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QUARK DAMPING AND ENERGY LOSS 

IN THE HIGH TEMPERATURE QCD* 

Markus H. Thoma and Miklos Gyulassy 
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Abstract 

The energy loss per unit length of high energy quarks in a quark - gluon plasma 
is calculated via PQCD. Unlike the damping rate, the energy loss is infrared finite and 
surprisingly small . 

* This work was supported by the Director, Office of Energy Research, Division of 
Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department 
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1. Introduction 

The problem of quark damping and energy loss is of interest in connection with possible 
jet signatures of the formation of quark- gluon plasmas (QGP) in ultrarelativistic nuclear 
collisions [1 ,2]. The first estimates of dE/ dx by Bjorken [1] were based on kinetic arguments 
in which the infrared divergences were cut off by hand at a reasonable scale kv ~ 0.5 GeV. 
Taking a 8 ~ 0.2, as consistent with lattice QCD [3] for T~Tc ~· 200 MeV, that estimate 
led to a surprisingly small value of dE/ dx ~ 1 Ge V /fm. In ref. [2] it was pointed out 
that such a small dE/ dx may under favorable conditions lead to one of the signatures (jet 
unquenching) for the onset of QCD deconfinement for T > Tc. 

The aim of the present paper is to calculate dE/ dx in an alternate way combining 
techniques of plasma physics [4] and high temperature QCD [5]. The induced chromoelec­
tric field in the wake of a high energy quark is used to calculate dEfdx (section 2). That 
induced field is related to the longitudinal and transverse dielectric functions, which can 
be expressed in turn in terms of the gluon self energy (section 3). One of the advantages 
of the present approach is that infrared singularities are automatically self regulated by 
the Debye mass of order gT. We show, in particular, that no additional magnetic mass is 
needed to regulate the transverse part of dEfdx because only non- static gluons (w > 0) 
contribute to the energy loss [6]. In contrast, we show that the quark damping rate for high 
energy quarks remains logarthmically divergent without introducing a non- perturbative 
mechanism for magnetic screening (section 5). Our final result for dE/dx, when extrapo-

lated down to T~Tc, agrees with the small value obtained from the kinetic estimates by 
Bjorken [1] (section 4). 

We use the following nosations throughout the _paper: Four momenta are denoted 
by capital letters, K = (ko, k), w = ko and k = lkl. The Minkowski metric is used, 
K 2 = w 2 - k 2 • Space- time indices are denoted by Greek symbols J-l, v, ... , space indices 
by i, j , ... and color indices by a, b, .... Summation over equal indices is assumed. 

2. Energy Loss of a Quark in the Quark-Gluon Plasma 

In this section we extend the result for the energy loss of a charged, non- relativistic 
particle in a plasma by Ichimaru [4] to the case of a relativistic color charge in the QGP. We 
restrict ourselves to the classical, abelian approximation for the quark dynamics, which 
is equivalent to the one - loop approximation. This limits the validity of the present 
appropach to the high temperature behaviour of QCD above the phase transition, for 
which perturbation theory is applicable. Quantum and non - abelian effects are included 
in the dielectric functions via the gluon self energy only (section 3). Then, analogous to 
ref.[4], an incident quark induces a chromoelectric field in the QGP. The induced field 
reacts on the incident quark by the Lorentz force, causing an energy loss of the quark. 
Assuming a small energy loss compared to the energy of the quark, the energy loss per 
unit length is given by [4] 

dE if a R E .... a (.... .... ) -d = - q e ind x = v t, t . 
X V 

(2.1) 
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Here, v denotes the velocity of the quark, supposed to be constant, v = lVI, and qa its 
color charge defined by qaqa = Cpa 8 with the strong coupling constant a 8 = g2 /47r and 
the Casimir invariant Cp = 4/3 of the fundamental representation of the SU(3). (In the 
case of a high energy gluon, we have to substitute Cp by the Casimir invariant of the 
adjoint representation C = 3 in the following.) In the abelian approximation, the total 
chromoelectric field in the QGP can be related to the external current J:xt of the quark 
by using the Maxwell equations and the continuity equation in momentum space [4]: 

(2.2) 

where t'.ij is the dielectric tensor of the QGP. For an isotropic and homogenous medium it 
can be decomposed by using the longitudinal and transverse dielectric functions: 

(2.3) 

The quark current of a color point charge in the momentum space reads 

(2.4) 

Combining (2.2), (2.3) and (2.4), we find the induced electric field: 

... qa J 3 1 { [ i ... ... 2 ...... Eind(x, t) = -i 27r2 dwd k k2w t:£ -1] (v · k)k + [k v- (v. k)k] 

[( t:r- k2 jw2
)-

1 
- (1 - k2 jw2

)-
1 J} 8(w- v · k) exp(ik · x- iwt). 

(2.5) 

Substituting (2.5) into (2.1) gives 

The dielectric functions of the QGP will be determined in the next section. 

3. Dielectric Functions, Spectral Densities and Gluon Self Energy 

~rJ In this section we want to express the dielectric functions of the QGP by the gluon 
self energy. For this purpose, we compare the most general expression for the gauge and 
Lorentz invariant action 

1Jd4
]{ ~ r = 2 (

271
-)4 [t:(w,k)Ef(K)Ef(-K)- Jl-1(w,k)Bf(K)Bf(-K)] (3.1) 
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with the effective action r eff = ro + r1 [7]. Here; 

ro = ~ j (~:~ [Ef(K)Ef( ~·K)- Bf(K)Bf( -K)] (3.2) 

is the classical action, and 

(3.3) 

contains the quantum effects through the gluon self energy II~t(K). In order to relate the 
dielectric function € and the magnetic permeability p, in (3.1) to the gluon self energy, we 
express the chromoelectric and chromomagnetic fields by the gauge potential A: ( K) in 
the abelian approximation: 

Ef(K) = iwAi(K)- ikiAg(K), 

Bf(K) = icijkkiAic(K). 
(3.4) 

It is convenient to introduce the longitudinal and transverse gluon self energies TIL 
a~d IIr, defined by Pisarski [5]: 

(3.5) 

where TilL" obeys the transversality condition kp.ITIL" = 0, which holds at least in the high 
temperature approximation [8]. Substituting (3.4) into (3.1) and (3.2), and (3.5) into (3.3), 
we achieve by comparing r with ref t=. 

(3.6) 

The connection between €£, fT and €, p, is given by [4] 

€£ = €, (3.7) 

Combining (3.6) and (3. 7) results in 

IIL(w,k) 
fL(w, k) = 1- k2 , 

IIr(w, k) 
fT( w, k) . 1 + w2 . 

(3.8) 
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Now, we have to specify our gluon self energy IlL and IIr. First, since we are interested 
in the perturbative regime, we restrict ourselves to the one- loop approximation (fig.1). 
Secondly, we only use the leading order of the high temperature expansion, T ~ w, k, for 
which the gluon self energy turns out to be gauge invariant [9,10) and is given by [5) 

(3.9) 

where the gluon "mass" is defined by m~ = g2T 2 (1 + Nt/6)/3. (3.8) and (3.9) agree with 
the dielectric functions obtained from the semiclassical gluon transport equation in the 
abelian dominance approximation [11). 

From (3.8) and (3.9) we can easily calculate the imaginary parts of €£1 and (w 2 Er­

k2)-1 which appear in the energy loss (2.6). From (3.8) follows: 

Im€-1 = k2 Im . 1 = k2 Im~ = 7rk2pdisc L p _ IlL - L - L , 

I ( 2 k2)-1 I 1 - I A _ disc m w €T- = m 2 k2 II = - mu.r = -7rpr ' 
W - + T 

(3.10) 

where we have introduced the discontinous part of the longitudinal and transverse spectral 
density pfisc and P¥sc defined as the imaginary part of the longitudinal and transverse 
effective gluon propagator ~L and ~T used by Pisarski [5). This effective propagator can 
be obtained from the Dyson- Schwinger equation, shown in fig.1, containing an infinite set 
of one - loop diagrams in the high temperature approximation. The use of this propagator 
within an effective perturbation theory was proposed by Braaten and Pisarski [12) for the 
calculation of thermodynamical quantities in the QGP in a gauge independent way. This 
will be used in section 5 for the evaluation of the quark damping rate, which is closely 
related to the energy loss. 

Using the high temperature approximation (3.9) for the gluon self energy in (3.10) 
yields (0 :s; w < k ): 

(3.11) 
It is instructive to approximate (3.11) by neglecting the gluon "mass" m 9 in the de­
nominator of (3.11). By using (3.9) and (3.10) it can he shown that this approxima­
tion corresponds to an expansion of ImE£1 and Im(w 2 Er - k2 )-1 for small IlL and 
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· Ilr. It is also equivalent to the use of the one - loop propagator, as can be seen from 
(3.10) e.g., 1/(k2 -IlL) ~ 1/k2 + IIL/k4 = ti~) + ~~)Ih~~) = ~~) and therefore 

I mEL~ k2 Im~~) = ImiiL/k2 • The one -loop propagator ~}_I) differs from the propaga­

tor ~L of (3.10) and fig.1 by using only free propagators~~) on the right hand side of the 
Dyson- Schwinger equation and does not contain an infinite set of one- loop diagrams 
therefore. Using (3.9), we see that ImiiL/k2 agrees with (3.11), if we set m 9 = 0 in the 

·denominator of (3.11). 

4. Results for the Energy Loss 

Now, we end up with the final; gauge independent result for the energy loss of a 
high energy quark in the QGP by substituting (3.11) into (2.6). The gauge independence 
is due to the fact that the dielectric functions in the high temperature limit are gauge 
independent as well as the chromoelectric field in the abelian approximation. It is possible 
to perform the integration over the momentum of the electric field k analytically, but 
the integral over the angle cosB = (v · k)/(vk) has to be done numerically. The integral 
over k is infrared finite due to the screening factor m 9 in the denominator of (3.11), but 
logarthmically ultraviolet divergent, as it is expected for the energy loss. Therefore, we 
have to choose a maximal momentum kmax, which cannot exceed the initial momentum 
of the quark, of course. The choice of kmax is not crucial, because it appears only under 
the logarithm. For the case of a light, high energy quark travelling through the QGP, we 
set v = 1 and kmax = p, where pis the momentum of the quark. Just above the phase 
transition at T = 0.25 GeV, as it can be expected in ultrarelativistic heavy ion collisions, 
and for typical values of as = 0.1 - 0.3, predicted by lattice calculations [3] and used in 
ref.[2], we obtain the energy loss in a QGP of two flavors (Nt = 2) depending on the quark 
momentum as shown in fig.2. From this we read off an surprisingly small energy loss e.g., 
dE/ dx ~ 0.2 Ge V /fm for a 20 Ge V light quark at as = 0.2, compared to an energy loss of 
about 1 GeV /fm in hadronic matter [2]. 

In the case of an heavy quark of mass M, the energy loss is even reduced further by 
two factors. The first factor is due to the velocity v = pf )p2 + M 2 < 1 of the quark and 
the second due to the kinematical reduction of the maximal momentum transfer kmax· 
Assuming the maximal momentum transfer to come from elastic forward scattering of the 
quark by the particles of the QGP of typical momenta q ~ 2T, much smaller than the 
quark momentum (p ~ T), yields kmax ~ 4Tpf( )p2 + M 2 - p + 4T). The details are 
given in the appendix Al. The energy loss of a charm quark (M ~ 1.5 GeV) and a bottom 
quark ( M ~ 5.2 Ge V), compared with the massless case, is shown in fig.3 for T = 0.25 
Ge V and as = 0.2. Especially for a bottom quark a significant reduction of the energy 
loss can be observed. 

., 

Now, we use the approximation to (3.11), mentioned at the end of section 3 i.e, we 
set m 9 = 0 in the denominator of (3.11). Then, the integral in (2.6) can be evaluated V 
analytically, but an infrared cutoff has to be introduced, as in [1]. For this we choose the. 
Debye momentum kv = .J3m9 and obtain: 

dE = 471" C 2 T 2 l ( kmax) ]__ ( v
2 

- 1 1 1 + V) (4.1) 
dx 3 F as n kv v2 v + 2 n 1- v · 
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( 4.1) is displayed in fig.4 (dashed line) and compared with the full expression (solid line) 
for M = 0 (i.e, v = 1 and kmax = p), T = 0.25 GeV and as = 0.2. The deviation is 
about 10%, indicating the validity of the perturbation theory, since ( 4.1) corresponds to 
the one - loop approximation to the gluon propagator, while (3.11) contains an infinite 
set of diagrams, as discussed at the end of section 3. Therefore, the simple formula ( 4.1) 
serves as an useful estimation for the energy loss of a high energy quark in the QGP. 

In fig.4 there are two additional curves represented. They come from a different 
approach by Bjorken [1]. He calculated the energy loss of a massless quark due to elastic 
scattering by the particles of the QGP by averaging the cross section for elastic scattering 
times the mean energy transfer over the thermal distrbution ( N f = 2): 

dE 47r 2 2 (4pT) [ kv ( kv)] dx = 3 Cpa 8 T ln k'b exp(-T) 1 + T . (4.2) 

( 4.2) is represented by the dotdashed line in fig.4. The difference in the argument of the 
logarithm compared to ( 4.1) comes from a different choice of the minimal energy transfer 
(infrared cutoff), but is numerically not essential since kv "' T. The last factor in ( 4.2) 
reduces theenergy loss in our example of a 20 GeV quark about a factor of two. It stems 
from the introduction of an effective mass, meff = kv, for the particles of the thermal 
distribution. This was not considered in our case in (2.6), since distribution functions for 
massless particles in the QGP were used in the gluon self energy (3.9). The introduction of 
an effective mass, coming from higher order effects in the Dyson - Schwinger equation of 
fig.l e.g., from a mean field approximation [13], does not allow a closed form for the gluon 
self energy in the high temperature approximation. Only in the case w = 0 we proved that 
the longitudinal part of the gluon self energy by quark polarization n{(o, k) is reduced by 
a factor 1. 7 for an effective quark mass k D ~ 2T. Assuming this to hold approximately 
for the imaginary part of TIL and llr in (3.11), we can understand the reduction of the 
energy loss by higher order effects. 

In fig.4 we also displayed (4.2) without the effective mass factor (dotted line). The 
remarkably good agreement with ( 4.1) is due to the fact that there is no energy loss by 
Cerenkov radiation in the QGP at high temperatures, because the index of refraction is 
smaller than one [9]. Therefore, only elastic scattering contributes to ( 4.1) and (2.6) with 
(3.11). 

It should be noted that the full expression for the energy loss (2.6) with (3.11), for 
which no infrared cutoff is necessary, contains the so called density effect [14]. It comes from 
the dielectric polarization of the medium, while ( 4.1) and ( 4.2) take only close collisions 
(k > kv) into account. 

5. Quark Damping Rate in the Quark - Gluon Plasma 

In this section we investigate the damping rate of a light, high energy quark and 
compare it to the _energy loss. 

Perturbation theory should be applicable for calculating observables of the quark -
gluon plasma at high temperatures, such as the screening length k[} or the dispersion 
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relations of quarks and gluons. But, as it turned. out, the results for quantities which have 
to be calculated beyond the leading order g2T 2 e.g., damping rates, are gauge dependent 
in general (15]. In order to avoid this problem, Pisarski and Braaten (12] suggested an 
effective perturbation expansion which leads to gauge independent results. According to 
this, the propagators and vertices for small momenta and energies of the order gT, have to 
be modified by resumming a certain class of one - loop diagrams with hard loop momenta 
("hard thermal loops"). 

Pisarski (16] used this effective perturbation theory for calculating the damping rate 
of a heavy quark by considering the quark self energy. In this case, only an effective 
gluon propagator is required, since the energy of a heavy quark ( M ~ T). is large. The 
same holds for a light, high energy quark with momentum p ~ T. Therefore, at high 
temperatures, we have to consider the one - loop diagram of fig.5 of the quark self energy. 
The effective gluon propagator coincides with the one of fig.1, because the hard thermal 
loop in the gluon propagator agrees with the gauge invariant gluon self energy in the high 
temperature approximation (12,16]. 

The physical process involved in this damping can be studied by cutting the diagram 
of fig.5 in such a way that fig.6 results. According to fig.6, the damping is caused by 
the emission or absorption of a virtual collective gluon mode. Real gluons are forbidden, 
because there is no Cerenkov radiation i.e., the cut must go through the polarization part 
of the gluon self energy of fig.1 and not through a single gluon line. This collective gluon 
mode contains an imaginary part for w < k (Landau damping in (3.9)), by which it can 
decay into a quark or gluon pair. This process is also responsible for the energy loss (2.6), 
since it corresponds to elastic scattering via the exchange of a collective gluon described 
by the dielectric constant (3.11). 

From fig.6 we can easily estimate the order of magnitude of the damping rate 1 = 
-Imp0 • It is proportional to the inverse of the collision time and therefore to the cross 
section of the reaction of fig.6 times the density of the particles in the QGP: 

1 J 3 J da 1"'-:;: "'pa = d qn(q) dt dt' (5.1) 

where n(q) is the momentum distribution of the quarks and gluons in the QGP. Since 
q"' T and dajdt "'a:;J(t + p,2 )2 (17], where we have introduced a quantity p,2 "'a: 8 T 2 

exemplifying the collective effect of the gluon self energy, we obtain 1 "' a:;T3 
/ p,2 = a: 8 T. 

This agrees with Pisarski's result (16] and with the damping rate of a light, high energy 
quark, calculated in the appendix A2. The final result reads: 

In order to obtain the result for the energy loss (2.6) in the case v = 1 from it, one has 
to multiply (5.2) with w2 /2T under the integral. One factor of w is expected, because w 
is the energy transfer by the exchanged gluon to the particles of the QGP. The additional 
factor w /T comes from the high temperature expansion of the gluon distribution function 
nB(w) ~ Tjw. For the 'damping rate we have to integrate over nB(w) (see (A.9)), but 
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this is not the case for the energy loss. There the distrib~tion ·functions appear only in 
the gluon self energy. The additional factor 1/2 is due toi~pe two delta functions in the 
damping rate (A.13), while there is only one in the energyjoss (2.5). 

' . ' 

Inserting (3.11) into (5.2), we are able to integrate over k analytically and afterwards 
over () numerically. For the longitudinal part of (5.2) we obtain IL = 0.732a 8 T, but for 
the transverse part we encounter a logarthmically infrared divergence. This was already 
observed in the case of a heavy quark [16]. This singularity occurs at w = 0 and is therefore 
not present in the energy loss because of the additional factor w2 (dynamical screening [6]). 
The reason for the divergence of the damping rate is the missing magnetic screening in the 
leading order of the transverse gluon self energy in the static limit w = 0, k -+ 0. This 
deficiency can be cured by the introduction of a non - perturbative magnetic gluon mass 
(16]. 

Of course, neglecting Debye screening i.e., m 9 = 0 in the denominator of (3.11), results 
in a quadratic infrared singularity in the longitudinal and transverse damping rate. 

6. Sum'mary 

In this paper we have investigated the energy loss and the damping rate of a high 
energy quark travelling through the QGP. The energy loss was calculated by considering 
the Lorentz force on the incident quark by the induced chromoelectric field in the QGP. 
The damping rate was obtained by evaluating the quark self energy within the effective 
perturbation theory developed by Pisarski and Braaten [12,16]. In both cases the high 
temperature approximation for the gluon self energy, which determines the dielectric func­
tions of the QGP, was used. Obtaining a gauge independent, simple result for the dielectric 
functions (3.11) is the great advantage of the high temperature approximation. These di­
electric functions also agree with the one derived from the semiclassical approximation of 
the gluon transport theory in the abelian dominance limit [11]. 

Extrapolating the high temperature formula down toT~ 0.25 GeV (fig.2), expected 
in ultrarelativistic heavy ion collisions, we confirm the surprisingly small value dE/ dx ~ 0.2 
GeV /fm for a 20 GeV quark, first pointed out by Bjorken [1]. Higher order effects, like 
the consideration of effective masses for the particles of the QGP, reduce the energy loss 
further. This lends support to the idea [2] that unquenching of hard jets may provide 
under favorable condtions one of the signatures for the production of a QGP phase in 
ultrarelativistic heavy ion collisions. 

Furthermore, the reduction of the energy loss for heavy flavor jets could result in an 
observable enhancement of jets producing D or B's as compared to jets without heavy 
quarks. 

Our formula for the energy loss (2.6) and (3.11) is free of infrared singularities including 
non - perturbative (static and dynamic) chromoelectric screening effects via the dielectric 
functions (density effect). We showed also that the simple pocket formula ( 4.1) provides a 
useful approximation (at the 10- 20% level) to the numerical results. 

Elastic scattering dominates the energy loss, because of the absence of Cerenkov ra­
diation at high temperatures (9]. The magnitude of the contribution of bremsstrahlung to 
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dE/dx remains an open problem in QCD. However, at least for QED the radiative energy 
loss is suppressed by the Landau - Pomeranchuk effect [2]. 

The damping rate of a light, high energy quark in the QGP, calculated by the effec­
tive perturbative expansion of Pisarski and Braaten [12,16], is closely related to the energy 
loss (2.6) together with (3.11). The damping mechanism is caused by elastic scattering 
on quarks and gluons in the QGP via the exchange of a Landau damped, collective gluon 
mode. Unlike the energy loss, however, the transverse part of the damping rate shows 
a logarthmically infrared sigularity due to the absence of magnetic screening in this ap­
proximation. Dynamical screening [6] in this case is not enough to regulate the infrared 
divergence. 

Appendices 

Al. Maximal momentum transfer for the energy loss of a massive quark 

The maximal momentum transfer occurs for elastic forward scattering of the quark 
of momentum p and energy p0 = y'p2 + M 2 by the massless particles of the QGP of 
momentum -q and energy qo = q. The scattered states are denoted by a prime. Energy 
conservation 

(A.1) 

and momentum conservation 

pi = p - ql - q = p - 2q - v (A.2) 

gtve 

(A.3) 

For p » q ~ 2T follows 

4Tp 
v= -,======~------y' p2 + M 2 - p + 4T. 

(A.4) 

Since the gluon is on mass shell in the case of forward scattering, v = Wmax = kmax cos (J = 

• 

kmax, we obtain the maximal momentum transfer claimed in section 4. (A.4) agrees with II 
our assumption kmax =pin the massless limit, M = 0. 
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A2. Evaluation of the Damping Rate of a Jight, high energy quark 

Here, we want to calculate the damping rate of a light quark with a high momentum 
p ~ T, for which the approximation of fig.5 holds and the quark mass can be neglected. 
The dispersion relation of a massless quark with four momentum P = (po,P) is given by 
[18] 

b(po,p) 
po=p- ( )' 1+apo,p P = IP1, (A.5) 

where 
1 

a= 
4
p 2 [Tr(fE)- po Tr( lo~)], 

1 
b = - 2 [P2 Tr(lo~)- Po Tr(fE)] 

4p 

(A.6) 

and ~ = ~( P) denotes the quark self energy. If there is no overdamping i.e., 1 = -I m p0 ~ 
Re p0 , and since Re po ~ p for high momentum p, we obtain for the leading order in the 
high temperature approximation 

1 ~ Im b(p,p) = _ __!_ Im Tr(fE)I . 
4p po=p 

(A.7) 

(The function a(p0 ,p) in the denominator of (A.5) contributes to higher order only.) There­
fore, we have to caculate the imaginary part of the quark self energy on the mass shell 
at finite temperature, for which we prefer the real - time formalism [19]. Since the re­
sult is gauge indep~ndent, we are free to choose any gauge. Using the Coulomb gauge, 
it is convenient to divide the quark self energy into a longitudinal and a transverse part 
~ =·~L + ~T [16], where 

(A.8) 

Here, tl.L(K) and tl.r(K) are the gauge invariant, effective longitudinal and transverse 
gluon propagators of (3.10) and S(Q), (Q = P + K), the quark propagator. The thermal 
part of tl.L,T can be expressed by the spectral densities PL,T and the Bose - Einstein 

.. distribution nB [10,16,20]: 

\) (A.9). 

Since we are interested in the imaginary part of the quark self energy, we take into account 
the contribution of the discontinuities due to Landau damping to the spectral densities at 
w < k only, which are given by (3.10) and (3.11). At high temperatures T ~ w, we can 
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approximate the distribution function by nn(w) ·= T lw. The quark propagator is given by 
the zero temperature propagator 

(/J 
S(Q) = Q2 + ie' 

because k "'gT [16] and therefore q "'p ~ T. The traces in (A.7) yield: 

'[ (p. k)(q': k)l 
poqo- k2 . 

Using (A.7), (A.8), (A.9) and (A.ll), we obtain after integrating over ko: 

=I {- CFg
2
T J d3

k 100 

dw disc( k) 
/L m (2 )3 PL w, p 7r 0 w 

[ 
p(p + w) + p2 + p. k p(p - w) + p2 + p. k l } 

(p + w )2 - (p + k)2 + ie + (p- w )2 - (p + k)2 + ie ' 

.. ·.;:.yT = Im{2CFg2T !(2d3k)3 roodw P¥sc(w,k) 
, , P 7r Jo w 

(A.10) 

(A.ll) 

[ 

.... 2 2 .... .... 2 2 .... ] } p(p + w) - (ff · k) 1 k - i · k p(p - w) - (ff · k) 1 k - i. k 
::......:.::. _ ___;__-=.__..:___:__,._,---=-- + .... . 

(p + w )2 - (p + k )2 + ie (p - w )2 - (p + k )2 + ie 
. . (A.12) 

Expanding the square brackets in (A.12) for p ~ w,k and defining cos8 = (p· k)l(pk) 
leads to 

/L = -CF g2Tim {!(2d3k)3 roo dw Piisc(w, k) [ k 1 8 ~. + k 1 8 .] } ' 
1r }0 w w - cos ze -w - cos + ze 

C 2 {/ d
3
k roo dw disc( k)( 2 Ll) IT= F g Tim (21r)3 Jo -:;Pr w, 1- cos u 

[w-kc~s8+ie + -w-k~os8+ie]}· 
(A.13) 

Using the principal value description, Im(±w- kcos8 + ie)-1 = 1rh(±w- kcos8), and 
performing the integration over w results in 

(A.14) together with (3.10) is equivalent to (5.2). 
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Figure Captions 

Fig.1: Gluon propagator of the effective perturbation theory. 

Fig.2: Energy loss of a light quark for different values of the strong coupling constant. 

Fig.3: Energy loss for different quark masses. 

Fig.4: Full expression for the energy loss (solid line), one - loop approximation for the energy 
loss (dashed line), energy loss by elastic scattering with ( dotdashed line) and without 
(dotted line) effective masses of the particles in the QGP. 

Fig.5: Quark self energy in the effective perturbation theory. 

Fig.6: Elastic scattering by the exchange of a collective gluon. 
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