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DICHOTOMOUS BEHAVIOR OF CAPILLARY SURFACES 
IN ZERO GRAVITY 

Paul Concus and Robert Finn 

Abstract 

A mathematical procedure is described for determining the behavior of the free surface 
of a fluid in static equilibrium and partly filling a cylindrical container with cross-section 
of general form in zero gravity. Either of two qualitatively distinct situations must prevail, 
depending on geometry and contact angle. Several illustrative examples are discussed, and 
the procedure is applied in detail to a container with a rectangular section on which the 
corners have been rounded, thereby determining the effect of rounding on the "critical" 
contact angle that separates the two types of behavior. This last example is intended in 
part as a guide for application to general geometries. 

Introduction 

The behavior of an equilibrium capillary surface interface can change qualitatively 

and even dramatically when an external gravity field is allowed to become zero. A striking 

illustration of this kind of instability can be obtained using cylindrical capillary tubes of 

non-circular cross-section. Such change in behavior was predicted as a consequence of 

formal mathematical results established in [2]; the ideas were developed subsequently in, 

e. g., [6], [7], and Chapter 6 of [8]. 

In order to include the g = 0 case in a unified way, we restrict attention here to tubes 

closed at the bottom and of infinite height, oriented so that the gravity field, when it 

exists, is directed vertically downward (see Fig. 1 ). We refer to this case as g > 0. When 

g > 0, then for very general sections n-even with quite discontinuous boundary-it can be 

shown that for sufficiently large prescribed volume V of fluid, there exists a configuration of 

minimizing mechanical energy for which the free surface interfaceS lies above and projects 

simply onto n (that is, sis defined by a positive single-valued height u(x,y;g) above the 

base for every point (x, y)_ of n). In many situations solution surfaces continue to exist 

when g = 0 and are even achievable in the form u(x,y;O) = lim9 _.0 u(x,y;g). But it can 
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happen, even when n has smooth boundary, that no such surface can be found. When 

that happens, then regardless of the volume V, every physical configuration must uncover 

a portion of the base (i.e., fluid moves to the walls). This change in behavior occurs not 

only for fixed contact angle 1 and changing geometry, but it can also happen with a given 

geometry when 1 is varied. For the circular tube-on which attention has classically been 

focused-the former situation of a simply-projecting free surface S prevails for any 1, and 

in fact the limiting surface with g = 0 is even known explicitly as a spherical cap; that may 

explain partly the reason that the distinctions in behavior were not observed~arlier. The 

other situation can however be achieved with relatively modest changes of n (for example 

into a suitable ellipse) and thus is important to study. 

The predicted dichotomy in behavior for g = 0 has been verified experimentally; 

this was done initially by W. Masica in drop tower experiments, using regular hexagonal 

cylinders and differing fluids ( cf., [2]). A different geometry with less symmetry and without 

boundary discontinuities (bathtub) was later investigated experimentally by G. Smedley 

[10], and further evidence for the theoretical predictions was obtained. 

Given a geometry and contact angle, no geometrically explicit way is known for pre

dicting which case will occur. However an indirect procedure developed by Finn in a 

formal mathematical study [7] is effective for many configurations of interest. Because 

of the precise information yielded by the results and their wide range of applicability, 

and additionally since descriptions currently available in the engineering literature seem 

to us deficient in some respects, we offer here an outline of the procedure in a form in

tended for purposes of engineering design. We emphasize that the results as presented 

below are mathematically complete and rigorous, granting the underlying hypotheses of 

classical capillarity theory as introduced by Young, Laplace, and Gauss (see [8, Chapter 

1]). Our analysis takes full account of the nonlinearity in the problem, and no simplifying 

approximations are introduced. 
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Basic Procedure 

In what follows, "existence of a solution" means that for sufficiently large fluid volume 

an equilibrium physical interface covering the base' will be observed. Specifically, there will 

be a height function u( x, y) satisfying 

div Tu = ~ , 
"Y 

in n, such that the contact angle condition 

'Vu 
Tu = -J-;=:1=+=;1==:'V:=u:;:;;:l2 

11 • Tu = cos1 

holds on E (see, e. g., [8, Chapter 1]); here L:: is the boundary of n, II is the exterior unit 

normal on E, and 

R _ lfll 
"Y - I L:: I cos I ' 

(1) 

where lfll and lEI denote respectively the area and length of n and L::. The amount of fluid 

actually needed can in many situations be estimated explicitly (see the methods discussed 

in [8, Chapter 6]; also see (4] for a case of particular interest), but we restrict attention in 

this article to the more basic question of whether "existence" is in principle possible. We 

suppose for simplicity that 0 ::::;; 1 < 1r /2 (the complementary case is easily transformed into 

this one). (For 1 = rr /2, the solution surface is a horizontal plane for any cross-section.) 

We introduce circular arcs r of radius R-y lying inn and joining two points of E; we refer 

to the "exterior" of r as the portion fl* of n cut off by r, that also lies exterior to the 

circle determined by r. We denote by E* the part of the boundary E bordering fl*. In 

interpreting the following "basic theorem" reference should be made to Fig 2. We consider 

first the case in which L:: has continuously turning tangent. 

THEOREM (for smooth boundary). A solution exists for given n and 1 if and only if, 

for every subarc r of a semicircle of radius R-y in n that meets E in angles 1 (measured 

exterior to f) , the functional ci>( fl; f; 1) defined by 

(2) 
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is positive. 

We refer to an arc r that satisfies the conditions indicated in the theorem as an 

"extremal", for the reason that these arcs arise in the "subsidiary" variational problem of 

minimizing <P (see [7] and [8, Chapter 6]; it must be emphasized that in general such arcs 

are stationary, but need not minimize). The interest of the theorem derives largely from 

the fact that in most cases of interest only a finite number of extremals (aside from trivial 

rigid displacements arising from symmetries) can be found in a given domain n. Thus the 

kind of behavior to be expected can in general be predicted with only a finite number of 

area and length calculations, carried out for particular configurations. 

The physical significance of the theorem deserves some comment, which will also be 

helpful in what follows. It can be shown ( cf., [8, p. 144]) that for any n, there corresponds 

an angle "Yen such that a solution exists when {cr < { < 7r /2, while no solution ~can 

be found when 0 :::; "Y < "Ycr· We consider a domain n for which 0 < lcr < 1r /2. It 

is shown in [3] that for ' = {cr, there will be (at least) one non-null extremal r in n, 

with <P(n; r; "Y) = 0. To fix the ideas, we restrict attention at first to those situations in 

which a single unique such extremal appears. For any 1 >"Yen every extremal r will yield 

<P > 0, and thus solution surfaces will exist. If we now introduce a family of solutions 

u(x,y;{) with "Y "'.."Yen then these solutions can be normalized by additive constants, so 

that they approach infinity throughout n* and tend to a (bounded) solution surface in 

n\n*. We note that such solutions cannot be normalized to have constant volume in a 

container with a bottom, and thus for any given volume V the base will become partly 

uncovered for some 1 >{en depending on V. Because of these striking changes, which in 

cases of particular interest can be nearly discontinuous, the result lends itself naturally to 

experimental verification. 

The boundary L: of n can be permitted also to have corners, in which case a more 

general statement of the basic theorem is needed. Let L: consist of a finite number of 

smooth arcs, joining at corner points in well defined angles. Such a corner point P is 
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called reentrant if the angle formed interior to n at P exceeds 7r. 

THEOREM (General Form). A solution exists for given n and I if and only if, for 

every subarc r of a semicircle of radius R 7 in n such that each intersection point with ~ 

is either a reentrant corner or else a point interior to a smooth arc of~ where r and ~ 

meet at angle 1 (measured exterior to r) , the functional <I>( f!; f; 1) defined by 

1 
<I> = if 1 - 1 E * 1 cos 1 + R-y 1 n * 1 

is positive. 

We illustrate the ideas with some examples. 

Illustrative Examples 

(i) The circular tube. One sees readily that when n is a circular disk, the extremals 

are circular arcs that pass through its center, see Fig. 3. There are no extremals unless 

1 > 1r I 4. Thus, if 1 ::; 7r I 4 the conditions of the theorem are vacuously satisfied, and 

we are assured of the existence of a solution surface. If 1 > 7r 14 nontrivial extremals are 

present, but a calculation shows that in every such configuration there holds <I> > 0. Thus 

the theorem guarantees in every case the existence of a surface interface. This is of course 

no surprise, as the case considered is one of the very few in which the solution can be found 

explicitly. It is a lower spherical cap, of radius chosen to make the prescribed angle with 

the cylinder walls, and situated in the tube at a height so that it cuts off the prescribed 

volume V. Note that even in this case if Vis too small, there will be no solution covering 

the base. 

(ii) The batht·ub. In the above example we cut the circular boundary at the endpoints 

of a diameter, and join the two semicircles by parallel segments of length h, as illustrated 

in Fig. 4. It is no longer so easy to make the calculations for <I> when extremals exist, 

however the configuration is a limiting case of the rounded rectangle discussed below, and 

we obtain as a special case of that discussion that a-solution exists for every 1, regardless 
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of h. 

This result is remarkable in view of the fact that for an ellipse with ratio of minor 

to major semiaxes of less than approximately 0.6116, solutions fail to exist when 1 is 

near zero, see [1]. The result is perhaps still more striking in view of the fact that if 

the straight segments are inclined to one another at an angle a:, with smoothly joining 

end arcs, as in Fig. 5, then for any fixed 1 < 1r /2, an extremal joining the segments and 

yielding 4> ~ 0 appears and thus solutions will fail to exist, when h is large enough. In 

fact, if we fix the (different) radii of the end arcs, then any 1 can be excluded by increasing 

h, even though the segments become progressively closer to the parallel configuration of 

Fig. 4, for which no 1 is excluded. This nonuniformity in behavior was pointed out and 

illustrated by calculations in [3]. Further calculations appear in [11], while [10] describes 

preliminary experimental verification of particular configurations, in a two second drop 

tower. More recently, experiments on a KC-135 flight with about 15 seconds offree fall have 

allowed more thorough experimental results, lending convincing support to the theoretical 

predictions; these experiments will be described in a forthcoming paper [5]. 

(iii) The keyhole. In the example of Fig. 4, we allow the radius R of one of the end caps 

to increase, keeping the other fixed at a value 7', thus obtaining the configuration of Fig. 

6. Solutions continue to exist for all/, regardless of h, until a critical value R/r ~ 1.974 

is attained. In this configuration, a continuum of extremals r corresponding to 1 = 0 

appears, joining the parallel sides as indicated in Fig. 6, and all yielding 4> = 0. Although 

an infinity of essentially distinct extremals appears in this case, nevertheless the behavior 

described can be ascertained with only a finite number of calculations. If a succession 

of fluids with contact angles decreasing to zero is inserted into a capillary tube with this 

section, the volumes can be normalized so that the corresponding solution surfaces will 

tend to a solution to the right of the extremal arc joining A and B, and will tend uniformly 

to infinity everywhere to the left of that arc. The domain can be modified so as to cause 

the "infinity" region to shift, almost discontinuously, from one end of the narrow portion of 
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the tube to the other, with small changes in contact angle. This leads to a new procedure 

for measurement of contact angle that should yield substantial accuracy, especially for 

small angles. A particular such configuration has already been characterized [3]; a general 

numerical survey under varying domain parameters is in preparation. In a work by Finn 

and Fischer, also in preparation, domains are characterized that yield a continuum of r as 

above, but corresponding to a contact angle 1 f. 0. 

(iv) The rectangle. We denote the lengths of the sides by 2a, 2b, a 2: b. We find 

ab b 
R-y = . < --. 

(a + b) cos 1 cos 1 
(3) 

Were an extremal arc to join two opposite sides as in Fig. 7, we would find R-y = b/ cos1, 

contradicting (3). Thus, in view of the theorem, it suffices to consider only arcs that join 

adjacent sides. One sees immediately that such an arc can be found if and only if 1 < 7r/4, 

and a calculation shows that <P < 0 for every such configuration. (The arcs all have the 

same center, as indicated in Fig. 8.) It follows that regardless of the aspect ratio b/ a, a 

solution exists in a rectangle if and only if 1 2: 1r /4. 

The Rounded Rectangle 

In this section we carry out m detail a new application of the basic theorem to a 

container whose section is a rectangle with sides of length 2a, 2b, a 2: b that has been 

modified by rounding the corners with circular arcs of radius E, see Fig. 9. Again, for 

simplicity, we restrict ourselves to wetting liquids, 0 ~ 1 < 1r /4. The results presented 

here show the effect of rounding on the value of the critical contact angle 1r /4 for the 

rectangle with sharp corners (Item (iv) in the above section). It is of importance to know 

this effect in practice, as corners fabricated from solid material often are rounded, not 

perfectly sharp. 

We proceed as follows (application to other geometries would proceed similarly): 

(i) Calculation of 1~1, !ill, and R-y . The area !ill and perimeter 1~1 of the cross-section 
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depicted in Fig. 9 are 

1n1 = 4ab- (4- 1r}:2 

and 

1~1 = 4(a +b)- 2(4- rr)€. 

From these and (1) we find that the radius of any extremal arc r for contact angle 1 

lS 

R _ ab- (1- rrl4)€2 

-r - [a + b - 2( 1 - 1r I 4) €] cos 1 · 
(4) 

(ii) Placement off. The next task is to determine all possible ways of placing extremal 

arcs into n. This is generally the most difficult step. We commence with the result of 

the last section, that if € = 0, then extremals appear only if 1 < 1r I 4 and always join 

adjacent sides, yielding negative values for <P (see Fig. 8). A similar behavior can be 

expected as rounding is introduced, and indeed a calculation shows that such extremals 

joining adjacent sides can still be found when 1 is in the range 

The maximal angle IM occurs when the arc passes through the intersection of the circular 

and straight portions of the boundary. We thus seek extremals r for contact angle 0 :::; 

1 :S IM that intersect the straight portions of the boundary, configured as in Fig. 10. 

(It suffices to consider one of the corners, as the same result is obtained in each.) Other 

extremal placements are considered in the next section, where it is shown they can be 

excluded. 

(iii) Calculation of parameter values for which <P = 0. We next calculate <P for the 

rounded rectangle (Fig. 9), with r placed as in Fig. 10. First, we find the area In* I bounded 

by the rounded corner region and an extremal arc r. One finds by a straightforward 

calculation that 

8 

• 



.. , 

Similarly, one finds that the length of the part of the boundary ~ bordering n* is 

1~*1 = 2[(cos1- sin1)R1 - (1- 7r/4)t:] 

and that the length of r is 

Substitution into (2) yields 

2 

<I>= (7r/4 :_ 1)R1 - [(cos/- sin1)R1 - 2(1- 7r/4)t:] cos1- (1- 71"/4) ~ . (5) 
1 

Two particular limiting cases have a special interest. One of these is the case 1 = 0. 

The equation <I> = 0 then simplifies to 

1 2 
<I>= --(1- 7r/4)(R0 - t:) = 0 

Ro . . 

which implies R0 = t:; that is, the extremal must coincide with the rounding arc. We place 

this result into ( 4) to obtain the quadratic equation for E 

(1- 7r/4)t:2
- (a+ b)t: + ab = 0, 

an equation with two real roots. Only one of the~e (withE::; b) has physical meaning and 

corresponds to an extremal arc as depicted in Fig. 10. We find 
I . 

a+ b- J(a + b)2 - (4- 7r)ab 
€= . 

2(1- 7l" /4) 
(6) 

Numerical evaluation yields that E increases from approximately 0.53b to b as a increases 

fromb to infinity. 

Another important limiting case is obtained by letting a ~ oo, for general I· In the 

limit, one obtains from ( 4) 

b 
R =--, 1 cos 1 
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independent of the rounding radius E. We are led agam to a quadratic, for which the 

physical root is 

b 
E=b----

2cOSI 

1r - 41 - 1r cos2 1 + 4 sin 1 cos 1 

1-tr/4 
(7) 

This yields the rightmost curve plotted in Fig. 11. (It has not yet been clarified mathe-

matically whether a solution actually exists in this limiting case.) 

In general, the equation cp = 0 yields a quartic in E. But also in that case, only one 

of the roots (corresponding to (6) and (7) above) has physical meaning. To see that, we 

note again the general result [3] that at 1 = lcr there is at least one non-null extremal r 

in n, for which cp = 0. In the next section it will be shown that the only possible such 

configuration is the one just considered, as indicated in Fig. 10. As is shown in [8, p. 144], 

to each € in the physical range there is a unique lcr determined by the configuration; these 

values yield the curves in Fig. 11. From the evident monotonicity of the curves, it follows 

that to each lcr (for given aspect ratio) there corresponds a unique E, and we see that three 

of the four roots of the equation cp = 0 must be superfluous. 

The curves in Fig. 11 depict the locus of physical points ( E, 'Y) for which cp = 0, for 

cross sections with various aspect ratios, as computed numerically from (4) and (5). From 

left to right, the curves are for aspect ratio bja = 1, 0.9, 0.8, ... , 0.1, 0. Each curve gives the 

critical value of 1 as a function of the nondimensional rounding radius Ejb. The intercept of 

each curve on the E/b axis is the value determined by (6). For points below any given curve, 

cp becomes negative and no solution exists. Above the curve, cp is necessarily positive and 

a solution surface (unique for prescribed volume) is present. For points on the curves it 

can be shown for this example that solutions do not exist if 1 =:/= 0, but they do exist when 

The behavior of the corresponding extremal arcs r can be summarized as follows. 

For E = 0, the behavior as 1 increases is as indicated in Fig. 8: As 1 increases from 0 

to its critical value of tr/4, R-y increases from abj(a +b) to V'iabj(a +b), and r moves 

to the corner. Similarly, for E equal to a positive fixed value below one of the curves in 
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Fig. 11, as r increases from 0 to its critical value on the curve, R"f increases and r moves 

toward the rounding arc, continuing to intersect the straight portion of the boundary, as 

indicated in Fig. 9. Now consider 1 to be fixed at a value in the range 0 :::; 1 < 1r /4. As 

E increases from zero to the critical value E-y on one of the curves in Fig. 11, R"f increases 

from ab/[(a +b) cos1] to E'Y, and r moves away from the rounding arc (and continues to 

intersect the straight portion of the boundary, as in Fig. 9). Correspondingly, <P achieves 

its smallest value (negative) at E = 0, 1 = 0 and increases monotonically to zero as E and 

1 increase toward a point on a curve in Fig. 11 . 

. By reflecting the graphs in Fig. 11 upward about 1 = 90°, one obtains an extension 

of the results to include nonwetting liquids (90° < 1 :::; 180°); the region of nonexistence 

for the nonwetting liquids would then be in the upper left corner (i.e., 135°. < 1 :::; 180°, 

and the same values of E as for wetting liquids). 

Exclusion of nonminimizing extremals for the rounded rectangle 

In order to complete the reasoning for the rounded rectangle, it is necessary to show 

that when 1 = /cr no configuration with <P = 0 can occur other than as indicated in the 

preceding section; specifically, we must show that <P > 0 for any other extremal arc r. 

In what ways can extremal configurations appear? We first note that any such con

figuration yielding <P = 0 must minimize <P, since at 1 = /cr, <P < 0 is not possible. By 

a. result of Finn and Fischer [9], a. non-null extremal r that meets two points of a. single 

rounding arc cannot minimize, thus this possibility is excluded. Also, no extremal can 

meet ~ in one point of such an arc and in a. point of an adjacent straight segment, as the 

intersection angles could not then both be I· 

Weobserve next that for the rounded rectangle configuration (Fig. 9), there holds 

it ab- (1- 7r/4)E2 

~ - a+ b- 2(1 - 1r /4)E · 

If E = 0, then ¥ = aa:b < b (for b :::; a < oo ). For 0 < E < b, the quadratic in E obtained by 
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setting ¥ = b has no real root, and therefore ¥ < b for all E in the physical range. Hence 

in that range R1 < b /cos 1, and it follows, as for the illustrative example of the rectangle 

with sharp corners (Fig. 7), that no extremal arc can meet two parallel linear segments of 

~-

Consider an extremal r that meets two diagonally opposite rounding arcs, as indicated 

in Fig. 12. Since r is minimizing, we conclude from Theorem 6.16 of [8] that 8 + 1 ~ 

1r /2. From that follows easily that the chord T joining the endpoints would have length 

ITI ~ 2R1 cos/, so that the above bound on R1 would yield ITI < 2b. But the shortest 

such segment is the one through the symmetry point of the rectangle and the centers 

of the rounding arcs, which has the length 2J(a- e)2 + (b- e)2 + 2e :> 2b. Thus, this 

configuration cannot occur. 

The only remaining possibility, other than that considered in the previous section, is 

indicated in Fig. 13 . Introducing a polar coordinate system with origin at the center of r 

and positive axis directed toward the arc of r indicated, we calculate the second variation 

![7]] of clJ corresponding to the normal displacement 7J = cos B along the arc r; here B is the 

polar angle measured from the bisector of the subtended angle 2a. That is, we translate 

r rigidly along its axis of symmetry. We obtain after a lengthy calculation 

l[7J] = -sin28+cos,cos2 8{2-(k1 +k2 ) R, }· 
COS/ 

Here k1, k2 are the curvatures of the boundary ~ at the two contact points, considered 

as positive when the curvature vector points into n. In the present case, k1 + k2 > 0 

and 8 + 1 > 1r /2, and we conclude immediately that l[7J] < 0. It follows that r cannot 

be an arc of a minimizing configuration, and therefore that the corresponding clJ for any 

configuration in which r appears will be positive. We may therefore exclude also such arcs 

from consideration, and we are reduced to the configurations of Fig. 10. 
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Figure 2. Domain partitioned by circular arc r of radius R 1 . 
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Figure 3. Extremal arcs for a circular tube; all arcs pass through the circle's center. 
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Figure 4. Section with parallel sides and circular arc ends. 
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Figure 5. Section with non-parallel sides and circular arc ends. 
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Figure 8. Extremal arcs for rectangular section; all arcs have the same center P. 
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Figure 9. Rounded rectangle. 
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Figure 11. Critical contact angle vs. normalized rounding radius Ejb. Curves are for 
aspect ratio bja = 1, 0.9, 0.8, ... , 0.1, 0, from left to right. 
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Figure 12. Excludable extremal. 
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Figure 13. Excludable extremal. 
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