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SECTION 1: INTRODUCTION 

This work presents the numerical solution for the current and potential 

distributions of a cylindrical electrode. In particular, it investigates the primary current 

distribution, the secondary current distribution with linearized kinetics, and the potential 

distribution due to constant current density on the working electrode. Figure 1 

illustrates the idealized electrochemical cell geometry and its geometric parameters: the 

working electrode of length 21o and radius r0 is imbedded in an infmite insulating 

cylinder, while the counterelectrode is at infinity. 

1.1 THE PRIMARY AND SECONDARY CURRENT DISTRIBUTIONS 

Laplace's equation describes the potential variation in dilute electrolytic solutions 

with negligible concentration gradients. 

2 
V'<I>=O 1.1-1 

Ohm's law gives the current density under these conditions. 

i = -x:V<I> 1.1-2 

Equations 1.1-1 and 1.1-2 approximate behavior in electrochemical systems with 

negligible mass transfer resistance. In particular, they apply to the bulk solution for 

electrochemical systems in which convection dominates mass transport in the bulk and 

concentration gradients are confined to a thin boundary layer near the electrode surface. 

1.1.1 Electrode Kinetics 

The Butler-Volmer equation describes many electrochemical reactions at an 

electrode. For constant reactant concentration, this equation becomes: 

1 



1.1-3, 1.1-4 

In this equation, in is the current density at the electrode due to the reaction, io is a 

kinetic parameter called the exchange current density, aa and ac are kinetic parameters 

called the apparent transfer coefficients, F is Faraday's constant, and R is the universal 

gas constant. The surface overpotential, Tts. is the potential difference between the 

electrode potential, V, and the potential in solution adjacent to the electrode, <1>0 , 

measured with a reference electrode identical to the working electrode. 

For small surface overpotentials, one can linearize equation 1.1-3 around Tls=O, 

yielding: 

1.1-5 

For large surface overpotentials one of the terms in equation 1.1-3 becomes 

negligible, depending upon the sign of Tts. resulting in the so-called Tafel 

approximation. 

1.1.2 The Primary Current Distribution 

Negligible electrode kinetic resistance implies negligible surface overpotential .. 

Assuming no ohmic resistance in the electrode, the boundary condition at the electrode 

becomes: 

1.1-6 

where Vis a constant. The current distribution governed by Laplace's equation in the 

electrolytic solution and constant <1>0 at the electrode is called the primary current 

distribution. The primary distribution is limited only by ohmic resistance in the 

solution. It is characterized solely by geometric parameter ratios (1). Ohmic resistance, 

calculated from the primary distribution, gives the relationship between potential drop 

and total current in a cell limited by electrolyte ohmic resistance. 
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Near an electrode-insulator edge, the following equation describes the primary 

current distribution: 

in (Ttl _ 1} 
-=X l'JD X -?0 
p ' ' 

0 1.1-7 

where xis the distance from the electrode-insulator edge, a is the electrode-insulator 

intersection angle, and Po is a function of the system geometry. Current density is zero 

at the edge for acute angles, a constant for right angles, and infmite for obtuse angles. 

1.1.3 The Secondazy Current Distribution 

The current distribution governed by Laplace's equation in solution and finite 

electrode kinetics is called the secondary current distribution. This distribution depends 

not only upon geometric parameter ratios, but also upon the absolute size of the system. 

If one uses the full Butler-Volmer equation to describe electrode kinetics, the 

secondary current distribution depends upon three parameters in addition to the 

geometric parameters of the primary distribution (2). Due to the large number of 

parameters, this system is difficult to analyze. The linear, or Tafel kinetics, 

approximation simplifies the problem. The secondary current distribution with linear 

electrode kinetics introduces only one additional parameter, Jh: 

where h is an important geometric length in the system. lh represents the ratio of 

ohmic resistance to kinetic resistance. As Jh approaches zero, kinetic resistance 

predominates, rendering the current distribution uniform on the electrode. Conversely, 

as lh approaches infmity, ohmic resistance predominates, and the current distribution 

approaches the primary current distribution. Tafel kinetics also involves only one 

additional parameter, which is proportional to the average current density on the 

electrode instead of the exchange current density. 



1.2 POTENTIAL DISTRIBUTION DUE TO CONSTANT ELECTRODE 

CURRENT DENSITY 

The potential due to uniform in provides an estimate of the maximum possible 

potential variation on an electrode. Oxygen mass transport generally limits corrosion 

processes. Consequently, these constant current density calculations are relevant to 

cathodic protection technology, in which sacrificial anodes protect metal objects from· 

corroding. In these systems, the largest potential difference on the protected metal 

object , ~<1>0, must be kept within a finite range to avoid both corrosion and hydrogen 

evolution. This restriction dictates, for example, the maximum size of the object which 

a counterelectrode at infinity can protect 

1.3 PREVIOUS WORK 

' 
Most nontrivial, analytic solutions to current distribution on finite cylindrical 

electrodes have been obtained for concentric electrodes with symmetric insulators at 

right angles to the axis of symmetry. Weisselberg (3) solved the primary current 

distribution analytically in this geometry for an inner electrode with finite ohmic 

resistance. Waber (4) followed with an analytic solution to the secondary current 

distribution with linearized kinetics. Finally, Alkire and Vaijian (5) solved the problem 

numerically, with full Butler-Volmer kinetics, for a thin resistive wire inner electrode. 

More closely related to the geometry under consideration, Strommen and Rodland 

(6) developed a fairly sophisticated finite difference method for calculating potential 

distributions on underwater pipelines protected by exterior sacrificial anodes. 

4 
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SECTION 2: MATIIEMA TICAL :ME1HOD 

2.1 RING SOURCE IMBEDDED INAN INSULATING CYLINDER 

The following expression gives the potential at z and r, due to a differentially thin 

ring at z' and r0 , emitting total current 21t(2in)rodz' (7). 

2r0 K (m) in dz' 
d<l>= -------~ 

1t1C ( 2 2)x 
(z-z') +(r+rJ 2.1-1 

Here K is the elliptic integral of the first kind and m is defined as: 

4rr0 m=------
2 2 

(z-z') + (r-t:rJ 2.1_2 

Figure 2a shows the ring source described by equation 2.1-1. 

One can nondimensionalize the differential potential as follows: 

G(R*,Z) = 2 K(m) ~. 

(z2+(R*+1)2) 2 2.1-3 

G, R *, and Z are the following groupings: 

1tK z- z' r 
G(R*,Z)=~<I>, Z=-r-' R*=-. 

1n z 0 ro 2.1-4,5,6 

To obtain the potential due to a ring source imbedded in an infmite insulating cylinder, 

G*, as shown in figure 2b, Mak (8) added the following integrated sum of orthogonal 

functions to G: 

5 



G* =G + F, F(R*,Z)= J oo B(~) K 0(~R*) cos(~Z) d~. 
0 2.1-7,8 

Here Ko is the modified Bessel function of the second kind of order 0. Appendix A 

provides a detailed derivation of equation 2.1-8 and Mak's calculation ofF and B(~). 

The following equation approximates F's behavior on the cylinder surface: 

1 1 
F=--n . 

2 V 1 + z2 
2.1-9 

G* behaves in three fairly distinct fashions on the cylinder, depending on distance 

from the ring source. For small Z, m approaches one, and K approaches infinity 

logarithmically. 

K(m) = ~,} ~), m--+1 
2 ll'\ 1-m 2.1-10 

In this region, the ring source appears as a line source imbedded in an infinite insulating· 

plane, and G* behaves accordingly: 

1 1t 1 2 
G* = 2 ln(64)- z- -ln(Z) , 

2 
Z--+0. 

2.1-11 

For distances of one radius to a fmite number of radii, the ring appears as a three 

dimensional object and requires the full form of equation 2.1-7 to describe the potential 

variation. Finally, as Z approaches infinity, K(m) approaches 1t/2, and the ring 

behaves as a point source. Equation 2.1-7 becomes: 

jZj-+oo • 
2.1-12 
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2.2 SUPERPOSITION OF RING SOURCES 

Ring sources described by equation 2.1-7 can be superimposed, giving the potential as 

a function of current density on a cylinder electrode. 

-,- =- G*(R*,Z) in(z')dz' ~ r z) 1 i 1
a 

ro ro 1t1C ·1 
a 2.2-1 

We can then adjust in to satisfy electrode boundary conditions. 

With the following dimensionless ·variables, 

~* __ <l> z z' 
"' Z* = - z I = -V' r ' r ' 0 0 2.2-2,3,4 

equation 2.2-1 becomes: 

1 
<l>* =-

1t 

l a 

ra 

G*(R*,Z*-Z'J_ a<I>• Lz·. 
\ aR· r 

2.2-5 

Boundary conditions for the primary distribution and linear kinetics (equations 1.1-6 

and 1.1-5) become: 

1 = <l>* at R*=1, 1 = <l>* + _!_(- d<l>•) at R*= 1 , 
Jr dR* 2.2-6,7 

respectively. One can propose a linear combination of electrode surface current densiry 

functions to satisfy these boundary conditions: 

7 



- <1<1>* = L a. (- a<l>*) ' 
<1R* j J <1R* j 2.2-8 

where the aj's are the adjustable constants. Substituting 2.2-8 into 2.2-5 provides an 

expression for the potential as a linear combination of potential functions. 

<l>*(R*,Z*)= L aj _!_ 
j 1t 

ro 

G*(R*,Z*-Z')( a<l>*) dZ'= _La:<l>*. 
aR* j j J J 

2.2-9 

When equation 2.2-9 is substituted into equation 2.2-6, the boundary condition for the 

primary distribution becomes: 

1 = ~ aJ-<1>* j at R *=1. 
J 2.2-10 

Inserting 2.2-8 and 2.2-9 into 2.2-7, the boundary condition for the linear kinetics 

becomes: 

1 =I, aj (<l>* · +..!.. (- a<l>*)) at R *= 1. 
j J 1r aR* · 

J 2.2-11 

The first current density function in equation 2.2-8 is chosen to approximate the 

expected current distribution behavior. The rest of the current functions are even 

Legendre polynomials. 

---= 
2.2-12 
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For the primary distribution, the first current density function simulates the current 

singularity at the edge. Wagner (9) has given the primary current distribution for an 

infmite strip imbedded in an infinite insulating plane. This expression is used as the 

first function for smalllo/ro. 

( ~=: L = V 1 ~ z·' 2.2-13 

For large lofro, the following function is used to approximate the primary current 

distribution: 

b X 

2.2-14 

where b is a constant between one and two. The parameters b, roicenterNK, and Pr are 

fit using the results from the primary distribution employing equation 2.2-13. At the 

center of the electrode, equation 2.2-14 approaches: 

( 
O<l>*) r Jcenter 

- ()R* _
1 
= VK 

2.2-15 

At the electrode edge equation 2.2-14 becomes: 

2.2-16 

The first function in equation 2.2-12 is also tailored to the expected results for the 

secondary current distribution. The secondary current distribution becomes uniform 

over the electrode as the polarization parameter becomes small. Consequently, in this 

9 



limit, the first Legendre polynomial, P0 =1, approximates current distribution behavior 

well, and the first function was set to zero. 

2.2-17 

Nisancioglu and Newman (10) solved the secondary current distribution 

governed by linear kinetics, in the electrode-insulator edge region, for high polarization 

parameters and an electrode-insulator intersection angle of 1t. When their results are 

couched in terms of the cylinder-electrode problem, the following grouping is a 

universal function of stretched edge distance in the electrode-insulator edge region: 

aR* 
p Jy; 

r r 

1 -z 
x* = Jr_o_. 

ro 
2.2-18,19 

In this equation funiv equals 1.75 at z=lo while approaching the primary distribution in 

the edge region, x*·l/2, as x* approaches infinity. Both 1r and 11 must be large for 

equation 2.2-18 to be valid. Equation 2.2-14 and equation 2.2-18 form the basis for 

the following expression, valid for high polarization parameters, and used for alllofr0 . 

~ 

(- :: L =((rJ~:Ie·r +,JY,r •• ,~f 112 )Y.)f +rP,JY,r.Jy')Y,) r) b 

2.2-

20 

2.2-21 

Equation 2.2-20 behaves like equation 2.2-18 in the small edge region, where kinetic 

limitations are significant for high-polarization parameters. It behaves like equation 

10 



2.2-14 away from the edge region, where kinetic limitations are not significant for high 

polarization parameters. 

To solve for the aj 's in equation 2.2-8, a collocation technique was employed. 

For n current functions, equation 2.2-10 or 2.2-11 was evaluated at n points on the 

electrode, generating the following n x n matrix for the primary and secondary current 

distributions, respectively: 

2.2-22 

2.2-23 

The aj's were obtained by inverting matrix 2.2-22 or 2.2-23. Using the zero's of the 

Legendre polynomials and the electrode edge as collocation points provided the best 

results. For n current functions, the zeros of the 2(n-1) order Legendre polynomials 

were used along with the edge point. 

Current functions were integrated in equation 2.2-9 using Simpson's rule. The 

methods for integrating singularities inherent in equations 2.2-13, 2.2-14, 2.2-20, and 

G* are given in Appendix B. 

2.2.1 Conver~ence Criterion 

Results were considered accurate when boundary conditions 2.2-10 or 2.2-11 

were satisfied to within 0.01% at each sampled electrode boundary point. In addition, 

the primary current distributions, using equations 2.2-13 and 2.2-14 as first functions, 

were compared for ldro= 10 and ldro= 100. For both aspect ratios, the difference 

between the results for the two functions was within 0.1% . Secondary current 

distribution results, using 2.2-17 and 2.2-20 as first functions, for ldro= 1 and J r= 10 

were also compared. These results also differed by less than 0.1 %. 

1 1 



SECTION 3: RESULTS AND DISCUSSION 

3.1 PARAMETER RANGE OF RESULTS 

Both the primary current distribution and the potential distribution due to constant 

current density on the electrode were calculated for lofr0 =0 to 10 !r0 =1000. Beyond 

lo/r0 =1000 the method broke down. This breakdown probably occurred because the 

Legendre polynomial correction functions were unable to satisfy boundary condition in 

the edge region of 0(r0 ) where the distributions vary greatly as lofro becomes large. 

Figure 3 shows the parameter space for which the numerical method accurately 

calculated the secondary current distribution. For aspect ratios from zero to ten, current 

distributions could be calculated for the entire polarization parameter range. Beyond 

lofro= 10, results could only be obtained for large Jr using equation 2.2-20, and small 

Jr using equation 2.2-17. When used as first current density functions in this range, · 

neither equation yielded accurate results for intermediate polarization parameters. 

3.2 PRIMARY CURRENT DISTRIBUTION 

Ohmic resistance in solution solely determines the primary current distribution . 

As a result, primary distributions are a unique function of cell geometry (11). In the 

cylinder electrode case, the ratio lofr0 uniquely determines the primary current 

distribution. 

· Figure 4 shows the results for the primary current distribution. For alllofr0 , the 

current density approaches infinity inversely proportional to the square root of distance 

from electrode-insulator edge, as described by equation 1.1-7. 

Here we examine the primary distribution's behavior for asymptotically large and 

smalllofro. In the limit of smalllofr0 , with finite 10 , the cylinder loses its curvature, 

appearing as an infmite strip imbedded in an infmite plane. The primary distribution for 

an infinite strip has been treated by Wagner (12) giving: 

1 2 
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3.2-1 

In the opposite extreme, as ldr0 becomes large, the current distribution appears to 

approach infinity in an edge region which grows increasingly small when compared 

with 10 . As lo/ro approaches infinity, the mid-region carries all the current, and the 

singularity at the edge appears as a spike of current. The current distributions for fmite 

ldro fall between these two cases. 

To understand further the singular behavior in the edge region, one can examine 

the asymptotic coefficient of equation 1.1-7 as a function of ldr 0 . Equation 3.2-1 

describes the primary distribution as ldro approaches zero. So in this limit it is 

reasonable to examine the behavior of Pavg,l given by: 

in 1 
-i --= Pavg,l 1 • 

n,ovg ( ltlf~ 
3.2-2 

As lo/ro approaches infinity with finite r0 , the electrode appears as a semi-infmite 

cylinder. It is reasonable to expect that the singular edge region has a length 

corresponding to a finite number of radii. Thus, in this limit, we examine Pavg,r given 

by; 

3.2-3 

Figure 5 shows Pavg,l and Pavg,r as functions of ldr0 . As lo/ro approaches zero, the 

thin strip limit, Pavg,l approaches 2ll2/1t, as evidenced by equation 3.2-1. Pavg,r on 

the other hand continues to increase as lofr0 approaches infinity. Pavg,r's functional 

behavior at large aspect ratios could not be determined. 

1 3 



3.2.1 Ohmic Resistance 

The primary distribution ohmic resistance determines the relationship between 

potential difference and total current in a cell limited by ohmic resistance. It is 

convenient to use two dimensionless resistances for the cylinder electrode system, 

RJcro and Rldo, related by lofr0 . As lofr0 approaches zero, for fmite r0 , the cylinder 

electrode shrinks to a differentially thin ring. As a result, R1cr0 approaches infmity in 

this limit. At the other extreme, as lofr0 approaches infinity, for finite lo, the cylinder 

shrinks to a differentially thin needle. In this limit Rldo approaches infmity. 

R1cr0 approaches infinity logarithmically as the geometric aspect ratio shrinks 

according to the following expression derived in Appendix C. 

3.2-4 

For asymptotically large lofr0 , it has already been shown that the current density 

is essentially constant over the electrode except for a negligible spike of current at the 

edges. Thus, for resistance calculations, it is reasonable to assume constant current 

density on the electrode. At a distance from the electrode much greater than 10 , the 

electrode behaves as a point source. In Appendix C, the potential for a cylinder source 

and a point source are assumed equal at a distance of 0(10 ), and the following estimate 

is derived for Rld0 , as 10 ,tr0 approaches infinity. 

3.2-5 

Here Rld0 approaches infinity logarithmically as Io;ro becomes large. 

Figure 6 is a graph of the ohmic resistance, along with asymptotic equations 3.2-

4 and 3.2-5, as functions of 10;r0 . 

14 
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3.3 SECONDARY CURRENT DISTRIBUTION 

The secondary current distribution takes into account finite electrode kinetics and 

ohmic resistance in solution. Thus, in addition to geometric parameters which govern 

the primary distribution on an electrode, additional kinetic parameters detennine the 

secondary current distribution. For small sutface overpotentials, the linear kinetics 

approximation can be invoked introducing the polarization parameter, Jh, as a 

governing parameter. 

The secondary current distribution on the cylinder electrode for linear kinetics is 

dictated by the geometric ratio lo/ro and either Jr or 11. Jr and 11 are polarization 

parameters containing lengths r0 and 10 , respectively. They are related by lo/r0 . Figure 

7 illustrates the thirteen distinct asymptotic regions resulting from these governing 

pararrieters. 

Figure 8 portrays the results for the secondary current distribution for lofr0 =1, 

while figure 9 shows the location of the curves in figure 8 in parameter space. JI (or Jr) 

represents the ratio of ohmic resistance to kinetic resistance. As 11 approaches infmity, 

ohmic resistance predominates, and the current distribution approaches the primary 

distribution. Conversely, as 11 approaches zero, electrode kinetic resistance 

predominates, and the current density becomes uniform over the entire electrode. 

Current distributions for finite 11 fall between these two extremes. 

3.3.1 Secondruy Current Distribution as the Primruy Current Distribution is 

A~proached 

It is of interest to examine the way the current distribution approaches the primary 

distribution as the polarization parameters approach infinity (regions two ,three and 

four in figure 7). Nicancioglu and Newman (13) and West and Newman (14) 

examined the secondary current distribution with linear kinetics, for high polarization 

parameters. Nicancioglu and Newman solved the current distribution problem in the 

electrode-insulator edge region with intersection angle 1t. West and Newman solved 

the problem for an arbitrary intersection angle. These results showed that when ohmic 

effects dominate the secondary current distribution governed by linear kinetics, the 

current distribution near an electrode-insulator interlace deviates from the primary 

current distribution only in a small edge region of order 0', where 

1 5 



a=(( aa+<Xc)FiofRTK)- 1. In this edge region, the current distribution is relatively 

independent of the details of the cell's geometry. "Relatively independent" will be 

quantified shortly. Away from this edge region, toward the center of the electrode, the 

current distribution approaches the primary distribution. This edge region can be 

expressed in terms of a dimensionless distance by dividing by h, one of the important 

geometric lengths. This gives cr/h=l/Jh. 

In the cylinder electrode problem, the edge region can be expressed in two 

dimensionless forms, cr/r0 =1/Jr and o/10 =1/JJ. The current distribution will be 

relatively independent of cell geometry in the cylinder edge region only if both cr/r0 and 

cr/lo are small, so that the edge region is small relative to both r0 and Jo. Figure 10 

illustrates the secondary current distribution at high It (or Jr) and lo/r0 =1, conf"mning 

deviation from the primary current distribution at (10 -z)/lo=O(l/Il). Figure 9 shows the 

location of the curves in figure 10 in parameter space. 

Nisancioglu and Newman solved the aforementioned problem in the edge region. 

When their results are cast in terms of the cylinder electrode problem (see Appendix·D), 

one obtains the following grouping as a universal function of stretched distance from 

the edge: 

3.3-1 

or equivalently, 

1 i {(I -z)'li) {((1 z \1 )'li) 
'li in.:vg =funi' ~ =funi~ r:-roTr . 

I r p avg,r 3.3-2 

Again, these relationships hold only when both It and Jr are large. At the electrode 

edge, funiv equals 1.75; as the stretched variable approaches infinity, funiv approaches 

the edge region primary distribution, (10 -z)/cr)-112 Figure 11 shows the secondary 

current distribution for lo/ro=l and high II. plotted with the variables given in equation 

3.3-1. 

I 6 
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Since equations 3.3-1 and 3.3-2 equal1.75 at the electrode edge, they can be used 

along with Pavg,r and Pavg,l (given in figure 5) to estimate the edge current for high 

polarization parameters: 

. 11 
1n,edge = 1 75p J 12 
· • avg,l 1 
ln,avg 3.3-3 

and equivalently, 

. 1/ 
ln,edge = 1 75P J 12 J J 
· • avg,r r • r ~oo, I ~oo. 1n,avg 3.3-4 

3.3.2 Secondru:y Current Distribution as IQli;o Approaches zero 

As lo/ro nears zero (regions four, five, six, seven and eight in figure 7), the 

secondary current distribution approaches the infinite strip limit, leaving 11 as the only 

governing parameter. Figure 12 illustrates how the current distribution becomes a sole 

function of 11 in the limit of smalll0 /r0 . Figure 9 shows the location of the curves in 

figure 12 in parameter space. Equation 3.3-3 and equation 3.2-1 can be combined to 

give an expression for the current density at the electrode edge for high 11 and vanishing 

ldro: 

· ·"'II 1 1n,edge _ 1.75 r 21 12 J o O 
-. --- I ' l ~oo ' - ~ • 
ln,avg 7t r 0 3.3-5 

One can insert the result for the smallldr0 , uniform in, potential distribution, 

equation 3.4-6 (derived in section 3.4.1), into the linear kinetics boundary condition to 

obtain an estimate for edge current density in the limit of smallldr0 : 

in,edge _ 1 2ln2J J O lo O -.---+--1· ~~ .-~. 
1n,avg 7t fo 3.3-6 

Thus, when 11 approaches 0, in the limit of smallldr0 , the current distribution becomes 

uniform. 

1 7 



Wagner (15) numerically solved the secondary current distribution governed by 

linear kinetics on a thin strip for finite Jt. His results apply for vanishing I0 /r0 . 

A current distribution can be considered uniform if the current density varies by 

less than one percent from the average current density over the entire electrode. In the 

cylinder electrode case this implies, in,edgelin,avg<l.Ol. Equation 3.3-6 shows that in 

the smallldro limit, J1 must be less than roughly 0.01 to achieve a uniform current 

distribution. Thus, in figure 7, the line separating uniform current distribution 

parameter space from non uniform current distribution parameter space, as ldro 

approaches 0, is given by 11=0(10-2). 

3.3.3 Secondary Current Distribution as 1Qlr2 Approaches Infinity 

As ldro approaches infinity (regions two, ten, eleven, twelve and thirteen in figure 

7), one might suspect that only 1r governs the secondary current distribution in the 

electrode edge region. However, numerical results show that ldro also influences the 

current distribution. Figure 13 illustrates the current distribution for large lo/ro and 

Jr=10, while figure 9 portrays the location of the curves in figure 13 in parameter 

space. Figure 13 shows the edge current density increasing with lofr0 • Equation 3.3-4 

further illustrates this point, for large Jr. Figure 5 shows Pavg,r increasing as ldro 

approaches infinity. Thus, for large Jr, iedgefiavg increases as ldro approaches 

infmity. Unfortunately, the numerical method can not produce accurate results for 

intermediate Jr in the limit of large ldro (regions twelve and thirteen in figure 7). This 

hampers one's understanding of the current distribution for large ldr0 . 

One can estimate the boundary between uniform and non-uniform current 

distribution parameter space for large lofr0 in the same manner as the smallldr0 

boundary is estimated. Inserting equation 3.4-15 (developed in section 3.4.2.4) into 

the linear kinetics boundary condition, one obtains the following expression for large 

lofro and vanishing Jr: 

i.n.edge --- 1 + .!_1lf r ' J o' lo 
2 

r-+ ,--+oo. 
1n,av g 2j3r 

0 
r o 

3.3-7 
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where j3=0(1). Equations 3.3-6 and 3.3-7, along with computer generated results for 

ldro=O(l), give the boundary between uniform and non-uniform current distribution 

parameter space illustrated in figure 7. 

3.4 POTENTIAL DISTRIBUTION DUE TO CONSTANT ELECTRODE 

CURRENT DENSITY 

The potential distribution due to constant in gives an estimate of the maximum 

possible potential variation on an electrode. In the cylinder electrode system, lofr0 

solely governs this potential distribution. Here, we examine behavior in the extreme 

limits of this ratio. 

3.4.1 Potential Distribution Due to Constant i~Q Approaches Zero 

As lofr0 approaches zero, one can imagine four regions in the solution in which the 

potential due to constant in varies in distinctly different fashions. In a region between 

the electrode surface and distances of O(lo) from the electrode surface, the electrode 

appears to have no curvature and fmite width. When one moves further out into 

solution--to distances between 0(10 ) and O(r0 )--the electrode still appears to have no 

curvature, but now appears as a line source. Here, the potential varies logarithmically 

according to equation 2.1-11. When one moves still further out--to distances from 

order r0 to a finite number of radii--the electrode appears as a ring source. 

Consequently, the full ring source expression, equation 2.1-7, determines the potential 

distribution. Finally, at distances approaching infinity, the electrode appears as a point 

source, and equation 2.1-12 governs the potential distribution. 

The following equations (developed in Appendix E) express the potential variation 

on the electrode and insulator, up to distances of 0(10 ), for smalllofro. On the 

electrode one obtains: 

3.4-1 

and on the insulator, 
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~d' = ~(ln(64)} + 2- 1t- 21J~) + (~ - 1 hn{~- 1)- (1 + ~hn{ 1 + ~)) + r/1
o), 

lJo 1t "\r 0 10 r·vo lof\ 10 \r 0 
3.4-2 

where ic is the constant current density on the electrode. These equations approach 

infinity as lo/ro approaches zero in the same manner as equations 3.2-4. Equation 3.2-

4 grossly approximates equations 3.4-1 and 3.4-2. It gives a rough estimate of the 

relationship between potential drop and total current. Subtracting equation 3.2-4 from 

equation 3.4-1 and 3.4-2, one obtains finite dimensionless potential expressions: 

3.4-3 

and, 

ci> oK ~ ( z Hz ) ( z H z )) .0 -.-- 41tR 1Cl" o = 2 - 21n2 + - - 1 -- 1 - 1 + - 1 + - , - ~o , 
lJo . 1t lo lo lo lo r 0 

3.4-4 

respectively. Subtracting equation 3.2-4 from the asymptotic ring source equation 

(2.1-11) yields: 

3.4-5 

In the limit as z/10 approaches infinity, equation 3.4-4 approaches equation 3.4-5. 

Figure 15 shows the potential distribution on the cylinder, due to constant in, for 

vanishing l()"r0 . Equation 3.4-3 and 3.4-4 predict the potential distribution well to 

about z=210 , as expected. As lAo increases further, the potential distribution begins to 

approach the ring source asymptote described by equation 3.4-5. Thus, at distances 

from the electrode greater than order lo, the potential distribution is described by the 

ring source equation 2.1-7. 
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The potential difference between the center and edge of the electrode follows from 

equation 3.4-1. As lo/ro approaches zero, this difference becomes (2ln2)/7t. 

3.4-6 

Figure 16 shows the center-edge potential difference as a function of lo/r0 . 

3.4.2 Potential Distribution Due to Constant i~Q Approaches Infinity 

For the large ldro potential distribution, as with the thin ring potential distribution, 

we can identify four fairly distinct regions, on the cylinder and insulator, where 

potential varies in different fashions. From the middle of the cylinder to an edge 

distance of 0(r0 ), one would expect the potential distribution to be fairly flat, behaving 

like an irumitely long cylinder electrode. For distances from the edge of O(r0 ), the 

electrode appears as a semi-infinite electrode, and the potential should behave 

correspondingly. On the insulator, for distances from the edge between O(r0 ) and a 

fmite number of electrode lengths. the electrode appears as a three dimensional object. 

Finally, at an infmite distance, the cylinder behaves as a point source. 

As mentioned previously, the elliptic integral K(m) in equation 2.1-1 approaches 

infmity logarithmically as m approaches one. Consequently, at large lo/r0 , the portion 

of the integrand where z'>>ro provides the major contribution to the integral in 

equation 2.2-1. To obtain an estimate for the potential on the electrode surface and 

insulator, due to constant in, for large Io/r0 , one can approximate this integral as: 

3.4-7 

Here the ring-like behavior at small to fmite z/r0 is lumped into the constant j3. One can 

derive an integrated expression for the above integral (as outlined in Appendix E) 

yielding: 

2 1 



This equation equals ln(ld~r0) at the middle of the electrode, 1/2ln(2ld~r0) at the 

electrode edge, and approaches 1/(z/lo) at an infmite distance from the electrode. 

3.4.2.1 Potential Distribution Due to Constant in, for Large ldr0 , on the Electrode 

Mid-Region 

For lo-z=O(lo) on the electrode, equation 3.4-8 reduces to: 

3.4-9 

(See Appendix E.) Approaching the electrode edge, equation 3.4-9 becomes: 

3.4-10 

This equation approaches negative infmity logarithmically as z/10 approaches one. 

Figure 17 shows the computer-generated potential and equation 3.4-9, on the electrode 

mid-region. Computer-generated results for potentials at the center of the electrode 

were used to fit a J3-value of 0.44. Equation 3.4-9 and the numerical results agreed, as 

expected, away from the edge region. 

3.4.2.2 Potential Distribution Due to Constant in, for Large ldr0 , on the Electrode 

Edge Region 

For lo-z=O(r0 ), equation 3.4-8 reduces to: 
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3.4-11 

(See Appendix E.). As (10 -z)/2Pro approaches infinity (the electrode mid-region), 

equation 3.4-11 approaches equation 3.4-10: 

3.4-10 

As (lo-z)/2Pr0 approaches negative infinity (away from the insulator-edge region), 

equation 3.4-11 approaches minus infinity logarithmically: 

Figure 18 portrays the computer generated potential distributions and equation 3.4-11 

in the edge region. Equation 3.4-11 poorly predicts the numerically generated 

potentials for edge distances of O(r0 ). ()4)/()z approaches infinity logarithmically as the 

electrode insulator edge region is approached (See Appendix E.). However equation 

3.4-11 predicts finite dcl>/az at the electrode edge. This discrepancy occurs because 

equation 3.4-7 poorly approximates equation 2.2-1 for 10 -z=O(r0 ). Equation 3.4-11 

describes the potential distribution more accurately for edge distances several radii away 

because equation 3.4-7 is accurate for z at distances of O(lo) or greater from the 

electrode edge. 

3.4.2.3 Potential Due to a Constant in, for Large lo/r0 , on the Insulator, away from 

the Edge Region 

If z-lo=O(lo), on the insulator, equation 3.4-8 reduces to: 
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<l>K 1 +1 
0 - 1 0 i z)· ic! 0 = 2 _! - 1 . 

. . I-;;-- - -- 3.4-13 

(See Appendix E.) As z/10 approaches one (the electrode edge region), equation 3.4-13 

approaches equation 3.4-12. 

As z/10 approaches inf"mity, equation 3.4-13 assumes the form of a point source 

potential. 

3.4-14 

Figure 19 shows the potential variation on the insulator. Equation 3.4-13 agrees with 

the computer-generated potential variation away from the electrode insulator edge 

region. 

3.4.2.4 Difference In Potential between Electrode Center and Edge, for Constant in, 

as ldro Approaches Infinity 

The potential difference between the electrode center and edge can be estimated 

from equation 3.4-8. 

3.4-15 

Figure 16 shows this asymptote along with numerically generated potential differences. 
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SECTION 4: SUMMARY 

The primary current distribution, secondary current distribution with linearized 

kinetics, and the potential distribution due to constant electrode current density, were 

calculated numerically for a cylindrical electrode by superimposing ring current sources 

to satisfy relevant boundary conditions. Results were obtained for length-to-diameter 

ratios from zero to one thousand for both the primary current distribution and the 

potential distribution calculations. The secondary current distribution was solved for 

the full range of polarization parameters, for aspect ratios ranging from zero to ten. For 

aspect ratios greater than ten the numerical method could only yield solutions for very 

high and low Jr. 

For small aspect ratios, the primary distribution on the cylinder electrode 

approached that of a thin strip embedded in a insulating wall; for large aspect ratios the 

primary distribution's functional form could not be deduced. The primary ohmic 

resistances were calculated and asymptotic forms given for large and small aspect 

ratios. 

The secondary current distribution also approached the infinite strip limit in the 

small aspect ratio limit, while its functional form at large aspect ratios remained unclear. 

Asymptotic expressions were developed for the electrode edge current density in the 

high and low polarization parameter limit 

Asymptotic expressions for the potential on the electrode and insulator, due to 

constant electrode current density, were derived for high and low aspect ratios. In 

addition, correlations describing the maximum potential difference on the electrode 

were produced for this boundary condition. 
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fig. 2a: (above) Differential Ring Current Source 

fig. 2b: (below) Differential Ring Current Source Imbedded in an Infmite Insulating 

Cylinder 
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fig. 3: Current Distribution Parameter Range of Results 
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fig. 4: Primary Current Distribution 
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fig. 5: Primary Current Distribution Asymptotic Coefficients 
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fig. 6: Ohmic Resistance 

0.6 

' 
' 0 Rkro 
' c Rklo 
' - equation 3.2-4 
' equation 3.2-5 

0.4 b 
' 
' ' 

0 ' 
~ ' G .. 

0 ' 
~ ' 

' 
0.2 ' 

'0 
' 
' 
' 

' 

0.0 c c 

31 



. fig. 7: Asymptotic Regions in Current Distribution Parameter Space 
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fig. 9: Current Distribution Parameter Space 
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fig. 10: Secondary Current Distribution for Large 11, lo/ro = 1.0 
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fig. 13: Secondary Current Distribution for Large ldr0 , Ir= 10.0 
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fig. 14: Secondary Current Distribution for Small Jr. Jt= 1.0 
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fig. 16: Maximum Potential Difference on the Electrode for Uniform in 
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fig 17: Potential Distribution on the Electrode for Uniform in and Large ldr0 
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fig 18: Potential Distribution on the Edge Region for Unifonn in and Large ldro 
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fig 19: Potential Distribution on the Insulator for Uniform in and Large lo/r0 
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NOMENCLATURE 

dimensionless current function coefficient 

dimensionless exponent 

dimensionless ring source correction coefficient 

dimensionless ring source correction function 

Faraday's constant, 96,487 coulombs/equivalent 

dimensionless ring source potential 

dimensionless ring source potential, includes F 

important geometric length, em 

current density, Ncm2 

constant current density on the electrode surface, Ncm2 
current density at the electrode center, Ncm2 

current density on the electrode surface, Ncm2 

average current density on the electrode surface, Ncm2 

current density at the electrode edge, Ncm2 
exchange current density, Ncm2 

dimensionless polarization parameter containing geometric length h 

dimensionless polarization parameter containing geometric length 1o 
dimensionless polarization parameter containing geometric length r0 

elliptic integral of the second kind 

modified Bessel function of the second kind of order 0 

electrode center to edge distance , em 

dimensionless elliptic integral variable 
dimensionless primary distribution asymptotic edge coefficient, when the 

edge region is stretched with lo 
Pavg,r dimensionless primary distribution asymptotic edge region coefficient, when 

the edge region is stretched with r0 

P2j even Legendre Polynomial of order 2j 

P0 primary distribution asymptotic edge region coefficient, Ncm0+7t/2o.) 

Pr dimensionless primary distribution asymptotic edge region coefficient, when 

the edge region is stretched with r0 

r radial distance coordinate, em 

ro electrode radius, em 
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R electrolyte ohmic resistance, ohm 

R universal gas constant, 8.3143 J/mol-K 

R * dimensionless radial distance coordinate 

T absolute temperature, K 

V electrode potential, V 

x distance from the electrode edge, em 

x* dimensionless stretched distance from the electrode edge 

y' dimensionless stretched distance variable in equation 2.2-20 

z axial distance coordinate, em 

z' axi.allocation of ring source, em 

Z dimensionless axial distance from ring source 

Z' dimensionless axial ring source location 

Z* dimensionless axial distance 

a insulator-electrode intersection angle, radians 

aa.<lc kinetic transfer coefficient for the anodic or cathodic reaction 
J3 dimensionless parameter characterizing ring source behavior near the ring 

~ separation of variables constant 

Tls surface overpotential, V 

K electrolyte conductivity, ohm-lcm-1 

cr edge region where finite electrode kinetics limit the electrode current density 

for high polarization parameters, em 

d<l> differential electric potential, V 

<I> electric potential, V 

<I>• dimensionless electric potential 

<1>0 electric potential on the electrode or insulator, V 
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APPENDIX A: CALCULATION OFF 

F must satisfy Laplaces's equation in cylindrical coordinates. 

2 

@raF) +a F =O. 
fi\ dr az

2 

Or equivalently, in dimensionless coordinates: 

A-1 

. 2 

_!__i_] R* aF ) + a F = O. 
~ aR* az2 A-2 

·using the separation of variables method, one assumes; F=X(R*)Y(Z). Equation A-2 

becomes: 

2 

_1 .!__j_JR*ax) =-.!_a Y = ~2 
R* X R*\ aR* y az2 . 

Where ~ must be a constant 

The solution to the differential equation for Y is: 

A-3 

Y = c 1cos(~Z) + c2sin(~). A-4 

Y must be symmetrical about Z=O so c2 must be 0. The solution for X is: 

A-5 

Ko is the modified Bessel function of the first kind of order zero and 10 is the modified 

Bessel function of the second kind of order zero. As R approaches infinity, Io 
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approaches infinity exponentially and Ko approaches zero exponentially. The potential 

must be zero at infmity so C4 is zero. 

Next the solutions to equation A-3 are integrated to create a general solution. 

2.1-8 

The insulator boundary condition determines B(~). 

ao* = ao + aF = 0 at R*=1 ZtO 
aR* aR* aR* A-6 

Using equations 2.1-8, A-6, 2.1-3 and the following identity: 

aK(m} Kim} E(m) 
--=---+---

dm 2m 2m(1- m) A-7 

where E(m) is the elliptical integral of the second kind, one finds: 

A-8 

dF = - r-B(~)~K,(~) cos(~Z) d~ =- dG = 14: z2)- ,4: z2) 
aR* ) 0 . aR* ( 2)!_ 

4+Z 2 

at R *=1. 

Where K 1 ( ~) is the modified Bessel function of the second kind of order 1. Equation 

A-8 is in the form of a Fourier cosine integral which can be inverted to obtain B(~). 

00 

0 A-9 
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Mak integrated A-9 and 2.1-8 numerically to obtain F values on the surface of the 

cylinder. Their results were fit with the following function: 

F =-
0

·
5

1t ± .0001 0.003 >Z > 20.0 
1 + IZI A-lOa 

1 0 5 2 
F =- ( - . -1.1083 +.298729 -Q.636839 

1t 1 + IZI A-lOb 

3 4 s 
+ 1.55199 -2.44299 + 1.22819 ) ± 0.0001 ' 0.003~ z ~ 20 

where; 

A-ll 
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APPENDIX B: INTEGRATING SINGULARITIES 

To integrate equations 2.2-13, 2.2-14, 2.2-20, and Legendre polynomials as 

current functions in equation 2.2-9, one must deal with the electrode edge singularities 

in equations 2.2-13, 2.2-14, 2.2-20, and the logarithmic singularity in K(m) at Z'=Z*. 

The following change of variables renders equations 2.2-1j, 2.2-14 and 2.2-20 

numerically integrable: 

1 1 
10 2 10 2 

(2-) - (-- Z') 
ro ro B-1 

In general, the logarithmic singularity inherent in K(m) was subtracted out and 

integrated analytically. 

Substituting equation 2.2-13 in equation 2.2-5, we have: 

1 
<I>*= -

1t 
G*(R*=l,Z*-Z') l dZ' 

r
n r) tv \~J-Z' 

B-2 

Substituting equation B-1 into equation B-2, subtracting out the limiting behavior of 

K(m) embodied in equation 2.1-11, and using the identity 

f 'ln{x - x'}
2 
dx'= -2ltln2 , 

~ 1- X '
2 

-
·I B-3 

one obtains the following numerically integrable expression: 
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* 4 <I> =-1 
1t 

0 

Substituting equation 2.2-14 into equation 2.2..,5 yields: 

1 
<I>*=-

1t 

where iconst is 

G*(R *= 1 ,Z*-Z' iconst + 

1 
b b 

dZ' 

. B-4 

B-5 

By substituting equation B-1 into equation B-5, then subtracting out equation 2.1-11, 

multiplied by the now numerically integrable current expression evaluated at Z*, one 

obtains the following numerically integrable expression for equation B-5. 

• 4 
. <1>_1 =-

1t 
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A( l )X 
+ l2r: ) 

B-7 

In this equation, U* is given by equation B-1 with Z* replacing Z ', iu· is expressed as: 

( 
l )'li p 2~ 

r r 
0 

while equation B-8 with U' replaced by U* gives iu•· 

1 

b b 

B-8 

We can deal with the singularity in equation 2.2-20 in the same manner as the 

singularities in equation 2.2-14. When equation 2.2-20 is substituted into equation 

2.2-5, one obtains: 

5.3 



1 
Cl»* =-

1t 

In this equation, 

lo 

r o 1 

G*(R*=1,Z*-Z'~iconst,I + (P rf!uniJY '))btdZ' 

B-9 

( 
. )b ( 11 )b . rotcenter /2 J 

lconst,J = Vk - p) r 2f uni~ Yz) 
B-10 

Substituting equation B-1 into equation B-9, then subtracting equation 2.1-11, 

multiplied by the (now well-behaved) current function evaluated at Z*, results in the 

following expression, which we can easily integrate numerically. 

I 

J 
(2~)

4 . 
• 4 ro . ( 1t 1 ,2\ 

ct» _1 =; G*ty·- 31n2 - "2- in{Z* - Z ) ry• d U' 

0 

4 ( 1t V Io)~ ·(( Io)X l {( I0 )X ) + 1t iy.( 31n2 2A2ro - 2ro - U* r\ 2ro - U* 
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B-11 

Here, y* is the same as y' (equation 2.2-21) if Z' is replaced with Z*. In addition, iy· 

is: 

B-12 

while iy* is given by equation B-12, withy' and U' replaced by y* and U*, 

respectively. 

If we substitute a Legendre polynomial into equation 2.1-5, we obtain: 

B-13 

Since Legendre polynomials are well-behaved, we only have to deal with the G*'s 

logarithmic singularity in this case. If we subtract out equation 2.1-11, multiplied by 

P2j evaluated at Z*, we obtain the following numerically integrable expression. 

B-14 
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APPENDIX C: RESISTANCE FOR LARGE AND SMALL lo/ro 

C.1 RESISTANCE FOR SMALL loJfo 

If we take equation 2.1-2, and make the following substitutions, 

z , z' lo 
x = r-· x = r· E=r- , 

o o o C.1-1a,b,c 

we find: 

2 2 

1_ m = £ lx - x '} 
2 2 

£ lx- x ') + 4 C-.1-2 

Assuming equation 2.2-13, the thin ring limit, approximates the current distribution, 

we can substitute it into equation 2.2-1 to obtain: 

C.1-3 

As £ approaches zero, K(m) behaves as follows ( 16): 

C.1-4 

or, 

C.l-5 
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Substituting equations C.1-1a,b,c into equation 2.1-9, we find that the following 

equation roughly describes F: 

1t 1 
F::::::- ---;.==== 

2 ~ 2 2 
· 1 + e (x - x ') c.1_6 

Therefore, it is reasonable to state, for small £, 

F =- ~1t + o(e). 
C.1-7 

. We can make two further simplifications for small £: 

1 

( 2 2 ) 2 1 ~ 2) 
e (x - x ') + 4 = - + 0\ e , 

2 C.1-8,9 

Substituting equations C.l-5, C.l-7 and equations C-1.8,9 into equation C.l-3 and 

taking advantage of equation B-3, we fmd: 

C.1-10 

It should be noted that equation C.1-10 is not strictly valid because equation 2.2-13 

applies only for the limit as lofr0 approaches zero. 

Integrating over the cylinder surface, we can solve for the total current: 

C.1-11 

Dividing equation C.1-10 by C.l-11 results in the following expression of resistance. 
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C.2 RESISTANCE FOR LARGE lo/ro 

For large lofro, we postulate a constant current on the electrOde for the primary 

distribution, and solve Laplace's equation for an infinitely long cylinder. 

1 d {rd<l>) = 0 rdf\dr 

The solution to equation C.2-1 is: 

C.2-1 

C.2-2 

For distances in solution much greater than lo, the electrode appears as a point source. 

<I>= I , l=total current= 47tlJ' 0 iavg 
47tlCV r 0 

2 + z2 
C.2-3 

Setting equation C.2-2 equal to equation C.2-3 at a distance of lo from the middle of the 

electrode, one obtains: 

C-.2-4 

A resistance approximation for large lofr0 follows from this equation. 
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1 41t
.m 1d 1 ~ ~ oo "'o 

0 4 Rld = ' 
-~-.-= 1t o- 1 + l...Jrloo) r o 41t of Javg '\ 

3.2-5 
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APPENDIX D: EQUATIONS DESCRIBING TilE SECONDARY CURRENT 

DISTRIBUTION FOR LARGE POLARIZATION PARAMETERS 

West and Newman solved the secondary current distribution in the electrode

insulator edge region for large polarization parameters. They showed that current in the 

edge region is described by: 

D-1 

where a. is the electrode-insulator intersection angle, P0 is the constant in equation 1.1-

7, cr=((a.a+a.c)Fio/RTKt1, and the stretched potential is 

D-2 

Here, funiv is a sole function of a. and the stretched distance. It approaches the 

primary distribution in the edge region, (x/cr)<1tl2a-1), as x/cr approaches infmity. 

For the cylinder electrode geometry, a.= 1t, and it follows from equation 3.2-2 

and 3.2-3 that: 

1 1 

Po= iavg lo2P avg,l = iavgro2P avg,r · D-3a,b 

For a.= 1t, funiv= 1.75 at x/cr=O. Combining equations D-1, D-2 and D-3a,b yields: 

3.3-1,2 
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APPENDIX E: POTENTIAL DUE TO A CONSTANT CURRENT FOR SMALL 

AND LARGE lofro 

E.1 POTENTIAL FOR SMALL lofr0 

Substituting equations C.1-1a,b,c and C.1-2 into equation 2.2-1 for a constant 

current density, ic, at the electrode surface, one derives the following expression for the 

potential on the electrode and insulator: 

E.1-1 

Substituting equations C.1-5, C.1-7, C.1-8 and C.1-9 into equation E.1-1 one obtains 

the following expression for the potential on the electrode and insulator respectively: 

3.4-1 

3.4-2 

E.2 POTENTIAL FOR LARGE lo/ro 

The potential variation due to a point source at the origin is described by: 

E.2-1 

6 1 



where I is the total current emitted from the source. For large lo/r0 , a modified point 

source equation can be proposed for purposes of integration which gives ring source 

behavior for distances much greater than 0(r0 ) accurately but lumps the complicated 

three dimensional potential variation near the ring source into a functional form 

suggested by equation 2.1-1. For potentials on the cylinder surface due to a ring 

source one postulates: 

E.2-2 

where J3 is assumed to be 0(1). Potential behavior near the ring source has been 

lumped into a "hump" near the ring. 

A differential ring source imbedded in an insulating cylinder has total current 

21ticrodz'. Summing the approximated ring sources over the entire electrode produces: 

3A-1 

Equation 3.4-7 is formulated to approximate equation 2.2-1 for lo-z=O(lo) or greater. 

It is expected to break down in the edge region, where the three dimensional nature of 

the ring source is important in determining potential variation. 

Equation 3.4-7 can be written: 

(z'- z) 
Y-- . 

2J3r0 

E.2-3 
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Equation E.2-3 assumes the following analytic form: 

3.4-8 

E.1.1 Asymptotic Expressions for Equation 3.4-8 

For the electrode mid-region; z>O, lo>>r0 , 10 -z>O and 10 -z=O(lo) implies: 

10 + z 10- z 
-->>1, -->>1, 
2~r0 2~r0 

and equation 3.4-8 becomes: 

E.2-4 

or: 

3.4-9 

For the electrode-insulator edge region; z>O, Io>>ro, and 10 -z=O(r0 ), implying: 

Equation 3.4-8 becomes: 

<l>oK 1~ 210) _ 1 110 - Z ~(10 - z)
2 

) ---- - --1 --+ -- + 1 
iJ" o 2 Ar - 2 2 Ar 2 Ar . 

JJ 0 JJ 0 ' JJ 0 3.4-11 
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After multiplying the numerator and denominator inside the first logarithm of 

equation 3.4-8 by: 

equation 3.4-8 becomes: 

ic!o ~ 2 
z- 1 1 -z 

0 + 0 + 1 2~r0 (2~r.l 
E.2-5 

For the insulator region away from the edge region; z>l0 , 10 >>r0 and z-10 =0(10 ) or 

greater; equation E.2-5 becomes: 

3.4-13 

E.3 POTENTIAL DISTRIBUTION ON TilE EDGE REGION FOR CONSTANT in 

For large lo/r0 , and 10 -z<<r0 , the cylinder electrode-insulator edge region appears to 

lose its curvature. The potential distribution, for constant in, is given by the solution to 

Laplace's equation for an infmite planar electrode-insulator configuration. In 

cylindrical coordinates we have: 
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1 a<t> . 1 a<t> ic 
--=0 at 9=0 '--=--at 9=1t. 
r ae r ae 1C 

The solution to this set of equations is: 

For 9=1t/2 we have: 

<!>.1C1t = - rln(r)cose + r9sin9 . 
1c E.3-3 

~1t 1 a<t> = 1 + ln{r) . 
1c rae E.3-4 

E.3-2 

Equation E.3-3 and E.3-4 break down at 10 -z=O(r0 ) for the large lo/ro electrode edge 

region. 
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APPENDIX F: COMPUTER PROGRAMS 

F.l CURVE FIT FOR F 

dq = (z- z)lro 

function pif(dq) 
implicit double precision(a-h,o-z) 

abvdz=dabs( dq) 
zeta=abvdz/(1.0d0 + abvdz) 
b=0.5d0/(1.0d0 + abvdz) 
C=-1 .1 083d-3 

d=0.29872dO*zeta 
e= -0.63683dO*zeta**2 
f= 1.5519dO*zeta**3 
g= -2.4429dO*zeta**4 
h= 1.2281 dO*zeta**S 

if (abvdz .ge. 20.0d0 .or. abvdz .le. 0.003d0) then 
ef=b 
goto 10 

end if 
ef=b + c + e + f + d + g + h 

1 0 pi=3.1415926535898d0 
pif=pi*ef 
return 

end 

F.2 FUNCTION CALCULATING funiv 

sqxb~r = y'l/2 = (JI(l - (z'/10 )2)/2)112 

c 

c 

function feebar(sqxbar) 
implicit double precision(a-h,o-z) 

if (sqxbar/2.0d0 .ge. O.SdO) then 
fractin=1.0d0/dcosh(1.0d0/(sqxbar/2.0d0)**5) 

else 
fractin=O.OdO 

end if 
fractout=1.0d0-fractin 

bO= 1.75302518293d0 
b1 = -0.195234399525d0 
b2= -2.05934224121 dO 

b3= 2.63679433677d0 
b4= -1.66817831 037d0 
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c 

c 

c 

c 

b5= 0.6296961 02982d0 
b6= -0.147232218361 dO 
b7= 0.0208781607515d0 
b8= -0.00164370726206d0 
b9= 0.0000550849360993d0--

if (sqxbar .le. 6.0d0) then 
feebari n=bO+b 1 * sqxbar +b2*sqxbar**2 + b3*sqxbar**3+b4 *sqxbar** 4 

1 +b5*sqxbar**5+b6*sqxbar**6+b7*sqxbar**7+b8*sqxbar**8 
2 +b9*sqxbar**9 -

else _ 
feebarin=O.OdO 

end if 

if (sqxbar .ge. 0.1 dO) then 
feebarout=1.0d0/sqxbar 

else 
feebarout=O .OdO 

end if 

feebar=fractout*feebarin + fractin*feebarout 

return 
end 

F.3 FUNCTION CALCULATING EQUATION 2.2-20 

z =Z' 
a=Ar 
power= b 
rldrO = lo/ro 
rjay = 1r 
curcent = roicenterNk 

function ai(z,a,power ,rldrO ,rjay ,curcent) 
implicit double precision(a-h,o-z) 

ybar=0.5dO/rldrO*rjay*(rldr0**2 - z**2) 

c 

ybarcent=O.SdO*rldrO*rjay 
sqybar=sqrt( abs(ybar)) 
sqybarcent=sqrt(ybarcent) 
afeebar=feebar( sqybar) 
cfeebar=feebar( sqybarcent) 
edge=a * sqrt( rjay) * afeebar 
edgecent=a*sqrt(rjay) *cfeebar 
ain=curcent**power + edge**power - edgecent**power 
ai=ain**(1.0d0/power) 

return 
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end 

F.4 FUNCTION CALCULATING LEGENDRE POLYNOMIALS 

X= z'/10 

n is the order of the Legendre Polynomial 

function P{n,x) 
implicit double precision(a-h,o-z) 

p1=1.d0 
p2=X 

if{n-1) 1 ,2,3 
1 P=p1 

return 
2 P=p2 

return 
3 nm1=n-1 

do 4 nu=1 ,nm1 
P={x*dfloat{2*nu+ 1) *p2-dfloat(nu)*p1 )ldfloat{nu+ 1) 

p1=p2 
4 p2=P 

return 
end 

F.5 FUNCTION CALCULATING Tiffi ELLIPTICAL INTEGRAL OF THE 
FIRST KIND 

w =1-m 

function e1 {w) 
implicit double precision (a-h,o-z) 
dimension a{S),b{S) 
data a I 1.38629436112d0,.09666344259d0,.03590092383dO 

2 ,.037 42563713d0,.01451196212d01 
data b I .5d0,.12498593597d0,.06880248576d0, 

3 .03328355346d0,.00441787012d01 
d=a{ 1) +a(2) *w+a{3) *w**2+a( 4) *w**3+a{5) *w** 4 

e1 =d+(b{1 )+b{2)*w+b(3)*w**2+b(4)*w**3+b(S)*w**4)*dlog(1.0d0/w) 
return 

end 

F.6 FUNCTION CALCULATING EQUATION B-8 
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u = U' 
a= Pr 
power= b 
rldrO = lo/ro 

c 

function fcurnt(u,a,power,rldrO) 
implicit double precision(a-h,o-z) 
param=sqrt(2.0dO*rldrO) 
curcent=(1.0d0/(1.0d0 + log(rldrO)))**power 
curcent=curcent - (a*sqrt(2.0dO)/sqrt(rldrO))**power 
curcent=(abs(param - u**2))**power*(abs(u))**power*curcent 
curend=( a *param/sqrt(2. OdO*param-u **2)) **power 

fcurnt=(curcent + curend)**(1.0d0/power) 

return 
end 

F.7 FUNCTION CALCULATING EQUATION B-12 

u =U' 
a= Pr 
power= b 
rldrO = lo/ro 
rjay = Jr 
curcent = r0 icenterNk 

function acurnt(u,a,power ,rldrO,rjay ,curcent) 

c 

implicit double precision(a-h,o-z) 
param=sqrt(2.0dO*rldrO) 
Z=-rldrO + 2.0dO*param*u**2 - u**4 
curnt=ai(z,a,power ,rldrO ,rjay ,curcent) 
acurnt=curnt*(param -u**2)*u 

return 
end 

F.8 SUBROUTINE CALCULATING THE INfEGRAND IN EQUATION B-14 

di is the value of the integrand in equation B-14 
rldrO = lo/ro 
zs =Z* 

69 



zp = z· 
nleg is the order of the ·legendre polynomial 

c 

c 

c 
c 

c 

c 

subroutine dileg(di,rldrO,zs,zp,nleg) 
implicit double precision (a-h,o-z) 

pi=3.14159265358979d0 
dZ=ZS-Zp 

if (abs(dz) .ge. 1.0d-4) then 
wm=4.0d0/(dz**2 +4.0d0) 

w=1.0d0 - wm 
elipt=e1 (w) 

f=-pif(dz) 
g=2.0dO*elipt/(sqrt(dz**2 + 4.0d0)) + f 

zpdl=zp/rldrO 
zsdl=zs/rldrO 
pnzp=p( n leg ,zpdl) 
pnzs=p( nleg ,zsdl) 
gpnzp=g*pnzp 

aspnzs=O.SdO*pnzs*log( (zs-zp) **2) 
di=(gpnzp + aspnzs)/pi 

else 

zsdl=zs/rldrO 
pnzs=p(nleg,zsdl) 

end if 
return 

end 

di=1.0dO/pi*(3.0dO*Iog(2.0d0) - pi/2.0dO)*pnzs 

F.9 SUBROUTINE CALCULATING TilE INTEGRAND IN EQUATION B-4 

di is the value of the integrand in equation B-4 
rldrO = lo/ro 
zs =Z* 
zp =Z· 

c 

subroutine dinf(di,rldrO,zs,zp) 
implicit double precision (a-h,o-z) 

pi=3.14159265358979d0 
dz=zs-zp 

70 

.-.. 



·"· 

if (abs(dz) .ge. 1.0d-4) then 
wm=4.0d0/(dz**2 +4.0d0) 

W=1.0d0 - wm 
elipt=e1 (w) 

f=-pif(dz) 
g=2.0dO*elipt/(sqrt(dz**2 + 4.0d0)) + f 

c u=sqrt(sqrt(2.0dO*rldrO) - sqrt(rldrO - zp)) 

c 

c 

u1 =sqrt(2.0dO*rldrO) 
u2=sqrt( abs(rldrO-zp)) 

pctu1 =abs((u1 - u2)/u1) 
if (pctu1 .ge .. 999999999d0 ) then 

U=Sqrt(u1) 
else 

u=sqrt(u1 - u2). 
end if 
denom = sqrt(2.0dO*sqrt(2.0dO*rldrO) - u**2) 
dnum=g + 0.5dO*Iog((zs-zp)**2) 

di=4.0dO*rldrO/pi*dnum/denom 

else 

c U=Sqrt(sqrt(2.0dO*rldrO) - sqrt(rldrO - zp)) 
u1 =Sqrt(2.0dO*rldrO) · 
u2=sqrt( abs(rldrO-zp)) 

pctu1 =abs((u1 - u2)/u1) 
if (pctu1 .ge .. 999999999d0 ) then 

U=Sqrt(u1) 
else 

u=sqrt(u1 - u2) 
end if 

c 
denom=sqrt(2.0dO*sqrt(2.0dO*rfdrO) - u**2) 
dnum=4.0dO*rldrO/pi*(3.0dO*fog(2.0dO) - O.SdO*pi) 

di=dnum/denom 
c 

end if 
c return 

F.lO SUBROUTINE CALCULATING THE INTEGRAND IN EQUATION B-7 

di is the value of the integrand in equation B-7 
rldrO = lo/ro 
zs =Z* 
zp = z· 
a= Pr 
power= b 
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c 

c 

c 

c 

c 

subroutine fdinf(di,rldrO,zs,zp,a,power) 
implicit double precision (a-h,o-z) 

pi=3.14159265358979d0 
dZ=ZS-zp 

if (abs(dz) .ge. 1.0d-4) then 
wm=4.0d0/(dz**2 +4.0d0) 

w=1.0d0- wm 
elipt=e1 (w) 

f=-pif(dz) 
g=2.0dO*elipt/(sqrt(dz**2 + 4.0d0)) 

U=sqrt(abs(sqrt(2.0dO*rldrO) 
us=sqrt(abs(sqrt(2.0dO*rldrO) 

dicurp=fcurnt(u,a,power,rldrO) 
dicurs=fcu rnt(us,a,power ,rldrO) 

di=g*dicurp 

+ f 
- sqrt(abs(rldrO - zp)))) 
- sqrt(abs(rldrO - zs)))) 

di=di - (3.0dO*Iog(2.0dO) - pi/2.0d0 - log(abs(dz)))*dicurs 
di=4.0d0/pi*di 

else 

u=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zp)))) 
di=O.OdO 

end if 

return 
end 

F.11 SUBROUTINE CALCULATING THE INTEGRAND IN EQUATION B-11 

di is the value of the integrand in equation B-11 
rldrO = lo/ro 
zs =Z* 
zp =Z· 

a= Pr 
power= b 
rjay = Jr 
curcent = roicenter/Vk 

subroutine adinf(di,rldrO,zs,zp,a,power,rjay ,curcent) 
implicit double precision (a-h,o-z) 

pi=3.14159265358979d0 
dZ=ZS-zp 

c 
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c 

c 

c 

c 

c 

if (abs(dz.) .. ge. 1.0d-6) then 
wm=4.0d0/(dz**2 +4.0d0) 

W=1.0d0 - wm 
elipt=e1 (w) 

f=-pif(dz) 
Q=2.0dO*elipt/(sqrt(dz**2 + 4.0d0)) 

U=sqrt(abs(sqrt(2.0dO*rldrO) 
us=sqrt(abs(sqrt(2.0dO*rldrO) 

+ f 
- sqrt(abs(rldrO - zp)))) 
- sqrt(abs(rldrO - zs)))) · 

dicurp=acurnt( u ,a,power, rldrO,rjay ,cu rcent) 
dicurs=acurnt(us,a,power,rldrO,rjay,curcent) 

di=g*dicurp 
di=di - (3.0dO*Iog(2.0dO) - pi/2.0d0 - log(abs(dz)))*dicurs 

di=4.0d0/pi*di 

else 

U=Sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zp)))) 
di=O.OdO 

end if 

return 
end 

F.12 SUBROUTINE CALCULATING POTENTIAL FUNCfiONS WITII 
EQUATION 2.2-13 AS A FIRST CURRENT FUNCTION 

zs =Z* 
rldrO = 10 /ro 
m is the number of mesh spacings for numerical integration 
nleg is the order of the legendre polynomial 
theta is the value of the potential function 

c 

c 

subroutine trap(zs,rldrO,m,nleg,theta) 
implicit double precision (a-h,o-z) 
pi=3. 1415926535898d0 

theta=O.OdO 

tota1=2.0dO*rldrO 
part=rldrO + zs 
fract=part/total 
m1 =int(fract*dfloat(m)) + 1 
m2=int((1.0d0 - fract)*dfloat(m)) + 1 

if (nleg .eq. -1) then 
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c 

if (m1 .ge. 2) then 
delta1 =Sqrt(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs))) 

eps1 =delta1/dfloat(m1-1) 
call dinf(di,rldrO,zs,-rldrO) 

or1=di 

do 1 j=2,m1 
u=eps 1*dfloat(j-1) 
zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u .... 4 

call dinf(di,rldrO,zs,zp) 
Or2=di 

theta= theta + eps1*(or2 + or1 )/2.0d0 
or1=or2 

1 continue 
c 

c 

c 

c 

c 

c 

c· 

else 

call dinf(di,rldrO,zs,-rldrO) 
beg=di 

call dinf(di,rldrO,zs,zs) 
end=di 

uend=sqrt(sqrt(2 .OdO*rldrO)-sqrt( abs(rldrO-zs))) 
theta=theta + (end + beg)/2.0dO*abs(uend) 

end if 

if (m2 .ge. 2) then 
delta2=sqrt(sqrt(2.0dO*rldrO)) 
1 - sqrt(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO-zs))) 
eps2=delta21dfloat(m2-1) 
call dinf(di,rldrO,zs,zs) 

or1=di 

do 3 j=2,m2 
U=sqrt(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO-zs))) 

1 + eps2*dfloat(j-1) 
zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 

call dinf(di,rldrO,zs,zp) 
Or2=di 
theta= theta + eps2*(or2 + or1 )/2.0d0 
or1=or2 

3 continue 

else 

call dinf(di,rldrO,zs,zs) 
beg=di 

call dinf(di,rldrO,zs,rldrO) 
end=di 

ubeg=sqrt( sqrt(2.0dO*rldrO) -sqrt( abs(rldrO-zs))) 
uend=sqrt(sqrt(2.0dO*rldrO)) 
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c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

theta=theta + (end+beg)/2.0dO*(abs(uend - ubeg)) 

end if 

theta2= -0.5dO*rldr0*(2.0dO*Iog(rldrO) 
1 -2.0dO*Iog(2.0dO)) 
theta=theta + theta2 

else 

if (m1 .ge. 2) then 
delta1 =rldrO + zs 
eps 1 =delta1 /dfloat(2*m1) 
call dileg(di,rldrO,zs,-rldrO,nleg) 

theta=theta + di*eps1/3.0d0 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + di*eps1/3.0d0 

do 2 j=1, m1 
zp=-rldrO + eps 1 *dfloat(2*j - 1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 4.0d0/3.0dO*eps1 *di 

2 continue 
do 21 j=1, m1-1 

zp=-rldrO + eps 1 *dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 

theta=theta + 2.0d0/3.0dO*eps1 *di 
21 continue 

else 

call dileg(di,rldrO,zs,-rldrO,nleg) 
beg=di 

zpmid=( -rldrO + zs)/2.0d0 
call dileg(di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,zs,nleg) 

end=di 
eps1 =abs(zs + rldr0)/2.0d0 
theta= theta + eps 1 *(beg + 4.0dO*amid + end)/3.0d0 

end if 

if (m2 .ge. 2) then 
delta2=2.0dO*rldrO - (rldrO + zs) 
eps2=delta21dfloat(2*m2) 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + eps2*di/3.0d0 
call dileg(di,rldrO,zs,rldrO,nleg) 

theta=theta + eps2*di/3.0d0 
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c 

c 

c 

c 

do 4 j=1 ,m2 
zp=zs + eps2*dfloat(2*j -1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 4.0d0/3.0dO*eps2*di 

4 continue 
do 41 j=1, m2-1 
zp=zs + eps2*dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 2.0d0/3.0dO*eps2*di 

41 continue 

else · 

call dileg(di,rldrO,zs,zs,nleg) 
beg=di 

zpmid=(zs + rldr0)/2.0d0 
call dileg(di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,rldrO,nleg) 

end=di 
eps2=(rldr0 - zs)/2.0d0 

theta=theta + eps2*(beg + 4.0dO*amid + end)/3.0d0 

end if 

zsdl=zs/rldrO 
pnzs=p( nleg ,zsdl) 
a=rldrO-zs 
b=rldr0+ZS 

if (abs(a) .I e. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(b*log(b) - 2.0dO*rldrO) 
else if (abs(b) · .le. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(a*log(a) - 2.0dO*rldrO) 
else 

theta2=-1.0dO/pi*pnzs*(a*log(a)+b*log(b)-2.0dO*rldrO) 
end if 
theta=theta + theta2 

end if 
return 
end 

F.13 SUBROUTINE CALCULATING POTENTIAL FUNCTIONS WITII 
EQUATION 2.2-14 AS A FIRST CURRENT FUNCTION 

zs =Z* 
rldrO = 10 /ro 
m is the number of mesh spacings for numerical integration 
nleg is the order of the legendre polynomial 

76 



theta is the value of the potential function 
a= Pr 
power= b 

c 

c 

c 

c 

c 

c 

subroutine fsim(zs,rldrO,m,nleg,theta,a,power) 
implicit double precision (a-h,o-z) 
pi=3.1415926535898d0 

theta=O.OdO 
if (nleg .eq. -2) then 

total=sqrt(sqrt(2.0dO*rldrO)) 
part=sqrt( abs( sqrt(2.CdO*rldrO) - sqrt( abs(rldrO - zs)))) 
fract=part/total 
m1 =int(fract*dfloat(m)) + 1 
m2=int((1.0d0 - fract)*dfloat(m)) + 1 

else 

total=2.0dO*rldrO 
part=rldrO + zs 
fract=part/total 
m 1 =int(fract*dfloat(m)) + 1 
m2=int((1.0d0 - fract)*dfloat(m)) + 1 

end if 

if (nleg .eq. -2) then 
if (m1 .ge. 2) then 

delta1=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
eps 1 =delta 1/dfloat(2*m 1) 

call fdinf(di,rldrO,zs,-rldrO,a,power) 
up=di 

call fdinf(di,rldrO,zs,zs,a,power) 
down=di 

theta=theta + (up + down)*eps1/3.0d0 

do 1 j=1,m1 
u=eps 1 *dfloat(2*j-1) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 
call fdinf(di,rldrO,zs,zp,a,power) -

theta=theta + di*eps1 *4.0d0/3.0d0 
1 continue 

do 12 j=1,m1-1 
U=eps1 *dfloat(2*j) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 
call fdinf(di,rldrO,zs,zp,a,power) 

theta= theta-+ di*eps1 *2.0d0/3.0d0 
12 continue 
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c 

c 

c 

else 

call fdinf(di,rldrO,zs,-rldrO,a,power) 
beg=di --· 

umid=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs))))/2.0d0 
zpmid=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*umid**2 - umid**4 

call fdinf( di, rldrO ,zs ,zpm id ,a,power) 
rmid=di 

call fdinf(di,rldrO,zs,zs,a,power) 
rend=di · 

uend=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
eps1 =uend/2.0d0 

theta=theta + (beg + 4.0dO*rmid + rend)*eps113.0d0 

end if 

if (m2 .ge. 2) then 
delta2=sqrt( sqrt(2.0dO*rldrO}) 
1 - sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO-zs}))} 
eps2=delta2/dfloat(2*m2) 
call fdinf(di,rldrO,zs,zs,a,power) 

up=di 
call fdinf(di,rldrO,zs,rldrO,a,power) 

down=di 
theta=theta + (up + down)*eps2/3.0d0 

do 3 j=1,m2 
u=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 

1 + eps2*dfloat(2*j-1} 
zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 

call fdinf(di,rldrO,zs,zp,a,power} 
theta= theta + di*eps2*4.0d0/3.0d0 

3 continue 
do31 j=1,m2-1 

U=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
1 + eps2*dfloat(2*j) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO}*u**2 - u**4 
call fdinf(di,rldrO,zs,zp,a,power) 

theta= theta + di*eps2*2.0d0/3.0d0 
31 continue 

c 

c 
else 

call fdinf(di,rldrO,zs,zs,a,power) 
beg=di 

umid= (sqrt(sqrt(2.0dO*rldrO)) + 
1 sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO ·- zs)))))/2.0d0 

zpmid=-rldrO + 2.0dO*sqrt(2.0dO"rldrO}*umid**2 - umid"*4 
call fdinf(di,rldrO,zs,zpmid,a,power) 

rmid=di 
call fdinf( di, rldrO ,zs, rldrO, a,power} 

rend=di 
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c 

c 

c 

c 

c 

c 

c 

c 

c 

ubeg=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
uend=sqrt(sqrt(2.0dO*rldrO)) 

eps2=(uend - ubeg)/2.0d0 
theta=theta + (beg + 4.0dO*rmid + rend)*eps2/3.0d0 

end if 

const=sqrt( sqrt(2.0dO*rldrO)) 
us=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 

if (abs(const - us) .ge. 1.0d-12) then 
a 1 =const - us 
a2=const + us 

a3=sqrt(2.0dO*const**2 - us**2) - const 
a4=sqrt(2.0dO*const**2 - us**2) +const 
theta2=a1 *log(a1) + a2*1og(a2) - a3*1og(a3) 

1 + a4*1og(a4) -4.0dO*const 
else 

theta2=4.0dO*const*log(2.0dO*const) - 4.0dO*const 
end if 

theta2=(3.0dO*Iog(2.0dO) - pi/2.0dO)*const - theta2 
curnts=fcurnt(us,a,power ,rldrO) 
theta2=4.0d0/pi*curnts*theta2 

theta=theta + theta2 

else 

if (m1 .ge. 2) then 
delta1 =rldrO + zs 
eps1 =delta 1/dfloat(2*m1) 
call dileg(di,rldrO,zs,-rldrO,nleg) 

theta=theta + di*eps113.0d0 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + di*eps1/3.0d0 

do 2 j=1, m1 
zp=-rldrO + eps1 *dfloat(2*j - 1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta= theta + 4.0d0/3.0dO*eps1 *di 

2 continue 
do 21 j=1, m1-1 

zp=-rldrO + eps 1 *dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 

theta=theta + 2.0d0/3.0dO*eps1 *di 
21 continue 

else 

call dileg(di,rldrO,zs,-rldrO,nleg) 
beg=di 
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c 

c 

c 

c 

c 

c 

c 

zpmid=(-rldrO + zs)/2.0d0 
call dileg(di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,zs,nleg) 

end=di · 
eps1 =abs(zs + rldr0)/2.0d0 
theta=theta + eps1 *(beg + 4.0dO*amid + end)/3.0d0 

end if 

if (m2 .ge. 2) then 
delta2=2.0dO*rldrO - (rldrO + zs) 
eps2=delta21dfloat(2'•m2) 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + eps2*di/3.0d0 
call dileg(di,rldrO,zs,rldrO,nleg) 

theta=theta + eps2*di/3.0d0 

do 4 j=1 ,m2 
zp=zs + eps2*dfloat(2*j -1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 4.0d0/3.0dO*eps2*di 

4 continue 
do 41 j=1, m2-1 
zp=zs + eps2*dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 2.0d0/3.0dO*eps2*di 

41 continue 

else 

call dileg(di,rldrO,zs,zs,nleg) 
beg=di 

zpmid=(zs + rldr0)/2.0d0 
call dileg(di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,rldrO,nleg) 

end=di 
eps2=(rldr0 - zs)/2.0d0 

theta=theta + eps2*(beg + 4.0dO*amid + end)/3.0d0 

end if 

zsdl=zs/rldrO 
pnzs=p(nleg,zsdl) 
aa=rldrO-zs 
b=rldr0+ZS 

if (abs(aa) .I e. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(b*log(b) - 2.0dO*rldrO) 
else if (abs(b) .le. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(aa*log(aa) - 2.0dO*rldrO) 
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else 
theta2=-1.0dO/pi*pnzs*(aa*log(aa)+b*log(b)-2.0dO*rldrO) 

end if 
theta=theta + theta2 

end if 
return 
end 

F.14 SUBROUTINE CALCULATING POTENTIAL FUNCTIONS WITH 
EQUATION 2.2-20 AS A FIRST CURRENT FUNCTION 

zs =Z* 
rldrO = lo/ro 
m is the number of mesh spacings for numerical integration 
n leg is the order of the legendre polynomial 
theta is the value of the potential function 

a= Pr 
power= b 
rjay = Ir 
curcent = roicenter!Vk 

c 

c 

c 

c 

c 

subroutine asim(zs,rldrO,m,nleg,theta,a,power,rjay,curcent) 
implicit double precision (a-h,o-z) 
pi=3.1415926535898d0 

theta=O.OdO 

if (nleg .eq. -2) then 
total=sqrt( sqrt(2.0dO*rldrO)) 

part=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
fract=part/total 
m 1 =int(fract*dfloat(m)) + 1 
m2=int((1.0d0 - fract)*dfloat(m)) + 1 

else 

total=2.0dO*rldrO 
part=rldrO + zs 
fract=part/total 
m 1 =int(fract*dfloat(m)) + 1 
m2=int((1.0d0 - fract)*dfloat(m)) + 1 

end if 

if (nleg .eq. -2) then 
if (m1 .ge. 2) then 

delta1=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
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c 

c 

c 

c 

c 

eps1 =deltat/dfloat(2*m1) 
call adinf(di,rldrO,zs,-rldrO,a,power,rjay,curcent) 

up=di 
call adinf(di,rldrO,zs,zs,a,power,rjay ,curcent) 

down=di 
theta=theta + (up + down)*eps1/3.0d0 

do 1 j=1,m1 
u=eps1 *dfloat(2*j-1) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 
call adinf( di ,rldrO,zs,zp,a,power ,rjay ,cu rcent) 

theta= theta + di*eps1 *4.0d0/3.0d0 
1 continue 

do 12 j=1,m1-1 
u=eps1 *dfloat(2*j) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 
call adinf(di,rldrO,zs,zp,a,power,rjay ,curcent) 

theta= theta + di*eps1 *2.0d0/3.0d0 
12 continue 

else 

call adinf(di,rldrO,zs,-rldrO,a,power,rjay,curcent) 
beg=di 

umid=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs))))/2.0d0 
zpmid=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*umid**2 - umid**4 

call adinf(di,rldrO,zs,zpmid,a,power,rjay,curcent) 
rmid=di 

call adinf( di,rldrO ,zs,zs,a,power ,rjay ,curcent) 
rend=di 

uend:.sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
eps1 =uend/2.0d0 

theta=theta + (beg + 4.0dO*rmid + rend)*eps113.0d0 

end if 

if (m2 .ge. 2) then 
delta2=sqrt( sqrt(2.0dO*rldrO)) 
1 - sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO-zs)))) 
eps2=delta21dfloat(2*m2) 
call adinf(di,rldrO,zs,zs,a,power ,rjay ,curcent) 

up=di 
call adinf(di,rldrO,zs,rldrO,a,power,rjay ,curcent) 

down=di 
theta=theta + (up + down)*eps213.0d0 

do 3 j=1,m2 
U=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 

1 + eps2*dfloat(2*j-1) 
zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 

call adinf(di,rldrO,zs,zp,a,power ,rjay ,curcent) 
theta== theta + di*eps2*4.0d0/3.0dO 
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3 continue 
do 31 j=1 ,m2-1 

u=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 
1 + eps2*dfloat(2*j) 

zp=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*u**2 - u**4 
call adinf(di,rldrO,zs,zp,a,power,rjay,curcent) 

theta= theta + di*eps2*2.0d0/3.0d0 
31 continue 

c 

c 

c 

c 

c 

c 

c 

c 

else 

call adinf(di,rldrO,zs,zs,a,power,rjay,curcent) 
beg=di 

umid= (sqrt(sqrt(2.0dO*rldrO)) + 
1 sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))))/2.0d0 

zpmid=-rldrO + 2.0dO*sqrt(2.0dO*rldrO)*umid**2 - umid**4 
call adinf(di,rldrO,zs,zpmid,a,power,rjay ,curcent) 

rmid=di 
call adinf(di,rldrO,zs,rldrO,a,power,rjay ,curcent) 

rend=di 
ubeg=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 

uend=sqrt( sqrt(2 .OdO* rldrO)) 
eps2=(uend - ubeg)/2.0d0 
theta=theta + (beg + 4.0dO*rmid + rend)*eps2/3.0d0 

end if 

const=sqrt(sqrt(2.0dO*rldrO)) 
us=sqrt(abs(sqrt(2.0dO*rldrO) - sqrt(abs(rldrO - zs)))) 

if (abs(const - us) .ge. 1.0d-12) then 
a 1 =const - us 
a2=const + us 

a3=sqrt(2.0dO*const*"2 - us**2) - const 
a4=sqrt(2.0dO*const**2 - us**2) +const 
theta2=a1*1og(a1) + a2*1og(a2) - a3*1og(a3) 

1 + a4*1og(a4) -4.0dO*const 
else 

theta2=4.0dO*const*log(2.0dO*const) - 4.0dO*const 
end if 

theta2=(3.0dO*Iog(2.0dO) - pi/2.0dO)*const - theta2 
curnts=acurnt( us,a,power, rldrO, rjay ,curcent) 

theta2=4.0d0/pi*curnts*theta2 
theta=theta + theta2 

else 

if (m1 .ge. 2) then 
delta1 =rldrO + zs 

eps 1 =delta 1/dfloat(2*m1) 
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call dileg(di,rldrO,zs,-rldrO,nleg) 
theta=theta + di*eps1/3.0d0 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + di*eps1/3.0d0 
c -- . 

c 

c 

c 

c 

c 

c 

c 

do 2 j=1, m1 
zp=-rldrO + eps1 *dfloat(2*j - 1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta= theta + 4.0d0/3.0dO*eps1 *di 

2 continue 
do 21 j=1, m1-1 

zp=-rldrO + eps 1 *dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 

theta= theta + 2.0d0/3.0dO*eps1 *di 
21 continue 

4 

else 

call dileg(di,rldrO,zs,-rldrO,nleg) 
beg=di 

zpmid=(-rldrO + zs)/2.0d0 
call dileg(di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,zs,nleg) 

end=di 
eps 1 =abs(zs + rldr0)/2.0d0 
theta= theta + eps1 *(beg + 4.0dO*amid + end)/3.0d0 

end if 

if (m2 .ge. 2) then 
delta2=2.0dO*rldrO - (rldrO + zs) 
eps2=delta2/dfloat(2*m2) 
call dileg(di,rldrO,zs,zs,nleg) 

theta=theta + eps2*di/3.0d0 
call dileg(di,rldrO,zs,rldrO,nleg) 

theta=theta + eps2*di/3.0d0 

do 4 j=1,m2 
zp=zs + eps2*dfloat(2*j -1) 
call dileg(di,rldrO,zs,zp,nleg) 
theta-==theta + 4.0d0/3.0dO*eps2*di 

continue 
do 41 j=1, m2-1 
zp,..zs + eps2*dfloat(2*j) 
call dileg(di,rldrO,zs,zp,nleg) 
theta=theta + 2.0d0/3.0dO*eps2*di 

41 continue 

else 
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c 

c 

call dileg{di,rldrO,zs,zs,nleg) 
beg=di 

zpmid={zs + rldr0)/2.0d0 
call dileg{di,rldrO,zs,zpmid,nleg) 

amid=di 
call dileg(di,rldrO,zs,rldrO,nleg) 

end=di 
eps2={rldr0 - zs)/2.0d0 

theta=theta + eps2*{beg + 4.0dO*amid + end)/3.0d0 

end if 

zsdl=zs/rldrO 
pnzs=p(nleg,zsdl) 
aa=rldrO-zs 
b=rldr0+ZS 

if (abs(aa) .le. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(b*log(b) - 2.0dO*rldrO) 
else if (abs(b) .le. 1.0d-11) then 
theta2=-1.0d0/pi*pnzs*(aa*log(aa) - 2.0dO*rldrO) 
else 

theta2=-1.0dO/pi*pnzs*(aa*log(aa)+b*log(b)-2.0dO*rldrO) 
end if 
theta=theta + theta2 

end if 
return 
end 
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APPENDIXG: TABLES OF NUMERICAL RESULTS 

0.1 Pavg 

lQlrQ Pavg.l Pavg.r 

0.001 0.450 0.0142 ·~ 

0.01 0.449 0.0449 
0.1 0.438 0.138 

"' 1.0 0.383 0.383 
10.0 0.240 0.761 
30.0 0.173 0.947 
100.0 0.111 1.11 
300.0 0.0721 1.25 
1000.0 0.0421 1.35 

G.2 RESISTANCE 

!QlrQ RKIQ RKrQ 

0.001 0.000411 0.411 
0.01 0.00295 0.295 
0.1 0.0181 0.181 
1.0 0.0809 0.0809 
10.0 0.220 0.0220 
30.0 0.306 0.0102 
100.0 0.403 0.00403 
300.0 0.492 0.00164 
1000.0 0.589 0.000589 

G.3 POTENTIAL DIFFERENCE BE1WEEN ELECfRODE CENTER AND 
EDGE FOR UNIFORM i0 

1QirQ ~QKL~i£ ~2m2i£ 

0.001 0.441 0.000441 
0.01 0.439 0.00439 
0.1 0.419 0.0419 
1.0 0.322 0.322 
10.0 0.118 1.18 
100.0 0.0237 2.37 
1000.0 0.00353 3.53 

;-
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