
] 

-
I 
\, 

LBL-29329 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Submitted to Journal of Physics A 

Localisation and Spectral Statistics in a 
Banded Random Matrix Ensemble 

M. Wilkinson, M. Feingold, and D.M. Leitner 

July 1990 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 

-nn 
o ...... r 
;; '1 0 

r:; D 
fi) ::: z 

~--~ 

~ OJ n 
rorro 
ro m 1J 
A l!1 -< 
1/i 

lj:i 
~ 

0.. 
10 . 
(Jl 
s r 
r !J:l 
i-1· r-
un 1 
;; 0 p) 
!11 "0 ...0 
:; '"< (.:.j 

'< !!'t 
= r•) .j;. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Govemment or any agency thereof or the Regents of the 
University of Califomia. 



'" 

LBL-29329 

Localisation and Spectral Statistics m a 

Banded Random Matrix Ensemble 

Michael Wilkinson 

Department of Physics and Applied Physics, 
John Anderson Building, University of· Strathclyde 

Glasgow, G4 ONG, Scotland, U.K. 

Mario Feingold* 

Lawrence Berkeley Laboratory and Department of Physics 
University of California 

Berkeley, CA 94720, USA 

David M. Leitner 

Department of Chemistry 
Brown University 

Providence, RI 02912, USA 

This work was supported by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of Nuclear Physics of the U.S. 
Department of Energy under Contract DE-AC03-76SF00098. 

*Address after October 1, 1990: Cavendish Laboratory, Mandingley Road, 
Cambridge, CB3 OHE, U.K. 



.i' 

LOCALISATION AND SPECTRAL STATISTICS IN A 

BANDED RANDOM MATRIX ENSEMBLE 

Michael Wilkinson 

Department of Physics and Applied Physics, 

John Anderson Building, University of Strathclyde, 

Glasgow, G4 ONG, Scotland, U.K. 

Mario Feingold* 

Lawrence Berkeley Laboratory and Department of Physics 

University of California, 

ABSTRACT 

Berkeley, CA 94720, U.S.A. 

David M. Leitner 

Department of Chemistry, 

Brown University, 

Providence, RI 02912, U.S.A. 

We give a scaling analysis for the localisation of the 

eigenvectors of a banded random matrix ensemble, in which the 

diagonal-matrix elements increase along the diagonal. We relate 

the results to a transition in the spectral statistics which is 

observed as a parameter is varied, and discuss the relevance of 

this model to the quantum mechanics of chaotic Hami 1 toni an 

systems. 

* Address after 1st October 1990: Cavendish Laboratory, 

Madingley Road, Cambridge, CB3 OHE, U.K. 

1 



1. Introduction 

It is by now well established that random matrix ensembles 

can provide a useful statistical model for the fine detail in 

the spectrum of quantum systems which have a chaotic classical 

limit: in particular the gaussian orthogonal ensemble (GOE) 

(Porter, 1965) provides an excellent model for systems with 

real matrix elements (Bohigas, Giannoni and Schmidt, 1984). 

Theoretical arguments (Berry, 1977) suggest that the 

eigenfunctions of these systems can be modelled by a gaussian 

random function with a known autocorrelation function, and 

numerical experiments support the view that this picture is 

essentially correct (Sebr, 1990), although there are additional 

features which correlate with short period classical orbits 

(Heller, 1984). If the eigenfunctions are quasi-random, then so 

are the matrix elements of any operator which uses these states 

as a basis: this hypothesis is obviously very important in 

modelling the dynamical response of chaotic quantum systems. In 

this paper we test the consistency of the idea that the matrix 

elements can be modelled by a random matrix: we set up a random 

matrix model which mimics the matrix elements of a chaotic 

Hamiltonian H=H +H , expressed in the basis formed by the 
0 1 

eigenstates of another chaotic Hamiltonian H . If modelling the 
0 

matrix by random variables is justified, we expect the spectral 

statistics of our random matrix model to be of GOE type, in 

agreement with known results. We find that this is not always 

the case, and conclude that assumptions about the randomness of 

the matrix elements, while they are a very useful 

approximation, should be used with caution. 

Consider the matrix elements of H=H +H in the basis formed 
0 1 

by the (energy ordered) eigenstates I i >, I j >. . of H : 
0 

<iiHij>=E.o. +<ijH
1
Ij>, where E are eigenvalues of H These 

1 1 .l 0 

matrix 'elements are small if jE.-E.I»h/T, where T is a 
1 J 

classical timescale characterising the autocorrelation of H 
1 

under the dynamics of H
0 

(Feingold and Peres, 1986, Wilkinson 

1987). We can model this matrix using a random matrix ensemble 

with the following properties: the matrix elements are 

independently gaussian distributed, so that the ensemble is 

defined by giving the mean and variance of the distributions of 

the matrix elements H 
i j 
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<H > = a i o 
i j i j 

{ 
1 + cS 

<(H .. -<H . .>)
2 > 

i j 

= 
I J l J 

0 

li-jj <b 

I i-j I 2:. b ( 1. 1) 

i.e the matrix is banded, with 2b-1 elements in each row, and 

with the mean of the diagonal matrix elements increasing along 

the diagonal. The parameters a and b are related to the density 

of states p of H
0 

and typical size a of the matrix elements of 

H by b=ph/-r:, a=1/pa. The dimension N of the matrix is assumed 
1 

to be very large, and to eliminate end effects it will become 

clear that .N should satisfy .N»b 2
. We discuss the spectral 

statistics of this model, which undergo a transition from GOE 

to Poisson statistics as a parameter is varied. This transition 

depends on the fact that the eigenvectors of the matrix exhibit 

Anderson localisation, and most of the technical content of 

this paper is concerned with estimating the localisation 

length. The method used to estimate the localisation length is 

an adaptation of an argument used by Chirikov, Izraelev and 

Shepelyansky (1981) for a unitary operator : we believe that it 

may be useful for both analytical and numerical studies of 

other localisation problems involving hermitean operators. We 

note that a very similar random matrix ensemble was studied by 

Wigner (1955), whose analysis was confined to a study of the 

density of states. A more detailed discussion of the spectral 

statistics of our model and its semiclassical significance will 

be published elsewhere (Feingold, Leitner and Wilkinson, 1990). 

2. Spectral Statistics of the Model 

First we consider the special case in which a=O, where the 

model is already well understood. When b=N, the model becomes 

the gaussian orthogonal ensemble (GOE), and exhibits level 

repulsion: in particular the level spacing distribution P(S) is 

very similar to the Wigner distribution (Porter, 1965). On the 

other hand when b«N our model is a banded random matrix, and a 

generalisation (Johnson and Kunz, 1983) of the Furstenberg 

theorem (Ishii, 1973) implies that the eigenvectors are 

localised, with some characteristic localisation length L. When 
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L<<}{, this implies that level repulsion does not af feet the 

level spacing. distribution p ( s) I because eigenfunctions 

localised in regions separated by more than a localisation 

length would not experience level repulsion. In this case it is 

clear that P(S) must be a Poisson distribution (Molcanov, 

1981). When L~ there is a crossover between Poisson and Wigner 

statistics, which has been characterised in a finite-size 

scaling picture by Casati, Molinari and Izraelev (1990). 

Now consider what happens when a is non-zero. An eigenvector 

IJ>. which is localised so that its dominant contributions are 
-I 

around the ith element will have an energy E. which is close to 
I 

the value of the ith diagonal matrix element, with mean value 

ai. The difference between E and ai can be estimated by 

regarding the eigenvectors as quasirandom, so that the 

off-diagonal terms contribute incoherently, hence 

IE.-ail = 0(/b) 
I 

Note that this estimate 

semicircle law (Porter, 1965) 

( 2. 1) 

is consistent with the Wigner 

for the density of states of the 

GOE. States which are separated by a distance of the order of 

the localisation length are expected to exhibit level repulsion 

if they have nearly equal energies, but states separated by 

many localisation lengths cannot experience level repulsion. If 

a is sufficiently large, (2) shows that two states separated by 

more than a localisation length are very unlikely to have 

similar energies, so that all pairs of states of similar energy 

exhibit level repulsion, implying that the level spacing 

distribution is of the Wigner type. The condition for this is: 

aL 
y=lb»l ( 2 . 2) 

When y«l on the other hand, states separated by several 

localisation lengths can have similar energies, and we expect a 

transit ion to Poisson statistics as y-+0. In order to 

characterise this transition in the spectral ·statistics we must 

compute the localisation length L as a function of a and b. 

4 
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3. Estimates of the Localisation Length 

To estimate the localisation length L, we proceed as 

follows. We consider a vector v with one non-zero element: -o 

( v ) . = f> ( 3. 1 ) -o , iO 

This vector can be written as a linear combination of 

eigenvectors IP. of tp.e matrix ii 
-J 

v = L a IP. ( 3. 2) -o j -J 
j 

If the localisation length is L, then we expect that 

approximately L of the amplitudes a are significant, and that 
j 

most of the others are extremely small. Consider what happens 

when we multiply v by H N times: --o 

~ N 
v = H v 
-N -o ( 3. 3) 

When N is large, the sum is dominated by values .of j for which 

IE .I is largest . For simplicity, let us assume that all but L 
. J 

of the a 
j 

vanish: in this case, 

multiplications 

multiple of IP 
-max 

the vector v 
-N 

is 

the eigenvector 

after a large 

approximately 

corresponding 

number of 

to a equal 

to the the 

largest eigenvalue The number of multiplications 

required for IP to become dominant is 
-max 

( 3. 4) 

where E 
next. 

is the next largest of the L contributing 

eigenvalues and p is the density of states for these L states. 

Since the distribution of eigenvalues is symmetric about E=O, 

the density of states is: 

p ~ L/ IE I. 
max 

( 3. 5) 

The vector ~N therefore becomes essentially a multiple of ~max 

when N»N"'~L. 

We can characterise the vector v 
--N 

conveniently by 

considering the standard deviation S(N) of the distribution of 
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itselements (v).: 
-N 1 

B 
= N = ~ iz (v )2 I L (~ )~ A ~ --N 1 N I 

N i i 

( 3. 6) 

The spread S of the vector 

saturates at a value 

v increases until N~N~ when S(N) 
-N 

( 3. 7) 

The second approximate equality follows from (3.4) and (3.5). 

The strategy for calculating the localisation length is to 

compute S(N) using an alternative method which ignores the 

possibility of localisation, and to solve (3.7) using this 

~xpression for S(N). Taking account of the fact that some of 

the neglected coefficients a wi 11 correspond to eigenvalues 
j 

with magnitude greater than E , we see that S(N) continues to 
max 

.increase logarithmically after the break point N"' instead of 

saturating, but this does not affect the equation (3.7) for the 

localisation length. 

The spread S(N) can be estimated by considering the 

multiplication of v by a string of N different realisations of -o 
the random matrix ensemble, H ... H 

1 N 

v = fi H ... H fi v 
-N N N-1 2 1 -o ( 3. 8) 

We can easily compute S(N) for the vector v 
-N 

since all the 

random variables involved are independent. The spread of the 

to that of v until 
-N 

vector v would be expected to be similar 
-·N 

the localisation effects become apparent when N~N"', when the 
·~ spread of v continues to increase instead of saturating. 

-N 
Because the matrix elements of the H are random variables, we 

n 

can regard the elements of the vectors v' as random variables, 
--n 

with second moment Yn 
i 

yn = < ( V I ) 2 > I 
-n 1 

( 3. 9) 

where < > denotes an average over the random matrix ensemble. 

The matrix elements satisfy 
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( ~n1 + 1 ) ,· = L (ii ) . . ( V 1 ) . 
j n 1 J -n J 

so that the Yn satisfy the recursion relation 
i 

b 

= l: 
j=-b 

( 1 + 0 .. ) Yn 
I J j 

(3.10) 

(3.11) 

We consider the case in which b is large. In this case we can 

represent theY~ by a function Y {x), and approximate the sum 
1 n 

in (3.11) by an integral: 

X+b 

Y (x) I dx1 y (x 1 ) + 0: 
2 2 y (x) (3.12) = X n+1 n n 

x-b 

co 

= I dx X (X-X 1 ) y (x' ) 2 2 y (x) + 0: X b n n 

-CO 

where x (x) is a characteristic function on an interval of 
. . b 

width 2b. The sum, AN and second and fourth moments, BN, eN of 

the variances are given by (c.f. (3.6)): 
()) 

~N = I dx y N (X) 

- ()) 

(\.) 

B = I dx x
2 

Y (x) 
N N 

-(\) 

Y (x) 
N 

(3.13) 

We can use (3.13) to write down recurrence relations for the A 
N 

and B 
N 

( 3. 13) 

: performing the x integral in (3.12) and substituting 

gives the following results. 

A = 2 b A + o:
2 

B 
N+ 1 N N 

(3.14) 

B = 2 b B + 
2 

b 
3 

A +o: 
2 

C 
N+1 N 3 N N 

(3.15) 

We can get a single equation for S(N) it we approximate the 

fourth moment using the square of the second moment: 

C ~ B
2 I A 

N N N 
(3.16) 

Combining ( 3. 14)- ( 3. 16) leads to a simple recursion relation 

for the spread S(N) of the vector, defined by (3.6): 
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B 
S2(N+1)= AN+l = 

N+l 

2.b 2 

S?.(N) + -------3
------------

1 + (a
2 

S
2
(N)/ 2 b) 

(3.17) 

The asymptotic solutions of these two 

obtained. When N is small, S2 (N) grows 

equations are easily 

linearly: S 2 (N)~Nb 2 /3. 

This linear growth continues until a crossover 
,, 1 

N ~(aLb)- . For N»N the spread S(N) increases as the 

point 

fourth 
cr cr 

root of N: ignoring those numerical factors which have ceased 

to be meaningful, we have 

S(N) ~ (N b 2 /3) 112 
N « N = ( a 2 

b)-
1 (3.18) 

cr 

N » N (3.19) 
cr 

We now have all the information required to solve the 

equation for the localisation length, (3.7). There are two 

asymptotic regimes, depending on whether N* is large or small 

compared to N First consider the case in which a is very 
cr 

small, so that N is 
cr 

large and the diagonal terms have no 

effect on the localisation length: equating (3.7) and (3.18) 

gives 2 
L~b I and the condition N*«N 

cr· 
can be expressed in the 

form x«1, where x=ab 312
. When a is large enough that the 

di~gonal elements affect the growth of S(N) before saturation 

is reached, equating (3.7) and (3.19) gives L~ba- 213 . These 

results can be summarised as follows: 

2 L = b f(x) 

f(O) = C 
0 

where C and C are constants. 
0 1 

3/2 x=cxb , 

f (x) --+ c 
1 

-2/3 
X (3.20) 

The derivation above assumes that N »1 and N*»1, as well as 
cr 

b»1. When a is large, the latter condition need not hold: using 

(3.19) we find that N ~1 when a2b~1. 
cr 

This suggests that 

deviation~ from the scaling relation (3.20) will become 

apparent when x»b. In the limit of large a the problem can be 

analysed by treating the off-diagonal elements as a 

perturbation, but we will not pursue this further. 

It is interesting to note that, provided a is small enough 
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for the scaling relation (3.20) for the localisation length to 

hold, the paramter 1 describing the transition in the spectral 

statistics is a function of x=ab312 alone, y=xf(x), so that we 

have a one parameter scaling theory for the transition. 

4. Numerical Experiments 

We have performed numerical experiments which verify these 

predictions, using matrices of dimension x~5b2 , and eliminating 

states from the highest and lowest 15% of the spectrum to guard 

against finite-size effects. Figure 1 shows numerical 

measurements of the entropy localisation length (Casati, 

Izraelev and Molinari, 1990), for various values of b, plotted 

to show the scaling function f(x). In the region where x»1, the 

scaling curve is fitted well by a x~ 13 power law (solid line). 

The results follow a scaling curve up to a break point, which 

increases as b~ro: deviations from the scaling curve are already 

visible for the b=3 data in figure 1. We estimate C =1. 3, 
0 

C =2.1 for the constants in (3.20). 
1 

We also investigated the transition from Poisson to Wigner 

statistics as 1 increases by calculating a histogram of the 

level spacing distribution P(S), and performing a least-squares 

fit to a Brody distribution (Brody 1973), which interpolates 

between the Poisson and Wigner distributions as a parameter q 

is increased from 0 to 1. For these numerical experiments we 

used a sample of at least 125 matrices of dimension BOO for 

each point, and the bin size used for computing the histogram 

was 0.1. The results are shown in figure 2: most of the data 

lie on a scaling curve, implying that the level spacing 

distribution is a function of the parameter '((X) only. The 

deviations from the scaling curve are due to finite-size 

effects: for large values of b the localisation length can be 

comparable to the dimension of the matrix and it is not 

possible to get a Poissonian level spacing distribution, which 

requires the superposition of many independent spectra. Usually 

the fit to the Brody distribution was very good as judged by 

eye (see figure 3), but we do not claim that the fit is 

statistically significant. 
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5. Discussion 

We have argued that 

ensemble mimics that 

the structure of the matrices of our 

of the matrix encountered when 

diagonalising one chaotic quantum Hamiltonian in the eigenbasis 

of another such Hamiltonian. Also, we have shown that the model 

exhibits a transition in the form of its spectral statistics, 

rather than displaying the -universal GOE statistics observed in 

chaotic quantum systems. We should therefore consider the 

reasons why the transitional spectral statistics are not 

observed in chaotic systems. 

-One possibility is that 1 

statistics are expected after 

is always large, so that GOE 

all. We can use semiclassical· 

estimates of the density of states p and typical size of matrix 

elements a, to compute how the transition parameter 1 scales as 

h~o (it is only in this limit that the spectrum becomes dense, 

so that we can compute well-defined statistics). These 

estimates give p=O(h-d) and a=O(hCd-ll/Z) (Wilkinson, 1987, 

Feingold, Leitner and Piro, 1989), so that a=O(hCd+tl/Z), 

b=O(h 1
-d), x=o:b 312=0(h2 -d), where d is the number of degrees of 

freedom. It follows that 1(X)~ro as IHO, implying GOE 

statistics, only if d>2. In the important case when d=2 

semiclassical considerations do not constrain 1 to be large. We 

must conclude that the observed GOE statistics are explained by 

differences between our model and the matrix elements of a 

semiclassical system. 

The method we use for estimating the localisation length is 

clearly insensitive to many features of the model, provided the 

matrix elements are independent: for instance it does not 

matter if the matrix is not strictly banded (the matrix 

elements only have to decay rapidly away from the diagonal), 

and it does not matter whether or not their distribution is 

gaussian. We conclude that the matrix elements of semiclassical 

systems must be subtly correlated. This is consistent with 

earlier work in which correlations between matrix elements were 

used to explain deviations of semiclassical spectra from the 

GOE model (Wilkinson 1988). 

In conclusion, we have investigated the scaling properties 

of the localisation length in a banded random matrix ensemble, 

and we have shown that localisation gives rise to a transition 
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in the spectral statistics of this model, depending on a single 

scaling parameter. We have commented on the similarity of the 

matrices to those occuring in the qu~ntum mechanics of chaotic 

systems, and shown that the results of using a random matrix to 

model matrix elements of these systems may be misleading. 
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Figure captions 

Figure 1 Plot showing one parameter scaling 

localisation length, defined by L=b 2 f(x), 

function 
3/2 x=ab : 

for 

the 

different styles of point indicate different values of b, and 

the solid curve is a x- 213 power law, which fits the scaling 

curve for x»l. The points deviate from the scaling relation for 

large x, but the break point where the deviations begin 

increases as b~ro. 

Figure 2: The parameter q characterising· a fit of the''Brody 

distribution to the level spacing distribution,' plotted as a 

function of the scaling parameter x. Different styles of point 

indicate different values of b .. , The deviations at- small q and 
' . 

-~'large bare a finite-size effect, and are discussed in the text. 
\ 
1 

F~gure 3:~A ·typical level spacing distribution, showing the fit 

to a Brody d4~tribution: the data are for b=lO, x=2.26, and the 

fitted value of q is 0.484. 
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