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Abstract 

The geometrical branching model is further developed in a direction 

that allows the branching part to be implemented by a Monte Carlo 

scheme of cascading cluster decays. A universal mass distribution is 

adopted for the determination of cluster masses. Good agreements with 

data on multiplicity distribution and average multiplicity are achieved. 
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Multiparticle production at low PT in high-energy hadronic collisions has been 

described by a large number of models, all of which can reproduce the gross fea

tures very well[l]. The geomertrical branching model(GBM)[2] is one among them, 

which combines the geometrical properties of hadronic collisions[3],[4] with the 

stochastic properties of particle production[5]. After the suggestion by Bialas and 

Peschanski[6) to investigate intermittency in multiplicity fluctuations in various 

scales of resolution, experimental data on normalized factorial moments have re-

vealed power-law behaviors in leptonic, hadronic and nuclear processes[7). Since 

random cascade processes can lead to intermittency, the GBM is well poised to 

account for the observed effect in small rapidity intervals. However, before a Monte 

Carlo code can be developed to demonstrate intermittency, there is one intermedi-

ate step that must be taken to render the GBM suitable for such considerations. 

That is, the branching process, which was summarized by the Furry distribution 

previously[2], must now be implemented by a specific scheme of successive branch

ing. It is the aim of this paper to accomplish this limited objective. 

Our basic input will be the massive cluster decays in cascading. This mechanism 

in itself is, of course, not new. Ochs and Wosiek[8] have already shown that it can 

lead to intermittency. Our concern at this point is not so much intermittency 

as the formulation of GBM in such a way that successive cluster decay can be 

amalgamated with the Glauber-Gribov approach[4),[9),[10) to high-energy collisions. 

Our immediate aim is to show that a sensible cluster cascading scheme can be used 

to reproduce the multiplicity distribution in the whole rapidity space. The subject 

of fluctuations in small rapidity intervals is deferred to a future investigation. 

Let us first recall the eikonal description of O'in, which is related by the Abramovski-

Gribov-Kancheli(AGK) cutting rule[9) to the eikonal function f2(b,s) for the elastic 

amplitude by[lO] 

(1) 
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where the summand is the contribution from JL cut-Pomerons. To determine the 

multiplicity distribution Pn it is necessary to specify what a cut-Pomeron is, for 

·which only model description have been given. For example, in the dual parton 

model(DPM)[ll) which is formulated in the momentum space, the lowest order con-

tribution to a. cut-Pomeron consists of two chains stretched between quark-diquark 

pairs. In the GB:tvf we have represented the multiplicity distribution of each cut

Pomeron by the Furry distribution[2) F!:.}, whose self-reproducing property gives rise 

to an effective F/:.( 11 ) for a p cut-Pomeron contribution, where k(p) is a parameter 

denoting the number of initial branching clusters. Thus, if we use 1r 11(b) to signify 

the summand in Eq. 1, we ha.ve[2) 

(2) 

By adjusting l..:(p) it has been possible to fit the data on Pn throughout the ISR 

energy range, and then with minijet contributions in the SPS collider range also. 

As an initial attempt to combine geometrical and stochastic properties of mul-

tipa.rticle production, it. was sensible to let the Furry distribution to represent ap-

proximately the effects of branching so that we could judge quickly whether we were 

aiming in the right direction. Now, we begin a second-level consideration in which 

the branching process is to be treated explicitly in a Monte Carlo simulation with 

energy-momentum conservation applied at each step. There are two issues to be 

addressed. First, how many initial clusters are there and what are their masses? 

Second, how does a cluster decay? Since these questions are central to our improved 

treatment, let us discuss them at some length separately. 

Since the average number of cut-Pomerons at each impact parameter b is spec-

ified by the probability 1r 11 (b ), we know that p can vary on the average from 1 to 

a large value at small b. If a massive cluster is associated with each cut Pomeron, 
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then impact-parameter smearing results in an effective distribution of initial clus

ters for each collision. This picture is different from, and perhaps complementary 

to, the two currently fashionable models: DPM[ll] and Fritiof model[12], which 

have no explicit impact-parameter-smearing, but either have two chains with vary-

ing lengths or have two excited strings with varying effective masses. In our model 

we use 1rJJ.(b) and stochasticity to determine the number of initial clusters. More 

specifically, our procedure is to first convert Eq. 1 into an integral over the scaled 

impact parameter R = b/b0 , where b0 = (CJin/11') 112
, as in Ref.[2]. Then we rewrite 

Eq. 2 in the form 

t" 2 ~ Pn = Jn dR L-- 1r11(R)B~, 
0 JJ.=1 

(3) 

1r11 (R) = ~[2D(R)] 11 e- 2n(RJ, 
p. 

(4) 

where B~ is a new branching distribution that we now attempt to determine by 

Monte Carlo calculation. For every value of R, we generate a value for J.L according 

to the probability 1r 11 (R). \Ve then have p initial clusters, each having c.m. energy 

Ei, whose value is specified by a randomly chosen variable Xi according to Ei = 

XiVs, satisfying 0 < Xi < 1 and 2:::~= 1 :ri = 1. These clusters undergo successive 

binary decays in a manner to be described belO\v, and the distribution B~ can 

then be calculated at the end of the branching process. Note that this procedure 

automatically gives rise to diffractive-like processes at largeR, since J.L = 1 is the only 

important contribution to Eq. 3 in this case, and with x1 = 1 the one cut-Pomeron 

gives rise to a two-cluster fragmentation process. At smaller R higher J.L values 

also become important, so the sharing of .jS among the J.L initial clusters forces the 

decay particles to populate the central region, resulting in a central plateau for the 

single-particle inclusive distribution. 11omentum conservation is imposed in each 

cut-Pomeron, when the clusters undergo cascading. 

The second issue of major importance is the nature of cluster decay. In a soft 

hadronic process no high virtua1ity is associated with any constituents. The valence 
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quarks that carry nearly half the incident momentum do not interact strongly with 

soft partons because of the large separation in rapidity; they hadronize into the 

leading particles in the fragmentation region. A description of the hadronization in 

the central region that does not give any preeminent role to any individual partons 

should be to consider the interacting partons collectively in terms of s-channel clus-

ters that evolve in a self-similar way. This point of view has received some support 

from the recent interest in intermittency, which is essentially the phenomenology 

of self-similarity. As mentioned in the previous paragraph, the leading cluster and 

the centrally produced ones are all included in our approach, since for every R, 11 

is summed over all values, the 11 = 1 term contributing principally to the fragmen-

tation region. 

Since we want to describe the cluster decay by a self-similar process, we recall 

the statistical boost-trap model of Hagedorn[l3], who has for many years empha

sized the picture of fireball \vithin fireballs in a self-consistent description. Indeed, 

it was Hagedorn who first pointed out that the mass spectrum of hadrons is an 

exponentially growing one: em/To, \vhere T0 is the Hagedorn temperature[l4]. The 

distribution of cluster masses at temperature T is 

(5) 

where T < T0 and we shall consider T to be a constant in the hadronic interaction. 

\Ve adopt the general ideas of Hagedorn as hints on our cluster decays and use 

( ) 
o -{3m p 111 "' 1n e , (6) 

as the universal mass distribution of clusters produced at. all stages of the successive 

decays. In Eq. 6, a and f3 are parameters in our model to be adjusted to fit the 
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data. 

Specifically, our procedure is the following. For each set of values of p and Ei, 

i = 1, ... p generated in our Monte Carlo simulation, we let the initial cluster in the 

ith cut Pomeron decay into two clusters whose masses m 1 and m 2 are determined 

randomly according to Eq. 6. Energy-momentum conservation then fixes their lon

gitudinal momenta, their transverse momenta being neglected in this investigation. 

We then go to the rest frames of the daughter clusters and repeat the decay pro

cedure, always using Eq. 6 to determine the subsequent cluster masses. The decay 

sequence is terminated when the mass reaches a value below 2m1!". In this way we 

determine B~ in Eq. 3. Because we have not considered the charge and flavors of 

the produced hadrons, we take all the final particles to be pions and regard the 

number of charged pions as 2/3 of the total produced particles. 

\Ve have found that by choosing a = 0.1 and f3 = 0.01 GeV-1 we obtain approx

imately Koba-Nielsen-Olesen(KNO) scaling for pp collision in the ISR region. The 

resultant multiplicity distribution agrees well with the data[15], as shown in Fig.l. 

The normalized moments Cq =<nq> / <n>q are shmvn in Fig.2 as functions of 

Js. The average multiplicity <n>, shown in Fig.3, is also in good agreement with 

da.ta[15]. At higher energies minijet production must also be taken into considera

tion, so Pn is expected to get broader[2]. 

\i\Te have not fine-tuned the parameters to yield the best fit because our present 

calculation ignores the transverse momenta of clusters. \iVe arc encouraged by our 

results, since they indicate that the GB~vf, when implemented by cascade cluster 

decays in one dimension, can well describe the global data on Pn and <n>. This is 

an improvement on our previous results, since we could not calculate <n> before . 

More importantly, we now have a realistic scheme of branching, which will facilitate 

further development into a comprehensive code. For that we need to improve on our 

consideration of the transverse degrees of freedom, the production of resonances, the 
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inclusion of charges and flavors, etc. After those improvements are made, we shall 

then be able to calculate more reliably the rapidity distribution and the associated 

quantities related to intermittency. The fact that this model treats the geometrical 

features of hadronic collisions properly and contains a self-similar scheme of particle 

production makes us feel quite hopeful that this approach will render a successful 

description of the soft interaction of hadrons. 
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Figure Captions 

Fig. 1 KNO plot. of the calculated result.(in histogram) as compared to the data, 

taken from Ref. [15]. 

Fig. 2 Normalized moments of multiplicity distributions at various energies. The 

data are taken from Ref. [15]. 

Fig. 3 Comparision of calculated average multiplicity(solid line) with the data, 

taken from Ref. [15]. 
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