
!. 
'" 

Talk presented at the Nobel Symposium 
on "Superheavy Elements, Theoretical 
Predictions and Experimental Gene rations," 
Ronneby, Sweden, June 10-14, 1974. 

NUCLEAR COLLISIONS WITH FRICTION 

C. F. Tsang 

May 1974 

Prepared for the U. S. Atomic Energy Commission 
under Contract W-7405-ENG-48 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Dioision, Ext. 5545 

'!:.\: 

LBL-2928 

t-' 
t:Jj 

t-' 
I 

N 
._!:) 

N 
00 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



...... 

* 

* NUCLEAR .COLLISIONS WITH FRICTION 

c. F. Tsang 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

LBL-2928 

Work performed under the auspi'ces of .the U. S. Atomic En~rgy Commission. 



-"iii-

NUCLEAR COLLISIONS WITH FRICTION 

c. F. Tsang 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

May 1974 

Abstract 

LBL-2928 

A theory of nuclear collisions where a frictional force is introduced 

explicitly from the beginning is worked out based on a macroscopic and 

leptodermous idealization. A solution of the problem is made by freezing all 

degrees of freedom but four: the distance between centres of the colliding 

nuclei, the angle of rotation of a line joining the centr.es and the two angles 

measuring the spins of the nuclei. The condition for capture as a function of 

energy and angular momentum is discussed in detail. Results ori the kinetic 

energy and angle distributions of collision products are also obtained. 
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In the past few years, the study of collisions between complex 

nuclei [1] has called attention [2] to the need for a collision theory 

where frictional forces are present, which are capable of dissipating energy, 

i.e., converting energy of collective degrees of freedom into heat--

internal microscopic (nucleonic) degrees of freedom. Various attempts [3] 

have recently been made in this direction. 
1 

The present paper is concerned 

with a study of collisions betwe·en some of the simplest idealized systems 

where dissipative effects are taken into account explicitly from the 

beginning. The general framework in which we approach the problem has 

2 
been discussed in some detail in the last talk : 

(a) Macroscopic and leptodermous [4] idealization. 

(b) Freezing all but a few of the degrees of freedom. 

Thus, we describe the collective or gross behaviours of the 

collision, not in terms of individual nucleons (the microscopic approach), 

.·but in terms· of macroscopic degrees of freedom, such as the shape, angular 

velocities and the distance between the two bodies. The preference of 

this approach over the microscopic approach is obvious in the case of 

a brick sliding on a rough surface. In the case of collisions between 

two _heavy ions, this approach has recently been found to be quite 

fruitful. 

The solution of a dynamic problem with N degrees of freedom 

yields, in general, N coupled differential equations, which is easy to 

solve only if N is small. In our study we made the important 

l The present work is done in collaboration with W. J. Swiatecki. 

2 w. J. Swiatecki, Aspects of heavy ion dynamics, these proceedings. 
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idealization that the shapes of the two colliding nuclei are frozen to 

be spheres and consider as most important only four degrees of freedom; 

the distance, r, between the two nuclei, the angle of rotation, e, of the 

line joining their centres, and the angles of self-rotation of the two 

nuclei, el and 82, respectively. (See Fig. la.) We shall mention at the 

end of the paper the possibility of unfreezing some other degrees of 

freedom. However, for the present paper we shall not go into such 

discussions. Instead we shall calculate infull detail, within this 

idealized model, energy and angular distributions and energy dissipation 

as functions of incident energy and target-projectile choice. It needs 

to be emphasized that quantitative agreements with experimental data are 

not expected and we shall attempt to make the broadest comparison with 

experimental observation to see if the main fea.tures are reproduced at 

all. 

Having defined the degrees of freedom, we have to specify the 

forces involved: The conservative forces are 

1) Coulomb force 

2) Nuclear Proximity force 

Besides these two forces, there is also .the centrifugal "force" 

for which, in ourpresent calculations, we have used formulas of moments 

of inertia corresponding to rigid bodies though we could have used 

other formulas for them. The second force listed above, nuclear proximity 

force, has been discussed· in some detail in the·last talk. In our 

J 
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simplified picture it appears as 'an attractive force set 

in when the two bodies come into contact with a strength of 41TR y where 
r 

Rr = R
1

R
2
/CR

1
+ R

2
) andy is the surface tension coefficient whose.value 

can be extracted from a nuclear mass formula. The force will become 

repulsive as the two bodies penetrate each other (with the overlap 

region having a density doubling the normal value). 

For the dissipative force, we have assumed the following form: 

(1) 

where the volume integral is over the overlap region, p
1 

and p
2 

are the 

-+ 
densities due to projectile and target nuclei, respectively, u

12 
is the 

relative yelocity at each point, and k.is the frictional coefficient. 

This f:dctional coefficient is the only parameter occurring in the 

problem. .It may be remarked here that tangential friction and radial 
; . 

friction will appear naturally from this definition of a frictional 

force ~nd there is no need to introduce. two parameters to describe their 

strengths independently. The above formula assumes a delta function 

type of friction, i.e., the volume element due to one nucleus rubs that-due 

to the other only when they are at the same location. It is possible 

to introduce a range into the formulation in which the two volume 

elements experience a frictional force that decreases with their 

sef>aration. However, we have not introduced this complication and have 

used the formula as shown above. 

It is well known that equations of motion under conservative 

forces may be written down by means of Lagrangian (or Hamiltonian) 
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method. With dissipative forces, a method known as the Lagrangian-

Rayleigh method [5] may be employed with dis$ipation described by what 

is called a Rayleigh function. · Now in our case the Rayleigh dissipation 

function ~ay be written down in a straightforward way from our definition 

of the frictional force, and the equations of motion are thus obtained • 

. Instead of going through the mathematical details, let me write 

down the final equations of·motion 

M r- -
r 

2 
_L_+ 

3 
M r 

r . 

di_Y 
= - ar = Force(Coulomb + Proximity) (2) 

(5) 

where Mr is the reduced mass of the system; L, L
1

, and L2 are the angular 

momenta corresponding to e, el and 82; v is the volume of the overlap 

region; p
0 

is the nuclear matter density and g
1 

and g
2 

are the arm 

lengths from the centers of the two spheres to the Cf7nter of mass of 
I 

the overlap region, respectively. The symbol b represents the radius 

of gyration of the overlap region around its center of mass (Fig. lb). 

The radial equation of motion, Eq. (2), is easy to understand. 

The three terms on the left-hand side represent the acceleration, 

centrifugal force, and dissipation in the radial direction, respectively. 

.I 

·; 
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Note the last terrri has the form .r.ecognizable from our definition 

of the frictional force. Equation (3) giving the conservation of angular 

momenta is also apparent. However, this equation has the important 

implication that the orbital angular momentum (8 degree of freedom) is 

not constant. Thus, if 1
1 

and 1
2 

are increased during the collision 

process due to friction (notice that in Eqs. (4) and (5), the driving 

force on the right-hand side of the equation is proportional to the 

frictional. coefficient k), then L will be decreased, thus reducing the 

centrifugal force term in Eq. (2). The implication will be further 

discussed when we are presenting .our calculation results. 

Equations (4) and (5) are not difficult to understand. Let us 

first consider the first term on the right-hand side of either equation. 

By examining Fig. lb, it can be seen that the expression in the square 

bracket, [g
2 

({3
2 

- E)) + g
1

(B
1 

- El)], represents nothing more than the 

re:)..ative tangential velocity of the two colliding nuclei in.the overlap 

region.- .Thus, kp 
2v[ ] represents the tangential frictional· force, 

' . . 0 . . 

which, when multiplied by the respective ami-lengths g
1 

and g
2

, gives 

the torques causing the time derivatives of 1
1 

and 1
2

• The second 

term on the right-hand side of either equation is one order of magnitude 

2 2 
smaller than the first, i.e., by a factor of b /g

1 
or s

1
/R

1
, where s

1 

is the width of the overlap region. This term represents a little 

couple with arm-length b and proportional to the relative angular 

velocity (1\ - 8
2
); Its significance becomes apparent when one considers 

the two bodies rolling over each other, i.e., the relative velocity at 

the contact point ·Of the two b~dies is zero, or g2(S2 ~ S) = gl(S- e/· 
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Then the first.term is zero, and it is.the small second term that resists the 

relative angular velocity <E\ -:- 82). Thus, the first term may be called 

the "sliding friction", being friction against sliding leading to a rolling 

condition, and the second term, the "rolling friction", being the friction 

against rolling, causing the system to get stuck completely with 

Summarizing, it is the frictional force that transfers the initial 

orbital angular momentum L into the spin angu~ar momenta L
1 

and L
2

, by 

means of a sliding fraction term which makes the two bodies roll on each 

other and by me.ans of a {smaller) rolling friction term, which causes 

the t~o.bodies to get stuck rigidly. Thus, the initial orbital angular 

momentum L is reduced, and so is the centrifugal force term in the 

radial Eq. {2) • 

The Eqs. {3), (4) and {5) can be conibined into one, and we are 

left with two coupled differential equations, which are not difficult to 

solve numerically. Special simplification results if we assume that the 

rolling friction is ·negligible when compared with sliding friction, which 

is a reasonable assumption in the case of grazing interactions. In terms 

of the overlap distance s {measured "inward") given by s -

the orbital angular momentum is given by 
2 

7 kp lot 
'2 + V{s)dt] 

r o . {6) 

where L is the initial angular momentum. Thus, if the exponent goes to 
0 

• 5 . 
infinity, the angular momentum is exactly '7 of the initial value 
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independent of the relative sizes of the projectile and target. This 

can actually be easily verified for any two spheres rolling on each 

other. There is now only one master equation to be solved: 

7 kpo2 t 

2 [ - 2 ~ Ia V(s)dt] + 2 . 
. M s + Lo 

3 
~7 + ~ e kp V(s)s 

r 7 o 
M r r . . 

2 
where V :::::: 7TR s for small s and the right-hand. side represents the 

r 

(7) 

Coulomb anq proximity forces. We notice that in the case of a captured 

rot· system, the quantity k ~0 V(s)dt -+oo and the centrifugal force is 

reduced by a factor of (~) 2 
:::::: l Here "capture" means. rolling capture 

7 2" 

and not rigidly stuck. When the rolling friction 

is included, centrifugal force after capture is even less, except 

in the case where the projectile and target are of equal size, wh~re the 

factor (~)2 stays the same. 
7 . 

(a) 

(b) 

Various further simplification of the equation can be made: 

Replacing Coulomb force by a constant, 

. 2 z
1
z

2
e 

. s 
Approximating the proximity force by 4TIR Y(l - -) which 

r s 
0 

implies a parabolic attractive well. 

(c) 
2 2 

Replacing V(s) = TIR s by a constant TIR <s >. This particular 
r r 

simplification is rather drastic but it enables us to solve the problem 

analytically. 

(d) One may further approximate the proximity force by dropping the 

second term using only 4TIR y. This is probably qpplicable in the case of 
r 

grazing reactions where s/s << 1. 
0 
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I.n the results presented below, (a), (b), and (c) are always 

assumed, so that an analytic solution can be obtained. Assumption (d) 

was made only in the result shown in Fig. 5. 

In Fig~ 2 is shown. a schematic picture of how the orbital 

angular momentum decrease affects the capture process. .If the orbital 

angular momentum is frozen [6}, and has very large values (greater 

. than a value, sometimes known as Wilc·zynski' s limit, L ) there 
. w 

is no pocket or minimum in the potential energy curve and nothing can 

be captured. However, as the frictional forces convert orbital angular 

momentum into spins of the target and the projectile nucleus, one can 

come in with an orbital angular momentum greater than L and yet on the 
w 

way out one would be seeing·a lower angular momentum curve with a pocket 

in it. As mentioned above, if the final state corresponds to the two 

5 spheres rolling on each other, the limiting value of Lf is 7 L
0

, where 

L
0
·is the initial orbital angular momentum, (with initial values of L

1 

and L
2 

being·zero). 7 
Thus, we are led to the result that if L

0 
> 5 Lw' 

then the system will. not see a pocket in the potential energy curve on 

the way out and no capture. can take place. Conversely, L < l L is a 
0 5 w 

necessary (but not sufficient) condition for capture. In the case when 

rolling friction is ·operative, the final stuck system has.all angular 

velocities equal e = e = e and it is easy to verify that the necessary 
1 2 

condition for capture is that 

L 
0 

M (Rl 
< r • L 

w 

' 

... 
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which is exactly 2 L for :identical· projectile and. target nuclei 
5 w 

(e.g., 
84

Kr + 84
Kr), b~t is larger for the collisions of unequaL nuclei. 

h 1 f . 84 84 . h . . T e resu ts o calculat1on for Kr + Kr 1s s o~ 1n F1g. 3. 

The vertical and horizontal axes are respectively the radial kinetic 

c ' c 
energy, E d' and. the rotational energy, E · , at the point of contact 

ra · rot 

of the two nuclei. The unit of energy used is given by 

2 2 
is given E L . /2M (Rl + R2) . Since the· incident energy E. by cr w r 1n 

E. = Ec + Ec . + v where V is the Coulomb barrier, c:::urves for 
1n rad rot c c 

constant incident energies are represented by straight lines with unit 

. slope. Curves for different values
3 

of frictional coefficient k' 

separates, on the left, a region of capture and, on the right, a region 

of either repulsion or bounced back by the inner wall of the potential 

.well. Now take a given total incident energy and consider what happens 

as .. one increases the radial energy from zero (following a line of unit 

slope). At first the .system has too much angular momentum and the 

potential curve does not have a \vell and nothing can be captured. 

However, as the radial energy is increased, frictional forces act more 

significantly, reducing the value of·the orbital anguiar momentum as 

illustrated in Fig. 2, and the system will be captured. Now as one 

.reaches a very high radial energy and a low angular momentum, even 

though there is a pocket in the potential energy curve, friction cannot 

dissipate sufficient energy and the system goes in and comes out over the 

barrier and no capture occurs. This effect would imply a lower cutoff in 

angular momentum to fusion probability (in addition to the upper cutoff 

discussed abov~~ The ratio of,the portion of the constant incident energy line 

1. 25 fm. 
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under the curve and that portion outside the curve projected 

to the horizontal axis gives the relative cross-sections of 

capture and non~capture reactions. This value decreases as one goes to 

a curve corresponding to a lower value of the frictional coefficient. 

In the limit of zero friction, nothing is captured. For the case of 

very large friction everything is captured (K 1 ~ 1) with the limiting 

angular momentum -
5
7 the Wilczynski value, and rotation energy (l) 2E 

5 cr. 
. . 1 1 1 . . d f 40 108 ( . 4) A s1rn1 ar ca cu at1on 1s rna e or Ar + Ag case F1g. . 

The oniy extra comment required here is that the limiting angular momentum 

for large K' is f the Wilczynski's value only when rolling friction is 

switched off. When it is included, the limiting angular momentum with 

the corresponding rotation energy is greater as indicated. However, 

the curves for small K' are. not much affected.· 

It was recently pointed out by Wilczynski [7] in studying the 

transfer products in (40 232 h) Ar + T reaction that frictional forces are 

responsible for the reduction of the kinetic energy of the product as its 

angle of deflection is decreased from its grazing value. ·Figure 5 is such 

. a plot with these quantities obtained from our calculation for three 

values of the frictional coefficient.
4 

For the intermediate value 

K = 0.02, it is seen that as the angle deviates from grazing towards 

negative values, the kinetic energy is decreased. Physically, as the 

proj.ectile and. target nuclei overlap, the nuclear interaction causes the 

angle of deflection to deviate from the grazing value, and at the same 

time the frictional force causes the kinetic energy to be reduced.· Thus,-

for K = 0, there is no frictional force, and the curve in Fig. 5 displays 

no decrease in energy. On the other hand, for a larger value of K = 0.2, 

4 Here we have used also assumption (d) and the dimensionless unit of the 

friction coefficient has to. be changed to h;p 2
(frn)

5
. 

0 

' 

( .• 
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the decrease in kinetic energy i·s much faster, reaching a limiting value 

corresponding to the case where the spins·of the two nuclei and the 

rotation of the whole system have the same angular velocity and there 

is no rubbing between the nuclei. By a comparison of this calculation 

with experimental measurement, we find that the frictional coefficient 

5 
is required to be a surprisingly small number K ""'0.02, the value for 

critical damping, in a· potential well corresponding to our proximity 

force being K = 1. We got some confirmation of this value when it 

occurred to us that we can apply our theory to the oscillation of neutron 

matter and proton matter of a nucleus in a giant dipole resonance. Using 

the value for the width of resonance energy to be about 4-5 MeV we obtain 

a value for K = 0.014. We do not attach too much significance to the good 

agreement of the two determinations of the frictional coefficient. It is 

probably more of an accident, since a broader comparison of experiments 

will certainly be n·ecessary to enable one to make a more definite statement. 

In conclusion, we have made a calculation with an idealized model 

of heavy ion collision, in which friction is put in explicitly from the 

beginning. All properties of-the collision processes can be evaluated 

completely from such a model. We have not yet made a comprehensive 

comparison with experimental data, nor have we compared our preliminary 

determination of the frictional coefficient with the values obtained 

by Gross and Kalinowski [8], Sierk and Nix [9], or Wieczorek, Hasse and 

Sussmann [10]. This is partly because the assumptions (c) and (d) used 

in the results presented should first be relaxed. More important, we 

feel that some of the degrees of freedom that has been frozen in our 

5rn units of hfm, this number becomes 0.02 x 49 1; that is, k 1 

(hfm). 
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calculation has to be un-frozen in order to include all qualitative 

features of the physical process. The most important one is probably 

·the neck formation degree of freedom, which we find to have significant 

influence on our picture. Some t~oughts have been put into this problem, 

and we expect that we will incorporate this degree of freedom in our 

next calculations. 
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Figure Captions 

Fig. 1. (a) Defining the degrees of freedom; (b) Some notations used. 

Fig. 2. Schematic picture of·potential energy surfaces for heavy ion 

collision, illustrating effects of the decrease of orbital angular 

momentum due to friction. 

Fig. 3. 
84 . 84 

Possibility of capture for ( Kr + Kr) system as a function 

of rotational energy and.radial kinetic energy above the Coulomb 

barrier. Different curves correspond to different magnitudes of 

the frictional coefficient. Capture occurs in the region on the 

left of each curve. Capture cannot occur for either too large a 

rotational energy or too large a radial energy. The dashed line 

indicates a lo.cus of constant total energy. 

Fig. 4. 40 108 Same as Fig. 3, but for ( Ar + Ag). 

Fig. 5. Kinetic energy of the final products, ET, as a function of the 

40 232 
deflection angle 8 for the grazing reaction ( Ar + Th) for three 

values of the frictional coefficient. 
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