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Non-adiabatic Berry's Phase For A Quantum System 
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Abstract: Non-adiabatic Berry's phase is investigated for a quantum system 

with a dynamical semisimple Lie group within the framework of the generalized 

cranking approach. An expression for non-adiabatic Berry's phase is given, which 

shows that non-adiabatic Berry's phase is related to the expectation value of 

Cartan operators along the cranking direction in group space, and that it 

depends on i) the geometry of the group space, ii) the time evolution ray gene-

rated by the Hamiltonian C i.e., by the dynamics ) in some irreducible represen-

tation Hilbert space and iii) the cranking rate. The expression also provides a 

simple algorithm for calculating the non-adiabatic Berry's phase. The general 

formalism is illustrated by examples of SU(2) dynamic group. 
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Natural Science Foundation of China. 



Adiabatic Berry's phase 
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has been exploited extensively in a large number of 

theoretical and experimental articles2
, and much knowledge and deep insight have 

been obtained in this respect. However,although non-adiabatic Berry's phase has 

3 4 ' been addressed by Berry and several other authors , a comparable deep insight v· 

is still lacking. Since non-adiabatic Berry's phase is related to dynamical 

effects, its study depends on specific dynamics, i.e., on the structure of 

the Hamiltonian. Thus the investigation of non-adiabatic Berry's phase is more 

difficult. From our previous studies , we found that the description of non-

adiabaticity may become easier if a quantum system possesses a dynamical group. 

In our previous papers, three types of systems were investigated: a photon pro

pagating in an optical helix 5 , a spin particle in a rotating magnetic field & , 

7 and a rotating deformed nucleus . For all the three systems, the relevant dyna-

mical group is the SU(2) group, and.the problems are solved by the cranking 

method developed in nuclear physics B. Berry's phase is obtained analytically 

if the Hamiltonian is a linear function of SU(2) generators, and ca~ be calcula-

ted straightforwardly even though the Hamiltonian is non-linear in the genera-

tors.It is found that for SU(2) dynamical group, Berry's phase is related to the 

expectation value of the spin and non-adiabatic effect on Berry's phase mani-

fests itself as spin alignment. In this note, we generalize the above studies to 

a quantum system which possesses a dynamical semi-simple Lie group and exploit 

physical-geometrical aspects of non-adiabatic Berry's phase. 

Consider a quantum system whose Hamiltonian is a function of generators of 

a semi-simple Lie group G, 

~o = ~(X}I'-) = <:teo(HA. ,Eac), 

where the generators { X~ } or { H4 , E~ 

tor relations~ , 

[ Hi , H_; ] 0 , i,j 1,2, ... 1, 

( 1 ) 

in Cartan form obey standard commuta-

( 2a ) 

[ HA. , Eoe. ] o(A, Eoe, o<= 1,2, ... (n-l), ( 2b ) 

" ' 
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( 2c ) 

[ Eco( , E~ ] = Nco.~ Eol'+~ , if o( + (3 ~. 0 . ( 2d ) 

Where H4} is Cartan sub-algebra, E~ ,E-01'} are raising and lowering opera-

tors, 1 the rank of the group, n the order of the group. 

First consider the simplest case where the Hamiltonian is a linear function 

of the generators. Generally, 

.... o .... .... ~ 12 
CT\.o = € ~ · X = f ~ rr x.,.... = t { I ft. E « + Z. Po. H..t } , 

where ~ is a vector in group parameter space, 

{ {Jot , ~~ } . 

qev can be rewritten as 

where 

.... ....\ 
a·H Z: a;.. H.\. , 

l. L.. a;.. 1, L I p,.l + I f3t = 1 , 

.... 
a 4 and z ~ ( z'!c ) are functions of ~/A • Suppose I m) are eigenvectors of H, 

~ 

H )m) 'ffi I m) , ..... m { m~ I i=l. .1 } . 

( 3a ) 

3b ) 

{ 4 ) 

{ 5 ) 

{ 6 ) 

Now crank the system through a periodic time-dependent unitary transforma-

tion. The Hamiltonian of the system then becomes time-dependent, 

-;rt {t) { .~ ....... }v {' .... -4 exp -1n·H""t CT'-o exp ln·Hwt 

{ 7 ) 

where 

{ ~0( e xp { - i rt · -;( w t ] } , ~A. } , 8 

with 

..L. n~ t>t;, = ! integer . ( 9 ) 

~ .... 
Since b•X can be considered. to. be a Cantan operator or a combination of Cartan 
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... .... 
operators, exp{-in·H w t } is a general periodic time-dependent transformation 

in the group space. Thus the cranked Hamiltonian {7) is a general form. 

The equation of motion for the cranked system is 

{ 10 ) 

Turn to the intrinsic frame through a unitary transformation, 

~<t> = exp{-in·H ~ t } ~<t> { 11 ) 

The equation of motion for yt {t) is 

i 0 7tt) = dt. { w ) Yl { t ) 
'Ot.. I ' 

{ 12 ) 

where the Routhian operator de ( w) 1 is defined as 

......__{) ~ _.),....:. eN 
<J'- ( w ) = C1\..o - w n. H = e [ L ~o( E 0( + r: { ~;..- T n.;. ) H A. ] 

~ .... 
+ Pa· H ] I ( 13a ) 

which can be rewritten as 

{ 13b ) 

where aA 1 z« and z: are functions offr 1 and the renormalized parameters are 

e. = Eo { 14 ) 

( 15a ) 

Y= ( 15b ) 

Solutions of eqs. (10) and {12) are 

Y7 {t) exp {-i at ( ~ ) t } '( ( 0) 1 { 16 ) 

. "'P< t ) = u { t ) '\P ( 0 ) ( 17 ) 

Where the evolution operator is 

U{t) 
....... 

exp{-in·H t-V t exp{-i~(w)t } . { 18 ) 

Let us consider the eigen equations of ~o and a-(. ( w) 1 
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( 19 

( 20 ) 

with the solutions 

( 2la ) 

( 2lb ) 

and 

- .... ~ -
E 111 = E a · m = E X.. a,\. m;. ( 22a ) 

Consider solutions after one period T ( T 2 7r /t10 ) . The evolution operator 

in one period is 

U (T) exp{-in·H .2?'t} exp{-i at( IN )T } . ( 23 ) 

Since 

_. -lo .. .. ...) 

exp{-in·H 2?t} ~("IN) exp{in·H 2?r} ( 24 ) 

U (T) and o-e,. ( w) commute and have common eigen vectors, i.e., 

U ( T) Yfm = exp {- i <Pm } yZW'\ ( 25 ) 

where the total phase <P"' will be given later. 

Consider cyclic or recurrent solutions whose initial states are eigen-states 

of a€,(110), 

~(0) ( 26 ) 

After one period, 

'\}'~(T) exp{-i~·H 27t} exp{-i~ (.w )T } "{w; 

{ . . 2'tL. ~ ~ exp -~Em T -~ , .. n· m } ~(0) ( 27 ) 

The total phase is 



The expectation value of at(t) is 

-)-:.In) ~ ~ 
E \")! ( w) + w <rz""l n~ H ,m = E ~ ( w) + w n · < m> 

where 

From eq. (29) we obtain the dynamical phase 

i 

4>;= 5 f.,(t) dt =Em (w)T + 21t i-('iit>, 
0 

and Berry's phase 

< q,..,- q,;) =- 21t -n.~ < 1- fi. <lit>; 

..... ~ ......... ,, ' .... ~ 
- 21t n · m ( 1 - ( '7,., In· H '"' ..- I n • m 

~ ...... 
n·m 

( 28 ) 

( 2 9 ) 

( 3 0 ) 

( 31 ) 

( 32 ) 

Eq. (32) indicates that Berry's phase is related to the expectation value of Car

tan operators along the cranking n -direction and depends on i) the geometry of 

the group space where the vectors n and ~ reside, ii) the ray or ~m generated 

by the Hamiltonian (dynamics), and iii) the cranking rate~ . The expression 

(32) also provides an algorithm for calculating non-adiabatic Berry's phase, 

since, given an irreducible representation of the dynamical group, the calcula

tion of eigen-vectors Yfm and expectation value <'t,.,f'n·HI'?,...) is straightforward. 

Now consider the general cases where the Hamiltonian is a non-linear function 

of the group generators, 

~o = a€o ( ~ E a< , p~ Hi. ) ( 33 ) 

After cranking, the Hamiltonian becomes 

a€(t) 34 ) 

The expression (32) of Berry's phase is also applicable for the non-linear case. 

However, the eigen-solutions of ~(w) have to be obtained by a straightforward 

v 
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numerical calculation. 

In what follows we give examples to illustrate the above general formalism. 

Consider the SU(2) dynamical group which, as we mentioned before, is of pract-

tical and theoretical interest. For the linear case, the Hamiltonian is assumed 

to be 6 

~ _, 
a€ .. = Jl·J=_Qexp{-e(J+- J-)} Jtexp{ e(J+- J-)}' ( 35 ) 

which describes a spin particle in a magnetic field. In the above 

J~ I ( 36a ) 

J2 ( sin 8 , 0 , cos 8 ( 36b ) 

The cranked Hamiltonian is 

<}€.(t) exp{-iJpv t} O'e 0 exp{iJiwt} 
..... ~ 

J'l.(t). J ( 37a ) 

.... 
.Jl.(t) .Jl( sine coswt, sin~ sinwt, cose ), ( 37b ) 

which indicates that the magnetic field precesses about the z-axis with 

frequency ~ . The Routhian operator and its eigen-solutions are 

~ ( W) = O€o- W Jt 

..1i exp{-e (J+ J-)} Ji-exp{+ a (J• -J-)} ' ( 38a ) 

.1i ( sin "6 , 0 cos e > , ( 38b ) 

'1rn = exp{-i 8 J'1} Jm) ( 38c ) 

Em= mJi ( 38d ) 

li=Jl)' ( 38e ) 

The Berry's phase is 

~ 

~"'" = - 2m1t ( 1 - <11 ... 1Ji Plt»)/m ( 39a ) 

= - 2m 1t ( 1 - cos 8 ) , ( 39b ) 

where 
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cos e ( cos e - w !.It. IY 

For the non-linear case, the Hamiltonian is assumed to be 

.... .... 2. 
( Jl·J ) ( 40a ) 

and 

:) 
a-e. (t) _,. ~ 2 

(Jl(t)·J]. ( 40b ) 

which are used to describe nuclear quadrupole resonances 10 • The Berry's phase 

takes the same form as eq. (39a) . However the eigen-solutions of 0(. (IN) have to 

be calculated numerically. 

In conclusion, we have generalied the investigation of non-adiabatic Berry's 

phase of a quantum system with SU(2) dynamic group to a quantum system with any 

dynamic semisimple Lie group within the framework of the cranking approach. The 

non-adiabatic Berry's phase is given in terms of the expectation value of Cartan 

operators, which provides a simple algorithm for calculating non-adiabatic Ber-

ry's phase and gives Berry's phase a physical-geometric interpretation, since 

the expectation value of Cartan operators in a quantum system has both physical 

-geometric meanings. The illustrations of the SU(2) examples indicate that the 

above formalism is useful. 

The author thanks Professor W.J.Swiatecki for illuminating discussions. This 

work was supported in part by the Director, Office of Energy Research, Division 

of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. 

Department of Energy under Contract No.DE-AC03-76SF00098 and by the Natural 

Science Foundation of China. 
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