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infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
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reflect those of the United States Government or any agency thereof or the Regents of the 
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ABSTRACT 

A multicomponent decay curve analysis technique has been developed and 

incorporated into the decay curve fitting computer code, MLDS (Maximum 1ikeli

hood Qecay by the §implex method). The fitting criteria are based on the 

maximum likelihood technique for decay curves made up of time binned events. 

The probabilities used in the likelihood functions are based on the Poisson 

distribution, so decay curves constructed from a small number of events are 

treated correctly. A simple utility is included which allows the use of discrete 

event times, rather than time-binned data, to make maximum use of the decay 

information. The search for the maximum in the multidimensional likelihood 

surface for multi -component fits is performed by the simplex method, which 

makes the success of the iterative fits extremely insensitive to the initial 

values of the fit parameters and eliminates the problems of divergence. The 



simplex method also avoids the problem.Sof pJ;'_ogramming the. partial derivatives 

of the decay curves with respect to an·the variable parameters, which makes 

the implementation of new types of decay curves curves straightforward. Any of 

the decay curve parameters can be fixed or allowed to vary. Asymmetric error 

limits for each of the free parameters, which do not consider the covariance of 

the other free parameters, are determined. A procedure is presented for deter

mining the error limits which contain the associated covariances. The curve 

fitting procedure in MLDS can easily be adapted for fits to other curves with 

any functional form. 

This work was supported by the Director; Office of Energy Research, the Direc

tor, Office of Basic Energy Sciences, .ChemicakSciences Division, and the Direc

tor, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the 

U.S. Department of Energy under Contract· DE-AC03-76SF00098. 
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Introduction 

Decay curve fitting is a powerful and necessary tool in the analysis of 

nuclear decay data. Decay curve fits are used both for identifying nuclides and 

for performing nuclear decay studies in which half-lives and/or disintegration 

rates as a function of time must be determined. 

decay curve equations 

Decay curve data are usually constructed by detecting a number of decays 

during each of a series of n measurement intervals. Let tm be the length of 

time from a reference time (t=O) to the start of the roth measurement interval, 

and let the length of this interval be em. If there are u independent species 

being detected in the sample, which decay exponentially with time, the number 

of decays of the ith species detected in the roth interval, um,i• is found by 

integrating the exponential decay over the time interval from tm to tm +em. 

D~ exp(-ditrn) [1-exp(-d·c )] 
l. rn 

u ·=-----------------------------rn,l. 
d· l. 

(1 

In eq. 1, Df is the activity (detected events per unit time) for the ith species 

at a reference time, t=O, and di is the decay constant for the ith species (these 

independent components will be referred to as "daughter" activities in the later 

discussion, hence the notations D and d). The total number of decays during 

the mth interval due to the u independent species, Urn, is the sum of the u 

individual activities. 

u = rn 
u 
t urn i 

i=1 I 

(2 

Often, an activity being detected is produced as the daughter of a radio-

active parent species. If there are v of these parent-daughter decay chains for 

which the daughter decays are being detected, the number of daughter events 

3 



detected in the mth interval originating from the decay of the jth parent, vm,j• 

is 

[

exp ( -pj tm) 
V ·=PQd, m,J J J 

P· J 

[1-exp(-pjcm)] 
+ 

(dj-Pj) 

exp(-d ·t ) [1-exp(-d ·C ) ]] J m J m 
d. (p. -d.) 

J J J 

(3 

where PJ is the activity of the jth parent species at t=O. dj and Pj are the 

decay constants for the jth parent and jth daughter, respectively. The number 

of counts in the mth interval from all v of the parent-daughter chains is ob-

tained by summing over j. 

u+v 
v m = . E [v m, j + urn, j J 

J=u+l 
(4 

The um,j term has been added to account for any daughter activities which were 

present at t=O. It should be noted that this is the equation for the number of 

events of the daughter. If the parent activity is also being detected directly, 

an eq. 1 term for the parent must be added. 

Finally, The decay of the daughter of a three member chain will be con-

sidered. If there are w such three membered chains, the number of daughter 

events detected in the mth interval originating from the kth grandparent, wm,k• 

is 
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, .. exp(-pktm) [1-exp(-pkcm>l 

Pk (gk-pk) (dk-pk) 

+ exp(-gk)tm) [1-exp(-gkcm>l] 

gk (pk-gk) (dk-gk) 
(5 

where Gi( is the activity of the kth grandparent activity at t=O. gk is the 

decay constant for this kth grandparent activity. To get the counts in the mth 

interval due to all of w of the three membered chains, the sum over k is taken. 

u+v+w 
Wm= :E [wrn,k + vrn,k + urn,k] 

· k=u+v+l 
(6 

The V m k and Urn k terms have been included to account for any parent or 
I I . 

daughter activities which were present at t=O. Again, if the parent or grand-

parent activities are also detected, appropriate terms from equations 1 and 3 

must be added. To find the total activity during the mth interval due to u 

independent components, v parent-daughter chains, and w three membered 

chains, the contributions from equations 2,4, and 6 must be summed. 

(7 

It is a relatively simple matter to extend these equations to four mem

bered chains, etc, or to branched decay chains. 

common curve 11tting techniques 

Decay curve fitting has traditionally been performed using the non-linear 

error-weighted least squares technique [1-3). Here, if the observed number of 

counts in the n intervals are Zm• the deviations between the data and the fit 

are minimized by minimizing a chi squared, x2. 
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(8 

where om is the standard deviation in the number of counts detected in the mth 

interval. This approach suffers from two potential problems, especially for the 

case of poor statistics. First, since the true number of expected counts in the 

mth interval is not known, om 2 is usually approximated from the observed 

number of counts, Zm (om 2 :::: Zm>· Therefore, intervals which had a small 

number of counts, due to statistical fluctuations in Ym, will be assigned a 

smaller om 2 than those intervals in which the statistical fluctuations resulted 

in a large number of counts. This effect is illustrated in figure 1. Based on 

the x2 fitting criteron given in eq. 8, the samples in which the random fluctua-

tions resulted in a small number of counts will be assigned a larger weight in 

the fit than those intervals in which the random fluctuations resulted in a 

large number of counts, causing the error-weighted least squares fits to consist-

ently underestimate the Yms in the regions of decay curves where there are a 

small number of events detected. Some error-weighted least squares techniques 

use am 2 :::: Y m for the error weighting, which is more correct. Second, since the 

x2 fitting criteria is based on the assumption of normal statistics, the time 

intervals with a small number of counts are incorrectly weighted. This problem 

is illustrated in figure 2 where normal and Poisson distributions for Ym = 1 are 

compared. 

More recently, maximum likelihood techniques have become popular for 

decay curve fitting. If the probability of observing Zm counts in the mth inter

val where Y m counts are expected is F m• the llkellhood function, L is the 

product of the F m over all m. 

6 
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n 
L= n F m 

m=l 
(9 

Maximization of this likelihood function maximizes the probability that the 

curve correctly describes the data. Usually, it is convenient to use the natural 

logarithm of the likelihood function, ln(L), to avoid underflow errors. 

n 
ln(L)= I: ln(Fm) 

m=l 

The MLDS Decay Curve Fitting Technique 

(10 

The decay curve fitting technique incorporated in the MLDS code is a 

combination of existing techniques. MLDS uses a combination of the decay 

equations integrated over the time intervals, the correct use of Poisson distribu-

tions in the likelihood functions, and iterative multi-parameter fitting using the 

simplex method. The MLDS code is written in FORTRAN 77 with some simple 

Tektronix 4000-series graphics routines. MLDS treats the data as correctly as 

possible, which is especially important in cases with low counting statistics. 

The on-screen prompts, as well as the non-divergent character of the fitting 

technique make this a reliable method for fitting decay curves with the maxi-

mum possible accuracy. 

the likelihood J'unction 

The experimental numbers of counts in each time interval, Zm• are com

pared to expected numbers of counts, Ym• calculated from the above decay curve 

equations integrated over the experimental time intervals. This avoids problems 

with assuming an instantaneous decay rate at some time in the interval based 

on the average rate, a problem encountered in many curve fitting programs, 

which can have a large effect if em is not small compared to the shortest half-

7 



life. The F m are determined according to the Poisson distribution. 

Y (Zm>exp(-Y ) m m 
(11 

The natural logarithm of the likelihood function then has a simple form. 

(12 

In MLDS the exact values for the logarithm of the factorials, ln(Zm! ), are used 

from Z=O through Z=lOO, and thereafter, Sterling's approximation [4] is used. 

1n(2nZm) 
ln(Zm!)=Zmln(Zm)-Zm+--------

2 
( 13 

This use of Stirling's approximation introduces an error in ln(Zm!) of less than 

2.3xl0-6 , and has a negligible effect on the fits. 

This log likelihood function makes full use of the Poisson distribution, 

making it applicable in cases of poor statistics. Contrary to many other ap-

proaches, it even handles the case where Zm=O naturally. This allows one to 

use the same log likelihood function for fitting multi -component decay curves to 

decay data made up of discrete event times, rather than time binned data. In 

order to use discrete decay times, time intervals with lengths equal to the 

timing resolution of the detection apparatus are used. This time resolution is 

often 16.667 ms from a 60 hz computer system clock. The intervals containing 

zero events between the event containing intervals can be concatenated into 

larger intervals, as can the intervals from the beginning of the measurement to 

the time of the first event and the intervals from the end of the last event 

containing interval to the end of the measurement, resulting s 2q+l intervals, 

where q is the number of events. The liklihood functions used in this work 

reduce to the simpler forms commonly used to fit decay curves made up of 
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discrete decay times (5,6) if the following conditions are met: 

1) The probability of observing an event in any time interval is vanishingly 

small. This condition is usually met for a moderate number of events if 

the time resolution is very good. 

2) The lengths of the event-containing intervals are the same (the time 

resolution does not change during the measurement). 

3) At most one event is observed during any time interval. 

4) The sum of the lengths of the event-containing intervals is vanishingly 

small compared to the total measurement time. 

It should be noted that there is one approximation made in this approach. 

The Poisson distributions are based on the expected number of counts in the 

mth interval, Ym. This Ym is the best value for the expected number of events 

from the decay curve fit, and may differ from the true number of expected 

events based on the actual numbers of atoms in the sample. To the extent 

that the best fit value for Ym differs from the true value, the Poisson distribu

tions in eq. 11 and 12 may differ from the true Poisson distributions. These 

errors should be small, and the Poisson distributions based on the best fit Y ms 

are the best approximation possible since the true values can, in principle, 

never be known. 

the simplex method 

Multi-component decay curves are often fit by performing a steepest 

ascent search for the maximum in the multidimensional L surface (similarly, the 

method of steepest descent is used with the error weighted least squares ap

proach to find the minimum in the multidimensional x2 surface). In cases with 
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more than a few free parameters (initial activities and decay constants which 

are allowed to vary) these steepest ascent (descent) searches are very sensitive 

to the initial values used for the free parameters. If the initial values are not 

near enough to the best values, the iterative fits tend to diverge. The simplex 

method for curve fitting used in this work almost completely avoids this diver

gence problem. Programming the complicated equations for the derivatives of 

the Ym with respect to all the free parameters is also avoided by the use of 

the simplex method. 

The log likelihood function, ln(L), from the preceding section can be 

viewed as a multidimensional hypersurface ln(L)(Di, di, PJ. Pj• Gic, gk) where 

ln(L) is dependent on the variable parameters. If the number of variable 

parameters is b, a simplex is a b+ 1 sided hyperpolygon which is placed on this 

hypersurface. The Simplex method outlined by Caceci and Cacheris [7) describes 

a set of rules for moving this hyperpolygon around on the hypersurface, while 

changing its size, so that it finds the maximum in ln(L) [7). The decay curve 

parameters at which ln(L) is a maximum are taken to be those for the best fit 

to the decay curve data. The simplex method is relatively fast (although it is 

several times slower than performing similar decay curve fits by the steepest 

ascent (descent) approach. The accuracy of the simplex technique is limited 

only by the convergence criteria (how it is determined when the simplex has 

reached the maximum). As mentioned above, the simplex method is not prone to 

divergence, and will reach the maximum of a multidimensional ln(L) surface, 

even if the initial values for the fit parameters are orders of magnitude differ

ent from those at the maximum. 

10 
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error limits 

As with any curve fitting procedure, the question arises of how best to 

express the uncertainty in the fit parameters. Most commonly, the goodness of 

fit criteria is assumed to be normally distributed in the directions of the free 

parameters, and the curvature at the maximum (or minimum) of this assumed 

multidimensional normal distribution is used to determine the error limits in the 

best values for the free parameters. Usually the "one sigma limit" or the 

approximate 68.3% confidence interval is used. Often, covariances of the free 

parameters are included in the calculation of these error limits. 

In the case of poor counting statistics with the maximum likelihood tech

nique, the L surface can be quite asymmetric about the maximum, so in order to 

convey this information, it is necessary to determine some asymmetric error 

limits. Skewed L distributions are also possible in multi -component decay 

curves with good statistics when, for example, two of the half-lives are similar. 

Figure 3 shows L as a function of the half-life for a single component fit to 

the spontaneous fission decay of 261 Lr produced in 248cmc 18o,p4n) reactions 

[8). The decay curve consists of 57 events in 20 minute time bins. Three 

types of asymmetric error limits are indicated in the figure: 

1) Half-Maximum Limits - The points at which the L drops to half of its 

maximum value. It should be noted that for a normal distribution, the 

one sigma limits are 0.85 times the half-maximum limits and cover 68.3% 

of the distribution. For compllcated L distribution shapes, the fraction of 

the distribution (confidence level) covered by the half-maximum limits is 

not known. 

2) 68.396 Confidence Level Limits - Limits which encompass 68.3% of the 

L distribution with equal probabilities above the upper llmit and below 

the lower limit. For especially skewed distributions, it is possible for the 
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lower limit to be at a position larger than the position of the maximum in 

the L curve 

3) Interval of Equal Likelihood Chances [6] for a 68.396 Confidence Level 

- Limits which encompass 68.3% of the L distribution with the L value at 

.the upper and lower limits equal. For skewed distributions, the probabili

ty of being above the upper limit is larger than for being below the lower 

limit. 

The MLDS code calculates some approximate error limits. These are half

maximum limits which do not consider the covariances of the other free parame

ters. These non-covariant half-maximum limits are determined by finding the 

values for the free parameter in question for which L drops to one half of its 

maximum value, while holding the other free parameters at their best values. 

In so •. -:~ cases these non-covariant error limits can be more than a factor of two 

smaller t:i.12'1"\ error limits calculated considering the covariances. They are, 

however, useful for most data anal.)·~es in which the identification of the nu

elides present in decay curves and the determination 01 C:!"Droximate initial 

activities are the principle aim. 

Where more accurate error limits are needed, such as in the exact deter

mination of a half-life, L as a function of the free parameter of interest can be 

mapped out by choosing a set of values for the parameter of interest. Fits are 

performed holding the parameter of interest fixed at each of these values, and 

letting the other free parameters vary. Figure 3, which was used above to 

describe the different types of error limits for skewed distributions, is the 

result of such a procedure. The limits presented there are the covariant error 

limits on the half-life determined for 261 Lr. Figure 4 shows the L distribution 

as a function of the independent component half-life for a multicomponent decay 

12 
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curve with high counting statistics {more than 1000 counts in each interval). 

The details of the decay curve and the fit for figure 4 will be presented in the 

next section. It should be noted that since the L distribution in figure 4 is 

essentially Gaussian, the 68.3% confidence limits and the interval of equal likeli..,. 

hood chances for a confidence level of 68.3% correspond to the one sigma limits 

.,., of the Gaussian, or 0.85 times the half-maximum limits. 

Results and Comparisons 

Decay curve fits performed with the MLDS code are compared with those 

for error weighted least squares fits. The error-weighted least squares fits 

were performed with the EXFIT code [3] which performs the fits by the same 

procedure as earlier codes [9]. but was retrofitted to use the activities integrat

ed over the time intervals, rather than assuming instantaneous decay rates. 

EXFIT gives the same results as other error-weighted least squares decay curve 

fitting codes [2], within convergence criteria. The least squares procedure used 

in EXFIT is outlined by Moody [9]. 

high counting statistics limit 

As an example of a multi-component decay curve fit in the limit of high 

counting statistics (more than 1000 counts per time interval), a decay curve 

cons,isting of a !-minute parent activity feeding a five-minute daughter activity 

together with an independent component with a 25-minute half-life was con

structed. The time intervals chosen were 10x0.5m, lOxl.Om, and 10x2.0m. 

Normally distributed statistical fluctuations were included in the decay curve 

data. Table 1. shows a comparison of the fit to this decay curve with the two 

methods. In all fits, the initial daughter activity was fixed at 0. The results 

agree quite well, and any differences are within the uncertainties in the values 

for the free parameters. The MLDS uncertainties listed do not consider the 
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covariances with the other free parameters. As an example of how the covari

ant uncertainties compare with the non-covariant uncertainties for the high 

counting statistics case, the covariant uncertainties in the half-life of the 

parent activity were determined. As noted above, figure 4 is a plot of the 

normalized L as a function of the parent activity half-life obtained by letting 

the other fr.ee parameters vary in fits where the parent half life was fixed at a 

series of values. This half life, with its covariant one sigma error limits is 

1.004±0.024. The covariant error limits are seven times larger than the non

covariant error limits. The differences in the MLDS and EXFIT fits are real, 

however, and are not due to errors induced by the convergence criteria. To 

test this, the convergence criteria in both codes were tightened significantly, 

which had very little effect on the results. 

poor statistics limit and discrete event times 

As an example of the differences in the limit of poor counting statistics 

between MLDS and EXFIT for time binned events and MLDS for discrete event 

times the decay data for the a-decay of the 4.3-s 258Lr daughter of 34-s 

262 Ha is considered. The event times used are the sum of the parent and 

daughter lifetimes for 14 events in which both the parent and daughter a

particles were detected in chemically separated samples [10,11]. Table 2 con

tains a comparison of fits to these data for MLDS with the discrete event times 

and for MLDS and EXFIT each with data time binned in two ways. In the uppe.r 

half of the table, the decay was fit with a parent-daughter decay relationship. 

The initial activity of the daughter, 258Lr was fixed at 0. The fits with MLDS 

for discrete event times agree quite well with the MLDS fits for the time binned 

data, and the effect of the different choices of time bins seems to have a small 

effect in the maximum likelihood fits. The different choices of time bins seems 

14 

... 



to have a larger effect in the least squares fits, and the results differ signifi

cantly from the maximum likelihood fits based on the discrete event times. The 

least squares approach tends to underestimate the initial activities and half

lives, which may be expected based on the trends explained earlier and outlined 

in figures 1 and 2. 

,,. For comparison, in the bottom half of table 2, the same data were fit with 

'"" 

a single component decay, shown in the bottom half of the table. The values of 

ln(L) listed below each of the MLDS fits can be used to determine that the 

parent-daughter fits are better than the single component fits. The ln(L)'s for 

the parent-daughter fits are larger than those for the single component fits by 

about 0.8, giving a factor of 2.2 difference in the L's, indicating that the 

parent-daughter more than twice as probable. 

Conclusions 

The MLDS (Maximum !!ikelihood Qecay by the §implex method) computer 

code has been developed for the fitting of radioactive decay curves. This code 

combines the use of Poisson statistics based maximum likelihood techniques with 

iterative curve fitting by the Simplex method. 

The use of Poisson statistics and activities integrated over the counting 

intervals in the likelihood function makes this code especially applicable to 

cases of poor counting statistics. In the limit of high counting statistics, the 

results are consistent with other decay curve fitting procedures. 

MLDS uses either time binned data or discrete event times. The use of 

the discrete event times is especially important in fitting curves based on a 

very small number of events, making maximum use of the decay information. 
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MLDS currently is capable of fitting fifteen different types of decay 

curves composed of combinations of up to 5 individual decay components, up to 

two parent daughter chains, and one three membered chain, with a maximum of 

10 free parameters. Any of combination of the initial activities and half-lives 

may be allowed to vary in the fits. 

The s1mplex method for locating the maximum in a multidimensional sur

face allows the multi -parameter fits to be carried out while avoiding the diver

gence common in other methods of maximization. The speed of the maximization 

with the simplex method is only a factor of 2 to 5 slower than steepest ascent 

maximization techniques. 

The simplex method performs the maximization using only the equation for 

the goodness of fit criterion (there is no need to program the partial deriva

tives of this equation with respect to all free parameters). This makes the 

modification of the code for new types of decay curves simple. 

Asymmetric error limits which do not consider the covariance in the other 

free parameters are quickly calculated and are given by MLDS. These error 

limits are good for most applications. For cases in which more accurate deter

minations of the error limits are necessary, a procedure is outlined for obtaining 

the asymmetric error limits which contain the effects of the covariance. 

16 
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Table 1. Comparison of fits with MLDS and EXFIT. 

For a computer-generated decay curve consisting of a parent-daughter chain 
and an independent component. Normally distributed statistical fluctuations 
have been included in the decay curve. 

TRUE 
VALUE 

EXFIT MLDS 
SOLUTION* SOLUTION** 

Independent 
t~ = ln(2)/d1 25.00 25.4±1.6 24 63+0 · 62 

. -0.60 

or 1000. 976.±15. 1012.~i~: 

Parent 
t~ = ln(2)/p2 1.000 0.997±.014 1 004+0.003 • -0.004 

p~ 100000. 100600.±1700. 99700.~jgg: 

Daughter 
t~ = ln(2)/d2 5.000 5.006±0.053 4 991+0.021 • -0.19 

D~ 0.000 O.OOO(FIXED) O.OOO(FIXED) 

• The EXFIT error limits are one sigma limits determined from the curvature of 
the x2 surface at the minimum. They include the effects of covariance of the 
other free parameters. 

• • The MLDS error limits are the non-covariant half-maximum values. 
Covariant error limits will be significantly larger. 
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Table 2. A comparison of fits to time-binned data and discrete event times 
for the a-decay of 4.3-s 258Lr being fed by 34-s 262Ha and the use of L to 
choose the type of decay curve. The decay curves are based on the times of 
19 events. The MLDS error limits do not consider the effects of the covariance 
of the other free parameters and are significantly smaller then the non
covariant error limits. Half-lives are in s and initial activities are in s-1 

MLDS MLDS MLDS EXFIT EXFIT 
DISCRETE TIME** TIME*** TIME** TIME*** 
TIMES BINNED BINNED BINNED BINNED 

fit with a parent-daughter chain: 

ln(2) 
38 +9 • 37 +10. 41 +11. p1 ·-a. ·-7. ·-9. 19.±9. 37.±23. 

Pt 35+.11 
• -.08 

36+.11 . -.09 34+.10 
• -.09 .57±.24 .22±.13 

ln{2) 
2 6+3.8 2 5+3.4 2 4+3.4 d1 . -2.4 • -2.3 • -2.4 1.8±3.6 0.8±3.1 

Dt O(FIXED) O(FIXED) O(FIXED) O(FIXED) O(FIXED) 

ln(L)*-135.03 · -15.40 -16.81 (.85) ( 1. 03) 

fit with a single component 

ln(2) 
41 +11. 41 +10. 42 +12. dl ·-a. ·-a. ·-a. 31. ±14. 44.±26. 

Dt 32+.10 . -.08 33+.10 
. -.08 32+.09 . -.08 .27±.12 .19±.10 

ln{L>***-135.79 -16.16 -17.63 ( 1. 2) (.96) 

reduced x2 is shown for the EXFIT least squares fits 
time intervals: 4x5s, 5x40s ... time intervals: 1x2.5s, 4x5s, 1x17 .5s, 4x40s, 1x20s 
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FIGURE CAPTIONS 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

The center curve is a normal distribution centered on Ym = 10. 

The normal distribution which would have been assumed if the 

number of observed events, Zm, was 15 is shown by the right 

curve, and that for Zm = 5 is shown by the left curve line. Note 

_ that the ~ = 5 distribution is significantly narrower than the 

others, resulting in a greater statistical weighting in the x2 fit. 

The curve connecting the empty squares is a normal distribution 

centered on Y m = 1 and the curve connecting the solid squares is 

a Poisson distribution centered on Ym = 1. Note the difference in 

the shapes of the curves, especially the probability under the 

normal curve for negative numbers of counts. 

The determination of the covariant error limits for the half-life in 

the fit to the decay of 261 Lr. The normalized L is plotted as a 

function of the value at which the half-life was fixed, while the 

n· was allowed to vary. The various types of asymmetric error 

limits are shown. 

The determination of the covariant error limits for the half-life of 

the parent activity in the fit to the high counting statistics decay 

curve which was for a parent-daughter chain plus an independent 

component. The normalized L is plotted as a function of the value 

at which this half-life was fixed, while the other free parameters 

were allowed to vary. Since this L distribution is Gaussian, the 

68.3%confidence limits and the interval of equal likelihood chances 

corresponding to a confidence level of 68.3% are equal to the one 

sigma error limits. 
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