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Abstract 

A novel Random Matrix Ensemble is introduced which mimics the 

global structure inherent in the Hamiltonian matrices of autonomous, 

ergodic systems. Changes in its parameters induce a transition between 

a Poisson and a Wigner distribution for the level spacings, P( s ). The 

intermediate distributions are uniquely determined by a single scaling 

variable. Semiclassical constraints force the ensemble to be in a regime 

with Wigner P( s) for systems with more than two freedoms. 
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The Theory of Random Matrices has been used to describe various phenomena 

in condensed matter physics, atomic physics, nuclear physics and the semiclassical 

mechanics of nonintegrable systems. For example, these properly describe the con

ductivity fluctuations in mesoscopic systems1 and the fine scale spectral statistics 

of nuclei, atoms, molecules and classically ergodic Hamiltonian models. 2 If time

reversal invariant, some spectral properties of such systems, e.g. the nearest neigh

bor level spacings distribution, P( s ), resemble that of the Gaussian Orthogonal 

Ensemble (GOE) for a wide variety of examples. Actually, it has been shown that 

the GOE only represents a special case in a large family of ensembles which all have 

precisely the same spectral behavior.3 In other words, the GOE spectrum is quite 

insensitive to modifications in the definition of the ensemble. Random Matrices 

with properties similar to that of Hamiltonian matrices apparently form another 

subset of the same large family of ensembles as the GOE. However, the two sub

sets differ from each other in many ways. In particular, nonlocal correlations of 

semiclassical origin which are inherent to Hamiltonian matrices are absent in the 

GOE. While such differences are not reflected in the spectral properties, they will 

affect the properties of eigenstates which are not as robust. 3 In order to understand 

the properties of the latter, it is necessary to examine an ensemble which mimics 

the semiclassical correlations of Hamiltonian matrices. Naturally, such an ensemble 

is appropriate only if its fine scale spectral properties are the same as that of the 

GOE. Accordingly, the purpose of this Letter is twofold. First we introduce such 

an ensemble and study some of its properties. Specifically, we focus on checking 

whether or not the new ensemble is compatible with our expectation for the P( s ). 

For a particular ordering of the basis, the corresponding members of the new en

semble are banded. Thus, we refer to this model as the Banded Random Matrix 

Ensemble (BRME). Its eigenstates are typically localized. Second, we show that in 

the Hamiltonian-like limit of the BRME its P(s) is the same as that of the GOE 

and on average its eigenstates are extended. However, both these conclusions only 

hold for systems with more than two freedoms, d > 2. When d = 2 our argument is 

marginal and a more detailed understanding of the relation between the BRME and 

the actual Hamiltonian matrices is required in order to determine the correspond

ing form of P(s). Moreover, due to its additional structure, the BRME will lead 
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to new predictions for various properties of ergodic Hamiltonian matrices which 

cannot be explained by the GOE.4 The discussion of such predictions however, will 

be postponed for a future publication. 

Before we actually introduce the BRME, we give a short description of the 

semiclassical correlation structure of Hamiltonian matrices.5 Suppose H = H 0 + H1 

and Hovi = Eivi. We use Vi as basis and arrange it in increasing order of the unper

turbed energies, Ei. In this basis, His a banded matrix, hij = Ei8ii+ < Vi IH1 Iv i >. 
That is, matrix elements which lie much further away from the diagonal than few 

band widths, l:l.Ei, are vanishingly small, where 

and 
{F( )} = f dqdpF(q,p)8[E- H0 (q,p)] 

q,p - f dqdp8[E-Ho(q,p)] 

(1) 

(2) 

is a microcanonical average. Moreover, ( F, G] p B is the Poisson bracket and the 

"~" sign denotes equality to lowest order in 1i or more precisely, the contribution 

from zero length classical orbits. 6 Eq. (1) is a consequence of the relation between 

microcanonical averages and diagonal elements, hii ~ { H}. Let us now fix a classical 

range for E, (Ed, Eu), and truncate the basis Vi such that Ed < Ei < Eu. The 

resulting block spans a 0( 1i 0 ) range in E while the band size, l:l.Ei, is only 0( 1i) (see 

Eq. (1)). Accordingly, except for a thin band around the diagonal, all the elements 

of this block are vanishingly small. This observation can also be formulated in 

terms of numbers of rows and columns in the Hamiltonian matrix by using the 

Weyl formula for the density of states, p( E) 

p(E) ~ h-d j dqdp8[E- A(q,p)] . (3) 

We obtain that the size of the block is N = 0(1i -d) while the size of the band 

is smaller, b = p(E)l:l.E = 0(1i1-d). A second semiclassical constraint on the H 

matrix concerns its diagonal matrix elements. Since hii ~ { H} and due to the 

Vn-basis ordering, these display on average a slow (global) variation with E. 

;,, 
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We now introduce the Banded Random Matrix Ensemble (BRME) which in 

contrast with the GOE, incorporates in a simplified form the global semiclassical 

correlations of Hamiltonian matrices. The members of GOE, H, are N x N sym

metric matrices with random, uncorrelated elements, hij = G(O, u + uOij ), where 

G( u, v) is a Gaussian distribution with mean u and variance v2 • Since u only deter

mines the overall size of the matrix elements, we set u = 1. On the other hand, the 

matrices in BRME are in addition exactly banded, that is < hri >= 0 whenever 

li- il > b. Moreover, their diagonal matrix elements have a mean ~hich changes 

by a from one row to the next, < hij >= aiOij· Forb> Nand a= 0 the BRME 

becomes equivalent to the GOE. Similar ensembles were originally introduced by 

Wigner in the context of nuclear physics. 7 Moreover, such matrices also arise in 

the study of tight binding models with external electric field for an electron on a 

disordered lD lattice. 8 

In order to further stress the analogy to Hamiltonian matrices, we define the 

enlarged BRME. The latter includes all the matrices obtained from the BRME by 

permutations of the basis in which the BRME itself is expressed. As in the case of 

a generic Hamiltonian matrix, the nonlocal correlation structure is hidden for most 

members of the enlarged BRME. On the other hand, the spectral properties of the 

enlarged BRME are precisely the same as that of the BRME itself. We therefore 

can restrict our study to the BRME without loss of generality. 

If N = oo and b is finite, the eigenvalue equation for a member of BRME can be 

cast in a transfer matrix form. Consequently, it falls under the auspice of Fursten

berg theorem which implies that the corresponding· eigenvectors are exponentially 

localized.9 For finite N and a = 0, the BRME was recently studied by Casati et 

al.. 10 They found that LIN = J( b2 IN) where L is the average localization length. 

The scaling function J( x) = C x for small x where C ~ 1 and saturates to 1 when 

xis large. 

The most extensively studied spectral property of Random Matrices is P( s ), 

the distribution of spacings between consecutive eigenvalues, S, where s = Sp(E). 

For both the GOE and ergodic Hamiltonians, P( s) is very well approximated by 

the Wigner distribution, P(s) = 7rsl2exp( -1rs2 14). The fact that P(O) = 0 is a 

signature of the repulsion between levels. On the other hand, integrable systems 
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with d > 1 have been shown to display no level repulsion; P( s) = exp( -s ), is 

Poisson. 11 For the BRME, if N = oo and a = 0, the localization of eigenstates 

implies that the overwhelming majority of eigenvalues have negligible repulsion. As 

a consequence, the spacings are Poisson distributed. For the ensemble studied in 

Ref. 10, a transition from a Poisson to a Wigner distribution was observed as the 

appropriate scaling variable, x = b2 
/ N, was gradually increased. In the following, 

we show that by varying a such a transition is also obtained for N = oo. 

We now turn to the study of the BRME with finite a but very large N. In 

particular, we attempt to quantitatively understand the behavior of its spacings 

distribution. It is natural to assume that the local P( s ), namely that restricted to 

eigenvalues with eigenvectors which are localized within L sites of each other, is of 

Wigner type. On average, such eigenvalues correspond to diagonal elements which 

are located within L rows away of each other. Moreover, this local spectrum lies 

within some energy interval, (Ed, Eu), of width 6.E. When a = 0, the spectrum of 

the BRME results from incoherently overlaying a large number of local spectra and 

this leads to a Poisson spacings distribution. On the other hand, if a is finite, the 

intervals (Ed, Eu) associated with individual local spectra are shifted with respect 

to each other along the energy axis. In particular, if La > 6.E, these intervals do 

not overlap at all. In this case, the spacings of one local spectrum are not altered 

by intervening eigenvalues from other local spectra and therefore the Wigner P( s) 

is preserved in the full BRME. In order to characterize the intermediate situations 

where 0 < La < 6.E, we define a new scaling variable, 1 = i~, which measures 

the relative strength of the two mechanisms causing the spread in energy: 1. the 

a = 0 natural width of the local spectrum, 2. the amount of a-shift from one local 

spectrum to the next. The central assumption of our description is that these two 

mechanisms do not interfere with each other. 12 Accordingly, we assume that both 

L and 6.E are independent of a; L = b2 
/

0 and 6.E ~ v'b (see next paragraph for 

derivation). 13 Thus, 1 ~ ab312 • As either a or b grow, the spacings distribution 

displays a gradual transition between a Poisson and a Wigner form. In the process 

of this transition the intermediate forms of the spacings distribution are uniquely 

determined by the value of I· 

In order to gain additional insight into the behavior of P1 ( s ), we can further 
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define the nature of the local spectra. This is achieved by approximating the band 

of the BRME with L x L blocks centered on the diagonal such that the upper left 

corner of one block lies on the diagonal of the matrix and is adjacent to the lower 

right corner of the next block. While a = 0 inside each block, the average of the 

diagonal elements differs by La from one block to the next. In the following, we 

refer to this model as the block ensemble. Moreover, we assume that the spacings 

distribution for each of the blocks is Wigner and the corresponding density of states 

is in the form of a semicircle (as in the GOE). Since< ,\2 >= N-1 < TrH2 > (-\ 
are the eigenvalues of H), an exact calculation of the semicircle width only implies 

counting the non vanishing matrix elements of H. For 1 ~ b ~ N, !:1£ = 4v'2b and 

therefore 1 = !a(b/2)312
• The local densities of states form a periodic lD lattice 

of partially overlapping semicircles (the lattice constant is La). One can use the 

approach of Pevsner and Gurevich14 to derive the theoretical P-y(s) for the block 

ensemble. Despite the various simplifications, the theoretical P-y( s) displays nice 

qualitative agreement to the P-y( s) of the BRME. 

For an independent one parameter characterization of the intermediate forms 

of P(s) we use the Brody distribution, Pq(s) = f3sq exp( -Ks1+q), where J3 = (1+q)K 

and K = rl+q[(2+q)/(1+q)]. While at q = 0 this gives a Poisson distribution, for q = 

1 it is Wigner. The Brody formula was derived assuming an sq repulsion between 

adjacent levels. 15 In Fig. 1 we numerically test the validity of the one variable 

scaling description for the spacings distribution. We fit the Brody distribution to 

that obtained by numerically diagonalizing 125 BRME matrices with N = 800 (see 

Fig. 2). To reduce finite size effects, eigenvalues corresponding to eigenvectors 

localized less than L sites from either end, are not included. For 1 > 0.3, q clearly 

scales with 1, q(f). While in theN= oo limit, q(O) = 0, numerically we are faced 

with finite size effects. These lead to q(O) > 0 which in turn is a consequence 

of having only a finite number of blocks in each matrix. Moreover, one can easily 

show that the finite size effects start at 1 = lcr ::::J b2 where 1:1£ becomes of the same 

order as the energy spread of the entire matrix, N a. Such effects can be accounted 

for with a two variables scaling function, q(x,1), where x = L/N as in Ref. 10. 

Keeping x fixed is equivalent to having a constant number of blocks in each matrix. 

Notice that, in Fig. 1, x varies. Numerical experiments in which x was kept fixed 

.. 
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(b = 10, N = 556) were also performed. It was found that the resulting q(r) curve 

precisely overlaps with the b = 12 curve of Fig. 1 and does so equally well for all 

values of 1'· We should point out that the scaling behavior of q is more robust than 

it might appear from our discussion. In particular, we have shown that L = b2 f(y) 

where y = ab312 , f(y) = Co for y ~ 1 and f(y) = C1y-213 when y ~ 1.
16 This 

implies that 1'::::::: yf(y) and therefore the assumption that L does not depend on a 

1s unnecessary. 

Finally, we discuss the implications of the BRME properties to autonomous, 

ergodic Hamiltonian systems. Using Eqs. (1-3) and u = 0(1i ";
1 

),
17 we obtain that 

r = 0(1i2-d). Notice that, r(u) = r(1)u-1. Accordingly, in the limit 1i ~ 0 and for 

d > 2, 1' is diverging. Therefore, the semiclassically constrained BRME agrees with 

the GOE with respect to the form of the spacing distribution. Namely, both predict 

a Wigner type P( s ). As a matter of fact, the semiclassical ergodic Hamiltonians are 

even further away from the Poisson-Wigner transition than it might appear from 

the previous argument. In the study of the BRME we have implicitly assumed 

that the finite size scaling variable of Ref. 10, x, is small. Semiclassically however, 

x = 0(1i2-d) as well and so, L ~ N when 1i ~ 0 and d > 2. Thus, to the extent 

to which the properties of the BRME coincide with that of Hamiltonian matrices, 

localization is irrelevant for d > 2 and 1i ~ 0. While the GOE leads to the same 

conclusion, we stress that for the BRME this semiclassical limit is attained in a 

nontrivial way which one should be able to observe in actual Hamiltonian systems. 

The d = 2 case is semiclassically marginal and will require further study. Let 

us refer to (C:iE)2 of Eq. (1) as the second moment of hij· All the higher moments 

are also constrained by semiclassical expressions analogous to that of Eq. (1 ).17 

These can be thought off as additional correlations which are not included in the 

BRME. We expect that these will further enhance the localization length in the 

case of Hamiltonian matrices such that semiclassically L ::::::: N and 1' ~ 1 also when 

d=2. 
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Figure Captions 

1. The scaling hypothesis, q( 1 ). The data points are obtained from ensembles of 

125 matrices with N = 800 and correspond to different band widths: b = 8 

(+), b = 10 (x), b = 12 (<>), b = 14 (b.). 

2. The P( s) distribution for one of the points in Fig. 1 (histogram) is compared 

with the best fitting Brody distribution (dashed) (! = 0.4, b = 10, q = 0.484). 
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