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assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
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1. INTRODUCTION

Nuclear waste will be placed in the potential repository at Yucca Mountain in waste packages. Spent fuel
assemblies or consolidated fuel rods and borosilicate glass in steel pour canisters will be enclosed in sealed
containers. The waste package consists of the waste form, the cladding on spent fuel or the defense-waste
pour canister, and the outside container. Current design calls for the waste packages to be surrounded by
an air gap.

Although the waste package is generally not seen as the primary barrier for nuclear waste isolation, it must
in fact meet specific regulatory requirements: substantially complete requirement and release-rate from the
engineered barrier system [USNRC 1983]. This report gives derivations of equations for predicting releases
rates.

We consider the release of three types of species: solubility-limited species, species released congruent with
solid-solid alteration of spent-fuel matrix or borosilicate glass, and readily soluble species from the fuel-
cladding gap, gas plenum, and readily accessible grain boundaries. We develop analytic expressions for the
release rates of individual constituents from each of these mechanism. For a given species and for given
parameters, the mechanism that results in the lowest predicted release rate is to be adopted as the rate-
controlling mechanism for that species. Some of the equations are newly derived for this report, others are
restated from earlier work. Release rates have been calculated for key radionuclides in a companion report
[Sadeghi et al. 1990a]. We consider gaseous releases separately [Light et al. 1990].

2. WATER-CONTACT MODES
We consider two modes of water contact that lead to the release of radionuclides.
2.1 The Wet-Drip Water Contact Mode

First we consider the dripping of water from overhead rock onto waste packages [O’Connell and Drach
1986]. This dripping may happen because the change in rock permeability may divert water into fractures
that intersect the borehole. Drips are assumed to penetrate cracks in failed container and to dissolve
radionuclides as the radionuclide solution slowly rises in the container and finally overflows through other
cracks and penetrations. Overflow of contaminated water is assumed to occur only near the top of the
container. The contaminated water drips to the rock below. Water within the container is always well mixed

. from diffusion and thermal convection. We refer to this as the “wet-drip water-contact mode.”

2.2 The Moist-Continuous Water-Contact Mode

The wet-drip mode assumes that the air-filled annulus surrounding a waste package precludes pathways
for diffusive release of dissolved species. However, there can exist pathways for release by liquid diffusion
if a waste package contacts the surrounding rock by physical displacement, if the annulus becomes filled
with sediments and rubble, or if the repository horizon becomes water saturated [Pigford and Lee 1989].
Equations applicable to all three situations are presented here.

We assume that water has filled a failed container, and we conservatively neglect mass-transfer resistance from
Zircaloy fuel cladding and from the residual container material and corrosion products. For the expected
ground-water velocities, and for the diffusion coefficients assumed here for intact rock, mass-transfer is
predicted to occur predominantly by molecular diffusion in pore liquid in the rock matrix [Pigford, Chambré,
and Lee 1990]. Under these conditions the release rate is finite at zero velocity and is insensitive to any but
very large increases in water velocity.

We conservatively assume that all moisture in the intact rock is in interconnected water-filled pores, with
a pore-liquid diffusion coefficient given by that for a liquid continuum. As a result of the low effective
diffusion coefficient for unsaturated rubble, with air in void spaces not occupied by rubble, the predicted

_ mass transfer rates will be far below what could occur if the repository were saturated or if the degraded

waste container were in close contact with consolidated or intact rock. Our analyses are constructed to
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pe applicable to the unsaturated environment, so this particular type of contact is more aptly termed the
“moist-continuous water-contact mode,” and is so referred to herein. The equations are also applicable to
direct contact between waste and rock and to a water-saturated annulus, by specifying zero thickness of the
annulus and suitably large values of the effective diffusion coefficient in the annulus.

3. EQUATIONS FOR THE WET-DRIP WATER-CONTACT MODE

We derive analytic equations for the release of three types of species. Flgure 1 is a schematic of a waste
package in the wet-drip contact mode.

3.1 Solubility-Limited Species

We assume here that when spent fuel rods or borosilicate glass are in contact with water, the waste con-
stituents of the fuel are in chemical solubility equilibrium with the water. The concentration of each dissolved
elemental species is at a maximum value given by the solubility of that species. For a low-solubility species,
the release rate after container overflow and before all of the element has dissolved is the product of the
_volumetric drip rate @, the elemental solubility C,., and the time-dependent isotope fraction of that species

ni(t)/ne(t). -
. 0, Oststs |
m‘(t) - {Csegfg%Q) t2 S t S t3 (1)

where -

Cs. is the elemental solubility (M/L3),

Q is the volumetric flow rate of water into and out of the container (L3 /t)
m;(t) is the mass release rate of the species (M/t),

n;i(t) is the concentration of the species in the undissolved solid (M/L3),
ne(t) is the concentration of the element in the undissolved solid (M/L3),
t2 is the time after emplacement when the container is full of water (t),

t3 is the time when all of the element has dissolved (t).

If we ta.ke t; to be the time after emplacement that water first enters the failed container, t5 —¢; will be the
time for the container to fill. Figure 2 shows a time-line of events. After dissolution of all the element, fresh
water dilutes the container contents. The governing equation for the rate of change of species concentration
N;(t) in the water, multiplied by V/(t3), the volume of water when the container is full, is

dN (t)

Vi)Y - NV - N, ts<t<oo (2
The initial condition is
_ ~ ni(ts) '
N(t3) ae e(ts) ' (3)

After solving for N;(t) in (2), we multiply the result by @ to obtain the species release rate
ni(ta) .
ne(t3)

Considering a solubility-limited element containing j isotopes, each with a decay constant A; and initial
concentration nf, and ignoring decay precursors, the isotope fraction in the undissolved waste at time ¢ is

mi(t) = QCie xp{[-Xi = Q/V(t))(t —13)}, ta<t<oo ()

n,-(t) _ n° —Ait
ne(t) J =17 De—Ai t’

t>0 (5)

If we multiply the numerator and the denominator on the right hand side of (5) by the waste solid volume,
we get
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Figure 1. The Wet-Drip Water Contact Mode
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) 0,—At l .
Th(t) — .M‘ € ’ 1 Z 0 (6)
Tte(t) ::1 M',Oe-'\it

where M is the initial inventory of the isotope. It is assumed that there is no preferential leaching (disso-
lution) of any of the species from the undissolved solid. To get the USNRC-defined fractional release rate of
each radionuclide, based on its 1000-year inventory M}, we divide m;(t) in equations (1) and (4) by M}

0<t<ty

0,
0 —A t
it Ot it 2Q, ty <t<ts
f = T = § ")

0 ,—A;t
G s el X — Q/V (@) - ), ta<t<oo

water enters container all of the element
container overflows has dissolved
0 %
t 1 t, t 3

Figure 2. Sequence of Events for Solubility-Limited Wet Drip Contact

Here MY is to be calculated for waste without dissolution, correcting only for radioactive decay. We obtain
13 —t;, the time for the container to fill, by dividing the volume of the water in the filled container V(¢3) by
@, which is the velocity times cross-sectional area of the waste package,

tz—tl-:-‘iQtz)' . (8)

3.2 Solubility-limited Release of a Three-member Decay Chain

Actinides in nuclear fuel are primarily part of radioactive decay chains. However, most analysis of release
rates have considered only single species. For a three-member decay chain, we assume that the first member
of the chain is limited by its elemental solubility. The two daughters are assumed to dissolve congruently
with the dissolution of the first member of the chain.

To obtain the fractional release rate of each member of a three-member decay chain, we start by writing
the mass release rate of the first chain member from the engineered barrier system into the rock in the time
interval ¢; <t < t3 as given by the second relation in equation (1)

'I'hl (t) Cse nlg:;Q, t2 S t S t3 (9)
with
0,—-A1t
ni(t)  nje >0 (10)

ne(t) Z?=1 nfe-Xit’

Because the two daughters are assumed to dissolve congruently with the dissolution of the first member of
the chain, we write the dissolution rate of the congruently dissolved species 2 at time t, ms(f), in terms of

4
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the dissolution rate of the first member into the rock 7n(t), the concentration of the first member in the
waste n1(¢) (M/L3), and the concentration of the sécond member in the waste n,(t) (M/L3)

my(t) = ml(t)nz’g; tr<t<ts ‘ (11)
- With 74 () from equation (9) we get
mZ(t) = CseQHZ(t) 1y <t<ti;3 . (12)

ne(t)’

To get an expression for nz(t), we know species 2 is produced from species 1; therefore, the differential
equation for the concentration of species 2 is

dna(t
";t( ) = —Xana(t) + Ama(t), t>0 (13)
With the initial condition

n2(0) = nJ known (1)

Equation (13) has the solution

0,— nf . A Azt .
na(t) = nge™ 2t 4 2 (e"M? — g77) | t>0 (15)
Az — Ay

We substitute (15) into (12) to get

—,\,t+ i (C-Alt_e—xgt)

rha(t) = Cre@ 2a= s ,  12<t<ts (16)
ne(t)
We get the mass release rate of the third member of the decay chain by writing
m3(t) = (1) nag; t2<t<t3 | (17)
which is equivalent to
o n3(t)
m3(t) = CseQ@—-% )’ t<t<ts _ (18)
We obtain n3(t) by writing a differential equation for the third member
dng(t
n;t( ) = —/\3n3(t) + Aznz(i), t>0 (19)
with the initial condition
n3(0) = n§ known (20)
- The solution to (19) is
0 0
na(t) = nge—,\at + nyAz {e-,\,t _ e—-)\;,t} + niA1Ag

{ -t e—/\st.}

Az — g (A2 = A1)(As — Ayp)

(e- Al)()\s - A2)

{em -, >0 (21)



Replacing for n3(t) in equation (18) from equation (21), we obtain

n?)y\z

ngAQ {6
(A2 = A1)(As — Ay)

—Ast ~Ast
—e
Az — A2 }

. C | '
tng(t) = :,ZQ nge™ st + {emht — e} 4+
_ n(l)A1A2

(A2 = M1)(As — A2)

To obtain the fractional release rate, we divide eqﬁations (9), (16), and (22) by the 1000-year inventory of
the 1st, 2nd, and 3rd members, respectively.

{e7rt—eMY ] 1, <t <t (22

3.3 Species Released Congruent with Waste-matrix Alteration

Species in the fuel matrix that are not solubility-limited can be released congruently with the alteration of
the waste matrix when it reacts with water, such as conversion of UQO3 in spent fuel to U303 by oxygenated
water, or the conversion of silica in borosilicate glass to a crystalline mineral phase. UO; is oxidized to U3zOr
without any change in its structure, but in a sufficiently oxidizing environment U307 becomes U3Og, which
has a different structure and releases other matrix constituents to react with the surrounding water. Thus,
alteration here consists of the oxidative dissolution of uranium and the precipitation of new solid phase(s)
of uranium at the waste surface.

To analyze this problem, we consider three time intervals: (1) from first entry of water until the container is
filled, (2) after the container is filled until the last alteration, and (3) after all uranium or silica in the waste
package has been altered. Before the container has filled, we can write a mass balance for the concentration
of species in the water inside the container knowing that the rate of change of the species concentration is
equal to rate of alteration release less decay. We interpret f,, the fractional alteration rate of the waste
matrix, as a constant rate based on the initial inventory of the altering species, resulting in a constant mass
of that species being altered per unit time. We assume the mass of fuel exposed to water is proportional to
. the volume of water in the container. The volume increases linearly with time until the container is filled.
The governing equation is '

GVOND) = -NOVOI + Ly ZOTOZHO g, ey
with the initial condition
N(t) =0 : (24)

where

V(t) is the volume of water in the container as a function of time (L3),

Vi(t) is the volume of water in contact with waste that has been completely altered (L3),
V(t2) is the volume of water in the filled container (L3), '

N(t) is the concentration of a radionactive species in water (M/L3),

fa is the fractional alteration rate (1/t),

M}, is the initial inventory of uranium or silica in the waste (M),

n(t) is the concentration of the species in undissolved waste solid (M/L?),

np(t) is the concentration of the matrix (M/L3),

A is the decay constant of species (1/t),

ty is the time after emplacement when water first enters a failed container (t),

t3 is the time after emplacement when container is filled and water overflows (t).

We subtract Vi (¢) from V(t) to exclude the portion of fuel that has been completely altered. 1/ f, is the time
for complete alteration if mass altered per unit time is constant and equal to f,Mj;. We assume Ay << A
and 1/Apr << t3, where Apr, A are the decay constants of the matrix and the species, respectively, and i3
is the time beyond which no more release to the rock is expected. Because of the decay of the species in the
waste and that of the matrix, we get



n(t)  nleM

np(t)  nfe~rmt’ t20 (2)
Hence
n(t nle—M
faM3y n;;f(i) = fa %W, ty <t<ty (26)

Multiplying the numerator and the denominator on the right hand side of (26) by the waste solid volume
and neglecting matrix decay, we get

. nOe—Xt o MOt o e
faMy o ——57 = faMMm ~ faM7e™™, 11 <t <t (27)
M M

where MY is the initial inventory of the species. After the container is filled and until completion of the last
alteration, the governing equation differs from equation (23), because now the species begins to leave the
container and V(1) is equal to V(t;). Hence

V(t2)dN(t) nt) Vi) - Vit
—2— = —N(®)V(t2)A — QN (1) + fa M}y ny(t) V()

t2<t<ta+1/fa = (28)

where t5 + 1/ f, is the time of the last alteration (t).

The initial condition for equation (28) is obtained by solving equation (23) for N;(t2). After all waste matrix
in the waste package has been altered, the alteration release rate vanishes. Hence

dN (1)

V(tz)T

= —N(t)V(t2)A - QN(t), ity + l/fa <t <ts. (29)

The initial condition for (29) is obtained from (28). Figure 3 shows a time-line of events.

water enters container alteration release
container overflows ends ends
0 % time

Not to scale
Figure 3. Sequence of Events for Alteration Controlled Wet Drip Contact
We assume that V; (2) is zero between t; and ¢; + 1/ f,, the time for alteration to begin, and increases linearly

with time until alteration is complete. Assuming the alteration time 1/f; to be less than the container fill
time, we get for Vi (t)

0, 0<t<ti+1/fa :
V(1) ={ (30)
Q(t_tl’_ l/fa); t1+1/fa <t<t2+1/fa'
V(t) -t

Knowing V(1) = Q(t — t1), becomes

V(t2)



0, 0<t<t

-t tHh <t<ti+1/f.
Vi) -w@ _ ] V@ s ’ (31)
V(t2) N t1+1/fa<t<ty
Yla)ogleotamtlle) | <t <ta+1/fa

Figures 4 and 5 help clarify equations (30) and (31). We solve (23) by applying the initial condition
N(t1) = 0, and we substitute for W from equation (31) to obtain the following for the time
2 .

interval t) <t <t; +1/f,

ACH Y
Vi(ty)

release
ends

v I > time
0 t +1If, el ot |

Not to scale

Figure 4. Fraction of Water Volume in Contact with Waste Altered as a Function of Time

V()-Vi(»)

Vi) A

2 b - _ - _

Vita)f,
release
ends

| I I > time
Y L t,+l1f, t, t,+1lf, t,

Not to scale
Figure 5. Sequence of Events for Solubility-Limited Wet Drip Contact
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e-—Mf MO 1 5 1 ,
= =7 vas |3t - St t <t<ti+1/f, 39
MO = G (] hstsuryn (52)
For the time interval ¢; 4+ 1/f, <t < 3, we get
e M [ 1] MO (1) %y
Nit)= ———2 |ttty — =]+ 2N <<t 33
( ) V(tz)(t —tl) 1 fa V(tz)(t . tl) 2fa 1 /f 2 ( )

We now solve (28) and use (33) to obtain the initial condition. The final result is

N(p = ot oM (Gt 1) = et —a (Stat - 1) - Shata 1) )]

V() [\ fa a?
e~ Atz A0 1
oty —t; — (=A=a)(t=ta) <t <ty+1/fa 34
V(tz)(tz—t1) (2 1 fa)e 2515102 /f ( )
where
o = Q/V(tz) (35)

Now, to get mass release rate into the rock, we multiply N(t) in (34) by Q

. —At—-at 0 1 1 ot aty eat eat2
m(t) = ce faM ;+tl+f_a (e** — &) — o F(at—l)—?(atg—l)
e~ MO ( 1 ) ,
to—— [ty —t; — (FA=(=t) <t <ty +1/f, 36
(tz—t1) 2 1 2fa 20> 02 /f ( )

The fractional release rate is obtained by dividing m(¢) by M*

fyy="0

Now we solve equation (29) in the time interval ¢34+ 1/f, <t < t3. The initial condition for (29) is obtained
by replacing ¢ + 1/ f, for t in equation (34). The solution is

(37)

N(t) = cae=A=00=t=1L) | 4, 4 1/f, <t <t (38)

¢4 is obtained from applying the initial condition. Therefore

0
= L rmaytariypn fa MO | (1 LY (eattatrvse) _ gata
N(t) {e V(tg)[(a+t1+fa (‘3 ¢ )

a(ta+1/f,) aty
€ o €
— (—2 [atz + _a — 1] — —2(at2 —_ 1)>:|

e—At:MO 1 \ R e
+———_V(t2)(t2 . (tz -t - F) e(=A=a)(1/fa) \ (—A—a)(t-t2— /fu), ta+1/fa <t<ts (39)

From which we get the mass release rate as



m(t) = a{e(“)“"‘)(““/f“)faMo [(é +1 +

_}_) (ea(tz-l-l/fa) ._ eatz)

a

o(t2+1/fa) ata
—a (e__az—v[atz + fi — 1] - %{(atz - 1))] _

a

-t 0 ’ : :
+%°—tM) (tz . } )e<-*-“><1/fa>}e<-*-“><‘—‘2-1/fﬂ>, tr+1/fa <t<ts (40)
2— 4 a
and the fractional release rate is_
£y = ™0 (41)

At t =ta+ 1/f,, we get

Nty +1/fa) = cq = er=dert1/1) Fal
( 2 /f) Cq € V(tz)

( +t 4 ; ) (ea(tz-l-l/fa) _ eat;)

a

—

( a(tz+1/fa) (at2 4 a/fa _ 1) _ ——(atz )) + __ﬂ_o__ ( t1 - f_> (=A=a)1/fa) - (42)

V(t2)(t2 — t1) a

and

m(tz + 1/fa) = qe(=A=e)(ta+1/fa) g, g0 [(_1_ +t+ _1_> (ea(tz+1/fa) — eatz)
a fa

-

( a(t2+1/f¢)

ata » — Atz
(ety +affa— 1)—5;2—(at2—1)) +a i 1:4) ( t1—2} )e("""”)(l/f“) (43)

We can solve for ¢3, the time after emplacement beyond which no more release to the rock is expected, by
setting (%) in equation (40) equal to zero and substituting t3 for ¢. Hence

QN(t2 + l/fa)e("’\—a)('a—.t:—l/.fa) =0 (44)
which means
v e(—A—a)(ta~ta-1/fa) — ' _ (45)
Equation (45) means t3 must be infinitely large for the equation to hold; therefore, t3 = co.

If the time for alteration to be completed, 1/f,, is much larger than the container fill time, (23) (28) and
(29) are still valid. However, we now have

Vit)=0, O0<t<ta+1/fa | (46)

Hence ot
V() - Vi) _ {—ﬁ—l‘,@,; : 1 <t<ty )
V(t2) 1, Cty<t<ty+1/fa

10
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The solution for the time period to <t <ty + 1/f; is

m=nM%*“katwm%#§w—nﬁ“ﬂ,w5t5w+un (48)

. In the period t2 + 1/f,; <t < t3 the solution is

2 .
m = fM°e~(at))t [(e"’(t"H/f“) —e%3) 4 9;—(t2 - t1)2e°'=] , ta+1/fa<t<ts (49)

from which the fractional release rates can be calculated by F(@) = m(t)/M*.
3.4 Readily Soluble Species

In a spent fuel waste package soluble cesium and iodine accumulate in fuel-cladding gaps, voids, amd grain
boundaries. Such readily soluble species are known to dissolve rapidly when contacted by water. Assuming
instant dissolution of the readily soluble species, we write a governing equation by noting that the rate of
change of species concentration multiplied by the volume of water in the filled container V'(¢3) is equal to
mass coming in minus mass going out minus the decay term. At £5, the soluble species concentration is No.
Ny is obtained by taking the fraction of species inventory that is readily soluble at time {5 and dividing it
by the volume of water in the filled container V(¢3). At times greater than t5, no more dissolution occurs.
Hence the equation is
dN(t) _

V(t2) 7 = —QN(t) - N(t)V(t2)A, 2 <t<ty (50)

with the initial condition

wMOe—Xt2

N(ty) = No= —~ 51
where
N(t) is the concentration of species in volume V(t5) at ¢ (M/L3),
w is the fraction of the inventory that is readily soluble,
M? is the species initial inventory (M),
13 is the fill time after emplacement (t),
3 is the time beyond which no more release to the rock is expected (t).
The solution to equation (46) is
wMOe~23
N(t) = ——~—e(a+N)(-t2) tr <t <t 2
( ) V(tz) € ) 2>t (5 )
The mass release rate into the rock is obtained by multiplying N(¢) by Q
m(t) = awMO Mg~ (a+N(-t2) 4, <4<ty (53)
The fractional release rate is
MO —Atq
() = = m—em (@00 <y <l (54)
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4. EQUATIONS FOR THE MOIST-CONTINUOUS WATER-CONTACT MODE

We present analytic equations for the release of three types of radioactive species. Figure 6 is a sketch of a
waste package in the moist-continuous contact mode.

4.1 Solubility-Limited Release

The time-dependent fractional release rate of a low-solubility species from an equivalent spherical waste can
be estimated from the equations by Chambré et al. [1990] for release from waste directly into rock and by
equations given by Chambré et al [1985] for release into rock through a backfill. We assume that mass
transfer occurs by molecular diffusion because the expected ground-water velocities are low. Decay within
the waste solid is neglected. .

4.1.1 Solubility-limited Release from the Waste Directly into Tuff

Here we consider the release of solubility-limited species in an unsaturated repository, if a significant portion
of the degraded container is in contact with surrounding intact rock. The analysis is also applicable for a
saturated repository, if the original gap is filled with water making the solubility at the waste surface and at
the inner surface of the rock the same because of the well-mixed water in the gap. The governing equation,
for a waste sphere of equal surface area, for the radionuclide concentration N(r,t) for release from the waste
directly into rock is :

ON(r,t) 1 9 ( ,0N(rt)
K= = oDy (r T ) KN, r> Rat>0 (55)

where

K is the retardation coeflicient of species, dimensionless,
Ry is the radius of an equivalent-area waste sphere (L),

Dy is the diffusion coefficient in a water continuum (L2/t),
o is the tortousity of intact tuff.

The inventory fraction of the isotope is v, assumed to be a constant and equal to M*/MZ*, where M* is the
1000-year inventory of the isotope and MY is the 1000-year inventory of the element. The isotopic fraction y
is actually time-dependent, but if we assume all the isotopes have negligible decay, we can use a constant ~.

The initial condition is

N(r0) =0, r> Ry v (56)

The boundary conditions are : :
N(Rﬂ)t) = CSG'Y’ t 2 0 (57)
N(oo,t) =0, t>0 (58)

Assuming that local chemical equilibrium exists between a species in the pore liquid and that same species
sorbed in the rock, K is given by

1-—c¢ .
K=14+ —pK 59
- 5 P (59)
where K; is the sorption ratio (activity of radionuclide on solid phase per unit mass of solid divided by
activity of radionuclide in solution per unit volume of solutions), € is the rock-matrix porosity, ¥ is the
saturation fraction, and p is the crushed-tuff density.

The details of the solution to (55) through (58), for ¢ = 1, is given in Chambré et al. [1990]. The total mass
transfer rate from the waste form surface into the surrounding porous rock is
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Figure 6. The Moist-continuous Water Contact Mode
13



ON(r,t)

37‘ r=Ro !

m(t) = —4nRieypo Dy t>0 (60)

where €1 is the rock effective porosity.

m(t) is obtained by first solving (55) for N(r,t) subjecf to the side conditions, differentiating N(r,t) with
respect to r for r equal to Ry, and finally evaluating B—N%Rrit—l in (60). The fractional release rate f(t),

normalized to the 1000-year inventory, is given by

_ m(t) _ 4AnRoCseyoDyet KAR2 KRZ _,,
f®) =55 = e 1+ B, erf(Vt) + Dt , >0 (61)

For a saturated repository, ¥ will be unity.

4.1.2 Solubility-limited Release into Tuff Through a Filled Annulus

If the annulus becomes filled with rubble and fines, we can treat this annulus of thickness b = R; — Ry as
a backfill. For an unsaturated repository and a saturated repository, the governing equations in the backfill
(subscript 1) and rock (subscript 2) regions for a radionuclide without any precursor in equivalent spherical
geometry are given by

6N1(T,t) _ 18 26N1(r,t)
_at——_Dl'r‘—zE PT — ANy, Ry<r< Ry, t>0 (62)
ON3(r,t) 190 9 ON2(r,1)
ot —Dgrzar TT -.—AN;;, Ri<r<oo, t>0 (63)
with
: _,0’1D_f _ 0’2Df
D, = K, Dz = K, (64)
The initial conditions are '
Ni(r,0)=0, Ro<r<R; ' (64)
Na(r,0) =0, Ry <r<oo. (66)
The boundary conditions are given by
NI(RO’t) = Cse, t>0 (67)
' Nj(00,t) =0, t>0 (68)
ON. ON.
—61¢1Df0’1—a;-1- = —Ezi/)nga'za—rz_ at R, t>0 (69)
N1(R1,t) = Na(Ry,t), t>0. | (70)

In the above equations subscript 1 is for the annulus/backfill, subscript 2 is for the tuff/rock, #; is the
saturation fraction, €11, is the effective porosity in the filled annulus and is given by

€1¢1 = (1 - 65)61/)1 (71)
where
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€ is the porosity of the tuff,
€y is the volume of air between rubble pieces divided by the total bed volume,

In intact tuff the effective porosity is

€21)7 = €1y , (72)

Hére K; is the retardation coefficient, o, is the tortuosity in the annulus/backfill consisting of: tortuosity
due to tortuous diffusion pathways within a rubble piece and that of the contact areas between rubble pieces.
The tortuosity of the contact areas is discussed in a separate report [Sadeghi et al. 1990b] o2 is the tortuosity
in the intact tuff, and Ry is the radius of an equivalent-area waste sphere (L).

The details of the solution method are given in Chambré et al. [1985]. We give below the time-dependent
species concentrations and fluxes. The backfill thickness is b = Ry — Ry, where R; is the radius of the outer
edge of the backfill shell. The equation for N;(r,t), the species concentration in the backfill, is

oo —Dltﬂz
MY - By eon [y, Ro<r<Rayt20 (73)
0867 Cse7 0 1 “+ (D_x)")f) o

where

Ni(r,00) _ Ro {6’1;41 cosh py(Ry — 7) + (hp2 + 1) sinh.pl(Rl - r)}
Csey T € py cosh(p1d) + (€hpa + T') sinh(p1d)

I(r,m) = — (2R°€icaﬂ) L LS

wr H(n) ’
e — ¢ 2 | e — ¢
H(n) = [dnoos() + L Lain()| + Besmsin(ub), r-%-4
1
He = Dil, Ké:I{Z/O'L, CZ:QO’[(,&[, L= 1,2 (74)
The total mass transfer rate at any location in the backfill is obtained by
m(r,t) = —4rrieiro1 Dy BN;)—(rr,t)., Ry<r<R;,t>0 (75)
which is
; 1y(e ‘h - ! i —
rn(r, 1) 0 () (€ cos pr(Ra—r)+ 562#2 + 1“)~Slﬂhlt1(Rl 7))
Csey : €, p1 cosh(pb) + (e5p2 + T') sinh(p, b)

—(—€ip?sinh p1(Ry — r) — p1(ehp2 + T) cosh py (R — 7))
€y p1 cosh(p1) + (ehpe + I') sinh(p, b)

L2468, /°° e~D1t” nlycos(n[r — Ro]) — % sin(n[r — Ro])]
: 0

dny, Ro<r<Ry, t>0 (76
g 1+ (p257) H(n) n} T ' (70

For a saturated repository, ¥; and 1, are unity.
4.2 Readily Soluble Species

For release of readily soluble species from the fuel-cladding gap, plenum, and grain boundaries, we adopt
analytic solutions in Chambré et al. [1990] for equivalent planar geometry, with equal diffusion coefficients
in the backfill and rock. The origin of the z axis is at the annulus/tuff interface, and —b is the annulus
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thickness. Here we generalize that result to the case of unequal diffusion coefficients in the filled annular
layer and intact rock. The governing equations in the filled annular layer and intact tuff regions are

aNl 62N1 . :
W:Dlw—ANl, —b<x<0, t>0 (77)
0N2 62N2 . )
o = Drgg ANz, z>0, >0 S (78)
with
0’1Df 0'2Df
= =", 79
Dy K Do %, | (79)
The initial and boundary conditions are
Ni(z,0) =0, -b<z<0 (80)
Ny(z,0) =0, z>0 (81)
Nl(O:t) = N?(Oat)) t>0 (82)
ON ON.
—Gli,l)lDfa'la—zl = —62’¢2D'f0'2—5x—2 at ‘13 = ‘0, t>0 (83)
Ny(o0,t) =0, t>0. (84)

where

b is the annulus thickness (L),

; is the saturation fraction,

€111 is the effective porosity in the filled annulus,

€212 is the effective porosity in the intact tuff,

K; are the retardation coeflicients,

Dy is the species diffusion coefficient in a water continuum (L2/t),

S is the surface area at the waste-backfill interface, assumed to be equal to the surface area of the waste
cylinder (12),

o; are tortousity correction factors,

V is the volume of void space in the waste container (for spent fuel it includes the empty space in the
container not occupied by the spent-fuel rods or assemblies), '

NPO is the initial species concentration in the void space, after the void space is filled with water.

For a saturated repository, ¥, and 1, are unity.

The retardation coefficients K; and K> are given by (59); €191 and €21, are obtained from (71) and (72)
respectively. A mass balance within the water-filled region inside the waste package is

(—b,t —~b,t
_VaNl\—’Z = —Dfoleﬂ/)lSaLl(—’) + AVN;(=b,1), t>0 (85)
ot Oz :
The initial concentration is
Ni(=b,0)=N°  known » - , (86)

The total mass transfer rate of the radionuclide at the outer wall of the annulus is

6N1(0,t)

rh(O,t) = —Dfdlfli/)ls az y

(87)
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Figure 7. Equal Interval Input of Species Released Congruent with Matrix Alteration

which is equivalent to

(0,0) = 2K1e1p NS Nl {[f QOD1F(¢n)]exp['(22;?2"2]} (g:)n t>0 (88)

where
F(2?%) = exp{z?}erfc(z), ¢n = g%%—%_lltl + Qo+/ Dyt

ay [Kioy S :
E PR Sule .3 Qo= K = 89
crtra \| Kooy’ 0 16191 v (89)

4.3 Species Released Congruent with Waste-matrix Alteration

For alteration-controlled diffusive release we adopt equations given in Section 4.2 for the release of readily
soluble species to obtain an approximate numerical solution. Assuming the mass altered per unit time is
constant and equal to fo M3, where f, is the fractional alteration rate (1/t) and My is the initial inventory
of the waste matrix (M), the species mass release rate into the water-filled region inside the waste package

.y, is given by equation (27)

0,—-At 0,-At
ne Me MOe=tA=Ane).

Sy = faMM——'TM{_faMMMo—_Am' fa L <t<t (90)
nyse .

where

t1 is the time when water contacts the waste and alteration begins (t),

ty is the time when alteration is complete (t),

M? is the initial inventory of the species (M),

MY, is the initial inventory of the matrix (M),

n(t) is the concentration of the species in the undissolved solid (M/L3),

np(t) is the concentration of matrix (M/L3).

We divide the time t; — ¢; into intervals, calculate the species inventory released into the container water for
each interval, and convert the inventory to a concentration increment. For sufficiently small time intervals of
release into the container water, we can apply the equations in Section 4.2 to obtain the contributions to the
time-dependent release rate into surrounding rock from dissolution into a given time increment. The total
mass release rate is the sum of all the mass release rates obtained for each time interval. Figure 7 shows the
calculation concept.
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In each time interval we calculate the amount of the matrix that would be altered and instantaneously
dissolve that amount at the beginning of that time interval. This amount results in a certain concentration

increment.

faM°At e—t1(A=Aa)
14

faMoAt e—tg(A—)\y)
v €

ANl(—b,l'l) =

ANz(—b,tz) =

0
ANE-—I(—I), tl—l) = Igﬁv‘ﬂe_t"l()‘_’\M)

where
V is the void volume (L3),
At is the time interval (t).

Using (88), the mass release rate at the annular wall due to the mass released in the first interval is

faMOAte=t1(3=2wm) e—At=t;)
4 ) (6+1)

"Z{[\/wa e R G [71(12;?(?-1)32]}@:)"’ tzh

Similarly the mass release rate due to the mass released in the second interval is

Ar’hl(O,t) = 21{1€1¢1 (

0 —ta(A=Apr) —A(t-t2)
Aﬁ’lz(o,t) =2K 6191 (faM Ate ¥ ) ¢

v SGTFD

o € e[ ) R

and so on. For the last interval, we obtain

0 Agp—te—1(A=Anr) Ai=te_s)
Ay 1(0,1) = 2K 1619 (faM Ate -1 M ) c .

v G+1)

o = 1) R

(91)

(92)

(93)

(94)

Now we invoke the principle of superposition and add all the mass release rates Amy, ..., Arg_; to obtain

the total mass release rate r(0,t) at the outer wall of the annulus. Hence

m(0,8) =Y Am(0,t), t>t

(91)

The fractional release rate f(t), normalized to the 1000-year inventory, can be calculated by dividing (0, 1)

by M*.

18

X



vl

5. Conclusion

Analytic equations have been given for calculating release rates from waste packages in a nuclear waste
repository in partially saturated rock. Two water contact modes have been considered—wet-drip and moist-
continuous. The solutions given cover species that are solubility-limited, readily soluble, and those whose -
releases are congruent with waste matrix alteration. Numerical illustrations of these equations appear in a
separate report [Sadeghi et al. 1990a).
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NOMENCLATURE

b= R; — Ry is the backfill/annulus thickness (L),

Cse is the elemental solubility (M/L3),

f., the fractional alteration rate of the waste matrix (1/t),

fi(t) is the fractional release rate of the isotope (1/t), ' ' 4 ' .
M} is the initial inventory of the isotope (M), '

R

M}, is the initial inventory of uranium or silica in the waste (M),

M} is the 1000-year inventory of the isotope (M),

m;(t) is the mass release rate of the species (M/t),

N(t) is the concentration of a radionactive species in water (M/L3),

n;(t) is the concentration of the species in the undissolved solid (M/L?),

n.(t) is the concentration of the element in the undissolved solid (M/L3),

na(t) is the concentration of the matrix (M/L3), '

Np is the initial soluble species concentration (M/L3),

Q is the volumetric flow rate of water into and .out of the container (L3/t),

Ry is the radius of an equivalent-area waste sphere (L),

R, is the radius of the outer edge of the backfill shell (L), :
'S is the surface area at the waste-backfill interface, or the surface area of the waste cylinder (L2),
At is a time interval (t), ’

t1 is when water first enters the failed container (t),

t7 is the time after emplacement when the container is full of water (t),

13 is when all of the element has dissolved (t),

t; is the time when alteration is complete (t),

V is the volume of void space in the waste container (L2),

V(t) is the volume of water in the container as a function of time (L3),

Vi(t) is the volume of water in contact with waste that has been completely altered (L3),
V(t,) is the volume of water in the filled container (L3),

w is the fraction of the inventory that is readily soluble,

€ is the porosity of the intact tuff,

€p is the volume of air between rubble pieces divided by the total bed volume,

€111 is the effective porosity in the filled annulus,

€23 is the effective porosity in tuff,

7 is the inventory fraction of the isotope,

A is the decay constant of species (1/t), o &
p is the crushed-tuff density (M/L3), -
o is the tortousity of intact tuff, ' v

% is the saturation fraction.
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