stress curves were obtained for two samples from the 

composite images. They noticed that contact areas are of the same order of magnitude 

as found by Goodman (1976) and Bandis et al. (1983) and that the increase in contact 

area with stress for one of the samples correlated well with observed increases in 

stiffness with stress. 

Some reseachers explored a theoretical approach to predict fracture closure and 

fluid conductivity as function of stress. Greenwood and Williamson (1966) presented a 

theory of elastic contact between a random nominally rough surface and a perfectly 

smooth surface. They assumed that the rough surface was covered by a large number 

of identical, spherically shaped asperities all having the same radius of curvature, R , 

with heights described by a specified statistical distribution. Each asperity deforms as a 

Hertzian contact (Timoshenko and Goodier 1951) for a rough surface pressed against 
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another flat surface. The total behavior was calculated by the sum of all contacting 

asperities. They showed that for a peak height distribution <l>(Z* ), elastic Hertzian con-

tact theory will result in n contacts, given by 

00 

n = 11 A f <l>(Z* )dZ* 
d 

where the true contact area, A' is: 

00 

A'= ltR llA f (Z* - d)<l>(Z* )dZ* 
d 

and the relationship between fracture closure d and far field normal stress <J is: 

where 

00 

(J = ± , R 112 E' f (Z* - d)312 <l>(Z* )dZ* 
3 d 

1 
E' 

= 
1- vi 

+--
£2 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

and E and v are the Young's modulus and Poisson's ratio of the two elastic surfaces, 

A = nominal contact area, 

z* = height of local maximum on the composite topography, 

11 = the number of asperity peaks per unit area, 

d = the separation between reference planes in the two surfaces at any stress, so 

that d = d0 - d. d0 is initial separation at zero stress and d is the closure of 

the two surfaces. 

Using equations 2-8 and 2-9 and assuming an exponential distribution of peak asperity 

heights, given by 
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(2-11) 

Greenwood and Williamson (1966) and Swan (1983) derived the following expressions 

for the normal displacement, d, contact area of the asperities, A', and the specific 

stiffness, K , 

(2-12) 

(2-13) 

acr cr 
K=-==-. ad s 

(2-14) 

Note that a is a constant and equations 2-12 and 2-14 are of the same form as 

equations 2-5 and 2-6 found by Bandis et al. (1983). 

Greenwood and Williamson concluded that although height distributions tend to 

be Gaussian rather than exponential, the exponential distribution is nevertheless a fair 

approximation to the uppermost 25% of the asperities of most surfaces, and that frac-

ture deformation depends as much on the details of the surface topography as on the 

elastic constants of the fracture. 

Instead of probability density functions for the asperity heights, Swan (1983) used 

digital pro~les from the actual surfaces to calculate the deformation of the fracture. 

Swan measured topography of ten different joint surfaces of Offerdale slate with a 

simple profilemeter, and showed that these particular joints exhibited a Gaussian-type 

height distribution. For certain conditions and assumptions, he observed that hydraulic 

conductivity, normal stiffness, and the true contact area are simple function of pressure 

and initial aperture, and that the surface roughness properties appear to be irrelevant. 
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Brown and Scholz (1985a and 1986) developed a more general version of the 

Greenwood and Williamson elastic contact theory. This theory is valid for the contact 

of two rough surfaces (both mated and unmated) and is entirely consistent with the 

Greenwood and Williamson (1966) theory if one surface is assumed to be flat. Super-

positioning the heights at each point along the surfaces, they obtained a continuous 

function of two dimensions which they termed the composite topography that con-

tained only the uncorrelated part of the two surface profiles. Describing the contact of 

two rough surface by the heights of the local maxima of the composite topography, 

they overcome the difficulty of the Greenwood and Williamson analysis. The difficulty 

is that Greenwood and Williamson theory deals with one rough surface in contact with 

another flat surface, whereas each of the two surfaces of a rock fracture is rough. 

Brown and Scholz (1985a and 1986) also included a term in their theory to account for 

tangential stress causing from the oblique contact of spheres so that the stresses at the 

contacts are not restricted to be normal. The results of their more general theory of 

elastic contact is as follows: 

cr = ~ Tl<\ji><E,><R 112> i (Z* - do + d)312 <l>(Z* )d.Z* ' 
d ' 

(2-15) 

where 

Z * = random variable representing the height of the peaks, 

Tl = total number of maxima per unit area, 

<\jl> = mean value of the tangential stress correction factor, 

<E'> =mean value of elastic constant, 

<R 11~ = mean value of square root of curvature of the contacts, 



16 

d ~ joint closure, 

cr = normal stress, 

d0 = the. distance between the reference planes at cr = 0, 

=d -d 
0 ' 

.I 

CI>(Z * ) = probability density function. 

The derivation of equation 2-15 required the curvature term R and the tangential 

. stress correction 'I' to be statistically independent of the heights of local maxima on the 

composite topography, and implicit in the derivation of equation 2-15 is the assump-

tion that the contacts do not interact elastically and that the half spaces on each side of 

the surfaces do not deform elastically, only the contacts deform. 

Brown and Scholz (1985a and 1986) measured both joint closure and surface 

topography and used the techniques, developed by. Nayak (1971) and Adler and Fir-

man (1981), for mapping power spectra to probability density functions for the height 

of three dimensional peaks, as well as for finding the density of peaks and their curva-

ture for Gaussian and inverted chi-square distributions, respectively. They indicated 

thai the advantages of the inverted chi-square distribution is that it contains a parame-

ter controlling its skewness, and therefore fits the topography data better than the sym-

metric Gaussian. Another property of the inverted chi-square distribution is that it has 

a finite maximum height, as does a real surface. This is in contrast to the Gaussian dis-

tribution, which has finite probability at heights approaching infinity.'· 

They undertook a power spectra study of topographic measurements on natural 

joints in crystalline and· sedimentary rocks, a bedding plane surface, and a frictional 

wear surfaces with wavelengths from 1 m to 20 ~ . Their results of power spectra 
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showed that on each surface studied, although the slope of the powe~ spectra on a 

log-log plot usually lies in the fractal range, it is not a constant and tends to decrease 

gradually as one moves from high to low frequency. The slope was interpreted as a 

fractal dimension which is a "jaggedness'' parameter, indicating the propertion of 

high-to low frequency roughness. Steep spectral slopes, or small fractal dimensions, 

result in high correlation of the height of nearby points on the surface. Conversely, 

surfaces with shallow spectral slopes, or large fractal dimensions, appear rough on a 

fine scale since heights of near by points become more independent. Since the slope of 

the power spectra was not constant for a given surface, a simple relationship between 

roughness and surface size did not exist and it was suggested that extrapolation of rms 

roughness to larger surface sizes from limited bandwidth measurements must be done 

with care. However, the power spectrum showed that a strong correlation exists 

between the heights and wavelengths of the surface roughness, and also provided an 

idea of the expected variation in mechanical and hydraulical properties for natural 

discontinuities in rock. 

Brown and Scholz eventually tested their elastic contact theory between two 

rough surfaces quantitatively by comparing fracture closures from experiment with 

fracture closures predicted by the theory. Good agreement between equation 2-15 and 

experimental joint closure measurements on ground surfaces of fused-silica glass sam

ples and rock samples with uncertainties in some parameters implies that the theory 

still contains the essential physics of the joint closure process. 

None of the asperity models discussed above takes account of the interaction 

between asperities or of the related deformation of each elastic half space bounded by 
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(a) Sketch showing the deformations due to the contact between a sim
ple pair of hemispherical asperities of radius R and the indentation of 
the adjacent half spaces. (b) The deformations due to the contacts 
between several, contiguous pairs of hemispherical asperities contained 
within a radius r and the indentation of the adjacent half spaces (after 
Cook, 1988). 
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the joint surfaces. To account for the deformation of the half spaces defining the frac-

ture in addition to the deformation of the asperities, Cook (1988) considered two 

simplified models; one of a single pair of hemispherical asperities in contact between 

two elastic half spaces of the same material, and another of a group of proximate 

hemispherical asperities, Figure 2-1. Both of these deformations were calculated from 

Hertzian contact theory (Timoshenko and Goodier 1951 ). The displacement, .1, 

between the bases of the pair of hemispherical asperities of radius, R , under a load, T, 

was given by 

.1 = 2[ ~: ]
213 

= 2[ 31t~]
213 

R. 
4E R 112 4E 

(2-16) 

where p = T lrrR 2 = the equivalent uniform stress on the circular contact between the 

base of the hemisphere and the half space. The maximum indentation al, of the two 

half spaces by a uniform stress applied over the circular contact between the hemi-

sphere and the surface of the half space is 

a = [4P] R. 1 , ' 
E 

(2-17) 

where E' = (1 - v2)/E. The ratio of a1/.1 for an isolated pair of hemispherical asperi-

ties is 

(2-18) 

so that a < .1, especially at relatively low stresses. For n asperities, the displacement 

due to the spherical contacts remains the same, .1, but the maximum indentation of the 

two half spaces becomes 
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- [4p] _,-an- E' ""nR . (2-19) 

The ratio between the indentation of the half spaces by multiple asperities, on , 

and the deformation at their spherical contacts, ll., becomes 

(2-20) 

Cook's theory demonstrated that the deformation of.the half spaces adjacent to a 

joint is important. Further, the fact that the specific stiffness of multiple contacts with 

different spacing on a flat, elastic surface is significantly less than it would be for 

widely separated contacts without any interaction may explain, to some extent, the 

non-linear increase in stiffness with stress as observed by Raven and Gale (1985) and 

Pyrak-Nolte at al. (1987). 

2.2. FLUID FLOW 

Because of recognition of the importance of flow through fractures in a number 

of natural flow systems, a considerable amount of experimental and theoretical 

research has been carried out on fluid flow between parallel surfaces with varying 

degrees of roughness. 

Lomize (1951) was the first to study comprehensively the influence of roughness 

of fracture surfaces on flow rate. In terms of the Reynolds number Re and the friction 

factor '¥ he reduced the so-called cubic law for laminar flow in an open fracture with 

smooth walls to the simple relationship 
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'P = 96/Re. (2-21) 

Changing the fracture walls from smooth to rough, he developed an empirical equation 

which included fracture roughness £ 

'P = .2§_[ 1 + 6 o[~] 1.1 
Re · 2h ' 

(2-22) 

and is valid for ~ > 0.065. 

In general, laminar flow between parallel plates is given by an equation of the 

form 

or 

Q=l.L dP 
f 12J.l dx 

where f = 1 for smooth parallel plates, and f > 1 for rough parallel plates, 

Q =the flux perunit length normal to the direction of the flow, 

h = the aperture between the plates, 

Jl = the viscosity of the fluid, 

: =the pressure gradient in the direction of the flow. 

(2-23) 

(2-24) 

Lomize demostrated the validity of equation 2-24 as long as the flow was lam-

inar. The onset of turbulence was found to occur at Re :::: 2300. 

Witherspoon et al. (1980) did flow tests from a so-called "closed" condition, 

while a number of other workers (Louis 1969, Baker 1955, Huitt 1956, Maini 1971, 

Parrish 1963, Rayneau 1972, Rissler 1978) have investigated the effects of roughness 
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on flow in open fractures (Witherspoon 1980). Witherspoon et al. undertook laboratory 

investigations on tension fractures that were artificially induced in homogeneous sam-

pies of granite, basalt, and marble, which showed that the cubic law for a fluid flow in 

.. a fracture was valid. The investigations included radial and straight flow geometries 

and covered apertures ranging from 250 down to 4 ~m and normal stress up to 20 

MPa. Most of their results were found to follow the cubic law whether the fractures 

were open or closed. They reported that the effect of deviations from the ideal parallel 

plate concept only caused an apparent reduction in flow and were taken care of by the 

factor f, when it varied from 1.04 to 1.65. However, one of their data, for a joint in 

marble, exhibited marked deviations from the cubic law, as apertures decreased below 

1 O~m. The specific flow became more or less independent, . as the aperture further 

reduced below 6~m with increasing stress. 

Engelder and Scholz (1981) measured flow rates and thus permeability within 

ground joints of Cheshire quartzite covered with particles of #80 grit at effective pres-

sures up to 200 MPa. They observed the same puzzling phenomena that at high flow 

rates and wider apertures the flow-aperture curves appeared to parallel a cubic law, but 

at low flow rates and narrower apertures flow rates per hydraulic head Q /M were 

independent of apertures. They concluded that at low effective pressures and wide 

apertures the cubic law was confirmed, but cubic law at high effective pressure was 

inadequate. A modification was then presented for the cubic law, by considering the 

theory of random surfaces of Greenwood and Williamson (1966) : 

(2-25) 
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Fig. (2-2) Schematic of a joint where A is the nominal surface area, Ac is the real 
area of contact, d is mean aperture, W,. is nominal width of joint, and 
W. is the effective cross-sectional width (after Engelder and Scholz, 
1981). 

As Figure 2-2 shows, where 

W n = nominal width of the fracture , 

W0 =contact cross section at zero effective pressure, 

s = standard deviation of the topography of fracture surfaces, 

<J0 = a normal effective reference pressure, 

E' = the mean value of the elastic constants pertinent to Hertzian contact, 

d = the aperture between two surfaces of fracture, 

d0 = the aperture at <J
0

, 

p = the density of the fluid, 

g = the gravitational constant, 

~ = the viscosity of the fluid, 

... 

• 



" 

• 

dP h di. thdfr. fhfl dx = t e pressure gra ent m e ecuon o t e ow. 

The contact area at 0'0 , Aoc, can be expressed as follows: 

Equation 2-25 then is rewritten as 

where 

= [Wn- [W0 +Aod 112 exp((d0 -d)/2s)]] pgd3 = Cd3 dP 
Q 2 121l I dx' 

- _EL C - 121l , and 
1 
-= 
I 

Wn - [W0 + Aoc 112 exp((d0 - d)/2s)] 

2 
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(2-26) 

(2-27) 

Notice that equation 2-27 has two problems. One is that it does not consider the effect 

of new contacts, produced as stress increases on the flow, and another is the as sump-

tion that stiffness-stress relationship is linear. 

Raven and Gale (1985) conducted steady-state radial-flow tests at different 

stresses on the same natural joint in samples of granite with diameters from 0.1 m to 

0.294 m. Their flow rate-aperture curves departured from the cubic law plotted as a 

straight line on a log-log plot with a slope equal to one third. At low to intermediate 

normal stress, the fracture aperture and flow rate were characterized by slope less than 

one third, suggesting a reduction in flow rate greater than that attributable simply to 

fracture closure. They interpreted that this additional flow-rate reduction was probably 

due to increasing contact area and flow-path tortuosity with increases in normal stress. 

At high normal stress the fracture aperture and flow rate showed a slope that was 

greater than one third and approached unity. They stated that this increased slope sug-

gested the calculated residual fracture aperture at maximum normal stress might be too 
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small and thus the parallel plate model might not be valid for rough fractures at high 

normal stress. 

Pyrak:-Nolte et al. (1987) measured hydraulic conductivity with a linear flow tech

nique for three natural joints on which they had made measurement of joint closure 

and contact areas as a function of normal stress. They found that at large joint aper

ture, corresponding to high stress, specific flow decreased much more rapidly than the 

aperture to the third power, and that at effective stresses higher than 20 MPa, the mean 

fracture aperture continued to diminish with increasing stress, but this had little effect 

on flow because the small tortuous flow channels deformed little with increasing stress. 

Thus their results showed departures from the cubic law, and non-stress related 

changes in permeability at high stress similar to those noted above. Inlight of the value 

of the irreducible, aperture-independent limit at the highest stresses and smallest aper

tures, they proposed that the specific flow through natural joints is given by an equa

tion of the form 

(2-28) 

where 

Q co = the irreducible flow at high stress, 

C = an empirical constant depending upon the viscosity of the fluid, the head gra

dient and the topography of the two joint surfaces, 

d = the joint closure, 

dm = the joint aperture at zero stress, 

t = an empirical exponent that depends upon the topographies of the two joint sur

/ aces. 
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As described in the discussion on mechanical deformation, Pyrak-Nolte et al. 

(1987) have developed a metal-casting technique of the void spaces between .natural 

joint surfaces at different effective stresses and a computer enhanced composite image 

of these void spaces at a stress of 35 MPa. This image showed relatively large void 

spaces (oceans) connected by tortuosity paths through regions of high contact density 

(archipelagoes). This enabled them to explain the finite joint stiffness and the stress

independent flow or the irreducible flow at high stresses. They indicated that at the 

highest stresses. and smallest apertures, the principal impediments to fluid flow through 

the space between joint surfaces in partial contact were to be found in the tortuous 

channels through the archipelagoes of asperity contact between the relatively large oce

anic voids, and that if these channels comprise conduits of roughly equant cross sec

tional dimensions, the conduits would deform relatively little as the stress increased, 

leading to a constant resistance to flow, so that the deformation of the large voids gave 

the joint finite stiffness at high stresses but had virtually no effect on fluid flow, 

though it did effect the storativity of the joint. 

Brown (1987) generated numerically realistic rough surfaces using a fractal model 

of surface topography. Pairs of these surfaces were places together at some fixed dis

tance and were held parallel to form a ''joint'' with a random aperture distribution. He 

further examined the deviation of fluid flow through rock joints from the parallel plate 

model using a two dimensional finite-difference method. He did a total of 300 simula

tions. Three fractal dimensions were used to generate model surfaces. Ignoring the 

deformation of the surfaces and setting the points with local aperture D (x ,y )=0 as 

"contacts", he separated pairs of surfaces at 10 different mechanical apertures, D m, . 
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which were the separations between the mean joint surfaces. Finally, 10 different pairs 

of surfaces were considered at each fractal dimension and mechanical aperture. The 

solution of the simulation was the local volume flow rate through the joint. This solu-

tion was used directly in the cubic law to get so-called "hydraulic aperture", Dh 

- [ 12Q J.lll/3 
Dh- !lP/L 

X 

(2-29) 

where Q was the average flux per unit width of the joint obtained from the simula-

tions, and M ILx was the average pressure gradient across the whole joint. Quantita-

tive measures of the validity of the cubic law were then obtained by comparing the 

hydraulic aperture to the mechanical aperture Dm and the mean aperture <D >. A mean 

aperture was defined by 

L" 4 
<D> = - 1

- f f D(x,y)dxdy 
LxLy b b 

(2-30) 

where D (x ,y ) was the local aperture and and Lx and Ly were the dimension of the 

joint plane. 

He plotted the parameter [D h /<D > ]3 for different mechanical apertures <?r 

separations and showed that the parameter is always less than unity, particularly for 

small values of the mechanical aperture. In other words, the results showed that at 

large separations the surface topography has little effect and at small separations the 

flow is tortuous, tending to be channeled through high-aperture region. However, the 

actual flow rate between rough surfaces was about 70-90% of that predicted by the 

parallel plate model. As Cook (1988) commented, the discrepancy was quite 

insufficient to explain the major departures from the cubic law for flow through joints 
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as observed by Witherspoon et al. (1980), Engelder and Scholz (1981), Raven and 

Gale (1985) and Pyrak-Nolte et al. (1987). 

With two first-order approximations, Cook (1988) derived the equation (2-31) for 

flow t~ough a joint as follows: 

Q _ Dh
3 

dP .!. 1:.... a= ...£L dP Dj[l + lnD]3 . D2 

- 12J.1 dx t 1 + a 12J.1 dx . . . 2 - D 
(2-31) 

1 

~~ ' ! ' I 

where the fraction of the joint area in contact, a, at any stress is assumed by the ratio 

of the closure at this stress, d, to the mean aperture at zero stress, D 0 , the tortuosity, 

t, at any stress is assumed by the ration of the mean joint aperture at zero stress to the . . 

mean joint aperture at that stress, D *, i.e. t = D 0 ID *, and D = D * !D 0 = (d -D 0 )ID 0 • 

Equ.ation 2-31 can be written as 

In [ 
1 ~JlQ ] = In [ [1 + lnD] f52 ] , 

'P D3 . 2-D 
pg dx 0 

(2-32) 

which is plotted in Figure 2-3. From Figure 2-3 it can be seen that the slope of the 

line relating the logarithms of specific flow and aperture is not 3, as given by the cubic 

law, but is always greater than about 6. It means that, even to a first order approxima-

tion, specific flow for joint in partial contact should not be proportional to the cube of 

the joint aperture but rather to a higher and variable power, as can be seen in the data 

from Witherspoon et al. (1980). As suggested by Pyrak-Nolta et al., equations 2-31 

and 2-32 were also modified by adding to them the stress-independent component of 

flow. Q oo• to yield . 

(2-33) 
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and 

In [ 
12

JlQ ] = In [ [ 1 + lnD ] jj2 ] + Q oo • 

dP D3 2-D 
pg dx 0 

(2-34) 

.. 
Equation 2-34 was also plotted in Figure 2-3 from which it could be seen that this 

equation represents the stress-independent flow at high stresses quite well. 

Coakley (1989) generated fracture patterns of voids and contact areas, with com-

plexity typical of experimental data, by clipping a correlated Gaussian process defined 

on a N by N pixel square region. As Brown (1987) did, he assumed that local flow 

was proportional to local aperture cubed times local pressure gradient, and solved the 

flow through a pattern of voids and "contact areas using a finite-difference method. 

After solving for the flow through simulated 10 by 10 and 30 by 30 pixel patterns of 

voids and contact areas, he developed a model to predict equivalent permeability in 

terms of spatial statistics computed from the arrangement of voids and contact areas 

within the fracture. 

Walsh (1981) analyzed the effect of increasing contact areas and decreasing aper-

tures of a fracture under increasing compression on the flow through the fracture. Mak-

ing use of a analogy between the two-dimensional heat flow in a medium with con-

stant conductivity and the laminar flow of an incompressible fluid, he found that the 

effective macroscopic permeability k * was 

k* 1- c -=--
ko 1 + C ' 

(2-35) . 

where k0 is permeability of the fracture with no asperities and c is the ratio of the 

contact area to the total area of the fracture. The effective macroscopic permeability, 
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k * , can represent flow through the fracture on a length scale large enough to cover 

many asperities. 

Chen et al. (1989) used numerical analogues and analytical methods to investigate 

the effect of contact area geometry on the permeability of a fracture. They verified 

equation 2-35, derived by Walsh (1981) using a Maxwell-type effective medium 

approximation, for contact areas up to at least 25%. Considering that equation 2-35 

might be a good approximation for flow only when contact areas are uniformly spaced 

and had nearly circular shape. They extended the Walsh-Maxwell approach to ran-

domly oriented obstacles of elliptical shape with the results verified numerically for 

certain values of the aspect ratio and percentage contact area. The expression for ellipt-

ical obstructions was only slightly different in form from equation 2-35 for circular 

obstructions: 

(2-36) 

where 

(2-37) 

and the aspect ratio a. (~1) was defined as the ratio of the minor to major axis. 

They also studied fractures with more irregular contact area geometries using the 

boundary-element method. They found that such fractures had permeabilities that were 

lower (by as much as 30%) than would be predicted by Walsh's expression, but which 

could be fit very well by the effective medium approximation if an equivatent aspect 

ratio is used. 
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2.3. SUMMARY 

Using a wide variety of rocks, fluids, joints, flow geometries, measuring tech

niques, and analysis method, different investigators noted similar phenomena, such as 

the nonlinear stress-deformation relationship, and the effect of aperture variation on the 

flow through a single fracture. However, this review points out several significant 

inconsistencies, such as stress-stiffness relationship, applicability of the cubic law, and 

the effect of contact area or tortuosity on flow. Existence of inconsistencies leads us to 

do further research on this project. Witherspoon et al. (1980) pointed out that "Much 

more work is needed in understanding the mechanical and hydraulic behavior of a 

fracture that is deforming under stress!'. 
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Many important engineering problems can be reduced to mathematical models 

classified as "boundary value problems". These are characterized by a region of 

interest R enclosed within a boundary S. The physics of the problem in R is modeled 

by a partial differential equation. If sufficient constraints or conditions are specified on 

the boundary, the solution to the problem then is assured uniquely. Two boundary 

value problems need to be solved for studying hydro-mechanical properties of a single 

rough-walled fracture. One is fracture elastic deformation subject to uniform normal 

stress. Another is the viscous steady flow of an ircompressible fluid flow thrm~gh the 

fracture void space under a uniform pressure gradient. In Figure 3-1, the fracture is 

represented by a very thin and very wide channel bounded by surfaces. The inner side 

is rough, and consists of regions where the top surface and bottom surface are in con

tact (asperities), surrounded by regions where the two surfaces are separated by a dis

tance (known as the aperture, h) that varies spatially. A normal distributed load T is 

applied in the direction perpendicular to the· fracture plane. 

The fracture deformation problem is a so-called exterior problem in which the 

region of interest R is the infinite region outside the boundary S. The object of solving 

the fracture problem is to find the distributions of stresses and displacements in the 

infinite body and on the fracture boundary. The flow problem is called an interior 

problem in which R , the region of interest, is the finite region inside the fracture. The 

object of solving the flow problem is to find the distributions of fluid pressures and 

( 
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Fig. (3-1) (a) Representation of a horizontal fracture in an infinite space. 

(b) Side view of a rock fracture. 
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Top View . 

(c) & (d) Idealized fracture with parallel walls and isolated asperities. 
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35 

fluxes in the fracture void space and on the fracture boundary. 

The specified boundary conditions differ when we solve two problems separately. 

Components of traction and components of displacements are specified at the external 

boundary (the periphery of fracture) and the internal boundaries (the peripheries of 

contact areas) in three dimensions for solving the fracture deformation problem, while 

components of fluid pressure and ,flux are defined at the boundaries only in the fracture 

plane (two dimensions) for solving the flow problem. 

As mentioned before, an exact analytical solution is almost impossible to find for 

problems with complex boundary conditions, and the boundary element method 

becomes the best alternative approach. 

The following section briefly describes the boundary element method that utilizes 

"point-source" type solutions to the governing partial differential equation, and super-

imposes them to satisfy the boundary conditions in some average or approximate 

sense. Detail of the method can be found in Brebbia (1978) and Crouch (1983). The 
' ' 

emphasis is on understanding the simple physical idea underlying the use of boundary 

element method in terms of introducing numerical procedures of the boundary element 

method. 

3.2. FRACTURE ELASTIC DEFORMATION PROBLEM 

The boundary element technique to solve fracture elastic deformation problem can 

be explained more fully with reference to Figure 3-2. The fracture is assumed to be so 

thin that we can consider it as a horizontal plane in the mathematical sense. The co-

ordinates (x , y , z) or (x 1, x 2, x 3) are chosen such that the z axis is vertical and 
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Figure 3-2 Definition of grid for the fra.:ture plane z = 0. Elements in 
black represent contact are.:s. 
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positive upwards. The fracture then is defined as the plane z =0. The top of this plane, 

z =0+, represents the hangingwall and the bottom, z =0_, represents the footwall. The 

displacements and stresses are denoted as ui and CJij. A solution to a boundary value 

problem in elastostatics implies a solution to the displacement equations of equili-

brium, subject to a set of specific boundary conditions. It means that the displacement 

equations of equilibrium are the governing partial differential equations for the fracture 

deformation problem. The displacement equations of equilibrium are given by (Love 

1944) 

1 
ui,jj + 1 - 2v uj,ij = J3i (3-1) 

where the plane z=O is the fracture plane, J3i are body forces, and v is Poisson's ratio. 

The stresses and displacements are assumed to vanish as x 2 + y 2 ~ oo. Along the z=O 

boundary, the proper boundary conditions depend on whether or not the point (x ,y ,0) 

is a region of contact between the two faces of the fracture. If the faces are in contact, 

we use the conditions that , 

CJ.xz = Ciyz = 0, Uz = 0. 

The no-shear boundary conditions assume that the rock faces are frictionless; the cal-

culations can also be carried out under the "opposite" assumption, which is that no 

shear displacements are allowed, i.e., ux = uy = 0. At points where the faces are not in 

contact, the boundary conditions are 

where Tzz is the normal traction. 
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It may be helpful to summarize the numerical procedure of boundary element 

method in a few simple steps: 

(1) The boundary of interest in the fracture plane now is divided into a grid of 

MxN squares called boundary elements. We will suppose that the boundary elements 

are small enough so that the normal stress C1zz acting on each one can be taken as a 

constant. The side length of each square is 2a, and the elements are numbered such 

that they can be identified by a matrix location with respect to the low left-hand corner 

of the grid. Square (ij) for example, denotes the (row, column) location of a particular 

grid element, i in the x direction and j in the y direction. 

(2) We will imagine that a "point-source" with components is associated with 

each element. i.e., place one "point-source" at the midpoint of each element. This 

point source could represent a heat source or sink in a heat flow problem, for example, 

or it could represent a point force applied within an elastic solid for a problem in solid 

mechanics. Here we make the "point-source" represent a displacement discontinuity 

with components Dx, Dy, and Dz. The displacement discontinuity components define 

as relative displacements between the hangwall (z=O+) and the footwall (z=O_) of the 

fracture: 

(3-2) 

Each element (i,j) of the grid has associated with it a constant displacement discon

tinuity with components Dx, Dy, Dz. 

(3) Then we seek analytical solutions corresponding to the "point-source" in an 

infinite homogeneous region, which satisfy the displacement equilibrium equation 

without body forces, i.e. l3i = 0. These solutions have been found in many disciplines, · 
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and are usually called singular solutions because, mathematical speaking, they are well 

behaved everywhere in the region of interest except at the point of the "point-source", 

where there is a mathematical anomaly or "singularity". The_ singular solution to the 

problem of a constant displacement discontinuity over a square element of the fracture 

plane is given by Rongved (1957): 

u1 = 2(1-v)<l>1,3- (1-2v)<l>3,1- x3<1>k,kl 

u2 = 2(1-v)<l>2,3 - (1-2v)<l>3,2- x3<1>k,k2 

u3 = 2(1-v)<l>3,3- (1-2v)(<l>1,1 + <1>2.2)- x3<1>k,k3 

~11 = -2G [2<1>1,13 + 2v<l>2,23 + 2v<l>3,33 - (1-2 v)<l>3,11 - x3<1>k,kllJ 

0'22 = -2G [2<1>2,23 + 2v<l>1.13 + 2v<l>3,33 - (1-2 V)<l>3,22- X3<1>k,k22] 

0'12 = -2G [(1-v)(<l>1,23 + <1>2,13)- (1-2v)<l>3,12- x3<1>k,k12J 

0'13 = ~-2G [2<1>1,33 + v<<1>1.22- <1>2.12) - x3<1>k,k13J 

0'23 = -2G [2<1>2,33 + v(<l>2,11- <1>1.12) - x3<1>k,k23J 

In these equations, functions <l>i (i = 1 to 3) are 

in which 

a a 

(3-3) 

(3-4) 

(3-5) 

I(x 1, x 2, x 3) = J j[(x 1 - ~02 + (x 2 - ~2/ + x 2
3r 1 d~1 d~2 (3-6) 

-a -a 

where the integration is performed for ~1 , ~2 in the square element lx 115a, lx2 1;;:::a, 

x 3=0. 2a is the side length of the square element. We can rewrite equations 3-3 and 
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3-4 in explicit form as follows: • 

u 1 = 
1 

[[2(1-v)/ ,3-xy .n]D 1 -
8 1t (1-v) 

u 2 = 8 1t ~1-v) [ 

(3-7) 

<Ju=-A[[2/ •13-x-¥ .ndD 1 + [2v/ ,23-x-¥ •112lD2 + [2v/ •33-(1-2v)/ .u-x3/ •ll3]D3J 

<J22=-A[[2v/ •13-x3/ •12VD 1 + [2v/ •23-xy •222lD2 + [2v/ •33-(1-2v)/ •22-x-¥ •223]D3J 

<J33=-A[x3/,133D1 +x3/,233D2 + [/,33-x3/,333]D3J 

<J12=-A[[(l-v)/ ,23-x3/ ·nvD 1 + [(1-v)/ •13-x-¥ •l2UD2 + [(1-2v)/ •12-xf •123]D3J 

0'13=-A[[(l-v)/ •33-v/ ·n-x-¥ •113]D 1 + [v/ ,12+i3/ •123lD2- x3I •133D3J 

<J23=-A[[v/ ,12+x3/ •123]D 1- [(1-v)/ •33-v/ •22+x-¥ •233]D2- x3l •33~3J 

A= G 
4 1t (1-v)' 

and 
E 

G=---
2 (1 + v) 

(3-8) 

Using equation 3-6, it can be shown that the functions I ,123, etc., in equations 3-7 and 

3-8 have the following values: 

1 1 1 1 
/12=-+-----

, R1 R2 R3 R4 

/,13 = 
z(y+a) 

+ 
z (y-a) z(y-a) z(y+a) 

[R 3
2-(y +a )2]R 3 [R /-(y -a )2]R 4 [ R 1

2-(y -a )2]R 1 [R l-(y +a )2]R 2 

/,22 = 
(x-a )(y+a) 

+ 
(x+a )(y-a) (x-a )(y-a) (x+a )(y+a) 

[ R 32-(x -a )2]R 3 [R /-(x +a )2]R 4 [R 1
2-(x-a )2]R 1 [R l-(x+a )2]R 2 



I,33 = (x-a)(y+a) [ 1 1 ] 
R3 R/- (y+a)2 + Rl- (x-a)2 

z (x -a )(y +a )[3R 3 
2-(y +a )2] z (x +a )(y -a )[3R i-(y -a )2] 

[(x-a)2 + z2]2Rl [(x+a)2 + z2]2Rl 

I,123 = z[-1- + _1_. __ 1_- _1_] 
Rl Rl R13 Rl 

I _ z (x -a )(y -a )[3R 1
2-(x -a )2] + z (x +a )(y +a )[3R l-<x +a )2] 

•223- [(y-a)2 + z2]2R 13 [(y+a)2 + z2]2Rl 

z (x -a )(y +a )[3R /-(x -a )2] z (x +a )(y -a )[3R i-<x +a )2] 

[(y+a)2 + z2]2Rl [(y-a)2 + z2]2Rl 

I •333 = - I' 113 - I •223 

I, 133 = - P P 1 - P P 2 - P P 3 - P P 4 - PP 5 

I •233 = - QQ 1 - QQ 2 - QQ 3 - QQ 4 - QQ 5 

(y-a) [<x-a )2[R 1
2 + (x-a )2] - z2[R 1

2 - (x-a )2]] 
PP1 = 

[(x-a )2 + z2]2R 13 

(y+a)[(x+a)2[Rl + (x+a)2]- z2[Rl- (x+a)2]] 
PP2= 

[(x+af + z2]2Rl 

(y+a)[(x-a)2[R 3
2 + (x-a)2]- z2[R 3

2 - (x-a)2]] 
PP3= 

[(x-a)2 + z2]2Rl 
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(3-9) 

(3-10) 

(3-11) 



PP4= 
(y-a)[(x+a)2[Rl + (x+a)2]- z2[Rl- (x+a)2l] 

[(x+a)2 + z2]2R43 

PP5= 
y+a + y-a _ y-a _ y+a 

Rl Rl Rt3 R 2
3 

QQl= 
(x-a) [ (y-a )2[R 12 + (y-a )2] - z2[R 12- (y-a )2]] 

[(y-a )2 + z2]2R 13 

QQ2= 
(x+a)[(y+a)2[Rl + (y+a)2]- z2[Rl- (y+a)2]] 

[(y+a )2 + z2]2R l 

QQ3= 
(x-a)[(y+a)2[R32 + (y-a)2]- z2[Rl- {y+a)21] 

[(y+a)2 + z2fRl 

QQ4= 
(x+a)[(y-a)2[Ri + (y-a)2]- z2[Rl- {y-a)21] 

[(y-a)2 + z2fRl 

QQ5= 
x-a x+a x-a x+a --+--------
Rl R43 R13 Rl 

Rt2 = (x-a)2 + (y-a)2 + z2 

R l = (x +a )2 + (y +a )2 + z 2 

R l = (x -a )2 + (y +a )2 + z 2 
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(3-11) 

(3-12) 

the stresses cr13, cr23 and cr33 represent the tractions on the fracture plane. These quan-

tites can be written in unabridged notation as 
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(3-13) 

The effects of a single elemental displacement discontin~ity on the displacements and 

stresses at an arbitrary point in the infinite solid can be computed from the above 

singular solutions. 

(4) We now set up a system of 3xMxN linear algebraic equations to express the 

combined effects of all MxN singularities or "point-source" at any one element in 

term of the strengths of the singularities, i.e. Dx, Dy, and Dz. The system of algebraic 

·. equations i~ formed by considering the boundary conditions for each element. If 

' i ij ij ij ij ij ij 

stresses 0' xz =( 0' xz )0 , 0' yz =( 0' yz )0 , and 0' zz =( 0' zz )0 are prescribed at the (i, j) 

boundary element, it then follows from equation 3-11 that the induced tractions at the 

midpoint of element (i, j) are related to the displacement discontinuity components at 

all .elements (k, 1) of the grid by equations of the form: 

(3-14) 

ijkl 
where A xx, etc., are matrices of influence coefficients for the fracture plane. For exam-

··~ .. 
pie, A yz gives a induced stress d zz along the axis z at the center of an element (i, j) 

due to a unit displacement discontinuity D y over the element (k, 1 ). The influence 

coefficients depend upon the elastic properties of the rock mass, the size of the grid 

elements and the distances from element (k, l) to element (i, j) (see Fig. 3-2). 
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ij ij ij ij ij ij 
Simularly, if displacements Uxz =(U12 ) 0 , Uyz =(Uyz )0 , and Uzz =(Uzz )0 are prescribed, 

then the (i, j) th equations are 

(3-15) 

ij ij ij 

Mixed formulations in which, for example, Uzz, cr xz and cr yz are prescribed are han-

died by selecting the appropriate ones of equations 3-14 and 3-15. Proceeding in this 

way for i=1 toM, and j=1 toN, we obtain a system of 3MN algebraic equations in 

3MN unknown displacement discontinuity components. 

(5) Then we solve the equations equations 3-14 and 3-15 for the unknown dis-

placement discontinuity components by iteration. 

(6) The last step is to back substitute the displacement discontinuity components 

into equations 3-7 and 3-8 to obtain the value of displacement ui and stresses crij at 

any point in the infinite body and the fracture surface. 

3.3. FLOW PROBLEM 

The flow of a Newtonian fluid (such as water) through a fracture is governed by 

the N avier-Stokes equations: 

(3-16) 

where rt = (u, v, w) is the velocity vector, Pt is fluid density, Jl is fluid viscosity, t is 
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time, and P is the fluid pressure. If a uniform pressure gradient 

aP v p = ( ax ' 0, 0) (3-17) 

forces fluid between the plates of the fracture, and fluid velocity is assumed to vanish 

at the plates, the Navier-Stokes equations solution is 

(3-18) 

The exact solution for flow between two parallel plates under a uniform pressure gra-

dient is known (Schlichting 1968); This solution gives the familiar cubic law 

Q=h 3 1VP II12J.1, where IVP I is the magnitude of the pressure gradient, and J.1 is the 

viscosity of the fluid. However, exact solutions for other specific geometries are 

extremely difficult to obtain. For a fracture that is modeled as two parallel plates 

propped open by discrete areas of contact (Fig. 3-1), the flow cannot be everywhere 

parallel to the overall pressure gradient, since the fluid must follow a tortuous path as 

it circumvents the obstacles. If the flow rates are suitably low, and if the aperture h is 

small relative to the characteristic distance L between the contact areas (Fig. 3-1 ), the 

flow can be well approximated by "Hele-Shaw" flow (Schlichting 1968, p. 114). The 

precise constraint on the velocity is that 

Re* = pUh 2!J.LL < < 1, (3-19) 

where Re* is the reduced Reynolds' number, and U is the mean velocity magnitude. 

In Hele-Shaw flow, the fluid still has a parabolic velocity profile, and the velocity vee-

tor Tt at each point is still in the direction of decreasing pressure, but the local pressure 

gradient is not necessarily the same as the overall macroscopic pressure gradient. The 

velocity profile for this type of flow is given by 



-VP it = -- z (z - h ), 
2J,1 
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(3-20) 

where z is the transverse coordinate measured from the bottom wall. The pressure is 

found by solving the two dimensional Laplace equation in the region of the x-y plane 

exterior to the obstacles, i.e. 

Equations 3-20 and 3-21 can be proved easily: 

when aP = 0 and az ' 

Navier-Stokes equations reduce to 

aP 
c) -=0 

dy 

from equation 3-22-c, P = P(x,y) only, 

from equation 3-22-a, 
au 1 ap 
:1 = -a-z + cl, 
oz J.1 X 

1 aP 2 
U = d Z + C1Z + C2. 

2J.1 X 

Use no slip boundary conditions, i.e. u=O at z=O, z=h, we then obtain: 

from equation 3-22-b, 

Invoke conservation of mass: 

u = 1 a: (z 2 - zh ), 
2J,1 X 

v = 
1 a: (z 2 - zh ). 

2J.1 X 

au av aw -+-+-ax ay az 

au + av + 0 = z(z-h) [a2P + a2Pl = 0 ax ay 2J.1 ax2 ay2 

(3-21) 

(3-22) 
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therefore, 

Since there can be no flow into or out of the obstacles, the pressure field must satisfy 

aP tan = 0 along the obstacle boundaries, where n is the outward unit normal vector. 

The external boundaries are typically either no-flow -or constant-pressure boundaries 

(Fig. 3-3). Note that while the obstacles are correctly treated as being impermeable, it 

is not possible to impose the no-slip boundary condition along these surfaces, since the 

Laplace equation is of lower order than the Navier-Stokes equations. This incorrect 

boundary condition introduces an error which is on the order of (h /L ), and which 

therefore should be negligible for many applications. For example, typical values of h 

for fractures in crystalline rock are on the order of 10-100 Jlm, while asperity separa-

tions L are usually on the order of millimeters (Pyrak-Nolte et al. 1987). 

The flow problem which we are to solve can be posed as follows (Fig. 3-3). A 

two-dimensional homogeneous flow region containing contact areas of various shapes 

is bounded by four edges of the square (or rectangle). Fixed pressures P (x0 ) are main-

tained on two opposing edges of the region, while the other two sides are taken to be 

no-flow boundary (normal velocity component u (x0 )=0. The Laplace quation has to be 

satisfied by the pressure (or potential) P(x) at any point (x, y, z) or (x 1, x 2, x 3). We 

are to determine the flow velocity and potential existing at any specified point within 

the flow region or on the boundary using boundary element method. 

We know that, in any boundary value problem, some of the boundary parameters 
I 

are specified as constraints while the rest emerge from the solution to the problem as a 

whole. In the foregoing description of the boundary element technique for the defor-

mation problem, we first solve for the singularities (displacement discontinuities) that 
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Fig. (3-3) Schematic diagram of the basic computational problem, showing two asperi

ties, the no-flow and constant-pressure boundaries, and the discrete nodal points used 

in the boundary-element calculations. 
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satisfy the specified boundary conditions, and then compute the rest of the boundary 

parameters in terms of these displacement discontinuities. The boundary element tech-

nique that we use to solve the flow problem is a more mathematical treatment based 

on concepts of classical potential theory and is called direct boundary element method 

because the unspecified boundary parameters are obtained directly. 

Now we start from the governing differential equation 3-21 for the basic develop-

ment of a direct boundary element solution 

= a2
P(x) + a2

P(x) = O 
axlaxl ax2ax2 . 

(3-21) 

In order to investigate the possibility of actually integrating equation 3-21, over the 

domain R, we introduce a function G (x, ~) which is, as yet, undefined except that it is 

sufficiently continuous to be differentiable as often as required. 

We then multiply both sides of equation 3-21 by G (x, ~). integrate solely the 

term ~
2

p ~x) by parts twice, and use the limits defined in Figure 3-4. These opera
Xt Xt 

tions generate the following series of equation 3-22: 
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The first integral on the right in equation 3-23 can be interpreted as a boundary 

integral over S by noting that at (x l ;x t) on S, dx 2 = n 1 dS (Fig. 3-4). Equation 3-23 

can therefore be written as 

p(x) 
• X; 

R 

n -

Figure 3-4 Definition of integral limits (after Banerjee and Butterfield, 1981). 

If we perform exactly similar operations on the (cPG ICJx 2()2) tenn and add the 

results, we obtain 

We now specify G to be a solution of 

aza (x , s) + .1(x , s) = o 
OX·OX· I I 

(3-24) 

(3-25) 
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where n 1 = ax 2/dS, n 2 = dx 1/dS, and ~(x, ~) is the two-dimensional Dirac delta func-

tion, which is mathematically equivalent to the effect of a unit concentrated charge 

applied at the point ~. The key property of the delta function is that it is zero unless 

all corresponding components of xi and ~i are identical, where it becomes infinitely 

large in such a way that 

00 00 

I 

ll ~(x, ~) dx dy = I ~(x, ~)d.R = 1 (3-26) 

When xi =~i , ~(x , ~) has a shifting property such that, for example, 

I P (x )~(x, ~)d.R (x) = P (~) (3-27) 

i.e., when the left-hand-side product in the equation 3-26 is integrated over R, the 

value of P ( cr) at the specific point xi = ~i is shifted out as the only non-zero resultant. 

The fundamental solution G (x, ~) of equation 3-25, which is a basic component 

of all the subsequent analysis, relates the P (x) generated at a ''field point'' (xi) by a 

unit source e (~). say, applied at a "load point" (~i) in an infinite two-dimensional 

body. Although the origin for the coordinates (~i) is identical to that for (xi), it is 

absolutely essential that each set be reserved for a specific purpose. Thus the classical 

singular solution can be written as 

P (x ) = G (x , ~)e (~) (3-28) 

where 

G (x, ~) = - -1 
In [_!_] 

27t r 
(3-29) 

and 
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(3-30) 

The last term of equation 3-24 reduces to -P (~) from equations 3-25, 3-27, and 

the left side of equation 3-24 is equal to zero from equations 3-21 and 3-26. Thus we 

can rewrite equation 3-24 as 

If we define 

h (x, ~) = -[oG (x, ~)lox; ]n; (x) 

and specify that the flux or velocity in the n; direction is 

u (x) = -[oP (x)lox;] ni (x) 

then equation 3-31 can be written more concisely as 

P(~) = J [P(x)h(x, ~)- u(x)G(x, ~)]dS(x). 
s 

(3-31) 

(3-32) 

This equation enables us to calculate the flow potential at any point ~ from a 

knowledge of both the potential and the flux at all points around the boundary S. For 

developing a boundary element technique, it is best considered as determining P (~) at 

any point (~) by a summation of effects from other points (x) over S. 

Equation 3-32 is valid for any point in the domain, but in order to formulate the 

problem as a boundary technique we need to take it to the boundary. This has been 

done by C.A. Brebbia (1978, P.Sl). He has the following equation for a point on the 

boundary, 

. 



.. 

.. 

fP(~0 ) = J [P(x)h(x, ~0 )- u(x)G(x, ~0 )]dS(x). 
s 
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(3-33) 

Equation 3-33 will now be applied on the .boundary S of the domain R under con-

sideration. In a "well-posed" problem, one of either P (x0 ) or u (x0 ) will be known at 

every point of the boundary. The key problem is the solution of equation 3-33 using 

the specified boundary conditions to calculate the remaining, initially unknown, boun-

dary values of the flow potential P and velocity u. 

For simplicity, we consider only a linear boundary element discretization scheme 

with a constant distributions of variables over the elements. If we divide the boun-

daries into N straight line segments or elements (Fig. 3-3), of which the m th and nth 

respectively are typical members, because the values of P and u are assumed to be 

constant on each element and equal to the value at the mid-node of the element, then 

the equation 3-34 can be written for them th element on the boundary as 

fP(~g') = f P(x)n J h(xn, ~g')dS(xn)- f u(x)n J G(xn, ~g')dS(xn) (3-34) 
n=l Sn n=l Sn 

The terms 1 h(xn, ~g')dS(xn) relate the "m" node with the segment "n" over 
n 

which the integral is carried out. We shall call these integrals Hmn. The integral 

1 G (xn, ~g')dS (xn) will be called Gmn. Hence we have 
n 

N N 
fPm = L P(x)nHmn- L u(x)n Gmn (3-35) 

n=l n=l 

if the fPm term is absorbed into the m = n position of the Hmn matrix. By allowing 

P to range over 1, ... , N we obtain 
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N N 
L P(x)nHmn = L u(x)n Gmn (3-36) 

n=1 n=1 

The matrix equivalent of equation 3-36, a set of equations for the nodes, can then be 

expressed as 

PH=UG (3-37) 

where P and U are Nxl columns, and Hand U are compatible row vectors. 

The simplest boundary-value problems will have either the flow potentials 

specified at all boundary points (hence P is known) or the fluxes specified similarly (in 

which case u is known). In either case the unspecified boundary information, P or u 

respectively, can be calculated directly from equation 3-37. In the general, mixed 

boundary-value problem, N 1 values of P will be specified on S 1 of S and N 2 values 

of the flux u over S 2 of S, where , in a well-posed problem, (S 1 + S 2) = S always. 

Note that N 1 + N 2 boundary-values are known, hence there is a set of N unk-

nowns in equation 3-37. If we rearrange the equation 3-37 in such a way that all the 

unknowns on the left hand side, we can write: 

AX=Y (3-38) 

where X is the vector of unknowns P and u . 

Solving equation 3-38 for X with the result that all P and u components (i.e. 

both P and u at every boundary element) are now known around the boundary S. 

Once the values of P and u on the whole boundary are known we can calculate the 

value of P at any interior point using equation 3-32 or 3-35. We can also calculate 

internal velocities or fluxes u (~) by differentiating the ~ dependent terms in equation 

3-32 under the integral sign 
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u(~) = I[P(x)h(x,~)- u(x)h(x, ~)]dS(x) (3-39) 

where a new expresson h (x .~) is shown as follows: 

(3-40) 

3.4. SUMMARY 

The principal idea behind the boundary element method is that the solution 

throughout the fracture region can be written in terms of point sources of variable 

magnitude, distributed along the boundary of the fracture region. If the boundary is 

discretized into a finite number of elements, and the specific boundary condition is 

assumed to be constant over each element, this leads to a finite number of algebraic 

equations for the magnitudes of the point sources. After solving for the equations, the 

stress and displacement distributions, or the potential and flux distributions throughout 

the fracture region, including the boundaries, can be found. 

Based on the above formulations, two computer programs have been developed in 

FORTRAN to simulate the elastic deformation and the flow through a fracture with 

variable apertures and contact areas. The program for the elastic problem is named 

ROUGH, and FLOW is the name of the program for flow. Note that while elasticity 

equations were solved in the three-dimensional region bounded by the fracture 

"plane", the flow equations are solved in the two-dimensional region of the fracture 

plane; hence different discretizations must be used for the two problems. 
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CHAPTER 4 

SIMULATING THE EFFECT OF CONTACT AREA 

ON COMPRESSIBILITY AND FLOW . 
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For a fractured medium, the percentage of contact area between the surfaces of 

the fracture is a key parameter which controls fracture stiffness and flow. Pronounced 

changes in the area of contact between asperities with increasing stress give rise to a 

non-linear stress-strain relationship. Fluid flow through a fracture whose flow path is 

partially blocked by areas of contact between the two surfaces may differ significantly 

from that through a pair of parallel plates, as described by the cubic law. 

Because direct measurement of fracture void space and contact area at different 

levels of normal stress is not easy, studies of the effect of contact area on fracture 

stiffness and flow through the fracture have been limited. Recently, Pyrak et al. (1987) 

have made concurrent measurements of contact area and void space geometry, and 

fluid flow (1987) across three different natural joints in specimens of quart monzonite 

0.05 min diameter, at room temperature and at 100°C. To study contact areas and void 

spaces between the fracture surfaces, they injected molten Wood's metal into single 

fractures of granite specimens at different levels of applied normal stress. After the 

samples were cooled to solidify the alloy, precise metal casts of the void spaces 

resulted. The plan areas of the casts adhering to each surface were photographed and 

the casts were examined both optically and in a scanning electron microscope. They 

showed the areas of contact at different effective stresses, and found that the contact 

area of the stiffest specimen had asymptoted to a value of about 40 percent at a stress 

of 85 MPa. An asymptotic contact area ( < 100%) at high stresses may be a basic 
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reason to interpret the experimental phenomenon that fracture stiffness tend to a finite 

value at high stresses, and that the specific flow becomes more or less independent of 

further reduction in aperture. However, I would like to use the computer to generate 

fracture void spaces and contact areas, and to study fracture stiffness and fluid conduc-

tivity as functions of percent contact area. 

4.1. FRACTURE APERTURE G~NERATION 

In order to study the mechanical stiffness and hydraulic conductivity of fractures 

as a function of normal stress, I start my simulations by first developing a statistical 

model to generate an aperture distribution, which represents the fracture under zero 

normal load. A fracture is defined by upper and lower surfaces which either are 

separated by a distance (known as the aperture) that may vary from point to point, or 

touch each other (aperture=O, known as "contact area"). For simplicity, the upper and 

lower surfaces are assumed to be mirror reflections of each other about the fracture 

plane. Simulated fractures are created by discretizing the fracture plane into a square 

array that is (30x30) for the present study, and randomly assigning a independent log-

normally distributed variable, Xij, to each square element (i, j ). A moving average 

filter then is convolved with the independent random aperture Xij to get a correlated 

lognormally distributed value, Yij: 

D D 
Y· · = "" "" X· k · zHkl v ~ ~ 1- ,_ 

k=-D l=-D 

where Hkl, the filter weights, are radially symmetric and decay exponentially, 

for .V k2 + 12 ~ D 
otherwise 

(4-1) 

(4-2) 
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D = determines the size of the filter, 

A = the exponential damping factor, which determines how fast the weights in the 

filter fall off zero, 

C = the normalization factor, which is adjusted so that each of Y;j has mean zero 

and fixed standard deviation. 

By ordering the correlated variables from smallest to largest, and using fixed fractional 

contact area, the clipping level, Y0 , can be found. After clipping with the clipping 

level, a fixed fractional contact area is reached. The clipping process can be expressed 

as 

void 
contact· 

The final step is to set the fixed mean of the random variables. 

(4-3) 

To generate a fracture realization with variable aperture and contact area, filter 

radius, D , exponential damping factor, A, normalization factor, C, the seed for gen-

erating the random Gaussians, fixed fractional contact area, c, and fixed mean of aper-

tures, ii, must be specified. In my simulation, the filter radius D is of 7.5 element 

length, and the exponential damping factor, A, is a variable ranging from 0.25 to 3.0. A 

measures the correlation between contact area and open area. Larger values of A 

correspond to contact areas that are more "dispersed", while smaller values of A 

correspond to contact areas that are more "compact". All procedures for generating 

fractures with correlated variable apertures and contact areas are performed by a com-

puter program developed by Coakley (1989). 
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In this chapter, attention will be focused on the stiffness and the tortuosity 

induced by ·the percentage and the spacial arrangement of contact areas. I therefore 

consider idealized fractures consisting of two parallel surfaces, with isolated contact 

areas. Variable apertures of the fracture generated by the computer program are set to 

a constant which is large enough to ensure that no new contact area will be created as 

normal load applies. 

4.2. EFFECT OF FRACTIONAL CONTACT AREA ON COMPRESSffiiLITY 

Zimmerman (1984) studied the effect of pore shape on crack compressibility 

based on classical elasticity and indicated that the information obtained from his 

analysis was extremely useful in correlating compressibility data on porous rocks to 

other rock properties such as thermal conductivity, electrical resistivity, permeability, 

and velocities of sonic or seismic wave, each of which is highly dependent on the pore 

geometry. 

It is envisioned that compressibility is a important mechanical property which 

relates reciprocally with specific stiffness. Specific stiffness of the fracture is defined as 

the inverse of the tangent slopes to the displacement vs. stress curve. Compressibility, 

C0 , expresses the effect of normal stress variations on the volume of fracture void 

space, Vv and is defined here as follows: 

(4-4) 

where T is the normal effective load applied uniformly to the fracture. Note that the 

definition of the compressibility as the slope of the volume of fracture void space vs. 
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normal stress curve contains a minus sign, to ensure that the numerical value of the 

compressibility will be positive. 

The compressibility of the fracture is modeled in terms of the deformation of a 

• half-space that is subjected to normal load across the "contact areas,, so that the corn-

'" 
puter program ROUGH is used, which solves the full thre7-dirnensional equations of 

elasticity for the infinite ha!f-space. As a uniform constant normal stress T = 10 is 

applied to the fracture and the two surfaces of the fracture move closer together (Fig. 

3-1-a), change of the volume of the void space, BVv, can be calculated comparing to 

the initial volume Vv. Initial stress is also known, T = 0, so that compressibility of a 

fracture with fixed fractional contact area and fixed value of A. will be figured out 

easily by equation 4-4. In the computer simulation, numerical values have to be chosen 

for all parameters. All fractures have the same Young's modulus, E=6x104 MPa, and 

same Poisson's ratio, v=0.25, in order to obtain case-by-case comparable results. It is 

to be expected that the stiffness of a fracture will increase (or the compressibility of a 

fracture will decreases) as the area of contact increases, since a fracture without any 

contact regions would posses no stiffness whatsoever (Zimmerman et al. 1990). It is 

also true, although it is perhaps not obvious, that the stiffness will depend on the size 

and shape of the contact areas, aside from its dependence on the amount of contact 

area (Hopkins et al. 1987). I therefore change fraction of contact area c and the 

exponential damping factor A., which represents the distribution of a fracture, for each 

fracture or case. Fractional contact areas considered range from 5% to 30%, with an 

increment of 5%. The eight values of A. considered are 0.25, 0.75, 1.00, 1.25, 1.50, 

1.75, 2.00, and 3.00. A total of 48 cases have done for simulating the fracture 
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compressibity as a function of the contact area distribution, as well as a function of 

fractional contact area. 

The results are shown in Tables 4-1 and 4-2. The plots in Figures 4-1 and 4-2 

correspond to the compressibilities of the fractures with contact area variations and 

with A values as shown in J'ables 4-1 and 4-2, respectively. 

The plots show that fracture compressibility decreases non-linearly with increas

ing contact area. Similar to the experimental results obtained by Pyrak et al. (1987) in 

the laboratory for a granite core sample with a fracture oriented perpendicular to the 

axis of the core, the values of fracture stiffnesses tend to asymptote to a constant, finite 

value at high fraction of contact area. Figure 4-2 and Table 4-2 also suggest that corre

lation of contact areas with voids, which represents spatial arrangment of contact areas, 

is a important parameter in determining fracture compressibility. Fracture compressibil

ity decreases as a non-linear function of the exponential damping factor, A. The curves 

in Figure 4-2 imply that the more compact the contact area, the more compressible the 

fracture. However, fracture compressibility tends to be independent of A if A is greater 

than 2.00. 

4.3. EFFECT OF FRACTIONAL CONTACT AREA ON FLOW 

The flow through a fracture occluded by contact areas also strongly depends on 

the contact areas, which introduce longer flow path and tortuosity. Despite the recogni

tion of the effect of contact area on flow considerable, controversy exists about the tor

tuosity when using the cubic law. The experiments conducted by Iwai (1976) sug

gested that flow-aperture curve is consistent with the cubic law for rough-walled 

• 

.. 
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Table. 4-1 Compressibility dependence on fractional contact area for constant aper
ture fracture. 

I contact A.::0.25 A.::0.75 1..::1.00 1..::1.25 1..::1.50 1..::1.75 1..::2.00 1..::3.00 

area Co co co co Co co co co 
5% 0.04130 0.03186 0.03014 0.02968 0.02890 0.02864 0.02838 O.CJ2777 

10% 0.03485 0.02704 0.02497 0.02341 0.02217 0.02161 0.02114 O.CJ2013 

15% 0.03246 0.02381 0.02185 0.02004 0.01826 0.01775 0.01727 0.01636 

20% 0.03048 0.02109 0.01922 0.01722 0.01598 0.01535 0.01478 0.01381 

25% 0.02832 0.01929 0.01707 0.01506 0.01396 0.01343 0.01309 0.01174 

30% 0.02668 0.01813 0.01458 0.01351 0.01269 0.01203 0.01163 0.01062 

t The unit of compressibility C0 is 1/MPa. 

Table. 4-2 Compressibility dependence on exponential damping factor A for con
stant aperture fracture. 

i.. c =5% c = 10% c = 15% C:lO% c =25% c = 30% 

co Co co co co co 
0.25 0.04130 0.03485 0.03246 0.03048 0.02832 0.02668 

0.75 0.03186 O.CJ2704 0.02381 0.02109 0.01929 0.01813 

1.00 0.03014 0.02497 0.02185 0.01922 0.01707 0.01458 

1.25 0.02968 0.02341 0.02004 0.01722 0.01506 0.01351 

1.50 0.02890 0.02217 0.01826 0.01598 0.01396 0.01296 

1.75 0.02864 0.02161 O.Dl775 0.01535 0.01343 0.01203 

2.00 0.02838 0.02114 0.01727 0.01478 0.01309 0.01163 

3.00 0.02777 O.CJ2013 0.01636 0.01381 0.01174 0.01062 

t The unit of compressibility C0 is 1/MPa. 
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fractures under low normal stress. Validity of the cubic law implies that a fracture is 

modeled by a pair of parallel plates, and that the effect of contact area on flow is 

ignored. However, according to the results provided by an electrical resistance analog, 

Tsang (1984) suggested that a 1-2 order of magnitude error should result from neglect

ing the tortuosity when using the cubic law. More recent studies (Raven and Gale 

1985., Pyrak et al. 1987) indicate significant deviations from the cubic law even at low 

stress or at a low fraction of contact area. Walsh (1981) adapt Maxwell's effective 

medium approach, along with the solutions for the potential fields surrounding circular 

inclusions (Carlaw & Jaeger 1959, p.426), to drive an expression, equation 2-35, for 

the effective permeability as a function of fractional contact area of the fracture. 

In order to better understand the effect of contact areas on flow at low fraction of 

contact area, boundary element calculations (computer program FLOW), analogue 

electrical conductivity measurements, and an effective medium approximation are used 

to study the permeability of fractures with circular, elliptical and irregular asperity 

shapes. 

As mentioned in Chapter 3, numerical solution of the full three-dimensional 

Navier-Stokes equations is far from trivial. In order to circumvent this difficulty, I 

have only performed flow simulations under the assumption that the aperture, in those 

regions not obstructed by asperities, is equal to a constant, h . I therefore sacrifice 

some of the effect of aperture variation, while still accounting for the effect of contact 

area and of the effect of the mean aperture. For this model, subject to a few other con

ditions, the Navier-Stokes equations can be reduced to a two-dimensional Laplace 

equation. 

.. 
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Fractures in these simulations are also generated with fixed percentage of contact 

area and constant apertures. Contact areas of a fracture are correlated with voids by a 

exponential damping coefficient A. • 

• A schematic diagram of a typical flow region, containing two contact regions, is 

shown in Figure 3-3. Both the external and internal boundaries are discretized. In my 

calculation, I take the fracture to occupy a square region in the x-y plane, with two 

opposing faces being boundaries of constant pressure. The pressure difference between 

these two faces can be taken as being of unit magnitude. The two other opposing faces 

are taken to be no-flow boundaries. After solving for the pressure field throughout the 

flow region, the flux out of the flow region is found by calculating ()p ldn along one of 

the constant-pressure boundaries, and summing the contribution from each element. 

In general, the effective fracture permeability will depend on both the shape of 

the obstructions, and their location and orientation. Thus the permeability of fractures 

I 

with circular, elliptical, and irregular obstruction shapes have been studied. 

4.3.1. Circular obstructions 

The case of circular obstructions to consider is the simplest one, for which the 

issue of orientation is not relevant; this also the only case for which analytical esti-

mates of the permeability have been derived as equation 2-35 (Walsh 1981). Equation 

2-35 is as follows: 
"' 

k* 1- c 
(4-5) -=--

k 1 + c ' 0 

where k0 is permeability of the fracture with no asperities and c is the ratio of the 
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contact area to the total area of the fracture. The effective macroscopic permeability, 

k * , can represent flow through the fracture on a length scale large enough to cover 

many asperities. Walsh interpreted this result as applying to "randomly located" 

obstructions. However, the Maxwell formalism cannot account for correlations in the 

locations of the asperities. Furthermore, any deviation from randomness would intro

duce a second order effect that is probably not felt at the low values of c found in 

naturally occurring fractures, which are usually less than 25% (Tsang & Witherspoon 

1981). 

Boundary element calculations were carried out for fractures with circular 

obstructions arranged in both hexagonal (Fig. 4-3) and square arrays (Table 4-3), for 

values of c ranging from 0 to 0.25. When the obstructions have the sort of symmetry 

exhibited by these arrangements, it suffices to perform the calculations in a "unit cell" 

formed by the imaginary grid of intersecting no-flow and constant pressure lines. 

perhaps surprisingly, in light of its approximate nature, Walsh's expression was found 

to be extremely accurate. The effect of asperity location was less than 1% at these 

values of c , and so it seems that the asumption of randomness can be relaxed when 

applying Walsh's expression. 

As an additional check on the accuracy of the boundary-element calculations, 

analogue measurements were also carried out. Since the fluid flow is described by 

Laplace's equation, with the contact areas serving as impermeable boundaries, this 

problem is analogous to the flow of electrical current in a thin sheet with holes 

punched in it. Since the holes obstruct the flow of electrical current, they play the role 

of the asperity obstacles. Experiments were therefore carried out on such sheets to 

• 
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measure the overall electrical conductivity (which is the analogue of the fracture per

meability), in order to validate the numerical code. For these experiments, a thin sheet 

of conductive paper is cut into a square, and a strip of metallic paint is applied to two 

opposing edges. Since the conductivity of the paint is much higher than that of the 

paper, these edges will therefore be lines of constant potential. Holes which have the 

desired shapes, sizes and locations are cut out of the sheet, and the overall conductance 

is measured with an ohmmeter. Since resistance measurements can be made very accu

rately, this method is limited only by the precision with which the holes can be cut. As 

Figure 4-3 and Table 4-3 show, the measured electrical conductivities also agreed very 

closely with equation 4-5. 

4.3.2. Elliptical obstructions 

Since the Walsh-Maxwell effective medium approach works very well for circular 

obstructions, it is worthwhile to extend it to more general shapes. 

Effective-medium theory was introduced by Maxwell (Carlaw & Jaeger 1959, 

p.426) to predict the overall electrical conductivity of composite media. The flow prob

lem outlined above is a typical one in the area of effective properties of heterogeneous 

media. The unobstructed areas between the obstacles are regions of permeability k0 

(say), while the obstacles are regions of zero permeability, and it is desired to deter

mine the effective macroscopic permeability k * that can represent flow through the 

fracture on a length scale large enough to cover many asperities. Since this problem is 

governed by Laplace's equation, Maxwell's method is applicable to this problem. In 

the terminology of the present problem, this method considers the decrease in flow due 



69 

to a single obstacle of known size and shape, averages this effect over all shapes and 

orientations of the obstacles, and then equates the resulting decrease in flux to that 

which would be caused by a single circular "obstruction" which has some effective 

permeability k*. Walsh (1981) applied this method to a fracture with "randomly" 

located circular obstructions; we extend this method to cases where the obstacles are 

elliptical in shape, with random orientations (Chen et al. 1989). 

One general shape that ~s often used in modeling various physical properties of 

rocks is the ellipse (Zimmerman 1984). Although it could be said that the ellipse, as 

well as the circle, are both too idealized to represent real asperities, the ellipse has the 

advantage that by varying the aspect ratio, one can achieve different values of the 

perimeter-to-area ratio. 

The basic problem that must be solved in order to apply this approach to elliptical 

obstructions is Laplace's equation in the region exterior to an ellipse, with a uniform 

potential gradient at infinity, and no flow across the boundary of the ellipse. The 

ellipse has an arbitrary angular orientation with respect to the imposed potential; the 

effect on the flow is then averaged over all (equally likely) orientations. The solution 

to this problem can be found in Batchelor (1967), where it was derived in the context 

of inviscid flow across an ellipse. Note that this is mathematically equivalent to our 

problem, although the physical analogy is not so direct, since in the inviscid problem 

the velocity potential which satisfies equation 3-21 is not equal to the pressure. While 

the intermediate algebraic steps are somwhat complicated, the final expression for the 

effective permeability is only slightly different in form from equation 4-5 for circular 

obstructions: 

.. 
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k* 
-= 

1 Ac (1 + a.)2 
- P where A = 

4
a. 

1+~c' .., 
(4-6) 

and the aspect ratio a. (S1) is defined as the ratio of the minor to major axis. Note that 

for circular obstructions, a. = 1, and ~ = 1, so that expression 4-6 for elliptical obstruc-

tions reduces to Walsh's expression for circular obstructions. 

The beta factor defined in equation 4-6 is always greater than 1, and monotoni-

cally increases as the ellipse becomes more elongated. Hence the k* (c )lk0 curves for 

elliptical obstructions will always lie below Walsh's curve. (In face, since circular 

"inclusion" usually lead to upper or lower bounds in effective medium problems, it is 

reasonable to expect that Walsh's result is an upper bound with respect to all possible 

geometries). The predictions of the effective medium theory for a.=0.2 are shown in 

Figure 4-4, where they are compared to boundary element calculations. The elliptical 

obstacles were generated by placing them on an hexagonal array (as in Figure 4-4), 

and then assigning to each ellipse a randomly;--chosen angular orientation. Over the 

range of contact areas shown in the figure, the effective medium estimates are very 

accurate. (Note that a contact area of 4% consisting of ellipses with a.=0~2 corresponds 

tothe same number of obstacles per unit area as a 20% concentration of circular obsta-

cles). Due to the extremely laborious and painstaking procedure required to cut out the 

holes in conductive sheet, only one analogue measurement was made; this value (Fig. 

4-4) was also in relatively close agreement with the predictions of equation 4-6. 
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4.3.3. Irregular obstructions 

The shapes of asperity obstructions found in real rock fractures are of course 

more irregular than circles or ellipses. We have therefore used our boundary element 

code to study flow around irregularly shaped obstacles such as that shown in Figure 

4-5 and Table 4-5. These patterns are generated by breaking up the square into a 

64x64 rectangular grid, and assigning each grid block to be either an obstruction zone 

or a flow zone. The parameter that can be altered when generating these patterns is the 

correlation parameter, exponential damping factor A. (see Coakley 1989). As expected, 

the calculated permeabilities lie below equation 4-5. These permeabilities can be fit 

fairly well by using the elliptical obstruction model (equation 4-6) and a value of 

<X=0.25. It can be conjectured that this value of a is somehow related to the 

perimeter-to-area ratio of the irregular obstruction pattern; this possibility is currently 

being investigated. 

4.4. Summary 

Numerical, analogue and analytical methods have been used to investigate the 

effect of contact area geometry on the permeability of a fracture. To isolate the effect 

of contact area, the fracture aperture has been assumed constant in the region between 

the asperities. For obstacles that are circular in the plane of the fracture, the expression 

derived by Walsh (1981) using a Maxwell-type effective medium approximation (equa

tion 4-5) was found to be very accurate for contact area up to at least 25%. The 

Walsh-Maxwell approach was extended to randomly oriented obstacles of elliptical 

shape (equation 4-6), with the results verified numerically for certain values of the 
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aspect ratio and precentage contact area. Fractures with more irregular contact area 

geometries were also studies using boundary-element approarch. Such fractures had 

premeabilities that were lower (by as much as 30%) than would be predicted by 

Walsh's expression, but which could be fit very well by the effective medium approxi

mation if an equivalent aspect ratio is used. 



Table. 4-3 Normalized permeability of a fracture with circular asperities. 

contact 

area 

% 
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25 

circular obstructions 
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f lfo geometry f lfo geometry 
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Table. 4-4 Normalized permeability of a fracture with elliptical asperities. 

contact I 
area , 

% 

5 

10 

15 

20 

25 

1-Jk 
1+~c 

0.9750 

0.9500 

0.9250 

0.9000 

0.8750 

elliptical obstructions 

checkerboard 

flu:~ 

fifo 

0.9736 

0.9479 

0.9228 

0.8983 

0.8757 

asperity flux 

geometry f lfo 

flow out 

iiiii 0.9753 
... .. , .. 
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0.9238 ,: .. >>: .. :< .. ~ 
I ...... I , ... I 
'" .. ' r I"' I.., I I,;,, 0.9040 ....... ' , ' ~ - ...... ' , 

iiiii 0.5051 

flow in 

• ~-nllltXT W(llol00 

• AIW,OCVC WUSUIIDIOITS 

[\lA.. AV!CT uno • cq 

u~,---~----~--~----~--~. a 1 • 
COHTACT .ARO. (X) 

irregular 

asperity 

geometry 

flow out 

iiiii 

• iiiii 
flow in 

Fig. 4-4 Normalized permeability of a fracture with 
elliptical asperities; asperity geometry 
shown in inset. 
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Table. 4-5 Normalized permeability of a fracture with irregular asperities. 

irregular obstructions 

contact A= 0.75 A= 1.50 .. 
area 

seed 
flux 

seed 
flux remark 

% f lfo f lfo 

5 0.8456 0.8534 
c 

10 0.7213 0.7196 

15 90105030 0.6166 10011001 0.5890 flow out 

20 0.5195 0.4575 iiiii 
25 0.4576 0.4129 

II 5 0.8686 0.8578 

10 0.7794 0.7240 

15 90100109 0.6761 37533573 0.6000 

20 0.5075 0.5002 iiiii 
25 0.4474 0.4314 flow in 

5 0.8635 0.8499 fo = 3.3359000 

10 0.7118 0.7431 • contact area 

15 43211234 0.5918 11111111 0.6405 

20 0.5251 0.5427 

25 0.4244 0.4174 

5 0.8790 0.8735 

10 0.7336 0.7486 

15 25522552 0.6403 99111199 0.5886 

20 0.5066 0.5018 

25 0.4492 0.4375 

5 0.8488 0.8624 

10 0.7096 0.7302 

15 12345678 0.5469 28766782 0.6188 

20 0.5359 0.5331 

25 0.3981 0.4919 
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CHAPTER 5 

COUPLED STIFFNESS-PERMEABILITY ANALYSIS 

5.1. GENERAL 

The hydraulic and mechanical behavior of a rock fracture or joint is strongly 
I 

dbpendent on the geometry of the void space. When fluid flows through a fracture 

composed of two irregular surfaces in partial contact, it flows through those channels 

that have the largest apertures, and around the contact areas. Hydraulic conductance is 

locally proportional to the cube of the aperture (Brown 1987), so the permeability 

depends on the amount of contact area and the spatial distribution of the contact areas, 

as well as the aperture height (Chen et al. 1989). All of these parameters are, in tum, 

functions of the stress to which the fracture is subjected (Zimmerman et al. 1990). As 

' the normal stress acting on a fracture increases, the apertures will decrease. In some 

parts of the fracture, this deformation will be large enough that new contact areas are 

created (Tsang & Witherspoon 1981). Both of these effects, the decrease of the aper-

ture and the creation of new contact area, will cause the permeability to decrease. 

The mechanical stiffness of a fracture also depends on the geometry of the frac-

ture, as well as on the mechanical properties of the intact rock. It is to be expected that 

the stiffness will increase as the area of contact increases, since a fracture without any 

contact regions would possess no stiffness w~atsoever. It is also true, although it is 

perhaps not obvious, that the stiffness will depend on the size and shape of the contact 

areas, aside from its dependence on the amount of contact area (Hopkins et al. 1987). 

For any given distribution of contact areas, the stiffness does not depend explicitly on 

the aperture; this is analogous to the fact that, to a very high approximation, the 
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increase in the compressibility of a rock due to a penny-shaped crack is independent of 

the aperture of the crack (Zimmerman et al. 1986). However, the aperture does deter

mine the rate at which new contact area is created under the application of a normal 

load. Hence, the stress-dependence of stiffness will be strongly influenced by the distri

bution of apertures. 

I have attempted to model the phenomena described above, using the boundary 

element methods. As mentioned above, the advantage of my approach is that both the 

mechanical deformation and permeability of a fracture can be studied using the same 

fracture geometry for both problems. In this way I am able to study the effect of the 

aperture distribution, and the distribution of contact areas, on both stiffness and per

meability (cf., Barton et al. 1985; Pyrak-Nolte et al. 1987). 

I start this analysis by also generating a log-normal aperture distribution, which 

represents the fracture under zero normal load, on 30x30 grids. These distributions can 

be quantified by the contact area percentage, c, the mean aperture, h, the standard 

deviation of the distributions of apertures, s, and an exponential damping factor (corre

lation factor), A., which measures the correlation between contact area and open area 

(Coakley 1989). The hydraulic conductivity of the fracture is computed by the boun

dary element method, FLOW, assuming that the aperture is everywhere equal to h. An 

increment of normal stress is then applied to the fracture, and its deformation is calcu

lated by the elastostatic boundary element method ROUGH. In those regions where 

the fracture is open, the two faces of fracture move closer together; in some locations 

the aperture merely decreases, while at other points the deformation may be large 

enough to create new contact area. After this deformation is found, the contact area 
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and the average aperture are recalculated. The permeability of the new fracture 

geometry is then calculated, and the process is continued. I thereby generate a relation

ship between normal stress, the amount of contact area, the average aperture, the nor

mal stiffness, and the permeability. Since each calculation with specified statistical 

parameters represents one realization of a stochastic orecess, the precedure is repeated 

for 10 realizations, in order to arrive at statistically meaningful properties. 

After studying the general hydromechanical properties of a fracture with variable 

apertures, I carried out parameter sensitivity studies by varying the standard deviation 

s of the lognormal aperture density distribution, and the correlation factor A.. The flow 

calculations are carried out using the simplification that the aperture is everywhere 

equal to its average value, ii. In another words, only the effect of the fracture contact 

area on flow is considered, and the effect of fracture surfaces roughness on flow is still 

not exactly included in the flow modeling. This assumption creates an error whose 

magnitude is difficult to estimate. However, tests to perceive the effect of the rough

ness on flow have been tried by closing up the apertures, whose magnitude is less than 

one fifth of average aperture and by simulating the flow through the contact-increased 

and mean aperture-decreased fracture at each stress level. Comparisons between distri

butions of fracture contact areas resulted by deformed and undeformed cases were also 

performed in order to note the importance of considering fracture deformation . 
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5.2. GENERAL BEHAVIOR OF FRACTURE DEFORMATION AND FLOW 

Considering statistically meaningful properties, ten realizations have been gen

erated for analysis of general behavior of fracture deformation and flow. The initial 

contact area of each realization at zero load is 5%, its mean aperture is 10 1Jm, and the 

standard deviation of its apertures is 4.576 1Jm. The A. parameter is taken to be 0.75. 

The results of these ten realizations are listed and plotted in Figure 5-1 to 5-10. To 

illustrate the sort of results, I will examine in detail the stiffness and permeability 

found for two particular realizations of a simulated fracture. Two such sets of results 

will be sufficient to illustrate which properties display a strong "sample-to-sample" 

variance, and which do not. 

At zero stress, the contact area for one of the realizations appears at upper left 

corner in Figs. 5-1 to 5-10, which is to say as a few isolated, slightly irregular patches. 

As the normal load on the fracture is increased, the percentage of contact area 

increases at a nearly linear rate (see Figs. 5-1 to 5-11 and Table 5-1). We can note the 

lack of a connected (bottom to top) flow path at T =40 MPa in the Figure 5-4 

(seed=129921), while a connected flow path still exists at T=70 MPa in the Figure 5-3 

(seed=999). 

As is typical of a real fracture, the average joint closure increases with stress, but 

at a continually decreasing rate (Fig. 5-12 & Table 5-2). In other words, the fracture 

becomes stiffer as the stress increases. This is shown in Figure 5-13 and Table 5-3, 

where the fracture stiffness which is non-linear is plotted and listed as a function of 

the normal stress. Notice also that the fracture stiffness may be tending to asymptote 

to some constant value at the highest stresses. 
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The hydromechanical coupled simulation between the stress applied to the frac

ture and the flow through the fracture shows very good agreement with the experimen

tal results obtained by Pyrak: et al (1987). Since the flow rate, under a fixed pressure 

gradient, is proportional to the cube of average aperture h, and since average aperture 

decreases rapidly with stress (Fig. 5-12), I expect that the flow rate will drop off 

rapidly with stress. This is verified in Figure 5-14, which shows the flow rate initially 

dropping off at a rate roughly proportional to the 3rd power of the stress, and then 

dropping off more rapidly after the stress reaches some "critical" value. This rapid 

falloff may correspond to the percolation limit, at which a connected open pathway for 

fruid flow no longer exists. Another instructive way to look at the results is as in Fig

ure 5-15, which shows the logarithm of flow rate, normalized to its zero-stress and 

no-contact value, plotted as a function of the logarithm of average aperture. Note that 

as the stress increases, the flowrate falls below that which would be predicted by the 

cubic law. This reflects the "tortuosity" effect, in which the fluid is forced to flow 

around the closed-off asperity regions. As described by the models of Walsh (1981) 

and Chen et al. (1989), the tortuosity is an increasing function of contact area, hence it 

is to be expected that the tortuosity will increase as the stress increases. 

For the same set of statistical parameters, there is of course some variation in the 

calculated properties of the fracture, between different realizations. Fractures with 

different initial aperture distributions, but the same mean, standard deviation, and ini

tial contact area, tend to have very nearly the same mechanical behavior (see Figs. 5-

16, 5-17, 5-18, and Table· 5-11, 5-12, 5-13). The hydraulic properties, on the other 

hand, show much more variability (Figs. 5-14, 5-15 and Tables 5-14, 5-15). At stresses 

below about 30 MPa, the permeability-pressure curves for the different realizations lie 
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close together. However, the pressure above which the permeability drops off rapidly 

to zero varies from about 40 MPa to 70 MPa between the different fracture realiza

tions. 

5.3. PARAMETER SENSITIVITY STUDIES 

Based on the ten realizations governed by a particular set of aperture parameters, 

I have discussed the general behavior of fracture deformation and ~ow through a frac

ture with variable apertures. The effect of percent contact area on fracture stiffness and 

permeability has also been discussed in the chapter 4. I now tum to study the effect of 

the variation of aperture parameters, except the parameter of percent contact area 

which I have discussed in Chapter 4, on the fracture deformation and flow through a 

fracture; The parameter sensitivity studies have been carried out by coupling simula

tion between fracture deformation and fluid flow by varying (1) the standard deviation 

s in the lognormal aperture density distribution, (2) the correlation factor A, which 

measures the correlation between contact area and open area, and (3) the average aper

ture h. 

5.3.1. Dependence on the standard deviation s and the correlation factor A.: 

Fractures at stress T=O with variable apertures were generated with a specified set 

of aperture parameters (h,c ,s ,A), then simulations for fracture deformation and flow 

through the fracture were carried out. Three values of the standard deviation s (2.926, 

4.576, 7.089), and two values of correlation factor A (0.75, 1.50) were used. 

Throughout the sensitivity studies, the average aperture h=lO Jlm and the percent 
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contact area c =5% at stress 0'=0 were maintained. The six sets of (h,c ,s ,A) values 

chosen therefore were set 1: s=2.926, A=0.75; set 2: s=4.576, A=0.75; set 3: 

s=7.089, A=0.75; set 4: s=2.926, A.=1.50; set 5: s=4.576, A.=1.50; and set 6: 

s=7.089, A.=1.50. Stress applied to the fracture changes from 0 MPa to 70 MPa with 

increments of 10 MPa. The results of standard deviation s and correlation factor A 

sensitivity studies are summarized in Table 5-6 and plotted from Figure 5-19 to 5-24. 

When the normal load on the fracture is less than 20 MPa, the fractures with the 

larger standard deviation display a more rapid increase in the percentage of contact 

area, while when the normal load is greater than 20 MPa, a more rapid increase in the 

area of contact is taken by the fracture with smaller standard deviation. The total 

increase of the contact area for smaller standard deviation is more than that for larger 

standard deviation (Fig. 5-19, 5-20). It is found that for a larger s, the percent contact 

area vs stress curve will asymptote to a constant (i.e. there is no increase in contact 

area with increasing stress) more rapidly. These trends may be explained by the fact 

that a larger standard deviation means a greater number of small apertures (Moreno et 

al. 1988) and large apertures, while a smaller standard deviation means a greater 

number of medium apertures. Since contact area is a sensitive parameter which 

strongly affects the hydromechanical behavior of fractures, and it depends on s, frac

ture hydromechanical behavior must be a function of s. Figure 5-21 shows that for a 

given value of normal stress, the closure is decreasing functions of s. 

Contact area as a function of the normal stress also depends on the statistical 

parameter A. Recall that the larger values of A correspond to contact areas that are 

more dispersed, while smaller values of A correspond to more compact regions of 
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contact. As also discussed in Chapter 4, for a given amount of contact area, the 

stiffness is an increasing function of A, reflecting the fact that, for example, two 

separate contact areas of 1 mm2 will be "stiffer" than one contact region of 2 mm2, 

which is certainly plausible (Zimmerman et al. 1990). It is therefore understandable 

that for stress greater than 20 MPa, and for a larger A, the closure and the percent con-

tact area of the fracture are less than those for a smaller A (see Figs. 5-20c, 5-21c), 

and that fracture stiffness vs normal stress curves have exact reciprocal relationships 

with corresponding percent contact area vs stress curves (compare between Figs. 5-20 

and 5-22). I prove once more that fracture stiffness depends strongly on the percentage 

and the distribution of contact areas which is a function of A and s when stress 

increases. 

The effect of standard deviation s on the flow properties is shown in Figs. 5-23 

and 5-24. As stress increases, for a larger standard deviation s=7.089, the flow is 

increased (Fig. 5-23) and the relationship between the logarithm of specific flow and 

the logarithm of aperture is linear with a larger exponent of 5.7, while for a smaller 

standard deviation s =2.926, the flow is decreased and the relationship is a linear with a 

smaller exponent of 4.6 (Fig. 5-24). For a larger standard deviation s=7.089, the per-

colation limit, at which a connected open pathway for fluid flow no longer exists, is 

reached at a lower critical stress of 50 MPa, while a smaller standard deviation 

s=2.926, the connected open pathway for fluid flow still exists at the stress of 50 MPa 

(Figs. 5-19, 5-24). These trends may be explained by the fact that the mean aperture of 

the fracture with larger s is larger due to less closure even if a larger standard devia-

' 
tion means a greater number of small apertures and a larger percent contact area at low 

stress level. 
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The effect of A. on flow properties is more complicated, and implicit, since the 

distribution of aperture directly affects the mechanical closure of the fracture, which in 

tum explicitly determines the permeability (Zimmerman et al. 1990). The effect of A. 

on the flow properties increases with increasing standard deviation. With stress less 

than 40 MPa and standard deviation s =2.926, the slope of the straight line plotting the 

logarithm of the fracture mean aperture against the logarithm of specific flow is the 

same when A. changes from 0.75 to 1.50. For a higher standard deviation s=7.089,,the 

slope increases from 5 to 5.7 when A. changes from 0.75 to 1.50. When the same stan

dard deviation s=7.089 is maintained, the percolation limit is reached at a critical 

stress of 50 MPa for a larger correlation factor A.=1.5, while it is reached at a higher 

critical stress of 60 MPa for A.=0.75 (Fig. 5-24c). The effect of A. on the critical stress 

implies that new contact areas produced by applied normal stress always occur in the 

middle of "oceanic" voids separated by "archipelagoes" of contact areas. It means 

that for a fracture with larger A. or more dispersed contact area distribution, a con

nected open pathway for fluid flow is blocked up more easily by the new created con

tact areas with increasing stress. 

5.3.2. Sensitivity studies for mean aperture of fracture: 

In the usual parallel plate model of a fracture, the flow is proportional to the cube 

of the mean aperture h. In the real world, surfaces of a fracture are rough and a frac

ture has areas of contact. We know that roughness along the fracture walls plays a 

definite role in controlling the flow; however, it is difficult to estimate the effect of 

fracture roughness. The purpose of the following sensitivity studies for the fracture 

mean aperture that I have been carried out is to give some qualitative impressions 
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about the roughness effect. 

In order to study the effect of the variation of ii, simulations in the begining were 

the same as the above case studies for general behaviors of fracture deformation and 

flow. Fractures are generated by different fracture geometry parameters (h, s, A), and 

deformed by an increment of normal stress applied to the fracture. Afterwards, at each 

stress level, the local apertures h (x ,y ), if less than 0.2h, were set to zero, mean aper

ture and percent contact area were calculated to obtain a new distribution of contact 

areas (see Fig. 5-25), and the simulations of flow through the fracture with decreased 

mean aperture ii;;, and increased and redistributed contact area were carried out. Four 

fractures with geometry parameters (h, s, A) were chosen for the mean aperture sensi

tivity studies. The four sets of (h, s, A) values were set 1: s=2.934, A.=1.5; set 2: 

s=4.576, A.=1.5; set 3: s=7.090, A.=1.5; set 4: s=4.576, A.=0.75. The fracture mean 

apertures at T=O were set to h=IO IJ.m. 

Results of mean aperture sensitivity studies are summarized in Tables 5-7 and 5-

8. The results show that mean apertures ii';; decrease (Tables 5-7, 5-8), distributions of 

contact areas change (Fig. 5-25), and, consequently, flow rates drop off(Fig. 5-26) as 

local apertures less than 0.2h are closed up at different stress levels. The maximum 

drop of flow rates has the value 72.22% when the variation of the mean aperture is 

6.2%. Since variation of mean aperture, !l.h, is a function of the aperture density distri

bution function n (h) (Fig. 5-28), both !l.h and n (h) vary with increasing normal 

stress, and !l.h is therefore not a linear function of either the mean aperture or the nor

mal stress. The curves of !l.h vs normal stress (Table 5-8) show a "saddle" relations. 

As expected, since flow rate is related to a cube of mean aperture, decrement of flow 
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rate with increasing normal stress exhibits two peaks (Fig. 5-26b). For the fracture 

with smaller standard deviation s =2.934, only the first peak of flow rate appears (Fig. 

5-26a). For the fracture with larger standard deviation s=7.090, the first peak shifts to 

a lower normal stress, and the flow rate falls off before the second peak shows up. The 

latter may reflect the fact that the permeability of a "tight" fracture is dominated by 

the critical neck after stress or percent contact area reaches some "critical" value. The 

critical neck is defined as the smallest aperture along the path of highest aperture 

through the fracture. The results also show that the effect of correlation factor A on the 

flow is important (compare Fig.5-26b with Fig.5-26d). Smaller A causes more decre

ment of the flow. 

Through the mean aperture sensitivity studies, I find that a cubic law using mean 

aperture as the variable is inadequate for estimating the joint flow (Fig. 5-27). Flow 

along a fracture depends on the actual local aperture at the microscopic level, and 

while the most important parameter to affect the flowpath topology is s, the standard 

deviation in the lognormal aperture distribution, the effect of A on the flowpath topol

ogy should not be neglected. Normal stress across the fracture changes the flowpath 

topology by diminishing the apertures and increasing the areas of contact (Pyrak-Nolte 

et al. 1988). Once the normal stress reaches a "critical value", the flow is dominated 

by the critical neck which is also affected by the standard deviation s . 
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5.3.3. Sensitivity studies for the effect of contact deformations on the flow: 

Brown (1987) has done a computer simulation of laminar flow between rough 

surfaces using the finite-difference method. In his simulations, he ignored the deforma

tion of the fracture surfaces at contacts, and the local aperture h (x ,y) was set to zero 

as if the material at the contacts had been dissolved away. Results of his flow simula

tions show that the flow rate is not particularly sensitive to the slope of the power 

spectrum, and that the actual flow rate between rough surfaces is about 70-90% of that 

predicted by the parallel plate model. However, his results are quite insufficient to 

explain the major departures from the cubic law for flow through fractures as observed 

by Witherspoon et al.(1980), Engelder and Scholz (1981), Raven and Gale (1985), 

pyrak-nolte et al. (1987), and Zimmerman et al. (1990). The disagreement between 

Brown ( 1987) and other investigators may be result from neglecting the fracture defor

mation. It is difficult to estimate the effect of neglecting fracture deformation on the 

flow along the fracture. What I will do is to roughly show that consideration of the 

fracture deformation is necessary. 

Two fractures with different geometry parameters (h, s, A) were generated. With 

h=lO J..1m and s=4.576 for both fractures, A is changed from 0.75 for first fracture to 

1.50 for the second fracture. In order to obtain the percent contact area, c (% ), and the 

distribution of contact area at each stress level for deformed cases, an increment of 

normal stress was applied to the fracture, and its deformation calculated. After fracture 

deformation was found, the contact area and the average aperture were recalculated. 

Since the percent contact area c (%) at each stress level could be found for deformed 

cases, and initial aperture density distribution functions were characterized by a given 
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s and h=lO J.1m (Fig. 5-28), the amount of contact areas and the distribution of con

tact areas at each stress level for undeformed cases are obtained by clipping the initial 

aperture density distribution function with the known corresponding percent contact 

area of deformed cases. Figure 5-29 shows the complpison of the contact area distribu

tions at each stress level between deformed and undeformed cases. It is clear that 

while new contact areas created by the increment of the normal stress for undeformed 

cases are likely to surround the pre-existing contact areas, and the new contact .areas 

produced by deformation are likely to occur in the middle of the large void spaces 

(oceans) between the regions of high co~tact density (archipelagoes). The more 

dispersed distribution of the contact area caused by the fracture deformation implies 

that the fracture is "stiffer", flow along the fracture is proportional to a larger 

exponent (at least greater than 5.0) of the mean aperture, and the flow falls off at a 

lower stress level. 

5.4. SUMMARY 

Boundary element methods have been used to study the deformation and permea

bility of simulated fractures as a function of normal stress. Statistically equivalent frac

tures are characterized by their initial mean aperture, aperture standard deviation, and a 

parameter that quantifies the compactness of the contact regions called correlation fac

tor. Many of the observed features of real rock fracture behavior are reproduced by 

these simulations. The stiffness of the fractures drops off asymptotically as the stress is 

increased, while the contact area increases at a nearly linear rate. At low stresses, the 

permeability drops off at a rate proportional to the third power of the normal stress 

(cf., Walsh 1981). At some critical stress, typically on the order of 30-70 MPa, the 
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percolation limit, the point of smallest aperture along the path of highest aperture, is 

reached, and the permeability drops precipitously. For different statistically equivalent 

realizations, the critical stress is the only property that exhibits a strong sample-to

sample variation. Results of the parameter sensitivity studies show that while the frac

ture permeability may be stress history dependent, it is uniquely defined by the local 

aperture at the microscopic level. The stress history determines the fracture aperture 

density distribution function and, consequently, its local aperture for a given stress. 

However, the initial fracture aperture density distribution function ~trongly depends on 

the standard deviation s and the correlation factor A.. s and A. are important parameters 

for stiffness, flow and percolation limit. Finally, it is roughly verified that ignoring the 

fracture deformation will create an error whose magnitude is difficult to estimate but 

necessary to consider. 
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Table 5-1 percent contact area as a function of normal stress, for ten different realizations. 

standard deviation=4.576, filter coefficient A= 0.75 

nonnal contact area (%) 

stress seed for generating different realizations 

MPa 333 666 999 129921 169961 159 747 36963 471118 992431 mean 

0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

10 5.00 5.33 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.03 

20 10.00 15.22 12.00 13.89 12.67 12.44 12.67 10.44 17.22 15.78 13.23 
I 

30 29.89 31.22 30.67 29.67 30.33 30.33 29.33 27.00 31.00 32.89 30.23 

40 43.56 44.00 47.22 45.67 45.89 43.67 43.11 42.78 44.67 46.78 44.74 

50 55.11 53.78 59.44 55.00 57.00 53.89 55.11 53.22 55.78 57.00 55.53 

60 62.22 64.33 69.00 64.33 64.44 60.89 64.00 62.00 65.44 66.11 64.28 

\0 
........ 



Table 5-2 Joint closure as a function of normal stress, for ten different realizations. 

standard deviation=4.576, filter coefficient A= 0.75 

nonnal closure(~) 

stress seed for generating different realizations 

MPa 333 666 999 129921 169961 159 747 36963 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

10 2.950 3.431 3.290 3.291 3.284 3.070 3.109 2.954 

20 5.629 5.937 6.112 5.823 6.011 5.623 5.707 5.595 

30 7.048 7.279 7.452 7.153 7.472 6.922 7.152 7.133 

40 7.872 8.070 8.195 7.913 8.267 7.692 7.972 7.968 

50 8.404 8.572 8.636 8.384 8.750 8.221 8.494 8.498 

60 8.780 8.904 8.929 8.725 9.075 8.610 8.844 8.869 
-------- ----

471118 

0.000 

3.592 

6.044 

7.307 

8.110 

8.618 

8.962 
L_ --

992431 

0.000 

3.466 

5.982 

7.274 

8.001 

8.488 

8.821 

mean 

0.000 

3.244 

5.846 

7.219 

8.006 

8.506 

8.852 

\0 
N 



Table 5-3 Stiffness as a function of normal stress, for ten different realizations. 

standard deviation=4.576, filter coefficient A= 0. 75 

nonnal stiffness (Mpa I!Jm ) 

stress seed for generating different realizations 

MPa 333 666 999 129921 169961 159 747 36963 

5 3.390 2.915 3.040 3.038 3.045 3.257 3.216 3.385 

15 3.733 3.990 3.544 3.949 3.667 3.917 3.849 3.786 

25 7.047 7.452 7.463 7.519 6.845 7.698 6.920 6.502 

35 12.136 12.642 13.459 13.158 12.579 12.987 12.195 11.976 

45 18.797 19.920 22.676 21.231 20.704 18.904 19.157 18.868 

55 26.596 30.120 34.130 29.326 30.769 25.707 28.571 26.954 

.. 

471118 992431 

2.784 2.885 

4.078 3.974 

7.918 7.740 

12.453 13.755 

19.685 20.534 

29.070 30.030 
--

mean 

3.096 

3.849 

7.310 

12.734 

20.048 

29.127 

\0 
w 



Table 5-4 Flow rate under a unit pressure gradient, as a function of nonnal stress for ten realizations. 

standard deviation=4.576, filter coefficient A.:: 0.75 

nonnal nonnalized flow rate (Q IQ0 ) 

stress seed for generating different realizations 

MPa 333 666 999 129921 169961 159 747 36963 

0 0.8602 0.8517 0.8539 0.8539 0.8447 0.8496 0.8694 0.9877 

10 0.3014 0.2396 0.2579 0.2578 0.2559 0.2828 0.2845 0.3455 

20 0.05428 0.04299 0.03750 0.04158 0.04073 0.04874 0.04719 0.06261 

30 0.007987 0.006493 0.003370 0.006104 0.004432 0.004450 0.006357 0.004407 

40 0.001784 0.000492 0.000392 0.000000 0.000000 0.001110 0.001394 0.000436 

50 0.000277 0.000000 0.000155 0.000444 0.000000 0.000000 

60 0.000000 0.000061 0.000000 
----

.. 

471118 992431 

0.8193 0.8566 

0.2156 0.2390 

0.03230 0.03242 

0.004722 0.003286 

0.000504 0.000850 

0.000000 0.000250 

0.000097 

mean 

0.8647 

0.2680 

0.03775 

0.004457 

0.000696 

0.000011 

0.0000016 

' 

\0 
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Table 5-5 Permeability as a function of mean aperture for ten realizations. 

standard deviation=4.576, filter coefficient A.= 0.75 

seed for generating different realizations 

333 666 999 129921 

h Q/Qo h Q/Qo h Q/Qo h 

10.000 0.8602 10.000 0.8517 10.000 0.8539 10.000 

7.052 0.8602 6.569 0.8453 6.710 0.8539 6.709 

4.371 0.6500 4.063 0.6409 3.888 0.6381 4.177 

2.952 0.3105 2.721 0.3223 2.548 0.2040 2.847 

2.128 0.1851 1.930 0.0684 1.805 0.0666 2.087 

1.596 0.0682 1.428 0.0000 1.364 0.0611 1.616 

1.220 0.0000 1.096 1.071 0.0494 1.275 

seed for generating different realizations 

159 747 36963 471118 

h Q/Qo h Q/Qo h Q/Qo h 

10.000 0.8496 10.000 0.8694 10.000 0.9877 10.000 

6.930 0.8496 6.891 0.8694 7.046 0.9877 6.408 

4.377 0.5812 4.293 0.5964 4.405 0.7325 3.956 

3.078 0.1526 2.848 0.2752 2.867 0.1870 2.693 

2.308 0.0903 2.028 0.1672 2.032 0.0520 1.890 

1.779 0.0788 1.506 0.0000 1.502 0.0000 1.382 

1.390 1.156 1.131 1.038 

'" 

Q/Qo h 

0.8539 10.000 

0.8539 6.716 

0.5706 3.989 

0.2645 2.528 

0.0000 1.733 

1.250 

0.925 

Q/Qo h 

0.8193 10.000 

0.8193 6.534 

0.5217 4.018 

0.2418 2.726 

0.0746 1.990 

0.0000 1.512 

1.179 

169961 

992431 

Q/Qo 

0.8447 

0.8447 

0.6417 

0.2743 

0.0000 

Q/Qo 

0.8566 

0.8566 

0.4998 

0.1622 

0.1078 

0.0723 

0.0590 

\0 
Vl 
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T=lO T:20 T=30 T=40 T=50 T=60 

seed=333, standard deviation=4.576, filter coefficient A.=0.75 
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I 

normal stress contact area ave. aperture closure stiffness normalized flux flow rate 

MPa % ~ ~ MPal~ f lfo QIQ.{L_ 
0 5.00 10.000 0.000 

3.390 
0.8602 0.8602 

10 5.00 7.050 2.950 0.8602 0.3014 
3.733 

20 10.00 4.371 5.629 0.6500 0.05428 
7.047 

30 29.89 2.952 7.048 
12.136 

0.3105 0.007987 

40 43.56 2.128 7.872 0.1851 0.001784 
18.797 

50 55.11 1.596 8.404 0.0682 0.0002772 

60 62.22 1.220 8.780 
26.596 

0.0000 0.0000000 
-----

Figure 5-1 Contact area (in black) as a function of normal stress T. Note the lack of a connected flow 
path at 60 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of normal stress (bottom) for the realization generated by seed 333. 

•. 

. ....... . ..... .. . ... . ..... . .. .... 
.. .. .. .. . ... . .... .... .. . .. . .. .... . ....... ....... . ..... . ..... . . . ..... ... 

\0 
0\ 



• 

T:lO T=20 

nonnal stress contact area 

MPa % 

0 5.00 
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T=50 

seed=666, standard deviation=4.576, filter coefficient ').;:0.75 

ave. aperture closure stiffness nonnalized flux 

Jlm J.lm MPa!Jlm f lfo 

10.000 0.000 0.8517 

6.569 3.431 
2.915 

0.8453 

4.063 5.937 
3.990 

0.6409 
7.452 

2.721 7.279 0.3223 
12.642 

1.930 8.070 0.0684 
1.428 8.572 

19.920 

1.096 8.904 
30.120 
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T=60 

flow rate 

Q!Qo 

0.8517 

0.2396 

0.04299 

0.006493 

0.000492 

Figure 5-2 contact area (in black) as a function of normal stress T. Note the lack of a connected flow 
path at 50 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of normal stress (bottom) for the realization generated by seed 666. 
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normal stress contact area ave. aperture closure stiffness normalized flux flow rate 

MPa 
0 

10 

20 

30 

40 

50 

60 

! 

% J..Lm J..Lm MPaiJ..Lm f lfo Q!Qo 
5.00 10.000 0.000 0.8539 0.8539 

5.00 6.710 3.290 
3.040 

0.8539 0.2579 

12.00 3.888 6.112 
3.544 

0.6381 0.0375 
30.67 2.548 7.452 

7.463 
0.2040 0.00337 

47.22 1.805 8.195 
13.459 

0.0666 0.000392 
59.44 1.364 8.636 

22.676 
0.0611 0.000155 

69.00 1.071 8.929 
34.130 

0.0494 0.000061 

Figure 5-3 contact area (in black) as a function of normal stress T; average aperture, stiffness, contact 
area percentage, and flow rate etc. as a function of normal stress (bottom) for the realization generated 
by seed 999. 
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0.8539 
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3.949 
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7.519 

0.5706 

29.67 2.847 7.153 13.158 0.2645 
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0.()()()() 

55.00 1.616 8.384 
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64.33 1.275 8.725 
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. .. . ... .... . .. . 

. . 

T=60 

I 

flow rate 

Q/Qo 

0.8539 

0.2578 

0.04158 

0.006104 

0 .0()()()()0 

Figure 5-4 contact area (in black) as a function of nonnal stress T. Note the lack of a connected flow 
path at 40 MPa(top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of normal stress (bottom) for the realization generated by seed 129921. 
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normal stress contact area ave. aperture closure stiffness normalized flWI. flow rate 
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% tJ.m j.lm MPaii..IJn f lfo Q!Qo 

5.00 10.000 0.000 
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20.704 0.0000 
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30.769 
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---- - --

Figure 5-5 contact area (in black) as a function of nonnal stress T. Note the lack of a connected flow 
path at 50 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of nonnal stress (bottom) for the realization generated by seed 169961. ..... 
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nonnal stress contact area ave. aperture closure stiffness nonnalized flux flow rate ! 

MPa % ~ ~ MPal~ f lfo Q!Qo 
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50 
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5.00 10.000 0.000 
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3.917 
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60.89 1.390 8.610 0.0000 0.0000000 

Figure 5-6 contact area (in black) as a function of normal stress T; average aperture, stiffness, contact 
area percentage, and flow rate etc. as a function of normal stress (bottom) for the realization generated 
by seed 159. -0 -
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MPa % J.1m J.1m MPai!Jm f lfo Q!Qo 

0 5.00 10.000 0.000 0.8694 0.8694 
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Figure 5-7 contact area (in black) as a function of nonnal stress T. Note the lack of a coimected flow 
path at 50 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of nonnal stress (bottom) for the realization generated by seed 747. 
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normal stress contact area ave. aperture closure stiffness normalized flux flow rate 
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5.00 10.000 0.000 
3.385 

0.9877 0.9877 

5.00 7.046 2.954 
3.786 

0.9877 0.3455 
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Figure 5-8 contact area (in black) as a function of nonnal stress T. Note the lack of a connected flow 
path at 60 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of nonnal stress (bottom) for the realization generated by seed 36963. 

-0 w 



l T=lO T=20 T=30 

............ .................. . . . ... .... . ........... . . . . ... ........ . .. . : . . :::::. : .. . .. .. ...... . ····· .. . .. . . ... .. . . . . . .. ... .. .. .. . .... . ............ . ............ .. . ...... . 
iiiig===:i= .:: =i=- ·ii ..... . . . 
:::::::: ·:· • =:::: •. :: 
:: ·:::.. .. ..::· ·: ::.::: .... :::::: .:: ....... . ....... . ...... ... ....... .. .......... ..... . .. ·········· ·········· ::::· ·:::.:::::::: .::::::::: ··················· ......... . 

T=40 

......... . . ............. . . . . ........... . . . ... ... ... . .. . . . .... . . . ...... .. .. ...... . .. . .. . . . .. .. . . . .. :.· ·=·········· :: ............ ... .. :::r===··:= •• ::= ·=: 
~~siss:: ·:. · .· . =~===· :~ . ... . ...... .. 
:.::: . .:::::: ·: .... .. ....... . ...... ... ..... . .......... ...... .. ..... .. ...... . ...... . .... . .. .. .. . ....... . .......................... 

T=50 

seed=471118, standard deviation=4.576, filter coefficient A.=0.75 

. . ....... . ... ... .. . .. . . .... . ..... .. . ..... ·: . . . 
:~~~~:~==::: ~:· ·:~::· -~; 
i: .. : .. . :::::=·· j 
=··:.. .:= :::::: : ..... . . .... .. 
::··· : .: . :· :::: ... :: 
::: .. : :. :::::::. ::::::.::: 

T=60 

nonnal stress contact area ave. aperture closure stiffness nonnalized flux flow rate 

MPa 

0 

10 

20 

30 

40 

50 

60 

% J.1m J.1m MPa/J.lm f lfo Q!Qo 

5.00 10.000 0.000 0.8193 0.8193 

5.00 6.408 3.592 
2.784 

0.8193 0.2156 

17.22 3.956 6.044 
4.078 

0.5217 0.0323 

31.00 2.693 7.307 
7.918 

0.2418 0.004722 

44.67 1.890 8.110 
12.453 

0.0746 0.0005036 

55.78 1.382 8.618 
19.685 

0.0000 0.0000000 

65.44 1.038 8.962 
29.070 

Figure 5-9 contact area (in black) as a function of normal stress T. Note the lack of a connected flow 
path at 50 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of normal stress (bottom) for the realization generated by seed 471118. 
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Figure 5-10 contact area (in black) as a function of nonnal stress T. Note the lack of a connected flow 
path at 40 MPa (top); average aperture, stiffness, contact area percentage, and flow rate etc. as a func
tion of nonnal stress (bottom) for the realization generated by seed 992431. 
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Figure 5-11 Percent contact area as a function of normal 
stress, for two different realizations. 
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Figure 5-13 Stiffness as a function of normal stress, for 
two different realizations. 
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Table 5-6a Results of parameters (A and stdandard deviation) sensitivity study 
for the fracture with A=0.75 and std.=2.926. 

filter coeff. A = 0.75, standard deviation=2.926 

normal contact average closure stiffness flux flow 

stress area aperture rate 

MPa % Jlm Jlm MPa!Jlm I lfo Q!Qo 

0 5.00 10.000 0.000 0.8688 0.8688 
3.12 

10 5.00 6.798 3.202 0.8688 0.2729 
3.25 

20 7.56 3.719 6.281 0.8006 0.0412 
6.23 

30 29.56 2.115 7.885 0.2912 0.0276 
12.16 

40 44.33 1.293 8.707 0.1643 0.0036 
21.19 

50 61.44 0.821 9.179 0.0522 0.0003 
37.17 

60 72.44 0.552 9.448 

Table 5-6b Results of parameters (A and standard deviation) sensitivity study 
for the fracture with A.=0.75 and std.=4.576. 

filter coeff. A= 0.75, standard deviation=4.576 

normal contact average closure stiffness flux flow 

stress area aperture rate 

MPa % Jlm Jlm MPa!Jlm I lfo Q!Qo 

0 5.00 10.000 0.000 0.8688 0.8688 
3.12 

10 5.00 6.798 3.202 0.8688 0.2729 
3.78 

20 12.00 4.151 5.849 0.6316 0.0452 
7.26 

30 29.22 2.773 7.227 0.3356 0.0072 
12.36 

40 42.44 1.964 8.036 0.1154 0.00087 
19.30 

50 54.44 1.446 8.554 0.0441 0.00013 
28.33 

60 62.56 1.093 8.907 
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Table 5-6c Results of parameters (A. and standard deviation) sensitivity study 
for the fracture with A.=0.75 and std.=7.089. 

filter coeff. A. = 0.75, standard deviation:::7.089 

normal contact average closure stiffness flux flow 

stress area aperture rate 

MPa % Jlm Jlm MPa!Jlm I llo Q!Qo 

0 5.00 10.000 0.000 0.8688 0.8688 
3.13 

10 5.44 6.810 3.190 0.8596 0.2715 
4.80 

20 18.11 4.727 5.273 0.5446 0.0575 
8.72 

30 34.33 . 3.580 6.420 0.2200 0.01009 
13)7 

40 46.22 2.854 7.146 0.0849 0.00197 
19.53 

50 52.33 2.342 7.658 0.0717 0.00092 
24.94 

60 59.67 1.941 8.059 

Table 5-6d Results of parameters (A. and standard deviation) sensitivity study 
for the fracture with A.=1.5 and std.=2.934. 

filter coeff. A. = 1.50, standard deviation=2.934 

normal j contact average j closure stiffness flux flow 

stress area aperture rate 

MPa % Jlm Jlm MPa!Jlm I llo Q!Qo 

0 5.00 10.000 0.000 
3.38 

0.8482 0.8482 

10 5.00 7.042 2.958 
3.54 

0.8482 0.2962 

20 7.33 4.219 5.781 
5.05 

0.7895 0.0593 

30 21.67 2.570 7.430 
11.49 

0.4266 0.00724 

40 37.11 1.700 8.300 
18.90 

0.1749 0.00085 

50 49.33 1.171 8.829 0.0519 0.00008 
30.03 

60 60.78 0.838 9.162 
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Table 5-6e Results of parameters (A and standard deviation) sensitivity study 
for the fracture with A.=1.5 and std.=4.576. 

filter coeff. A = 1.50, standard deviation=4.576 

normal I contact average closure stiffness flux flow 

stress area aperture rate 

MPa % )lm ).1m MPal)lm fifo Q!Qo 

0 5.00 10.000 0.000 0.8482 0.8482 

10 5.00 7.043 2.957 
3.38 

0.8482 0.2963 

5.340 
4.20 

0.6720 20 11.11 4.660 0.0680 

3.385 6.615 
7.84 

0.3528 0.0137 30 24.67 

40 34.89 2.598 7.402 
12.71 

0.2076 0.0036 

50 45.44 2.068 7.932 
18.87 

0.0418 0.0004 

60 52.56 1.693 8.307 
26.67 

Table 5-6f Results of parameters (A and standard deviation) sensitivity study 
for the fracture with A=1.5 and std.=7.090. 

·---

filter coeff. A. = 1.50, standard deviation=7.090 

normal contact average closure stiffness flux flow 

stress area aperture rate 

MPa % )lm ).1m MPa!)lm f lfo Q!Qo 

0 5.00 10.000 0.000 0.8482 
3.45 

0.84820 

10 6.33 7.103 2.897 0.8156 0.29228 
5.58 

20 18.33 5.312 4.688 0.5064 0.07590 
10.06 

30 29.89 4.318 5.682 0.2611 0.02102 
14.99 

40 38.00 3.651 6.349 0.1416 0.00689 
19.65 

50 45.11 3.142 6.858 0.00001 
25.25 

60 51.56 2.746 7.254 
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Figure 5-19a Contact area as a function of nonnal stress for the fracture with A=0.75 
and std.=2.926 for parameter (A, standard deviation) sensitivity study. 
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Figure 5-2Q-b contact area as a function of normal stress for fractures 
with A=l.50, as standard deviation changes. 

• 



• 

125 

6. 

10. 20. 30. -40. 60. eo. 

normal stress (MPa) 

Figure 5-2D-c contact area as a function of normal stress, as standard 
deviation and correlation factor A change. 
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Figure 5-21-a Joint closure as a function of normal stress for fractures 
with A-=0.75, as standard deviation changes. 
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Figure 5-21-c Joint closure as a function of normal stress, as standard 
deviation and correlation factor A change. 
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Figure 5-23-c Normalized flow rate as a function of normal stress, as standard 
deviation and correlation factor A. change. 
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Table 5-7a Results of parameter (mean aperture ii) sensitivity study for the fracture 
with A.=l.5 and std.=2.934. 

filter coeff. A. = 1.50, standard de,·iation=2.934 

normal normal case apertures less than 0.2b are closed 

flux flow rate c.a. - flux flow rate stress c.a. b b, 

MPa % J..lm I llo Q!Qo % J..1m I llo Q!Qo 
0 5.00 10.000 0.8482 0.8482 5.00 10.000 0.8482 0.8482 

10 5.00 7.042 0.8482 0.2962 5.00 7.043 0.8482 0.2962 

20 7.33 4.219 0.7895 0.0593 11.33 4.201 0.6613 0.04903 

30 21.67 2.570 0.4266 0.00724 27.44 2.553 0.3067 0.00510 

40 37.11 1.700 0.1749 0.00085 40.67 1.691 0.1535 0.00074 

50 49.33 1.171 0.0519 0.00008 51.22 1.166 0.0495 0.00008 

60 60.78 0.838 61.89 0.834 

Table 5-7b Results of parameter (mean aperture ii) sensitivity study for the fracture 
with A.=l.5 and std.=4.576. 

filter coeff. A = 1.50, standard deviation=4.576 

normal normal case apertures less than 0.2h are closed 
stress c.a. h flux flow rate c.a. ~ flux flow rate 

MPa % J..1m I llo Q/Qo % J..1l7l I llo Q/Qo 
0 5.00 10.000 0.8482 0.8482 5.00 10.000 0.8482 0.8482 

10 5.00 7.043 0.8482 0.2963 5.00 7.043 0.8482 0.2963 
20 11.11 4.660 0.6720 0.0680 18.78 4.623 0.4567 0.0451 
30 24.67 3.385 0.3528 0.0137 30.11 3.364 0.2998 0.0114 
40 34.89 2.586 0.2076 0.0036 40.67 2.570 0.0595 0.0010 
50 45.44 2.050 0.0418 0.0004 49.00 2.043 0.0360 0.0003 

60 52.56 1.670 56.44 1.664 
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Table 5-7d Results of parameter (mean aperture ii) sensitivity study for the fracture 
with A.--o. 75 and std.=4.576. 

A.= 0.75 standard deviation =4.576 

normal normal case apertures Jess than 0.2h are closed 
stress c.a. h flux flow rate c.a. he flux flow rate 
MPa % Jlm f lfo Q/Qo % Jlm f lfo Q/Qo 

0 5.00 10.000 0.8688 0.8688 5.00 10.000 0.8688 0.8688 
10 5.00 6.798 0.8688 0.2729 5.00 6.798 0.8688 0.2729 
20 12.00 4.151 0.6316 . 0.0452 20.89 4.113 0.4946 0.0344 
30 29.22 2.773 0.3356 0.0072 35.67 2.752 0.1528 0.0032 
40 ·42.44 1.962 0.1154 0.0009 47.56 1.950 0.0934 0.0007 
50 54.44 1.440 0.0441 0.0001 57.22 1.436 0.0000 0.0000 
60 62.56 1.086 64.00 1.084 

Table 5-7c Results of parameter (mean aperture ii) sensitivity study for the fracture 
with A=1.5 and std.=7.090. 

filter coeff. A. = 1.50, standard deviation=7.090 

normal normal case apertures less than 0.2h are closed 
stress c.a. h flux flow rate c.a. he flux flow rate 

MPa % Jlm f lfo Q/Qo % J.1m fifo Q/Qo 

0 5.00 10.000 0.8482 0.84820 5.00 10.000 0.8482 0.84820 
10 6.33 7.103 0.8156 0.29228 12.56 7.051 0.6539 0.22922 
20 18.33 5.312 0.5064 0.07590 27.33 5.256 0.2988 0.04339 
30 29.89 4.318 0.2611 0.02102 32.89 4.308 0.1714 0.01370 
40 38.00 3.651 0.1416 0.00689 43.33 3.620· 0.00001 
50 45.11 3.142 50.22 3.109 
60 51.56 2.746 55.78 2.718 
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Table 5-8 Calculation of Ah, ~c, and ~Q for the sensitivity study of mean aperture. 

standard deviation=2.934, correlation factor A= 1.50 

T h he ~h/h 
/ 'tJ.mqls ~3/s ~Q/Q 

MPa 'tlm 'tlm % % 

20 4.219 4.201 0.43 0.0596 0.0490 17.73 
30 2.570 2.553 0.66 0.00724 0.00510 29.56 
40 1.700 1.691 0.53 0.00085 0.00074 12.94 
50 1.171 1.166 0.43 0.00008 0.00006 
60 0.838 0.834 0.48 

standard deviation=4.576, correlation factor A= 1.50 

T h he ~h/h 'tJ.m~ls ~3/s !!.Q 1(.2 
MPa 'tlm 'tJ.m % % 

20 4.660 4.623 0.79 0.0680 0.0451 33.68 
30 3.385 3.364 0.62 0.0137 0.0132 3.56 
40 2.586 2.570 0.62 0.0036 0.0010 72.22 
50 2.050 2.043 0.34 0.0004 0.0001 25.00 
60 1.670 1.664 0.35 

standard deviation=7.090, correlation factor A= 1.50 

T h he ~h/h 'tJ.m~ls ~3/s !!.Q/Q 
MPa 'tlm jlnl % % 

20 7.103 7.051 0.73 0.29228 0.22922 21.58 
30 5.312 5.256 1.05 0.07590 0.04339 42.83 
40 4.318 4.308 0.23 0.02102 0.01370 34.82 
50 3.651 3.620 0.85 0.00689 0.00001 
60 3.142 3.109 1.05 

standard de,iation=4.576, correlation factor A= 0.75 
T h he !lh/h 'tJ.m~ls Qj ~(.2/Q 

MPa 'tlm 'tlm % 'tJ.m 3!s % 
20 4.151 4.113 0.92 0.0452 0.0344 23.89 
30 2.773 2.752 0.76 0.0072 0.0032 55.56 
40 1.962 1.950 0.61 0.0009 0.0007 22.22 
50 1.440 1.436 0.28 0.0001 
60 1.086 1.084 0.18 
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CHAPTER 6 

CONCLUSION 
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Numerical analysis on statistically equivalent fractures, using boundary element 

methods, to account for the effects' of contact areas and tortuosity of the flow path 

between two rough surfaces when an increment of normal stress is applied to the frac

ture, has been carried out. It is found that a cubic relationship between flow and mean 

aperture derived from the Reynolds equation for flow between nearly parallel plates 

does not fit the simulations of flow through a fracture in partial contact. The exponent 

of the aperture in the "cubic law" is greater than 3.0 at low stress. At some critical 

stress, typically on the order of 30-70 MPa, the percolation limit is reached (i.e. a 

connected pathway for fluid flow no longer exists), and the permeability drops precipi

tously. Simulations also show that fracture closure, fracture stiffness and fluid flow are 

highly non-linear functions of the effective normal stress applied across the fracture. 

The compliance of fractures and fluid flow through a fracture depend primarily 

upon the amount and spatial arrangement of contact areas. Percent contact area is the 

sole parameter in Walsh's expression for predicting flow through a fracture with partial 

contact (2-35). The expression derived by Walsh (1981) using a Maxwell-type 

effective medium approximation for contact area fractions ranging from 0 to 0.25 is 

verified by the simulations and analogue measurements. Walsh's result has also been 

extended to the case, where instead of circular shapes, obstructions have elliptical 

shapes (Eq. 2-36) (see Chapter 4). For fracture stiffness or compressibility, dependence 

on contact area is examined in Chapter 4. Simulations there suggest that the values of 

fracture stiffnesses increase with linearly increasing percent contact area. For a 
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constant contact area percentage, a dispersed arrangement of contact areas forms a 

stiffer interface than a compacted arrangement of contact areas. 

While fracture stiffness and flow through the fracture are controlled by the void 

space geometry (percent contact area, the distribution of contact area, local apertures, 

percolation limit), the void space geometry strongly depends on fracture deformation 

under stress and on the topographies of the two rough surfaces of the fracture, charac

terized by the standard deviation s in the lognormal aperture density distribution func

tion and correlation factor A.. It reminds us that the effects of fracture deformation and 

the roughness of fracture surfaces must be included in the equation describing flow 

through a fracture. 

The possibility now exists of simulating the mechanical and hydraulic behavior of 

real fractures, based on measured aperture distributions, and comparing the predictions 

with experimental results. The computer codes, ROUGH and FLOW, may be a power

ful tool to select the optimum representive of fracture surface topograph from different 

variable aperture functions and fractal models by "inverse simulations". It is also 

interesting that ROUGH and FLOW may be used to predict the pressure distributions 

of fluid flow and flow channels, the preferred flow paths, along the fracture plane with 

the increment of normal stress. 
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APPENDIX A 

ROUGH: A Computer Program for Evaluating Fracture Deformation 

The program ROUGH evaluates the three-dimensional elastic deformation of a 

rough-walled fracture with normal stress across it, based on the mathematical formula-

tions given in Chapter 3. ROUGH includes two simple subroutines (COEFF, OUTF). 

The main program controls the logic calling sequence of subroutines to read the input 

data, to initialize the parameters, to set up a system of linear algebraic equations, to 
~ 

solve for the unknown displacements and stresses at fracture plane by iteration method, 

and to write the output data. Subroutine COEFF evaluates the Equations given in sec-

tion 3.2, and obtains the displacement and stress influence coefficients of the algebraic 

equations for both boundary elements and field points. Subroutine OUTF obtains the 

displacements and stresses at specified off-fracture locations in the infinite region. 

The main input of ROUGH is a variable aperture function characterized by mean 

aperture ii, standard deviation s , and correlation factor A. This function is generated 

by a computer program which is not listed here. The output of ROUGH obtains the 

closure and contact area distributions, percent contact area, mean aperture to character-

ize the deformed fracture. A description of input variables and formats for the program 

and a listing of the code are given below. 

1. Description of ROUGH Input Variables 

v Poisson's ratio of fractured rock mass, 

E Young's modulus of fractured rock mass, 



p1,p2,p3 

bw 

nrow 

ncol 

nelbw 

nosp 

xo, yo, zo 

orf 

itmax 

nrun 

xmean 

thick(i,j) 

primitive stress along x, y, and z axis respectively, 

side length of the square boundary element, 

number of elements along x axis, 

number of elements along y axis, 

number of elements along each side of any element, 
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number of off-fracture points at which displacements and stresses 

are to be computed, 

coordinates of the origin 

over relaxation factor, 

maximum numbers of iterations specified, 

iteration cycles were completed in previous runs, 

mean aperture, 

aperture located at jth row and ith colume. 

2. ROUGH Input Variables and Formats 

Variable Format 

title free 

v,E (f8.2, e12.2) 

p1,p2,p3 (3f10.0) 

bw, nrow, ncol, nelbw, nosp (f8.2, 4i8) 

xo(l, 1), yo(1, 1), zo (3f12.0) 

orf, itmax, nrun (f8.2, 2i8) 

xmean free 

.. 
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((thick(j,i), i=l,ncol), j=l,nrow) (9f8.3) 

• 
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comrnon/rko/v,v1,v2,e,cons,cond,con 
comrnon/rk1/dub(900),dvb(900),dwb(900),kode(30,30) 
comrnon/rk3/nrow,ncol,nbxe,bw,hbw,zo 

, xo (30, 30), yo (30, 30), zol (30, 30), thick (30, 30), en (3, 3) 
comrnon/rk7/rw,cw,seg,cf01,cf02,cf03,cf04,cf05,cf06, 

cf07,cfOB,cf09,cf10,cfll,cfl2,cf13,cfl4,cf15, 
cf16,cf17,cfl8,cfl9,zmn 

dimension sl3u(900),s23u(900),s33u(900),s23v(900),s33v(900), 
s33w (900), cf (15) 

dimension d1u(900),d2u(900),d3u(900),d2v(900),d3v(900), 
d1w(900),d2w(900),d3w(900) 

dimension tuvl (900),tuv2(900),tuv3(900),the(30,30) 
data dub,dvb,dwb/900*0.0,900*0.0,900*0.0/ 
data ncut,acc/40, .000000001/ 
data pi/3.1415926535897/ 
open (unit~1,file='inrough' ,status='old') 
open (unit~2,file='otrough' ,status=' new') 
open (unit= 3,status=•scratch' ,form=' unformatted', 

access=' direct' ,recl=3600) 
open (unit= 4,status='scratch' ,form=' unformatted', 

access='direct',recl=3600) 
open (unit= B,status='scratch' ,form=' unformatted', 

access~'direct' ,recl=3600) 
open (unit~ 9,status='scratch',form-'unformatted', 

access=' direct' ,recl=3600) 
open (unit-lO,status='scratch',form~'unformatted', 

access='direct' ,recl=3600) 
open (unit=11,status='scratch',form='unformatted', 

access=' direct' ,recl=3600) 
open (unit=l2,status='scratch',form='unformatted', 

access~'direct',recl=3600) 

open (unit=13,status='scratch' ,form=' unformatted', 
access=' direct' ,recl~3600) 

open (unit=l4,status='scratch',form='unformatted', 
access=' direct' ,recl=3600) 

open (unit=15,status='scratch',form='unformatted', 
access=' direct' ,recl=3600) 

open (un1t=16,status='scratch',form='unformatted', 
access=' direct' ,recl=3600) 

open (unit=l7,status='scratch',form='unformatted', 
access='direct',recl=3600) 

open (un1t=18,status='scratch',form='unformatted', 
access=' direct' ,recl=3600) 

open (unit=19,status='scratch',form='unformatted', 
access=' direct' ,recl=3600) 

write (2, 5000) 
read(1,5001) 
write (2, 5001) 
read(l,5005)v,e 
write(2,6001)v,e 
read (1,5009)p1,p2,p3 
read(1,50ll)bw,nrow,ncol,nelbw,nosp 
write(2,6011) bw,nrow,ncol 
read (1, 5013) xo ( 1, 1) , yo (1, 1) , zo 
write(2,5013)xo(1,1),yo(l,l),zo 
read(1,5023)orf,itmax,nrun 
wrlte(2,6023)orf,itmax 
if(nrun-1)30,30,27 

27 write(2,6025)nrun 
30 continue 

read(1,*)xmean 
read(l,756) ((thick(j,i) ,1-l,ncol) ,j=l,nrow) 

756 format(9fB.3) 
c 756 format(12f6.3) 

t:" 

1 

c do 757 j=l,nrow 
c do 757 i=1,ncol 
c 757 read(1,756)kode(j,i),thick(j,i) 
c 756 format(6x,i3,e12.4) 

kconl=O 
do 10 j=l,nrow 
do 10 i=1,ncol 
thick(j,i)=thick(j,i)*0.001 
kode(j,i)=1 
if (thick (j, i) .le.O. )then 
thlck(j,i)=O. 
kode(j,1)•3 
end if 
if(kode(j,i).eq.3.or.kode(j,i).eq.4)kcon1=kconl+1 

c 

c 

10 continue 

fact=pi/180. 
v1= (1.-v) 
v2= (1. -2. *v) 
cons=e/(B.*pi*(1.-v*v)) 
cond=1./(8.*pi*(1-v)) 
con=-orf/cons 
con1=-orf/cond 
hbw~0.5*bw 

stfs=-e/(2.*(1+v)) 
stfn=-e 
stifn=stfn/(xmean*cons) 
stifs=stfs/(xmean•cons) 

do 31 j=1,nrow 
do 31 i=1,ncol 
xo(j,i)=xo(1,1)+(j-1)*bw 
yo ( j, 1) =yo (1, 1) + (i-1) *bw 

31 zo1(j,i)= 0.5*thick(j,i) 
call tract 
nn=O 
do 730 jp~1,nrow 
do 730 ip=l,ncol 
nn=nn+1 
xn=xo ( jp, ip) 
yn=yo(jp,ip) 
zln=zol(jp,ip) 
z2n=-zol ( jp, ip) 
jb=jp-nelbw 
je=jp+nelbw 
if (jb.le.l) jb=l 
.lf(je.ge.nrow)je=nrow 
ib=lp-nelbw 
ie=ip+nelbw 
if(ib.le.1)ib=1 
if(ie.ge.ncol) ie=ncol 
lmn=(jp-jb)*(1e-1b+1)+ip-ib+1 
11=0 
do 740 js=jb,je 
do 740 1s=ib,1e 
11=11+1 
xm~xo(js,is) 

ym=yo (js, is) 
zlm~ zo1 (js, is) 
z2m=-zo1 (js, is) 
seg=hbw 
rw-xm-xn 
cw=ym-yn 
zmn=zlm-z1n 

~ 

~ 

0'1 
00 
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zmn2~z2m-z1n 

zt1~(xm-xn)*en(3,1)+(ym-yn)*en(3,2)+(z1m-z1n)*en(3,3) 
zt2=(xm-xn)*en(3,1)+(ym-yn)*en(3,2)+(z2m-zln)*en(3,3) 
call coeff (zt1) 
if(zt.ne.O.and.zmn.eq.O)zt~O 
d1u(ll)~2.*v1*cf03-zt*cf04 
d2u(ll)~-zt*cf05 

d2v(ll)=2.*vl*cf03-zt*cf07 
dlw(ll)•-v2*cf01-zt*cf06 
d2w(ll)=-v2*cf02-zt*cf08 
d3u(ll)=v2*cf01-zt*cf06 
d3v(ll)~v2*cf02-zt•cf08 
d3w(ll)•2.*vl*cf03-zt*cf09 
s13u(ll)=v*cf04-vl*cf09+zt*cfl2 
s23u(ll)=v*cf05+zt*cfl4 
s23v(ll)=v*cf07-vl*cf09+zt*cf17 
s33u(ll)=zt*cf15 
s33v(ll)=zt*cf18 
s33w(ll)=zt*cf19-cf09 
if(ll.ne.lmn)go to 740 
tuv1(nn)=s13u(ll) 
tuv2(nn)=s23v(ll) 
tuv3(nn)=s33w(ll) 
if(kode(jp,ip).eq.3.or.kode(j,i) .eq.4)then 
tuv1(nn)=s13u(ll)+stifs 
tuv2(nn)=s23v(ll)+stifs 
tuv3(nn)=s33w(ll)+stifn 
end if 

·740 continue 
write( 3,rec=nn)s13u 
write( 4,rec=nn)s23u 
write( 8,rec=nn)s23v 
write( 9,rec=nn)s33u 
write(10,rec=nn)s33v 
write(11,rec=nn)s33w 
write(12,rec=nn)d1u 
write(13,rec•nn)d2u 
write(14,rec=nn)d3u 
write(15,rec=nn)d2v 
write(16,rec=nn)d3v 
write(17,rec~nn)d1w 

write(18,rec=nn)d2w 
write(19,rec=nn)d3w 

730 continue 
do 800 iter=1,itmax 
if(iter.gt.ncut) go to 810 
error=O.O 
ind1=0 
ind2=ind1 
ind3=ind2 
kcon=O 
do 450 j=1,nrow 
do 450 i=1,ncol 
nn= (j-1) •ncol+i 
s13pb=O. 
s23pb=O. 
s33pb=O. 
U~b=O. 

vpb=O. 
wpb=O. 
jb=j-nelbw 
je=j+nelbw 
if (jb.le.l) jb=l 
if(je.ge.nrow)je~nrow 

2 

ib=i-nelbw 
ie=i+nelbw 
if (ib.le.l) ib=1 
if(ie.ge.ncol) ie•ncol 
read( 3,rec~nn)s13u 
read( 4,rec=nn)s23u 
read( 8,rec=nn)s23v 
read( 9,rec•nn)s33u 
read(10,rec=nn)s33v 
read(l1,rec=nn)s33w 
read(l2,rec=nn)d1u 
read(l3,rec~nn)d2u 

read(14,rec=nn)d3u 
read(l5,rec=nn)d2v 
read(l6,rec=nn)d3v 
read(l7,rec=nn)dlw 
read(l8,rec=nn)d2w 
read(l9,rec=nn)d3w 
11=0 
do 460 js=jb,je 
do 460 is=ib,ie 
11~11+1 

., 
t~ 

mm~(js-l)*ncol+is 

sl3pb=sl3pb+sl3u(ll)*dub(mm)+s23u(ll)*dvb(mm)+s33u(ll)*dwb(mm) 
s23pb~s23pb+s23u (11) *dub (mm) +s23v (11) *dvb (mm) +s33v (11) *dwb (mm) 
s33pb=s33pb+s33u(ll)*dub(mm)+s33v(ll)*dvb(mm)+s33w(ll)*dwb(mm) 
upb~upb+d1u(ll)*dub(mm)+d2u(ll)*dvb(mm)+d1w(ll)*dwb(mm) 

vpb~vpb+d2u(ll)*dub(mm)+d2v(ll)*dvb(mm)+d2w(ll)*dwb(mm) 
wpb=wpb+d3u(ll)*dub(mm)+d3v(ll)*dvb(mm)+d3w(ll)*dwb(mm) 

460 contlnue 
ss1=tuv1 (nn) 
ss2=tuv2 (nn) 
ss3~tuv3·(nn) 

t1=s13pb*cons 
t2=s23pb*cons 
t3~s33pb*cons 

cf (1) =con/ss1 
cf(2)=con/ss2 
cf(3)=con/ss3 
if(kode(j,i) .eq.3.or.kode(j,i) .eq.4)go to 420 
s13=pl+t1 
s23=p2+t2 
s33=p3+t3 
go to 421 

420 s13~stfs*dub(nn)/xmean+t1 

s23=stfs*dvb(nn)/xmean+t2 
s33=stfn*dwb(nn)/xmean+t3 

421 delu~s13*cf(1) 

delv~s23*cf(2) 

delw=s33*cf(3) 
if(dwb(nn) .ge.thick(j,i))then 
delw=thick(j,i)-dwb(nn) 
if(kode(j,i).eq.1)kode(j,i)~S 

c kode(j,i)=9 
end if 
if(kode(j,i).eq.S)kcon=kcon+l 
dub(nn)=dub(nn)+delu 
dvb(nn)~dvb(nn)+delv 

dwb(nn)=dwb(nn)+delw 
erorl=abs(delu) 
eror2=abs(delv) 
eror3=abs (delw) 
lt(crorl.gt.acc) indl-lndl+l 
if(eror2.gt.acc) ind2=ind2+1 

-$ 



rough.£ Sat Apr 7 13:15:43 1990 

if(eror3.gt.acc) ind3=ind3+1 
error=amaxl(error,erorl,eror2,eror3) 
jter=iter 
ind=ind1+ind2+ind3 

450 continue 
if(ind)810,810,800 

800 continue 
write(2,6040)jter 
write(2,6043) error 

810 if(ind.gt.O) write(2,6042)indl,ind2,ind3 
write (2, 6038) 
tho=O. 
thx=O. 
do 500 j=1,nrow 
do 500 i=1,ncol 
nn= (j-1) •ncol+i 
read( 3,rec=nn)s13u 
read( 4,rec-nn)s23u 
read( 8,rec=nn)s23v 
read( 9,rec=nn)s33u 
read(lO,rec=nn)s33v 
read(1l,rec=nn)s33w 
read(12,rec=nn)d1u 
read(l3,rec=nn)d2u 
read(l4,rec-nn)d3u 
read(l5,rec•nn)d2v 
read(16,rec=nn)d3v 
read(17,rec=nn)d1w 
read(18,rec=nn)d2w 
read(l9,rec=nn)d3w 
sgl=O 
sg2=0 
sg3=0 
upb=O. 
vpb=O. 
wpb=O. 
xn=xo(j,l) 
yn 3 yo (j, i) 
zln=zol (j, i) 
z2n=-zol(j,i) 
jb=j-nelbw 
je=j+ne1bw 
if(jb.le.1) jb=l 
if(je.ge.nrow)je=nrow 
ib=i-nelbw 
ie=i+ne1bw 
if(ib.le.1) ib=1 
if(ie.ge.nco1) ie=ncol 
11=0 
do 510 js=jb,je 
do 510 is=ib,ie 
11=11+1 
mm=(js-l)*nco1+is 
sg1=sg1+s13u(1l)*dub(mm)+s23u(ll)*dvb(mm)+s33u(ll)*dwb(mm) 
sg2=sg2+s23u(1l)*dub(mm)+s23v(ll)*dvb(mm)+s33v(ll)*dwb(mm) 
sg3=sg3+s33u(1l)*dub(mm)+s33v(11)*dvb(mm)+s33w(1l)*dwb(mm) 
upb=upb+d1u(1l)*dub(mm)+d2u(11)*dvb(mm)+d1w(l1)*dwb(mm) 
vpb=vpb+d2u(1l)*dub(mm)+d2v(l1)*dvb(mm)+d2w(l1)*dwb(mm) 
wpb=wpb+d3u(ll)*dub(mm)+d3v(l1)*dvb(mm)+d3w(ll)*dwb(mm) 

510 continue 
upos=upb*cond 
vpos=-vpb*cond 
WpOS'-"Wpb*cond 
uney=upos+dub(nn) 

• 

3 

vneg=vpos+dvb(nn) 
wneg=wpos+dwb(nn) 
t1=sg1*cons 
t2=sg2*cons 
t3=sg3*cons 
sig1=tl+po1 
sig2=t2+po2 
sig3=t3+po3 
the(j,i)=thick(j,i)-dwb(nn) 
thx=thx+thick(j,i)-dwb(nn) 
tho=tho+thick(j,i) 

500 write (2, 6039) j, i, kode (j, i), the ( j, i), thick (j, i), upos, vpos, wpos, 
dub(nn),dvb(nn),dwb(nn),sig1,sig2,s1g3 

write(2,4002)kcon1 
4002 format( ' numbers of contact point before loading increases • ' 

'i6) 
write(2,4003)kcon 

4003 format( ' increased numbers of contact point after loading =' 
'i6) 

nkc=nco1*nrow-kcon1-kcon 
thxo=(tho-thx)/(ncol*nrow-kcon1) 
if(nkc.eq.O)then 
ttt=O 
go to 501 
end if 
ttt=thx/nkc 

501 write(2,4001)thxo,ttt,tho,thx 
4001 format ( ' average closure = ', e16. 6, I 

average aperture= ',e16.6,/ 
' void volumn before loading= ',e16.6,/ 
' void volumn after loading = ',e16.6) 

xm1=tho/(nco1*nrow) 
xm2=thx/(ncol*nrow) 
stl=O 
st2=0 
do 505 j=1,nrow 
do 50) 1•1, ncol 
st2=st2+(the(j,i)-xm2)**2 

505 st1=st1+(thick(j,i)-xm1)**2 
st1=sqrt(st1/(nrow*ncol-1)) 
st2=sqrt(st2/(nrow*ncol-1)) 
write(2,506)xm1,st1 

506 format(' xmean before loading =',f10.4,/, 
' st.d. before loading =',f10.4) 

write(2,507)xm2,st2 
507 format(' xmean after loading=' ,f10.4,/, 

' st.d. after loading =' ,f10.4) 
if(nosp.eq.O) go to 845 
write(2,6050) nosp 
call outf (nosp) 

5000 format (1h1) 
5001 format(80h 

5005 format(f8.2,e12.2) 
5009 format(3f10.0) 
5011 format(f8.2,4i8) 
5013 format(3f12.0) 
5023 format(f8.2,4i8) 
6001 format(/' poissons ratio of rock mass 

/' modulus of elasticity of rock mass 
6011 format( /' width of blocks 

no. of blocks along xl axis 
no. of blocks alorty x2 axis 

6023 1ormat(//' over relaxation tactor 

-',!15.2 
-',fl5.2) 

_,' f8.2// 
_,,iS// 
_,' 18/) 

_, 'f8.2// 

....... 
-J 
0 
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'maximum no. of iterations specified -',i8) 
6025 format{/' this is computer run no.' ,i3,' for this problem,') 
6038 format ( /' j i cd the thick disp-x 

disp-y disp-z ride-x ride-y closure s 
.ig13 sig23 sig33'/) 

c 6039 format(6e10.2,3f6.2) 
c 6039 format(313,2f5.2,3e12.4,3f7.2) 
c 6039 format(3i3,f6.3,6e12.4,3f8.3) 

6039 format(3i3,8e12.4,3f6.2) 
6040 format{/' no. of iterations completed in all the runs =',i8) 
6042 format{/' insufficient accuracy -',i4,' elements affected in ri 

.de along x1 axis'/' ',i4,' elements affec 
• ted in ride along x2 axis'/' ', i4,' eleme 
.nts affected in closure') 

6043 format{/' maximum error in the ride and closure values ',f10.7) 
6050 format{//' displacements and stresses at off-seam elements.'// 

total no. of off-seam planes -',i4) 
845 nn=nrow•ncol 

do 16 j•1, nrow 
16 write(2,18) (kode(j,1),i=1,ncol)· 
18 format(30i2) 

stop 
end 
subroutine coeff(zt) 
common/rk7/rw,cw,seg,cf01,cf02,cf03,cf04,cf05,cf06, 

. cf07,cf08,cf09,cf10,cf11,cf12,cf13,cf14,cf15, 
cf16,cf17,cf18,cf19,zmn 

data pi/3.1415926535897/ 
fO(p,r)=alog(r-p) 
fl (p, q, r) = {p*q) I ( (r**2-q**2) *r) 
f2(p,q,r,t)=q*t*{p**2*{r**2+p**2)-zt**2*{r**2-p**2)) 
f3 (p, q, r, t) =p*q*zt*t* (3. *r**2-q**2) 
rw1=rw-seg 
rw2=rw+seg 
cwl=cw-seg 
cw2=cw+seg 
r1=sqrt (rwl**2+cw1**2+zt**2) 
r2-sqrt(rw2**2+cw2**2+zt**2) 
r3=sqrt (rw1**2+cw2**2+zt**2) 
r4=sqrt (rw2**2+cw1**2+zt**2) 
tl=1./{(rw1**2+zt**2)**2*r1**3) 
t2=1./((rw2**2+zt**2)**2*r2**3) 
t3=1./((rw1**2+zt**2)**2*r3**3) 
t4=1./((rw2**2+zt**2)**2*r4**3) 
cf01=fO(cw2,r3)+fO(cw1,r4)-f0(cw1,rl)-f0(cw2,r2) 
cf02=fO(rw1,r3)+fO(rw2,r4)-fO(rw1,rl)-f0(rw2,r2) 
if(zt.ne.O) go to 145 
cf03=0. 
if(abs(rw) .le.seg.and.abs(cw) .le.seg)cf03=-2*pi 
<Jotol46 

14~ ct03•atan(rw1*cw2/(r3*zt))+atan(rw2•cwl/(r4*zt)) 
-atan(rw1*cw1/(r1*zt))-atan(rw2*cw2/(r2*zt)) 

if(zmn.eq.O.)cf03=0 
146 cf04=fl(rw1,cw2,r3)+fl(rw2,cwl,r4)-fl(rwl,cwl,rl)-fl(rw2,cw2,r2) 

cf05=1./rl+l./r2-l./r3-1./r4 
cf06=fl (zt, cw2, r3) +fl (zt, cwl, r4) -fl (zt, cwl, rl) -fl (zt, cw2, r2) 
cf07=fl(cw2,rwl,r3)+fl(cwl,rw2,r4)-fl(cwl,rwl,r1)-fl(cw2,rw2,r2) 
cf08=fl (zt, rw1, r3) +fl (zt, rw2, r4) -fl (zt, rw1, rl) -fl (zt, rw2, r2) 
cf09=-cf04-cf07 
cf10=f2(rw1,cw1,r1,t1)+f2(rw2,cw2,r2,t2)-f2(rw1,cw2,r3,t3) 

-f2(rw2,cw1,r4,t4\ 
cf11=rw1/r3**3+rw2/r4'*3-rw1/r1**3-rw2/r2**3 
cf12=f3(rw1,cw1,r1,t1)+f3(rw2,cw2,r2,t2)-f3(rw1,cw2,~3,t3) 

-f3 (rw2,c·,il,r4,t4) 

c 

,, 
, .. 

...... 

cf13=cw2/r3**3+cw1/r4**3-cw1/r1**3-cw2/r2**3 
cf14=zt*(1./r3**3+1./r4**3-1./r1**3-1./r2**3) 
cf15=-cfl0-cfl3 

~ 

tl=1./((cw1**2+zt**2)**2*r1**3) 
t2=l./((cw2**2+zt**2)**2*r2**3) 
t3=1./((cw2**2+zt**2)**2*r3**3) 
t4=1./((cw1**2+zt**2)**2*r4**3) 
cf16=f2(cw1,rw1,rl,t1)+f2(cw2,rw2,r2,t2)-f2(cw2,rw1,r3,t3) 

-f2(cw1,rw2,r4,t4) 
cfl7=f3(cw1,rw1,r1,t1)+f3(cw2,rw2,r2,t2)-f3(cw2,rw1,r3,t3) 

-f3(cw1,rw2,r4,t4) 
cfl8=-cfl6-cfl1 
cfl9=-cf12-cfl7 
return 
end 
subroutine outf(nop) 
common/rk9/mate(9),os11u(37),os12u(37),os13u(J7), 

os22u(37),os23u(37),os33u(37),os11v(37),os12v(37), 
os22v(37),os23v(37),os33v(37),os11w(37),os12w(37), 

os22w(37),os33w(37),od1u(37),od2u(37),od3u(37), 
od2v(37),od3v(37),od1w(37),od2w(37),od3w(37) 

common/rko/v,vl,v2,e,cons,cond,con 
common/rkl/dub(l),dvb(1),dwb(1),kode(30,1) 
common/rk3/nrow,ncol,nbxe,bw,hbw,zo 

, xo (30, 1), yo (30, 1), zol (30, 1), thick (30, 1), en (3, 3) 
common/rk7/rw,cw,seg,cf01,cf02,cf03,cf04,cf05,cf06, 

• cf07,cf08,cf09,cf10,cfl1,cf12,cf13,cf14,cf15, 
cf16,cf17,cfl8,cf19 

do 350 np=1,nop 
read(l,5005)xop,yop,zop,bl,b2,n1,n2 
read(l,5006)enlx,en2x,en3x,enly,en2y,en3y,enlz,en2z,en3z 
write(2,6007)np 
write(2,6008)xop,yop,zop,bl,b2,nl,n2 
write(2,6009)enlx,en2x,en3x,enly,en2y,en3y,enlz,en2z,en3z 
write (2, 6015) 
h1=b1/2. 
h2=b2/2. 
n12=n1*n2 
hrw1~h1*(en1x•en(1,1)+en1y*en(1,2)+enlz*en(1,3)) 
hcw1=h1*(en1x*en(2,1)+en1y*en(2,2)+en1z*en(2,3)) 
hzt1=h1*(en1x*en(3,l)+en1y*en(3,2)+enlz*en(3,3)) 
hrw2=h2*(en2x*en(l,1)+en2y*en(1,2)ten2z*en(1,3)) 
hcw2=h2*(en2x•en(2,1)+en2y*en(2,2)+en2z*en(2,3)) 
hzt2=h2*(en2x*en(3,1)+en2y*en(3,2)+en2z*en(3,3)) 
do 335 jp=1,n1 
ej=float (2*jp-1) 
do 335 ip=1,n2 
ei=float ( 2* ip-1) 
num=-.O 
mum~1 

x=xop-xo(1,1) 
y=yop-yo(1,1) 
z=zop-zo 

z=zop-zo (1, 1) 
rwp=x•en(1,1)+y*en(l,2)+z*en(1,3)+ej*hrw1+ei*hrw2 
cwp=x*en(2,1)+y*en(2,2)+z*en(2,3)+ej*hcw1+ei*hcw2 
ztp=x*en(3,1)+y*en(3,2)+z*en(3,3)tej*hzt1+ei*hzt2 
zt=ztp 
sllpe=O. 
s12pe=O. 
sl3pe=O. 
s22pe=O. 
s23pe=O. 
s33pe=O. 

....... 
-...I 
....... 
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c 

upe=O. 
vpe=O. 
wpe=O. 
do 150 js=l,nrow 
rwb=rwp-2*(js-l)*hbw 
do 150 is=l,ncol 
cwb=cwp-2*(is-1)*hbw 
zt1=zt+0.5*thick(js,is) 
zt2=zt-0.5*thick(js,is) 
seg=hbw 
num=num+1 
call coeff(ztl) 
mum=mum+1 

142 osl1u(num)=os1lu(num)+zt*cfl0-2.*cf06 
os12u(num)=os12u(num)+zt*cfll-vl*cf08 
os13u(num)=os13u(num)+v*cf04-vl*cf09+zt*cf12 
os22u(num)~os22u(num)+zt*cf13-2.*v*cf06 
os23u(num)~os23u(num)+v*cf05+zt*cf14 
os33u(num)~os33u(num)+zt*cf15 

osl1v(num)-os11v(num)+zt*cf11-2.*v*cf08 
os12v(num)=os12v(num)+zt*cf13-v1*cf06 
os22v(num)=os22v(num)+zt*cf16-2.*cf08 
os23v(num)=os23v(num)+v*cf07-v1*cf09+zt*cfl7 
os33v(num)=os33v(num)+zt*cf18 
os11w(num)=os11w(num)+v2*cf04-2.*v*cf09+zt*cf12 
os12w(num)=osl2w(num)+v2*cf05+zt*cf14 
os22w(num)=os22w(num)+v2*cf07-2.*v*cf09+zt*cf17 
os33w(num)=os33w(num)-cf09+zt*cf19 

od1u(num)=od1u(num)+2.*v1*cf03-zt*cf04 
od2u(num)=od2u(num)-zt*cf05 
od3u(num)=od3u(num)+v2*cf01-zt*cf06 
od2v(num)=od2v(num)+2.*v1*cf03-zt*cf07 
od3v(num)=od3v(num)+v2*cf02-zt*cf08 
od1w(num)=od1w(num)-v2*cf01-zt•cf06 
od2w(num)=od2w(num)-v2*cf02-zt*cf08 
od3w(num)=od3w(num)+2.*v1*cf03-zt*cf09 
if(mum.ge.2)go to 141 
call coeff (zt2) 
mum=mwn+l 
go to 142 

141 s11pe=sl1pe+os11u(num)*dub(num)+os1lv(num)*dvb(num)+ 
osl1w(num)*dwb(num) 

s12pe=s12pe+os12u(num)*dub(num)+os12v(num)*dvb(num)+ 
os12w(num)*dwb(num) 

s13pe=s13pe+os13u(num)*dub(num)+os23u(num)*dvb(num)+ 
os33u(num)*dwb(num) 

s22pe=s22pe+os22u(num)*dub(num)+os22v(num)*dvb(num)+ 
os22w(num)*dwb(num) 

s23pe=s23pe+os23u(num)*dub(num)+os23v(num)*dvb(num)+ 
os33v(num)*dwb(num) 

s33pe=s33pe+os33u(num)*dub(num)+os33v(num)*dvb(num)+ 
os33w(num)*dwb(num) 

upe=upe+od1u(num)*dub(num)+od2u(num)*dvb(num)+ 
od1w(num)*dwb(num) 

vpe=vpe+od2u(num)*dub(num)+od2v(num)*dvb(num)+ 
od2w(num)*dwb(num) 

wpe=wpe+od3u(num)*dub(num)+od3v(num)*dvb(num)+ 
od3w(num)*dwb(num) 

150 continue 
x~xop+ej*enlx*hl+ei•en2x*h2 

y=yop+cj*en1y'hl+ci•en2y'h2 
z=zop+ej*enlz*hl+ei*P 12Z*h2 
ux= (en (1, 1) *upe+en (2,.) *vpe+en (3, 1) 'wpe) *cond 

~ .. 

5 

vy=(en(1,2)*upe+en(2,2)*vpe+en(3,2)*wpe)*cond 
wz=(en(1,3)*upe+en(2,3)*vpe+en(3,3)*wpe)*cond 
sxx=(en(1,1)**2*s11pe+2.*en(1,1)*en(2,1)*s12pe+2.*en(1,1)*en(3,1)* 

s13pe+en(2,1)**2*s22pe+2.*en(2,1)*en(3,1)*s23pe+en(3,1)**2*s33pe 
)*cons+a11-b11*z 

sxy=(en(1,1)*en(1,2)*s1lpe+(en(1,1)*en(2,2)+en(2,1)*en(1,2))*s12pe 
+(en(1,1)*en(3,2)+en(3,1)*en(1,2))*s13pe+en(2,l)*en(2,2)*s22pe+ 

(en(2,1)*en(3,2)+en(3,1)*en(2,2))*s23pe+en(3,1)*en(3,2)*s33pe 
)*cons+al2-bl2*z 

sxz=(en(l,l)*en(1,3)*s11pe+(en(1,1)*en(2,3)+en(2,1)*en(1,3))*s12pe 
+(en(1,1)*en(3,3)+en(3,1)*en(1,3))*s13pe+en(2,1)*en(2,3)*s22pe+ 

(en(2,1)*en(3,3)+en(3,l)*en(2,3))*s23pe+en(3,l)*en(3,3)*s33pe 
)*cons+a13-bl3*z 

syy=(en(l,2)**2*sl1pe+2.*en(l,2)*en(2,2)*sl2pe+2.*en(l,l)*en(3,2)* 
s13pe+en(2,2)**2*s22pe+2.*en(2,2)*en(3,2)*s23pe+en(3,2)**2*s33pe 

)*cons+a22-b22*z 
syz=(en(1,2)*en(1,3)*s11pe+(en(1,2)*en(2,3)+en(2,3)*en(l,3))*s12pe 

+(en(l,2)*en(3,3)+en(3,2)*en(l,3))*s13pe+en(2,2)*en(2,3)*s22pe+ 
(en(2,2)*en(3,3)+en(3,2)*en(2,3))*s23pe+en(3,2)*en(3,3)*s33pe 
)*cons+a23-b23*z 

szz=(en(l,3)**2*s11pe+2.*en(1,3)*en(2,3)*sl2pe+2.*en(l,3)*en(3,3)* 
s13pe+en(2,3)**2*s22pe+2.*en(2,3)*en(3,3)*s23pe+en(3,3)**2*s33pe 

)*cons+a33-b33*z 
write(2,6010)np,ip,ip,x,y,z,ux,vy,wz,sxx,sxy,sxz,syy,syz,szz 

335 continue 
continue 
format(5f12.3;2i8) 
format (9f8. 5) 

_,, i4) 

350 
5005 
5006 
6007 
6008 

format(//' off-seam plane no. 
format(/' location of local origin 

grid origin at 
no. of blocks'/ 

and grid-work details-'// 
block widths 

xop 
nl 

yop 
n2' ,/5fl2.3,2i8) 

zop bl 

6009 format(/' 
en2x 

orientation of the off-seam plane -'//' 
en3x enly en2y 

en1z 
6015 format(//' 

uz 
szz , /) 

en2z 
n j 

sxx 

en3z' /, 9fl2.5) 
X y 

sxy sxz 

6010 format(3i4,3f9.2,3fl0.6,6fl0.2) 
return 
end 

" ~· 

z 
syy 

b2 

enlx 
en3y 

ux 
syz 

uy 

....... 
-....1 
N 
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APPENDIX B 

FLOW: A Computer Program For Evaluating Flow Through 

A Fracture With Partial Contact 

The program FLOW evaluates the flow of Newtonian fluid through a fracture 

containing contact· areas of various shapes, based on the mathematical formulations 

given in Chapter 3. The main program controls the logic calling sequence of subrou

tines to read the input data, to initialize the parameters, to set up a system of linear 

algebraic equations, to solve for the unknown pressure P and fluid flux q at boundary 

elements by Gauss elimination method, and to write the output data. FLOW includes 

following subroutines, 

INPUT 

FMAT 

SLNPD 

INTER 

OUTPT 

Reads the program input. 

Forms the two matrices Hand G (Eq. 3-34) and rearranges them 

according to the boundary conditions to form the matrix A of 

Equation (Eq. 3-35) . 

. Solves the system of equations by Gauss elimination. 

Reorders the unknown P and q, and computers the values ot the 

pressure at the selected internal points (values of q are not com

puted here but could easily be included). 

Outputs the results. 



1. Description of FLOW Input Variables 

bw 

nrow 

ncol 

1 

id(i,j) 

ms 

mt 

side length of the square boundary element. 

number of elements along x axis. 

number of elements along y axis. 

number of internal points where the function is calculated. 

contact area index of the element located at ith row and jth column, 

if id(i,j)=O contact area, 

if id(i,j) > = 0 void space. 

number of different contact area surfaces (archipelagoes). 

number of boundary elements of each archipelagoes. 

174 

idm(k) 

nkk, nii 

number of boundary elements which coincide with those of outer boundary. 

identifiers of boundary element locations (row and column). 

ndd identifier of the side of the element which coincides with the outer boun-

dary: 

ndd=l top side of the element coincides with the outer boundary, 

ndd=2 right side of the element coincides with the outer boundary, 

ndd=3 bottom side of the element coincides with the outer boundary, 

ndd=4 left side of the element coincides with the outer boundary. 

kode identifer of boundary conditions: 

kode=O if essential boundary condition P =constant is prescribed. 

kode=l if natural boundary condition q=dP /CJn is prescribed. 

fi prescribed values of boundary conditions 

nc(l) number of elements included in the outer boundary. 

,, 



2. ROUGH Input Variables and Formats 

Variable 

title 

nrow, nco I, L, bw 

(id(i,j), j= l,ncol) 

ms 

mt, idm(i) 

nkk, nii, (ndd(i), i=1,3) 

(kode(i), fi(i), i=l,nc(l)) 

Format 

free 

(3i5, f6.2) 

175 

(30i2), nrow cards need to be read. 

(i5) 

(2i10) 

(5i5) 

(8(i3,f6.0)) 
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c 

c 

c 

program flow.f 
common n,l,nc(100),m,nrow 
dimension x (701), y (701), xm (700), ym (700), fi (700), dfi (700) 
dimension g(700),h(700) 
dimension kode(700) 
dimension cx(36),cy(36),sol(36) 
open (unit~1,file='inflow' ,status=' old') 
open (unit=2,file='otflow' ,status='new') 
open (unit=8,status='scratch' ,form=' unformatted' ,access='direct', 

recl=2800) 
open (unit=9,status='scratch' ,form=' unformatted' ,access='direct', 

recl=2800) 
input(cx,cy,x,y,kode,fi) 
fmat(x,y,xm,ym,g,h,fi,dfi,kode) 
slnpd (dfi, n) 
inter(fi,dfi,kode,cx,cy,x,y,sol) 
output (xm, ym, f i, df i, kode, ex, cy, sol) 

call 
call 
call 
call 
call 
stop 
end 

subroutine input(cx,cy,x,y,kode,fi) 
common n,l,nc(100),m,nrow 
dimension x (701), y (701), fi (700), cy (36), ex (36), kode (700), idm (100) 
dimension title(18),id(32,32),ng(32,32),nk(100),ni(100),ndd(3) 
dimension xx(701) ,yy(70l),xt(70l),yt(70l),xs(700),ys(700) 
dimension cangle(100) 
dimension ra(10),rb(10),centx(10),centy(10),iseg(50),nc1(100) 
write(2,100) 

100 format(' ',120('*')) 
read(1,150) title 

150 format(18a4) 
write(2,250)title 

250 format(25x,18a4) 
read(1,200)nrow,ncol,l,bw 
write(2,200)nrow,ncol,l,bw 

200 format(3i5,f6.2) 
mn•O 
do 31 i•1,ncol 
mn=mn+1 
x(mn)=bw*(i-1) 

31 y(mn)~O. 
do 32 i~1,nrow 
mn=mn+1 
x(mn)=bw*ncol 

32 y(mn)=bw*(i-1) 
do 33 i=1,ncol 
mn=mn+1 
x(mn)=bw*(ncol-1+1) 

33 y(mn)=bw*nrow 
do 34 i=1,nrow 
mn=mn+1 
x(mn)=O. 

34 y(mn)=bw*(nrow-i+1) 
nc(1)=mn 

do 802 ims=1,nrow 
read (1, 801) (id (ims, jms), jms=1, neal) 

802 continue 
801 format(32i2) 

do 808 i~1,nrow 
do 808 j=1,ncol 

808 if(id(i,j).ge.3) id(i,j)-0. 
do 609 ims=1,nrow 
write (2, 801) (id(ims, jms), jms=1,ncol) 

(" .-.::· 

609 continue 
read(l,110)ixyz,iuv 

110 format (2i5) 
c if(ixyz.ne.O)go to 115 

c 
c 
c 
c 
c 
c 
c 
c 
c 

m=1 
n=mn 

go to 863 
115 do 113 i=1,ixyz 

read(1,112)iu,iv 
id(iu,iv)=1 
write(2,114)iu,iv,id(iu,iv) 

113 continue 
if(iuv.eq.O)go to 863 

114 format(' iu =', 15,' iv =', i5,' id (iu, iv) =', i5) 
112 format (2i5) 

do 803 ii=1,nrow 
do 803 jj•1,ncol 
ng(ii,jj)•O 
if(id(ii,jj).ne.O)go to 803 
if(ii.eq.nrow)go to 804 
if(id(ii+1,jj).eq.O)ng(ii,jj)=ng(ii,jj)+1 

804 if(jj.eq.1)go to 805 
if(id(ii,jj-1) .eq.O)ng(ii,jj)=ng(ii,jj)+1 

805 if(ii.eq.1)go to 806 
if(id(ii-l,jj).eq.O)ng(ii,jj)~ng(ii,jj)+1 

806 if(jj.eq.ncol)go to 803 
if(id(ii,jj+1).eq.O)ng(ii,jj)=ng(ii,jj)+l 

803 continue 
c write (2, 777) ((ng (11, j j), j j~1, ncol) , 11=1, nrow) 
c 777 format(5i10) 

jk=O 
do 809 ii•1,nrow 
do 809 jj=1,ncol 
if(id(ii,jj).ne.O)go to 809 
if(ng(ii,jj).eq.O)then 
jk=jk+l 
nk(jk)•ii 
ni(jk)-jj 
end if 

809 continue 
nn=2* (nrow+ncol) 
na=O 
nx=nrow*4 
if(jk.eq.O)go to 807 
do 811 ijk~1, jk 
ncs=ni (ijk) 
nrt~nk (ijk) 
if(ncs.eq.1.and.nrt.eq.1)go to 62 
if(nrt.eq.1.and.ncs.eq.ncol)go to 63 
if(nrt.eq.nrow.and.ncs.eq.ncol)go to 64 
if(nrt.eq.nrow.and.ncs.eq.1)go to 65 
na=na+1 
idm(na)=O 
if(ncs.eq.1.or.ncs.eq.ncol)idm(na)=2 
if(nrt.eq.1.or.nrt.eq.nrow)idm(na)=2 
mn1=nn+4*(na-1)+1 
mn2=nn+4*(na-1)+2 
mn3=nn+4* (na-1)+3 
mn4=nn+4*(na-1)+4 
x(mnl)~(ncs-1)*bw 
y(mn1)=(nrt-l)*bw 
x(mn2)•(ncs-l)*bw 
y(mn2)~nrt*bw 

x(mn3)~ncs*bw 

--..l 
0'\ 
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y(mn3)"nrt*bw 
x(mn4)•ncs*bw 
y(mn4)•(nrt-1) *bw 
go to 811 

62 x(1)=ncs*bw 
y (1) =nrt *bw 
go to 811 

63 x(ncol+1)=(ncs-1)*bw 
y(ncol+1)=nrt*bw 
go to 811 

64 x(nrow+nco1+1)=(ncs-1)*bw 
y(nrow+nco1+1)=(nrt-1)*bw 
go to 811 

65 x(3*nrow+1)•ncs*bw 
y(3*nrow+1)•(nrt-1)*bw 

811 continue 
do 813 k•1,jk+1 
nc (1) =nx 

813 nc(k)=nc(1)+4*(k-1) 
n=4*(nrow+jk) 

c wrlte(2, 900) (x(1) ,y(1) ,1=nx+1,n) 
c 900 format (2!16.2) 

807 m1•na 
nn1•nx+4*m1 
do 812 11•1,nrow 
do 812 jj•1,ncol 
if(ng(ii,jj).eq.O)go to 812 
if(ng(ii, jj) .gt.1)go to 812 
1f(1d(11,jj).ne.O)go to 812 
nrr=ng(11,jj)+ng(11,jj+1) 
'ncc=ng(1l,jj)+ng(11+1,jj) 
if(nrr.eq.2)then 
id(ii,jj)=-1 
id(ii,jj+1)--1 
1!(1i.eq.1.and.jj.eq.1)then 
x (1) =jj*bw 
y(l)=il*bw 
x(2)•(jj+l)*bw 
y (2) =il*bw 
go to 812 
end if 
1f(11.eq.1.and.jj+1.eq.ncol)then 
x(ncol)=(jj-1)*bw 
y (nco1) •ii*bw 
x (ncol+ll •jj*bw 
y(nco1+1)•li*bw 
go to 812 
end if 
1!(11.eq.nrow.and.jj.eq.l)then 
nabc=2*nrow+ncol 
x(nabc)•(jj+l)*bw 
y(nabc)-(11-l)*bw 
x(nabc+l)=jj*bw 
y(nabc+l)=(ii-l)*bw 
go to 812 
end if 
1f(11.eq.nrow.and.jj+l.eq.ncol)then 
nabc=nrow+nco1 
x(nabc+1)=jj*bw 
y(nabc+l)=(ii-1)*bw 
x(nabc+2)=(jj-l)*bw 
y(nabc+2)•(11-l)*bw 
go .t.o, 812_11'·. H •il•!;" , .. , 

end if 

2 

n,,...,.na+l 
idm(na)=O 
1f(il.eq.1.or.11.eq.nrow)1dm(na)=3 

_ if(jj.eq.1.or.jj+1.eq.ncol)ldm(na)=2 
mn1=nn1+6*(na-ml-1)+1 
mn2=nn1+6*(na-m1-1)+2 
mn3=nn1+6*(na-ml-1)+3 
mn4=nn1+6*(na-m1-1)+4 
mn5=nn1+6*(na-m1-1)+5 
mn6=nnl+6*(na-m1-1)+6 
x(mnl)=(jj-1)*bw 
y(mn1)=(ii-1) *bw 
x(mn2)=(jJ-1)*bw 
y (mn2) =ii*bw 
x(mn3)=jj*bw 
y(mn3)=i1*bw 
x(mn4)=(jj+1)*bw 
y(mn4)=li*bw 
x(mn5)=(jj+1)*bw 
y(mn5)=(ii-1)*bw 
x(mn6)=jj*bw 
y(mn6)=(1i-1)*bw 
go to 812 
end if 
lf(ncc.eq.2)then 
1d(ii,jj)=-1 
id (11+1, jj) =-1 
if(ii.eq.1.and.jj.eq.1)then 
x (1) =jj*bw 
y(1)=1i*bw 
x(nx)=jj*bw 
y(nx)=(ii+l)*bw 
go to 812 
end if 
if(ii.eq.1.and.jj.eq.nco1)then 
x(ncol+1)=(jj-1)*bw 
y (ncol+1) =1i*bw 
x(ncol+2)=(jj-1)*bw 
y(ncol+2)=(11+1)*bw 
go to 812 
end if 
if(1i+1.eq.nrow.and.jj.eq.1)then 
nabc=2*nrow+nco1 
x(nabc+1)=jj*bw 
y (nabc+1) =li*bw 
x(nabc+2)=jj*bw 
y(nabc+2)=(11-1)*bw 
go to 812 
end if 
if(ii+1.eq.nrow.and.jj.eq.nco1)then 
nabc=nrow+nco1 
x(nabc)=(jj-1)*bw 
y(nabc)=(ii-1)*bw 
x(nabc+1)=(jj-l)*bw 
y (nabc+1) =ii*bw 
go to 812 
end if 
na=na+1 
idm(na)=O 
if(jj.eq.l.or.jj.eq.ncol)idm(na)=3 
lf(ii.eq.1.or.1i+1.eq.nrow)1dm(na)=2 
mn1=nn1+6*(na-ml-1)+1 

0 mn2=nn,l+6*.(na-l'!l-1) +2, 
mn3=nn1+6*(na-m1-1)+3 

j •.. 
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mn4=nn1+6* (na-m1-1)+4 
mn5=nn1+6*(na-m1-1)+5 
mn6=nn1+6*(na-m1-1)+6 
x(mn1)=(jj-1)*bw 
y(mn1)=(11-1)*bw 
x(mn2)=(jj-1)*bw 
y(mn2)=ii*bw 
x(mn3)=(jj-1)*bw 
y(mn3)•(11+1)*bw 
x(mn4)=jj*bw 
y(mn4)=(ii+1)*bw 
x(mnS)=jj*bw 
y (mnS) =11 *bw 
x(mn6)=jj*bw 
y(mn6)=(11-1)*bw 
end if 

812 continue 
m=na+i 
if(m.eq.1) go to 863 
do 37 1=1,m 
if(i.gt.m1+1)go to 42 
nc (1) =nc (1) + (1-1) *4 
go to 37 

42 nc(i)=nc(1)+m1*4+(i-m1-1)*6 
37 continue 

863 nq~nc (m) 
n=nq 

c write(2, 998)m, (nc(k) ,k=1,m) 

3 

c 998 format(/2x,'number of different surfaces=' ,i3/2x,'last nodes in 
c .these surfaces',5(2x,i3)) 

mp=O 
read (1,850)ms 

850 format(iS) 
do 864 1=1,ms 
read(1,851)mt,idm(m+i-1) 

851 format (2110) 
nrmax=O 
nrmin=nrow 
ncmax=O 
ncmin=ncol 
do 860 j=1,mt 
read (1, 861) nkk, nii, (ndd (is), is=1, 3) 

861 format(SiS) 
if(nkk.ge.nrmax)nrmax=nkk 
if(nkk.le.nrmin)nrmin=nkk 
if(nii.ge.ncmax)ncmax=nii 
if(nii.le.ncmin)ncmin=nii 
do 860 ist~1,3 
if(ndd(ist) .eq.O)go to 860 
if(ndd(ist) .eq.1)then 
nq=nq+l 
mp=mp+1 
x(nq)=(nii-1)*bw 
y(nq)=nkk*bw 
go to 860 
end if 
if(ndd(ist) .eq.2)then 
nq=nq+l 
mp=mp+1 
x (nq) =nii *bw 
Y(nq)=nkk*bw 
go to 860 
end if 
if(ndd(ist) .eq.3)thcn 

( .._ .. 

nq=nq+l 
mp=mp+l 
x(nq)=nii*bw 
y(nq)=(nkk-l)*bw 
go to 860 
end if 
if(ndd(ist) .eq.4)then 
nq=nq+1 
mp=mp+l 
x(nq)=(nii-l)*bw 
y(nq)=(nkk-1)*bw 
end if 

860 continue 
nc(m+i)=nc(m)+mp 

864 continue 
n=nc(m+ms) 
m=rn+ms 
go to 40 

40 do 49 i=1,n 
xt(i)=x(i) 

49 yt(i)=y(i) 
m2=m-1 
if (m.eq.1)go to 50 
do 70 k-l,m2 
nk2•nc(k+l) 
nkl-nc(k)+l 
mt=nk2-nc(k)-idm(k) 
mtl=mt+idm(k) 
if(k.eq.l)nkk=nc(l) 
do 73 is=l,mt1 
nks=nc(k)+is 
xs(is)=x(nks) 

73 ys(is)=y(nks) 
if(idm(k) .eq.O)go to 70 
mm=O 
idp=O 
do 71 i-1,nkk 
mm=mm+l 
if(idm(k) .le.2.or.k.eq.1)go to 77 

77 xx(mm)=x(i) 
yy(mm)=y(i) 
if(idp.eq.1)then 
xx(mm)=x(i+idm(k)-1) 
yy(mm)=y(i+idm(k)-1) 
end if 
if(idm(k) .eq.O)go to 71 
do 74 it=1,mtl 
iss=it-idm (k) +1 
if(iss.le.O)iss=iss+mt1 
ixm=i+idm(k)-1 
if(ixm.gt.nkk)ixm=ixm-nkk 
if(xs(it) .eq.x(i) .and.xs(iss) .eq.x(ixm) .and. 

ys (it) .eq.y(i) .and.ys(iss) .eq.y(ixm) )goto 88 
go to 74 

88 if(idm(k) .ge.3)then 
mt=mt+1 
idp=1 
end if 
do 72 j=1,mt 
mm=mm+1 
isj=it+j 
lt(isj.gt.mt1)isj•isj-mt1 
xx (mm) -xs (isj) 
!Y (mm) =ys (isj) 

~ 
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72 continue 
if(idm(k) .le.2)go to 71 

74 continue 
71 continue 

nkk~nkk+mt1-idm(k)-(idm(k)-2) 
do 78 i~1,nkk 
x (i) ~xx (i) 

78 y (i) ~yy (i) 
70 continue 

n6~nkk 

do 180 k~l,m-1 
if(idm(k) .ne.O)go to 180 
mt1~nc(k+l)-nc(k) 

if ( idm (k) .eq. 0) then 
do 181 ja1,mt1 
ncj=nc(k)+j 
n6=n6+1 
x (n6) =xt (ncj) 
y (n6) =yt (ncj) 

181 continue 
end if 

180 continue 
idd=1 
do 80 k=1,m-1 
mt1=nc(k+1)-nc(k) 
nc1 (1) =nkk 
if(idm(k).eq.O)then 
idd=idd+1 
nc1(idd)=nc1(idd-1)+mt1 
endif · 

BO continue 
m=idd 
do 182 k=1,m 

182 nc(k)=nc1(k) 
if(m)56,56,92 

92 write(2,99)m, (nc(k) ,k=1,m) 
99 format(/2x,'different surfaces~',i3/2x,'last nodes of 

.these surfaces' ,5(2x,i3)) 
n~nc (m) 

50 if(m.eq.1)n=nc(1) 
nnn1=2*(nrow+ncol)+1 
nnn=O 
mr~(nrmax-nrmin+1)/2 

mr1=nrmin-mr-2 
mr2=nrmax+mr+2 
mc~(ncmax-ncmin+1)/2 

mc1~ncmin-mc-2 

mc2=ncmax+mc+2 
56 1=1 

cx(1)=9.0 
cy ( 1) =9. 0 
write(2,300)n,l 

4 

300 format(//'data'//2x,'number of boundary elements=', 
.i3/2x,'number of internal points where the function is calculated 
.-'' i3) 

c write (2, 500) 
c 500 format(//2x,'coordinates of the extreme points of the boundary ele 
c .ments',//2x,'point',l2x,'x',18x,'y'} 

do 96 1=1,n 
96 write(2,97)i,x(i),y(i) 
97 format(i8,2f19.5) 

c write(2,800) 
c 800 format (//2x,'boundary conditions'//5x,'node' ,6x,'code', 
c .5x,'prescribed value') 

c 
c 
c 
c 

c 

c 

c 

j· 

do 20 i=1,nc(1) 
read (l, 900) kode (i), fi (i) 

20 write(2,950)i,kode(i),fi(i) 
20 continue 

read (1, 901) (kode(i),f1(i),i~l,nc(1)) 
ncll=nc (1) +1 
do 21 i=nc11,n 
kode(i)=1 

21 a (i) ~a. 
901 format(8(i3,f6.0)) 

return 
end 

subroutine fmat(x,y,xm,ym,g,h,fi,dfi,kode) 
common n,l,nc(100),m,nrow 
dimension x(1) 1 y(l) ,xm(1) ,ym(1) ,fi (1) ,dfi (1) 
dimension g(700),h(700) 
dimension kode(1) 
x(n+l)=x(1) 
y (n+l)=y(1) 
do 10 i=1,n 
xm(i)=(x(i)+x(i+1))/2 

10 ym(i)=(y(i)+y(i+1))/2 
if (n-1) 15, 15,12 

12 xm(nc(1))=(x(nc(1))+x(1))/2 
ym(nc(1))=(y(nc(1))+y(1))/2 
do 13 k=2,m 
xm(nc(k))=(x(nc(k))+x(nc(k-1)+1))/2 

13 ym(nc(k))=(y(nc(k))+y(nc(k-1)+1))/2 

15 do 31 i=1,n 
do 30 j=l,n 
h (j) =0. 
g(j)=O. 
if (m-1) 16, 16,17 

17 if(j-nc(l))l9,18,19 
18 kk=1 

go to 23 
19 do 22 k=2,m 

if(j-nc(k))22,21,22 
21 kk=nc(k-1)+1 

go to 23 
22 continue 
16 kk=j+1 
23 if(i-j)20,25,20 

i,' 

20 call inte(xm(i),ym(i),x(j),y(j),x(kk),y(kk),h(j),g(j)) 
go to 30 

25 call inlo(x(j),y(j),x(kk),y(kk),g(j)) 
h(j)=3.1415926 

30 continue 
write(8,rec=i)g 
write(9,rec=i)h 

31 continue 

do 51 i=l,n 
read(8,rec=i)g 
read(9,rec=i)h 
do 50 j=1,n 
if(kode(j))50,50,40 

40 ch=g(j) 
g (j) =-h (j) 
h(j)~-ch 

'iO continue 
write(8,rec=i)g 

--..J 
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c 

c 

c 

write(9,rec=i)h 
51 continue 

do 60 i=l,n 
dfi(i)=O. 
read(9,rec=i)h 
do 60 j=l, n 
dfi (i) =dfi (i) +h (j) *fi (j) 

60 continue 
return 
end 

subroutine inte(xp,yp,xl,yl,x2,y2,h,g) 
dimension xco(4),yco(4),gi(4),ome(4) 
gi (1) =0.86113631 
gi (2) =-gi (1) 

gi (3) =0. 33998104 
gi (4) =-gi (3) 
ome(1) =0.34785485 
orne (2) =orne (1) 
ome(3) =0.65214515 
orne (4) =orne (3) 
ax •(x2-xl)/2 
bx =(x2+x1)/2 
ay =(y2-yl)/2 
by -(y2+y1)/2 
it (ax) 10, 20,10 

10 ta=ay/ax 
dist=abs(ta*xp-yp+y1-ta*xl)/sqrt(ta**2+1) 
go to 30 

20 dist=abs(xp-x1) 
30 sig=(x1-xp)*(y2-yp)-(x2-xp)*(yl-yp) 

if(sig)31,32,32 
31 dist=-dist 
32 g=O. 

h=O. 
do 40 i=1,4 
xco(i)•ax•gi(l)+bx 
yco(i)•ay•gi(i)+by 
ra=sqrt ((xp-xco(i)) ••2+(yp-yco(i))**2) 
g=g+alog(1/ra)*ome(i)*sqrt(ax**2+ay**2) 

40 h=h-(dist*ome(i)*sqrt (ax**2+ay**2)/ra**2) 
return 
end 

subroutine inlo(x1,yl,x2,y2,g) 
ax=(x2-xl)/2 
ay=(y2-yl)/2 
sr=sqrt(ax**2+ay**2) 
g=2*sr* (alog(1/sr)+l) 
return 
end 

subroutine inter(fi,dfi,kode,cx,cy,x,y,sol) 
common n,l,nc(100),m 
dimension x(1),y(1),fi(1),dfi(l),kode(1) 
dimension cx(1),cy(1) ,sol(1) 
do 20 i=1,n 
if (!code (i)) 20,20,10 

10 ch=fi (i) 
fi (i) =dfi (i) 
dfi (i) =ch 

20 continue 
do 40 k=1,1 
sol (!c) -o. 

f,; ~ 

5 

c 

do 30 j=l,n 
if(m-1)28,28,22 

22 if(j-nc(1))24,23,24 
23 kk=l 

go to 29 
24 do 26 lk=2,m 

if(j-nc(lk))26,25,26 
25 kk=nc (lk-1) +1 

go to 29 
26 continue 
28 kk=j+l 
29 call inte(cx(k) ,cy(k) ,x(j),y(j) ,x(kk) ,y(kk) ,a, b) 
30 sol(k)=sol(k)+dfi(j)*b-fi(j)*a 
40 sol(k)=sol(k)/(2*3.1415926) 

return 
end 

subroutine output(xm,ym,fi,dfi,kode,cx,cy,sol) 
common n, 1, nc(lOO), m, nrow 
dimension xm(1),ym(l),fi(1),dfi(l) 
dimension kode(1) 
dimension cx(1),cy(1),sol(1),aper(32),dkf(32) 
write(2,100) 

100 format(' ',120('*')//1x,'results'//2x,'boundary nodes'//9x, 
.'x' ,18x,'y',l4x,'potential' ,5x,'potential derivative'/) 
nd-4 • nrow+l 

c do 10 i=nd,n 
do 10 i=1,n 

10 write (2, 200) xm(i) ,ym (i), fi (i), dfi (i) 
200 forrnat(4(5x,e14.7)) 

dff=O. 
c do 60 i=l,nrow 
c i2=2*nrow 
c 60 dff=dff+dfi(i2+i) 
c dff=dff/nrow 

kd=O 
do 60 i-1,n 
l f (kode (i) .eq.O .and. fi (1) .eq. 0.) then 
dff=dff+dfi (i) 
kd=kd+1 
dkf (kd) =dfi (i) 
end if 

60 continue 
dff=dff/nrow 
write(2,80)dff 

80 format(' average out flux =',e14.7) 
do 61 i=1,kd 
read(l,62)aper(i) 

61 continue 
62 format(9x,e12.4) 

c read(1,66) (aper(i),i=l,kd) 
c66 format(8f9.1) 
c do 67 i=1,kd 
c67 aper(i)=aper(i)*O.OOl 

qq=O. 
do 64 i=1,kd 

64 qq=qq+aper(kd-i+1)*dkf(i) 
write(2,63)qq 

63 format(' total flow rate=' ,f10.6) 
write(2,300) 

300 format(/ I, 2x, 'internal points', I /llx, 'x', 18x, 'y', 14x, 
.•potential' ,/) 
clo 20 k=l, l 

20 ~<rite (2, 400) ex (k), cy (!c), sol (k) 

~ ' 
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400 format (3 (5x,e14. 7)) 
c write(2,500) 
c 500 format(' ',120('*')) 

return 

c 
end 

subroutine slnpd(b,n) 
dimension ai (700), ale (700), b (700) 
n1mn-1 
do 100 k=1,n1 
read(B,rec=k) (ak(m),m=1,n) 
k1=K+1 
c=ak (I<) 

if(c.eq.O.)go to 100 
b(k)=b(k)/c 
do 9 j=k1,n 

9 ak(j)=ak(j)/c 
write (8, rec=k) (ak (m), m=1, n) 
do 10 i=k1,n 
read(B,rec=i) (ai(m),m=1,n) 
d=ai (k) 
do 11 j=k1,n 

11 ai(j)=ai(j)-d*ak(j) 
b(i)=b(i)-d*b(k) 
write(8,rec=i) (ai(m),m=1,n) 

10 continue 
100 continue 

read(8,rec=n) (ai(m),m=1,n) 
if(ai(n).eq.O.)go to 600 
b (n) =b (n) /ai (n) 

600 do 200 1=1,n1 
k=n-1 
read(B,rec=lc) (ai(m),m=1,n) 
1<1=1<+1 
do 200 j=k1,n 
b (I<) =b (k) -ai (j) *b (j) 

200 continue 
return 
end 
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