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Abstract 

Spatial statistics have recently been applied in epidemiology to evaluate 

clusters of cancer and birth defects. Their use requires a comparison popu­

lation, drawn from the population at risk for disease, that may not always be 

readily available. In this dissertation the plausibility of using data on all birth . 

defects, available from birth defects registries, as a surrogate for the spatial 

distribution of all live births in the analysis of clusters is assessed. 

Three spatial statistics that have been applied in epidemiologic investi­

gations of clusters, nearest neighbor distance, average interpoint distance, 

and average distance to a fixed point, were evaluated by computer simula­

tion for their properties in a unit square, and in a zip code region. Com­

parison of spatial distributions of live births and birth defects was performed 

by drawing samples of live births and birth defects from Santa Clara County, 

determining the street address at birth, geocoding this address and evaluat­

ing the resultant maps using various statistical techniques. The proposed 

method was then demonstrated on a previously confirmed cluster of oral 

cleft cases. All live births for the neighborhood were geocoded; as were all 

birth defects. Evaluation of this cluster using the nearest neighbor and aver­

age interpoint distance statistics was performed using randomization tech­

niques with both the live births population and the birth defect population as 
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comparison groups. 

It was shown that comparing the nearest neighbor, average interpoint 

distance and average distance to a fixed point statistics from data thought to 

be clustered to the corresponding statistic generated from non-clustered 

data would deted clustering if a sufficient number of points were in the clus­

ter, and provided the two samples were the same size. None of the statistics 

used detected a significant difference between the spatial distribution of the 

samples of all· birth defects and of live births, although it was also demon­

strated that the sensitivity of these methods to dated a systematic difference 

between the two populations was low. Reanalysis of the cluster, however, 

demonstrated that randomization analysis using all birth defects as a com­

parison population, was successful in detecting clustering. 

Chair 
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Dedication 

This dissertation is dedicated to the parents of children with birth 

defects,· who face, on a personal level, the problems epidemiologists must 

consider in unemotional, clinical terms. The challenges they face must 

never be forgotten, and their quest for answers to the questions about birth 

defects must be supported and encouraged . 
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1. Introduction and Literature Review 

1.1. Background 

The investigation of clusters of disease has been one of the hallmarks 

of epidemiology since early times. A "cluster" of disease can be thought of 

as "a closely grouped series of events or cases of a disease .. .in relation to 

time or place, or both" [1]. The thought that some disease may result from 

the location where people live traces back to the time of Hippocrates, who 

writes of areas unfit to inhabit in "On Airs, Waters and Places" [2]. The first 

well known example· of an investigation of a cluster was John Snow's work 

on a cholera outbreak ·in London in the 1800's [3]. As epidemiology is the 

. study of the distribution of disease in populations, it is understandable how 

investigations of regions in which unusually large numbers of cases of 

disease are found would be of interest. Indeed, the term "epidemic," as 

commonly understood, refers to a clustering, in space and time, of some 

disease. 

In this dissertation, methods of detecting or confirming the existence of 

spatial clustering will be examined for their suitability for use in investigating 

clusters of birth defects. Often, data on the spatial distribution of the under­

lying population at risk are difficult to obtain, particularly when the spatial 

data required involve more specific information on location than the census 

tract or county of residence. As clusters often occur in areas considerably 

smaller than such geopolitical areas, and as one cannot necessarily assume 

that the underlying population is uniformly distributed within these areas, it 

may be desirable to identify some surrogate population for which more pre­

cise data are available. A surrogate population may also be necessary in 

situations where no data exist on the locations of individuals in the 
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underlying population at risk, for example, when census tract or street 

address are not recorded. With the advent of population-based disease 

registries, such surrogate populations may be readily available within the 

registry responsible for investigating such clusters. As an example, the Cali-

2 

fornia Birth Defects Monitoring Program (CBDMP), a population-based J 

disease registry that collects data on all structural birth defects manifest in • 

the first year of life, will. be used to illustrate the application of some of these 

spatial statistics. 

In this chapter, spatial statistics that have been developed to investigate 

spatial clusters will be described, and some of the problems related to clus­

ter investigations will be presented. Chapter 2 presents a series of simula­

tions performed on some of these spatial statistics in the theoretical frame of 

a "unit square", and in a zip code region. Chapter 3 addresses the compar­

ability of spatial location of birth defects to that of aft live births in the popula­

tion. The goal of this chapter is to ascertain whether the group of all birth 

defects could be used as a surrogate population for the true underlying 

population at risk, live births, in the ascertainment of spatial clustering of 

some specific birth defect. Chapter 4 wiU apply the spatial statistics and sur­

rogate population to a previously investigated cluster of cleft lip and cleft 

palate that occurred between 1983 and 1986. In chapter 5, the applicability 

and generalizability of the results of the methods discussed will be 

presented. 

A distinction is made between clusters occurring in space, those occur-
, 

ring in time, and those with both spatial and temporal association. This dis­

tinction, first made by Knox [4, 5], is importa~t in both the consideration of 

the etiology of clusters, and in techniques used to ascertain them. Spatial 

clusters consider only the distribution of cases in a particular defined region, 
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with the only consideration of time being a definition by the investigator of a 

general period of interest. 

Etiologically, diseases in which the temporal period is too long or short 

to be considered important would fit a spatial clustering model. A hypothe~i­

cal example might be a cluster of birth defects caused by drinking water 

contaminated with some organic chemical in a single water district. With 

the comparatively small population at risk of pregnant women, and with a 

potentially extended period in . which the drinking water may be contam­

inated, a close temporal association would not be expected to occur, and 

thus space-time methods would not detect a cluster. Spatial methods, how­

ever, might show a clustering of cases in that area served with the contam­

inated water. 

Space-time clustering considers the interaction of both spaqe and time. 

Proof of space-time aggregation of cases is often extremely revealing, as 

the disease rate is shown to vary in both time and place, which limits the 

possible explanations to a few variables that vary with the same pattern [6]. 

Etiologically, one might expect infectious agents, intermittent environmental 

exposure, or the introduction of a new drug with teratogenic properties and 

local popularity among prescribing physicians to produce evidence of 

space-time clusters. 

Geographers have observed that there are two basic point pattern 

analysis methods that have been . used extensively-nearest neighbor and 

quadrat methods (7]. Most of the space-time methods and spatial methods 

that calculate rates in adjacent spatial areas are actually forms of quadrat 

analysis. The average interpoint distance and distance to. a fixed point 

methods are modified ·versions of nearest neighbor techniques. Neither of 

these methods compare the relative spatial locations of points, and as will 
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be seen in chapter 3, this may be difficult. Fortunately, the specific "shape" 

of the spatial distribution is usually not important to epidemiologists, who are 

more concerned with whether clustering is occurring. 

In both spatial and space-time clustering, the smaller t~e geographic 

area of concern the stronger the potential for determining a cause for the 

outbreak, as fewer possible factors can be implicated. In addition, with 

space-time clustering, the shorter the time period of concern, the more 

powerful the analysis. Thus these methods are highly suited to detecting 

localized outbreaks, but become less powerful when dealing with larger 

more widely diffused increases in disease occurrence. 

1 a2. Cluster Investigations 

Typically, cluster investigations are instigated as the result of reports 
' 

made to a health department or disease registry from a concerned physician 

or a member of the community. Allegations of possible exposures thought 

to be the cause of the outbreak are often made with the initial cluster report. 

The registry or other agency responding to the alleged cluster will first 

try to verify the existence of the "index cases", that is, those cases that are 

pointed to by the reporting party as evidence of an excess of disease. If the 

index cases are verified, additional case ascertainment is usually done, and 

then disease rates are calculated. Data on the population at risk, neces­

sary for the calculation of rates, is usually derived from vital statistics 

sources. If the excess is significant, a case-control study may be initiated. 

If exposure allegations are not made, the characterization of the area of 

concern may be subjective, and subject to a bias sometimes referred to as 

"Texas Sharp-shooting" [8], where the "bulls-eye" is drawn around the 

bullet-hole in the ·Side of the bam. "Texas Sharp-shooting" can actually be 
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thought of as a form of exposure suspicion bias, since one is searching for 

exposure on the basis of a known outcome. In cluster investigations, this 

bias appears when the study area is created to be around the index cases, 

thereby increasing the probability of detecting a cluster in the analysis. To 

avoid this, and to permit the calculation of prevalence proportions using 

existing population data, investigators will often use a geopolitically defined 

region such as a census tract, zip code region, county, or other area. The 

drawback to using these areas is that they often contain a variety of popula­

tion densities, and may contain sub-populations with different levels of risk 

for the disease of concern. While these are not problems when risk ratios 

are being calculated, they may cause a misinterpretation of spatial statistics 

such as the nearest neighbor distance. 

Once additional case ascertainment is completed, the investigator must 

identify the population at risk for disease, and should ascertain the distribu­

tion of that population in the area of concern. Determination of the expected 

rate of disease in the population at risk and calculation of a standardized 

morbidity ratio will describe whether an excess is occurring. Comparison of 

the spatial arrangement of the disease cases and that of the underlying 

population at risk permits a statement of whether clustering of the disease of 

concern is occurring. This comparison of the spatial arrangement of disease 

is often not done in epidemiologic studies, because it requires specialized 
/ 

techniques that are not widely known. A list of techniques that have been 

applied in epidemiologic analysis appears in table 1.1. These methods have 

been described in detail elsewhere [9-11 ]. 
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Table 1.1 
Statistical Methods for Cluster Investigations 

Method Reference 

Spatial Methods 
[12] . 1. Uoyd and Roberts 

2. Spatial Autocorrelation r3] 
3. Grimson, Wang, and Johnson 14] 
4. Ohno, Aoki and Aoki !15] 
5. Nearest Neighbor Analysis 16] 
6. Density Equalized Map Projections 17] 

Space-Time Methods 
7. Cell Occupancy Approach 18] 
8. Pinkel, Dowd and Bross 19J 
9. Ederer, Meyers and Mantel 20 

10. Knox · 21] 
11. Persisting Rates Approach 22] 
12. Barton, David and Merrington 23~ 
13. Mantel · 24 
14. Pike and Smith 25] 
15. Smith and Pike 26,27] 
16. Goldstein and Cuzick 28] 
17. Chen·, et al. 29] 

Temporal Methods 
18. Bailar, Eisenberg and Mantel !30] 19. Scan 31] 
20. Tango 32] 

1.3., Spatial Methods 

Of the spatial methods listed in table 1.1, only methods 5 and 6, the 

nearest neighbor analysis introduced by Clark and Evans in the ecological 

literature in the 1950's, and the Density Equalized Map Projections of Selvin 

et a/, introduced in the 1980's, make use of continuous measures without 

resorting to some form of dichotomization or categorization of distances into 

"close" and "not close" groupings. 
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1.3.1. Nearest Neighbor, r 

Nearest neighbor analysis was adapted from the field of plant ecology, 

where it was first reported by Clark and Evans [16], and has recently been 

applied to epidemiologic analysis [33-35]. In this method, for each point in a 

set of n points, the nearest point is determined among the n-1 other points 

and these distances to the nearest neighbor are averaged to produce a 

measure of clustering (r}. For a given number of points n, the smaller the 

mean nearest neighbor distance ·is, the more likely clustering is going on. 

This mean distance has several useful properties. The variance of r can be 

estimated by use of equation 1.1. In addition, an expected value for the 

mean nearest neighbor may be calculated according to equation 1.2, where 

A is the area of the study region and n the number of points. This expected 

value requires the assumption of uniform distribution of the points in the 

study area. The variance of r, assuming a uniform distribution in space of 

the points, is given by equation 1.3. 

E(T) = ..1- /A 2'lfi 

A 
Var(T) = 0.0682 n 

(1.1) 

(1.2) 

(1.3} 

By calculating the ratio of observed to expected values of r, one may deter­

mine whether clustering is being exhibited. When this ratio is 1.0, it sug­

gests that the data are spatially uniformly distributed, while a ratio less than 

one suggests clustering. This ratio can be tested by calculating g according 
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to equation 1 .4 and comparing it to the gamma distribution for samples less 

than n=100. 

g = 0.52 (1.4) 

The nearest neighbor method has several attractive properties: its lack 

of investigator-defined "closeness", its ease of application, and its ability to 

be compared to the normal distribution, if the assumption of uniform distribu­

tion of the underlying population at risk can be made. Disadvantages of the 

method include its partial dependence on the size of the study area, which 

affects the ability of the method to . detect clusters if the boundaries have no 

biological basis or are selected randomly [36]. In addition, geographers 

have noted that the nearest neighbor metric does not reflect the exact pat­

tern of points, but only their relative distances [37, 38]. 

Another problem with this statistic is that the values of the nearest 

neighbor distances to each point are not completely independent of each 

other. To understand why this is so .• consider the extreme example shown 

in figure 1.1. In this example, the six points are arranged in pairs, such that 

the nearest neighbor for either point in each pair is the other point in the 

pair. Clearly the nearest neighbors of each point is dependent on the spatial 

location of the other point which will be serving as the nearest neighbor, and 

thus the assumption of independence required for applying a normal distri­

bution to the nearest neighbor distance is strictly. incorrect. 

One drawback with this method is the need to establish boundaries for 

the points. This boundary can affect the expected value in some cases, as 

has been discussed by Clark and Evans [16] and by Shaw [11]. In addition, 

there appears to be a boundary effect on the data. This effect can be most 
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easily thought of by considering an area with several points in it, represent­

ing cases of a disease. An applied example might be a postal zip code 

region in a city, with points representing cases of some birth defect. If some 

of those points are near the boundary of the zip code region, their true 

nearest neighbor, that is, the case closest to them, could be outside the 

boundary of the study area, in some adjacent region not studied. This situa­

tion is analogous in many ways to a truncated data set. Since cases out­

side the region of concern are not included in the calculation of the nearest 

neighbor statistic, the calculated nearest neighbor distance for points near 

the boundary would actually be larger than the true nearest neighbor dis­

tance, since the distance would be calculated to the nearest neighbor within 

the census tract under study. The result is an overestimation in the ratio of 

observed:expected nearest neighbor distances. One suggested method of 

reducing this "boundary effect" has been to "wrap-around" the area, 

whereby the left boundary of an area is imagined to be contiguous with the 

right boundary, and the top with the bottom. Clark and Evans suggest that 
' 

distances to nearest neighbors lying outside the area should be included, 

but that these points should not be used as index points in the calculation 

[16). 

In this analysis, no correction for the boundary effect was incorporated, 

since in situations where the nearest neighbor statistic may be used for 

investigations of clusters, it is possible no data on nearest neighbors outside 

the study area are available. The use of a "wrap-around" method is not 

desirable, since it assumes the area adjacent to the study region has the 

same population density as that within the study area, which may not be the 

case. 
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1.3.2. Average lnterpolnt Distance, T, f2, "'armonic 

The average interpoint distance is a method derived from Knox's statis­

tic [4], that was sugge~ted by Lloyd and Roberts [12] [39] as a way of deter­

mining spatial proximity while controlling for the variation in population den­

sity of the population at risk. This method provides an estimate of the prox-

imity of all points to ea~h other, by calculating the n(~-1 ) possible distances 

between points. The average squared interpoint distance is calculated by 

taking the square of each of the n(~-1 ) distances, and then calculating the 

average. Lastly, the harmonic average interpoint distance is calculated by 

taking a harmonic mean of the average interpoint distances. The variances 

of i and 72 are calculated in the normal manner. The variance of ~ may 

be estimated according to equation 1.5. 

( . ) ( ihannclnc )
4 

( .) var 1hlumonit: = .4 var 1 
I 

(1.5) 

The expected value of f2 and its variance for the unit square when the 

points are uniformly distributed were calculated by Schulman [40] and are 

given by equations 1.6, and 1.7. The expected value of i, E(i), is approxi­

mately equal to ..J'E(T). The variance of i is approximated by equation 1.8 

[40]. The values of i and f2 should be less than the expected value when 

clustering is present, as the clustered points will be closer together. 

E(i~ = 2[ V(X) + V( Y)] (1.6) 

where: V(X) = E(X~-(E(X))2, and in a unit square, E(X)=O.s. 

10 
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Var(i') = [~ [ 2(n-1) [ E(x')+E(Y")] M(n-1) [ E (X'Y')-E(x>)E ( Y'J]+ ( 1. 7) 

8(n-1)[E(_x2)( E(Y)] 2-E(X)E(X3
)]-

8(n-1) [ E( Y)E( ya)+E( Y)E(_x2Y)+E(X)E( y2 X}]-

{1.8) 

One property of simple mean distances is that all values, large and 

small, contribute the same, and indeed one or two extremely large values 

will skew the mean value. Mantel [24] suggested that by taking the recipro­

cal of distances, the short distances, characteristic of clustering, would be 

"spread out", while the range of great distances would be collapsed. This is 

desirable when a small number of cases are clustered, relative to the total 

number of cases, since it prevents the dilution of effect that otherwise takes 

place. As such, harmonic means were also calculated. The expected har­

monic mean is unknown. for i, but should be less than the observed mean. 

1.3.3. Average Distance to a Fixed Point, a, iJ2, a~ 

The average distance to a fixed point (d) has been suggested as a pos­

sible measure of clustering when the exposure allegation is that of a fixed 

point-source of pollution, such as a toxic waste site or smoke-stack [17, 40]. 

The mean a is calculated by taking the mean of the distances from each 
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point to the fixed source of exposure. The mean squared distance and har­

monic mean are calculated in an analogous manner to the average inter­

point distance statistics discussed above. 

Expected values. for a and (fl and their variances for the unit square, 

with no clustering and assuming a uniform population distribution, are known 

[40] and are calculated according to equations 1.9, 1.1 0, 1.11, and 1.12. In 

these equations E(a) and E(rfl) are the expected values of the a and dl 

statistics, and E(Xn) and E(Y") are the n 111 moments of X and Y, which, in a 

unit square, may be calculated as 
2
1.

1
• Similarly, E(xnvm) may be calcu-

lated as _1_
1 

.__!_
1 

in a·unit square. x0 =Yo= 0.5 in the unit square. 
n+ m+ 

- [ a2 15 a"] E(d) =~ 1-----
81J.2 128 IJ. 4 

(1.9) 

where a2 = n Var(d2) and 1J. = E(d2) 

- 1 [ a2 7 cr4 
15 crS 225 cr8 ] 

Var(d) = n 41J. + 32 J13 - 512 J.Ls - 16384 J17 (1.1 0) 

where cr2 = n Var(d2) and J1 = E(d2) 

(1.12) 

12 

•• 



•• v 

\~ 

The pure temporal clustering methods listed in table 1.1, as well as 

other techniques that have been developed to deal with household or fami­

lial clustering [41-46], do not consider the spatial distribution of the cases in 

any way, and thus are not appropriate for the investigation of clusters occur­

ring in neighborhoods or other spatially defined areas. As such, they will not 

be considered further here. 

1.4. Ciuster Investigations 

The literature is replete with cluster investigations. Shaw [11] summar­

ized several examples of clusters in the literature. Additional information on 

studies of space-time clustering may be found in Smith [1 0]. While most 

cluster investigations are performed without the use of spatial statistics, 

examples continue to appear in the literature of studies that make use of the 

Knox method (4], the nearest neighbor method (16], and even the method of 

Pike and Smith (25]. Recent examples of studies using these statistics 

include an investigation of nasopharyngeal carcinoma in Greenland Eskimos 

using Knox's method (47], an investigation of lymphoproliferative malignan­

cies in young people using the nearest neighbor method [35], an investiga­

tion of cleft lip and palate in Oxford, England using Knox's method and the 

method of Smith and Pike {48], and others [49-55]. The major diseases stu­

died in cluster investigations have continued to be cancer and birth defects, 

due in part to the lack of understanding of the causes of these disease, and 

to the hypotheses of various possible environmental risk factors, and in part 

to their observed clustering in communities. 

The advent of disease registries for such outcomes as birth defects and 

cancer has also contributed to the large number of cluster investigations on 

these outcomes, by providing data and a standardized data collection 
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scheme that can be used for investigating and verifying or refuting the 

existence of a cluster quickly and efficiently, as opposed to the special stu­

dies that formed most of the cluster literature in the 1960's and 1970's. In 

addition, disease registries h~ve made possible the utilization of systemati­

cally collected spatial data for both case definition, and for characterization 

of the reference population. In addition to providing accurate "baseline·~ 

data on disease rates in different communities, the spatial distribution of 

other, non-clustered cases in the registry could be readily used to assess 

whether clustering is occurring. Such use makes a fundamental assumption 

that the population of non-clustered disease cases in the registry is ran­

domly distributed among all the underlying population at risk. 

The CBDMP had performed over 61 cluster investigations between 

. 1981 and June, 1987 in response to community reports. Of these, only 7 

have had statistically significant relative risks (p<0.05), although studies 

were ongoing for 10 at the time of report [56]. Three of these clusters 

resulted in full epidemiologic study, of which none conclusively implicated an 

environmental cause. Many of these clusters are still being watched, how­

ever, as if an elevated rate continues to persist, further investigation may be 

warranted. Schulte [57] reported on 61 occupational clusters investigated by 

the National Institute for Occupational Safety and Health between 1978 and 

1984. While occupational clusters differ from spatial clusters in many 

respects, it is interesting to note that a similar lack of significant findings has 

resulted. Among · the 61 investigations, 8 (13%) detected a statistically 

significant excess of disease, of which none had a plausible occupational 

etiology. Wal'!'ler and Aldrich, in a 1988 article, noted that cancer cluster 

investigations undertaken by state health departments have been generally 

unproductive in the identification of possible environmental causes of cancer 
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1.5. Use of Surrogate Populations in Epidemiology 

Using birth defects as an example, one may use the population of all 

birth defects as a surrogate for the true population at risk for having a birth 

defect (the population of all live births) if one can assume that no environ­

mental or other factor causes all birth defects to distribute themselves in 

space· in some way other than live births do. If one accepts the postulate 

that there are no universal teratogens (that is, no chemical or other agents 

that cause all birth defects without regard to type), then this assumption may 

be accepted. If a teratogen were to change the spatial distribution of some 

subset of defects, including the one under investigation, it would reduce the 

ability to detect a cluster. A major objective of this dissertation will be to 

attempt to show that all birth defects can be used as a surrogate for all live 

births in a cluster investigation, and to demonstrate this method on a previ­

ously identified cluster. 

There are many examples of the use of surrogate populations for the 

underlying population at risk in epidemiology. Many case control studies 

make use of "diseased controls" such as those in the hospital for some 

other reason than that being studied, other non-related cancer cases, or 

users of a particular clinic or physician. The use of these "diseased controls" 

has been discussed elsewhere (59, 60]. The major concern voiced over 

using a surrogate comparison population is the issue of bias. Most com­

monly Berkson's bias is cited as a major problem, that is, that ill populations 

are fundamentally different from the general population in some way, and 

that their use as a referent group is therefore biased, with respect to expo­

sure. The equivalent of Berkson's bias in a cluster investigation using a 
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surrogate population would be if those diseased controls distribute them­

selves in space differently than the true referent population in a manner 

affected by the exposure of interest. Since it is unlikely a single environ­

mental factor may increase risk for all birth defects, it is· probable that this 

bias will not be a significant problem in the use of all birth defects as a sur­

rogate population. Other biases discussed related to the use of diseased 

controls [59], including problems with case ascertainment, recall and inter­

viewer bias are not ge·nerally of concern for the initial investigation of clus­

ters. 

1.6.. Bias In Cluster Investigations 

Cluster investigations are generally started in response to the concerns 

of the public or of medical professionals that some environmental factor may 

be causing an excess of disease in some area. Using community reports of 

suspected clusters generates a bias of its own, as has. been discussed by 

Rothman [6]. The problem inherent in using community-repo.rted clusters is a 

strange one: because community members were looking for a cluster and 

found one introduces a bias known as "multiple-comparisons" or "data­

dredging" bias. 

The fundamentals of data-dredging bias are that if one goes out looking 

for a statistically significant relation at some level, if one looks at enough 

relations one or more of them will be statistically significant just by chance. 

As an example, if one considers 1 00 communities looking for an excess of 

some birth defect significant with a p-value of 0.05, five of these 100 com­

munities will be expected to show a statistical excess just by chance. Data­

dredging bias in cluster reports is more vague; members of the public can 

be considered to be constantly making comparisons of rates, looking for 
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diseases for which incidence or prevalence appears to be elevated, com­

pared to the "usual" rate. If a "significant" elevation is observed or 

suspeded, it will be reported. In this way, one can consider the public to be 

making thousands of ~omparisons, since any combination of two or more 

events that are proximal in space may be compared to baseline rates. This 

form of multiple comparisons is intricately related to the definition of a clus­

ter, as a "cluster" of one case will not be reported, environmental 

hypotheses not withstanding. An illu-stration of how important this data­

dredging can be appears in chapter four, where the number of expeded 

clusters of the same magnitude as the one illustrated is estimated for the 

entire state of California during the same period. 

It is possible to charaderize the period during pregnancy that a fetus is 

susceptible to developing particular defeds, and thus to determine when the 

mother would have to be exposed to the exposure of concern in order to 

develop the outcome of concern. For many defeds, this period of suscepti­

bility is during the first trimester, and thus for a particular cluster investiga­

tion it is possible to define fairly exadly when exposure must have occurred 

in order for a particular defed to result. However, Kipen and Wartenberg 

note that when exposure assessment is performed retrospedively, power 

and precision may be lost due to recall and other biases (61]. When this is 

the case, clusters may appear to have no environmental explanation, since 

no common exposure can be confirmed. 

Another bias that is introduced in the investigation of spatial clusters of 

birth defeds is migration among the mothers during pregnancy. As many 

teratogenic agents have their most deleterious effeds during the first trimes­

ter of pregnancy, using residence at birth may be a poor measure of expo­

sure during the critical time period, if the mother moved during ·her 
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pregnancy. Khoury et · al [62], using data from the Maryland Birth Defects 

Registry, observed that 20% of mothers with infants born with one of 12 

sentinel defects had moved during pregnancy. Over four percent of the 

mothers of children in the registry had moved to a different county from their 

residence at conception. It was not possible to determine from Khoury's 

paper whether this migration pattern was consistent with that of mothers of 

children bam without a birth defect. If mothers living near toxic waste sites 

are more likely to move when the find they are pregnant than other mothers, 

and if living near a toxic waste site is a risk factor for some birth defects, it is 

conceivable that, since pregnancy is not confirmed until after the first month 

or so post-conception, a differential bias may result. 

Despite the problems inherent in cluster investigations, important and 

meaningful exposure-response relationships have been identified through 

thi·s process. From contaminated drinking water in London that Snow 

showed to be the agent for the cholera outbreak [63], to a recent investiga­

tion in which erionite, a mineral, was shown to have carcinogenic properties 

(64], cluster investigations have proven to be useful. Their additional, often 

undocumented, utility as agents for developing causal hypotheses that can 

later be tested in more controlled epidemiologic settings further strengthens 

the need to continue rational, scientifically rigorous investigations of clusters. 

This dissertation will provide an additional tool that can be used for such 

investigations, that will further assist researchers in understanding clusters 

they may investigate. 
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Figure 1.1 
Illustration of Non-Independence 
of Nearest Neighbor Distances 
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2. Monte Carlo Simulations 

2.1. Introduction 

Evaluations of disease clusters have been accomplished using a variety 

of statistics. Many of the traditional methods, such as those described by 

Knox [1] and Mantel [2], evaluate space-time clustering, where cases must 

be close in both space and time for clustering ·to be detected. In addition to 

the possible problems of investigator bias inherent in the definition of cluster­

ing when using these statistics, space-time methods will not detect clusters 

that occur over an extended time period, or for which data collection is still 

in progress, as inter-event time periods cannot be completely characterized. 

When a disease has a long period between exposure and the first manifes­

tations of illness (a long latency period), space-time methods may also fail to 

detect clustering. This is because if both the latency and the study period 

cover large periods of time, the clustering will appear to occur only in space. 

Also, as latency gets longer, the variability in time between exposure and 

disease onset can vary more broadly between individuals than in acute 

disease. This variability will further reduce the power of space-time methods 

to detect clustering, as it will reduce the apparent temporal clustering. In 

addition, in situations where an ongoing environmental insult is the putative 

cause of the outcome of concern, and where the outcome is considered 

endemic, the temporal aspect of clustering becomes irrelevant. 

For such situations, statistics which consider only spatial variation are 

better suited for the evaluation of clusters. Three such statistics are the 

average nearest neighbor distance, the average distance to a fixed point, 

and the average interpoint distance. 
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To evaluate the performance of these spatial measures to detect clus­

ters of birth defects, Monte Carlo simulations were performed under four 

spatial scenarios: a unit square with and without clustering, and a postal zip 

code region, with and without clustering. The first and second moments of 

the distribution of the statistics given were then compared. 

For each simulated set of points, the statistics were calculated three 

ways: directly, in their usual ways, which will be referred to as the 

"observed" values, and by Jackknife and Bootstrap estimation procedures. 

As distance metrics, such as the nearest neighbor distances, between points 

are not completely independent, the mathematics of standard estimation 

techniques, such as maximum likelihood, are complicated. As such, the 

Jackknife and Bootstrap methods, which provide non-parametric estimates 

of the expectation and variance, were also employed. 

2.2. Statistical Methods 

The nearest neighbor distance, the average distance to a fixed point 

statistics, a~d the average interpoint distance statistics, as presented in 

chapter 1 , will be used for these simulations. 

2.2 .. 1. Jackknife Technique 

The Jackknife technique was introduced by Quenouille and Tukey in the 

1950's [3-6], and is one of a series of methods for analyzing data for which 

the distribution is not known, or when the assumption of normality cannot be 

made. The Jackknife technique applied to a set of n points involves creating 

a series of n sub-populations, each with (n-1) points, by removal of a single 

point. So, for example, consider a set of three points {p,,p2,p3}. To perform a 
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Jackknife analysis, three subpopulations would be generated: the first with 

P1 removed, the second with p2 removed, and the third with p3 removed. For 

each of these three subpopulations, a summary statistic, such as the aver­

age interpoint distance (7) is calculated, generating n estimates of the sum­

mary statistic that can then be recombined 'as an estimate of the actual 

statistic value. 

A useful feature of the Jackknife method is that for means, the Jack­

knife mean will be equal to the observed mean. Thus, the Jackknife method 

perfectly estimates the observed value. The standard errors of these means 

will also be identical. This equality is not true for harmonic means, and thus 

the Jackknife method is retained as a possible estimator for the harmonic 

means of the statistics under consideration. 

2.2.2. Bootstrap Technique 

The Bootstrap method was first proposed by Efron in 19n [7, 8] and is 

a member of a family of nonparametric statistics that include the Jackknife, 

cross-validation, and half-sampling (8], all of which provide non-parametric 

estimates of standard error. The premise behind the Bootstrap is conceptu­

ally simple: a usually small sample of a larger population is available, and it 

is desired to estimate confidence intervals representing how well a statistic 

taken from the sample population reflects the true (unknown) population. 

While other methods are available for calculating this error, they make 

assumptions about the population sampled that may not be justified (e.g . 

normal distribution). To perform a Bootstrap analysis, the sample population 

(size n) is sampled repeatedly with replacement, generating "Bootstrap sam­

ples," each of size n, for which a· summary statistic is then calculated. The 

resulting distribution of sample statistics (a "Bootstrap distribution") can be 
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used to estimate p-values. As the same n points from the sample popula­

tion are used to generate the distribution, the distribution is said to be 

"pulled up by its own Bootstraps", hence the name. 

Efron recommends sampling of up to 1 000 Bootstrap samples in gen­

eration of the distribution, and while this job could not have been conceived 

of 30 years ago, it can now be accomplished readily with the use of a micro­

computer [9]. 

A few examples exist of the use of the Bootstrap in epidemiology or 

related medical sciences. A recent paper presented at the 1988 annual 

APHA meeting in Boston, MA illustrated the Bootstrap in use to compare the 

reliability of laboratory tests used to monitor non-insulin-dependent diabetics 

[1 0]. Abbott and Carroll used the Bootstrap in a theoretical paper examining 

the interpretation of multiple logistic regression coefficients in prospective 

observational studies [11 ]. Weiss et a/ used the Bootstrap to determine the 

variability of regression. coefficients in a study of the relationship between 

blood lead and blood pressure [12], and Mapleson has used the Bootstrap in 

assessing a clinical trial comparing Temazepam to Trimeprazine in the 

premedication of children for tonsillectomy [13]. Recently, the Bootstrap has 

been used to verify confidence intervals in a study of the associations of 

dietary fat, regional adiposity, and blood pressure [14]. 

The Bootstrap has been proposed for this research for several reasons. 

The lack of assumptions surrounding the nature of the statistics used (e.g. 

normal distribution) will allow the use of a wider variety of statistics, possibly 

including some that are not mathematically well defined. In addition, as the 

problem of small sample size is common in cluster investigations, assump­

tions that become unstable with small sample size will be less of a concern 

when the Bootstrap is employed. 
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2.3. Unit Square Analysis 

The first series of simulations made use of a unit square, that is, a 

square of dimension 1 arbitrary unit in both the x andy direction. Uniformly 

distributed points were randomly placed into this square, and the statistics 

were calculated. The number of points used was varied and was selected 

to approximate typical numbers of cases found in the evaluation of clusters 

of birth defects. Four analyses were performed with 4, 6, 10, and 20 points, 

respectively. 

The unit square can be thought of as a space in which the underlying 

population at risk is distributed uniformly, analogous to space in the "Density 

Equalized Map Projections" of Salvin, et al. [15]. While this condition is not 

expected in geographic areas such as zip code regions or census tracts, it 

permits an evaluation of the statistics without concern for where the underly­

ing population reside, and therefore permits the calculation of expected 

values. 

Expected values of the five statistics in a unit square were calculated 

according to equations 1.2, 1.5, 1.7, 1.9 and 1.11. For the moments, E(X), 

and E{Y) are taken to be 0.5, and the fixed point used in the average dis­

tance to a fixed point statistics, (x0 ,Y0 ), is taken to be (0.5,0.5). The expected 

values and their variances for the direct calculation of the statistics are 

presented in Tables 2.1 a and 2.1 b. 

Note that expected values are not known for harmonic means, but will 

be less than the expected values for the regular means. 

The results of the simulations in a unit square with no clustering are 

presented in table 2.2. By comparing the observed statistics to the expected 

values, it can be seen that J2 and (12 are the ·only statistics for which the 
I 

observed value closely approximates its expected value for all four values of 
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Statistic 

d 
d2 
i 
]2 

Table 2.1a 
Expected Values of Statistics 

in Unit Square 

Expected Variance Variance Variance 
Mean ~n=4} ~n=6}· ~n=10} 

0.3802 0.00553 0.00369 0.00221 
0.1667 0.00278 0.00185 0.00111 
o.sn4 0.01528 0.00833 0.00426 
0.3333 0.02037 0.01111 0.00568 

Table 2.1b 
Expected Values of Nearest Neighbor· Statistic 

in Unit Square 

n Expected Variance. 
Mean 

4 0.2500 0.00425 
6 0.2041 . 0.00189 
10 0.1581 0.00068 
20 0.1118 0.00017 

Variance 
~n=20} 

0.00111 
0.00056 
0.00189 
0.00251 

·n. Observed values for a slightly overestimate the expected, and Tis always 

smaller than its expected value. The level of overestimation for a and d2 

does not appear to be dependent on n, as no trend is apparent. 

The observed value for mean nearest-neighbor distance, r, is greater 

than the expected for all levels of n, although the amount of overestimation 

is dependent on n, as can be seen in figure 2.1. 

Compa~son of Jackknife and Bootstrap estimates to observed values 

shows that Jackknife is identical to the observed for all statistics except the 

harmonic means, for which the Jackknife estimate is always greater than the 

observed value. This relationship also appears related to the number of 

points, as can be seen in figures 2.2 and 2.3. The Jackknife variance is also 

identical to the observed variance, except for harmonic means, where the 

Jackknife variances are always less than the observed. Bootstrap estimates 

of the a statistics (d, d2, and ahanncri:) closely approximate the observed 
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values for mean and variance. Bootstrap estimates of T and J2, however, 

underestimate the observed values, and overestimate the observed values 

for ~. This appears dependent on the number of points also, as can be 

seen in figures 2.4 and 2.5. 
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Table 2.2 
Results of Monte Carlo Simulation Series 1 

. Unit Square, No Clustering 

Stat. Meth. 4 Points 6 Points 
in Area 

10 Points 
in Area 

20 Points 
in Area in Area 

Mean Var Mean Var. Mean Var. Mean Var. 

a obs 0.3833 0.0052 0.3846 0.0032 0.3823 0.0020 0.3834 0.0010 
boot 0.3832 0.0052 0.3846 0.0032 0.3824 0.0020 0.3833 0.001 0 
jack 0.3833 0.0052 0.3846 0.0032 0.3823 0.0020 0.3834 0.001 0 

a h., obs 0.3307 0.0099 0.3226 0.0075 0.3096 0.0056 0.2999 0.0034 
boot 0.3306 0.0099 0.3226 0.0075 0.3097 0.0056 0.2998 0.0034 
jack 0.3392 0.0086 0.3269 0.0069 0.3110 0.0053 0.3004 0.0034 

(J2 obs 0.1674 0.0029 0.1680 0.0018 0.1665 0.0011 0.1674 0.0005 
boot 0.1674 0.0029 0.1680 0.0018 0.1665 0.0011 0.1673 0.0005 
jack 0.1674 0.0029 0.1680 0.0018 0.1665 0.0011 0.1674 0.0005 

..,.. 
obs 0.5196 0.0150 0.5236 0.0072 0.5195 0.0039 0.5215 0.0016 I 

boot 0.3898 0.0084 0.4364 0.0050 0.4676 0.0032 0.4954 0.0015 
jack 0.5196 0.0150 0.5236 0.0072 0.5195 0.0039 0.5215 0.0016 

7,., obs 0.3932 0.0181 0.3713 0.0092 0.3520 0.0046 0.3424 0.0015 
boot 0.5246 0.0324 0.4459 0.0133 0.3914 0.0057 0.3606 0.0017 
jack 0.4302 0.0151 0.3820 0.0081 0.3543 0.0042 0.3428 0.0015 

'j2 obs 0.3324 0.0204 0.3360 0.0103 0.3313 0.0058 0.3336 0.0024 
boot 0.2494 0.0115 0.2800 0.0072' 0.2983 0.0047 0.3169 0.0022 
jack 0.3324 0.0204 0.3360 0.0103 0.3313 0.0058 0.3336 0.0024 

T obs 0.3214 0.0098 0.2512 0.0038 0.1839 0.0012 0.1242 0.0003 
boot 0.3215 0.0098- 0.2513 0.0038 0.1839 0.0012 0.1242 0.0003 
jack 0.3214 0.0098 0.2512 0.0038 0.1839 0.0012 0.1242 0.0003 

where: 
a is the average distance to a fixed point 
~ is the harmonic average distance to a fixed point 
d is the average squared distance to a fixed point 

Tis the average interpoint distance 
~ is the harmonic average interpoint distance 
i is the harmonic average squared interpoint distance 

r is the average nearest neighbor distance 

obs refers to the observed value by direct calculation 
boot refers to values generated by the Bootstrap method 
jack refers to values generated by the Jackknife method 
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In the second series of simulations, an artificial cluster was established 

in the center of the unit square. The cluster was established in a square 

that included 20% of the total area, and was established in such a way that 

3 times as many cases occur inside the square as outside. For the first two 

simulation series (with n=4, and n=6) this means only one point was 

included in the "cluster''. 

Expected values were not calculated for these simulations. Such values 

are complex to compute, and are beyond the scope of this dissertation. The 

degree to which observed values in this simulation deviate from the 

observed and expected values for the first series wm reflect how well these 

statistics detect clustering; statistically different values from the first set of 

simulations should reflect clustering. 

The results of these simulations of clustering in a unit square are 

presented in table 2.3. Jackknife and Bootstrap estimates relate to the 

observed values in the same way as in the first series of simulations, with 

the Jackknife exactly estimating the observed value, except for harmonic 

means, and Bootstrap closely estimating the observed distance to fixed point 

statistics (d, rJ2 and dhatmoni:), and nearest neighbor distance, r, underestimat­

ing T and 72, while overestimating ~i:· 

Nearest neighbor distances again decrease with increasing n, as do T 

and 72. The distance to fixed point statistics appear to have random varia­

tion over n. 

In general, the observed distance to fixed point statistics were all less 

than their counterparts in the simulations with no clustering, as were the 

average interpoint distance statistics (i, i2, and ;hSI1Tionic). The nearest neighbor 

statistics were all less than their counterparts in the first series. Figure 2.6 

shows the ratio of observed statistics with clustering to that without 
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clustering for different values of n. 

The variances of Jackknife, Bootstrap and directly calculated estimates 

are comparable for the nearest neighbor, a and iP statistics. For the har­

monic statistics, the Jackknife method yields larger variances than either the 
-

direct or the Bootstrap methods. With the interpoint statistics (F. f2 and 

7h.nncnc), the Bootstrap method yields smaller variances, consistent with the 

underestimation this method introduces, as discussed above. For all statis­

tics, variance decreases when the number of points in the analysis 

increases. 
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Table 2.3 
Results of Monte Carlo Simulation Series 2 

Unit Square, 3x Clustering in 20% Central Square 

Stat. Meth. 4 Points 
in Area 

6 Points 
in Area 

10 Points 
in Area 

20 Points 
in Area 

a obs 
boot 
jack 

Mean 'Var Mean Var. Mean Var. Mean Var. 

0.3439 0.0014 0.3435 0.0009 0.3086 0.0005 0.3096 0.0003 
0.3440 0.0014 0.3434 0.0009 0.3086 0.0005 0.3096 0.0003 
0.3439 0.0014 0.3435 0.0009 0.3086 0.0005 0.3096 0.0003 

ahlllm obs 0.2359 0.0045 0.2286 0.0035 0.1961 0.0022 0.191 1 0.0015 
0.2360 0.0045 0.2286 0.0036 0.1959 0.0023 0.1911 0.0012 
0.2492 0.0035 0.2343 0.0031 0.1979 0.0021 0.1917 0.0016 

boot 
jack 

jj2. obs 0.1531 0.0009 0.1529 0.0006 0.1290 0.0003 0.1299 0.0002 
0.1532 0.0010 0.1529 0.0006 0.1290 0.0003 0.1299 0.0002 
0.1531 0.0009 0.1529 0.0006 0.1290 0.0003 0.1299 0.0002 

i 

~ 

boot 
jack 

obs 
boot 
jack 

0.5032 0.0079 0.4983 0.0040 0.4491 0.0014 0.4479 0.0006 
0.3776 0.0045 0.4152 0.0028 0.4041 0.0012 0.4255 0.0006 
0.5032 0.0079 0.4983 0.0040 0.4491 0.0014 0.4479 0.0006 

lhlltm obs 0.3778 0.0129 0.3414 0.0072 0.2770 0.0026 0.2623 0.0010 
0.5036 0.0230 0.4099 0.0028 0.3079 0.0033 0.2762 0.0011 
0.4175 0.0105 0.3535 0.0064 0.2803 0.0025 0.2628 0.0010 

boot 
jack 

]2 obs 
boot 
jack 

T obs 
boot 
jack 

0.3059 0.0102 0.3054 0.0054 0.2577 0.0018 0.2593 0.0008 
0.2295 0.0059 0.2545 0.0038 0.2319 0.0015 0.2454 0.0007 
0.3059 0.0102 0.3054 0.0054 0.2577 0.0018 0.2593 0.0008 

0.3029 0.0080 0.2352 0.0040 0.1580 0.0012 0.1001 0.0002 
0.3030 0.0080 0.2351 0.0040 0.1580 0.0012 0.1001 0.0002 
0.3030 0.0080 0.2352 0.0040 0.1580 0.0012 0.1001 0.0002 

where: 
a is the average distance to a fixed point 
~ is the harmonic average distance to a fixed point 
d is the average squared distance to a fixed point 

Tis the average interpoint distance 
~ is the harmonic average interpoint distance 
i is the harmonic average squared interpoint distance 

T is the average nearest neighbor distance 

obs refers to the observed value by direct calculation 
boot refers to values generated by the Bootstrap method 
jack refers to values generated by the Jackknife method 
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2.4. Zip Code Region Analysis 

While the analysis of unit square data is useful for understanding the 

basic properties of these spatial statistics, such a construct is, almost by 

definition, artificial. The simulations were next repeated within a postal zip 

code region. Two series of simulations were performed, again with and 

without clustering of the data. The first simulation series reflected the 

behavior of the spatial statistics when cases are uniformly distributed in 

space,, and the second series reflected the properties of the statistics given 

a non-uniform distribution in space. This second series may show how the 

statistics perform when cases cluster in a neighborhood. 

The geographic region used for these simulations is a zip code region 

within Santa Clara County, California. The region is approximately 20 square 

miles in area, and its boundaries are defined by a highway and major roads. 

During 1"983-1985, 1767 live births occurred in this zip code region, of which 

40 had one or more birth defects, yielding a three-year crude birth defects 

prevalence proportion of 22.6/1 ,000. While the assumption of uniform distri­

bution of live births in the region is not strictly correct, it is necessary to 

retain this assumption in order to evaluate the performance of the statistics 

under the null hypothesis. 

Points were randomly placed in the region as for the first simulation 

series. To place a point in the region, a square enclosing the region was 

first defined. A random point was then selected and it was determined 

whether it lay inside or outside the boundary of the zip code area. If it lay 

outside, it was discarded and another point was selected. A FORTRAN 

program was used to accomplish point selection [16]. · 

The expected values of r, the nearest neighbor distance, for the zip 

code region are shown in table 2.4. Results from four simulations (n=4,6, 10, 
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and 20) in the zip code region with no clustering are shown as table 2.5. No 

expected values were calculated for the fixed point distance measures, or 

for the interpoint distance measures. 

Table 2.4 
Expeded Values for 

Nearest Neighbor Distance, r 
Study Region Analysis 

Number of Points Expeded r 
4 1.11 
6 0.90 

10 0.70 
20 0.50 

Variance 
0.0833 
0.0370 
0.0133 
0.0033 

The data in table 2.5 show that the observed value of r exceeds the 

expected value for all four values of n. As in the unit square, the nearest 

neighbor and interpoint distance statistics decrease with increasing n. The 

distance to a fixed point statistics do not vary significantly over n. 
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The Jackknife method performed the same way in the study area as in .... ~, ~ 

the unit square, approximating the observed value for all statistics except the 

harmonic means. The Bootstrap method also performed as in the unit 

square analyses, approximating the distance to a fixed point statistics and 

nearest neighbor, but significantly overestimating T and 72, and underestimat-

ing ~onic· The variance of the Bootstrap statistics are somewhat smaller 

than the variance of the observed statistics for all except harmonic statistics 

and nearest neighb~r. 



Table 2.5 
Results of Monte Carlo Simulation Series 3 

Zip Code Region, No Clustering 

Stat. Meth. 4 Points 
in Area 

6 Points 
in Area 

10 Points 
in Area 

20 Points 
in Area 

a obs 
boot 
jack 

Mean Var Mean Var. Mean Var. Mean Var. 

2.0047 0.2022 2.0358 0.1320 2.0124 0.0796 2.0186 0.0407 
2.0039 0.2021 2.0366 0.1325 2.0127 0.0798 2.0183 0.0408 
2.0047 0.2022 2.0358 0.1320 2.0124 0.0796 2.0186 0.0407 

ah., obs 1.6105 0.3187 1.5995 0.2566 1.5099 0.1678 1.4469 0.1 002 
1.6108 0.3187 1.6007 0.2570 1.5102 0.1682 1.4469 0.1002 
1.6719 0.2845 1.6275 0.2386 1.5214 0.1611 1.4521 0.0963 

boot 
jack 
' 

(j2 obs 4.8646 3.4334 4.9533 2.2547 4.8664 1.3939 4.9020 0. 7122 
4.8611 3.4294 4.9564 2.2678 4.8679 1.4006 4.9012 0. 7128 
4~8646 3.4334 4.9533 2.2547 4.8664 1.3939 4.9020 0. 7122 

.... 
I 

.... 

boot 
jack 

obs 
boot 
jack 

2.3246 0.2885 2.3295 0.1536 2.3230 0.0802 2.3283 0.0334 
1.7429 0.1627 1.9404 0.1075 1.7680 0.1061 1.6053 0.0341 
2.3246 0.2885 2.3295 0.1536 2.3230 0.0802 2.3283 0.0334 

'hlltm obs 1.7819 0.3549 1.6555 0.1925 1.5893 0.0855 1.5255 0.0306 
2.3790 0.6323 1.9885 0.2787 1.7680 0.1061 1.6053 0.0341 
1.9363 0.2939 1.7049 0.1701 1.6008 0.0812 1.5275 0.0301 

boot 
jack 

72 obs 6.6123 7.6975 6.6401 4.3899 6.6241 2.3444 6.6536 1.0087 
boot 4.9565 4.3345 5.5303 3.0673 5.9636 1.8931 6.3194 0.9078 
jack 6.6123 7.6975 6.6401 4.3899 6.6241 2.3444 6.6536 1.0087 

r obs 1.4418 0.1976 1.1165 0.0792 0.8280 0.0232 0.5533 0.0050 
boot 1.4424 0.1978 1.1164 0.0795 0.8281 0.0232 0.5534 0.0050 
jack 1.4418 0.1976 1.1165 0.0792 0.8280 0.0232 0.5533 0.0050 

where: 
a is the average distance to a fixed point 
~ is the harmonic average distance to a fixed point 
d is the average squared distance to a fixed point 

Tis the average interpoint distance 
~ is the harmonic average interpoint distance 
; is the harmonic average squared interpoint distance 

r is the average nearest neighbor distance 

obs refers to the observed value by direct calculation 
boot refers to values generated by the Bootstrap method 
jack refers to values generated by the Jackknife method 
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A second series of simulations was performed in the study ·area, with 

. the addition of the clustering of points within a defined area. For conveni­

ence, although additional points were added to the maps in the clustering 

simulations, the simulations will be referred to by the number of points ini­

tially in the map. 

In the zip code region simulation, clustering was established by addition 

of more points to a circular subregion 2 miles in diameter, located in the 

western portion of the zip code area (figure 2. 7). The location and size of 

this clustering were arbitrarily selected. The cluster was created to have a 

relative risk of 3.0, compared to the rest of the zip code region, assuming a 

uniform distribution in the region of the population at risk. 

The results of these clustered simulations in the ·study area are 

presented in table 2.6. Consistent with the other simulations, the Jackknife 

estimates of all but the harmonic statistics are identical with the mean value 

calculated directly. Bootstrap estimates and their variances are also con­

sistent with the directly estimated mean~ of the distance to a fixed point and 

nearest neighbor statistics, and underestimate T and J2 due to sampling with 

replacement, which results in sampling the same point more than once in 

many Bootstrap samples. 

Clustering becomes evident with all statistics when approximately 1 0 

points have been included in the area. In this scenario, five of the points on 

the map will occur in the cluster region. In the scenarios with four or six 

points on the map, the number of clustered points is again too small to be 

detected by any of the statistics when compared to values obtained in the 

unclustered simulations. One· cannot directly compare the simulations with 

and without clustering in the zip code region for the nearest neighbor and 

average interpoint distance statistics, because these statistics are dependent 
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on the number of points on the map. As noted, additional points were 

added to these maps to simulate clustering. Thus, while all statistics appear 

to detect clustering when one starts with 10 points, in fact the ratio of 

clustered:non-clustered values for the T and T statistics are smaller than they 

would have been, had the correct number of points been used in the com­

parison population. 

For the nearest neighbor statistic, values in the clustered simulation are 

actually larger than the expected values tabulated in table. 2.4 for n less than 

10, and approximately equal to the expected values for the 10 and 20 point 

simulations. 
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Table 2.6 
Results of Monte Carlo Simulation Series 4 

Zip Code Region, 3x Clustering in 16% Area Circle 

Stat. Met h. 4 Points 6 Points 1 0 Points 20 Points 
in Area in Area in Area in Area 

Mean Var Mean Var. Mean Var. Mean Var. 

a obs 2.0069 0.2215 2.0366 0.1296 1.7035 0.04n 1.7000 0.0266 
boot 2.0067 0.2220 2.0366 0.1298 1.7038 0.0788 1.7001 0.0267 
jack 2.0069 0.2215 2.0366 0.1296 1.7035 o.o4n 1.1000 0.0266 

ahamr obs 1.6324 0.3314 1.5922 0.2361 0.9n8 0.0721 0.9351 0.0425 
boot 1.6324 0.3321 1.5922 0.2357 0.9n7 0.0723 0.9346 0.0436 
jack 1.6889 0.3033 1.621 o 0.2191 0.9862 0.0700 0.9375 0.0420 

iJ2 obs 4.8696 3.8856 4.9696 2.2984 3.9075 0.8047 3.8987 0.4394 
boot 4.8699 3.8946 4.9695 2.3000 3.9099 0.8103 3.8986 0.4413 
jack 4.8696 3.8856 4.9696 2.2984 3.9075 0.8047 3.8987 0.4394 

i obs 2.3008 0.2920 2.3464 0.1624 2.1874 0.0547 2.1n3 0.0267 
boot 1.7255 0.1648 1.9548 0.1124 2.0185 0.0464 2.0929 0.0246 
jack 2.3008 0.2920 2.3464 0.1624 2.1874 0.0547 2.1n3 0.0267 

;,., obs 1.7485 0.3518 1.6759 0.1962 1.4245 0.0531 1.3910 0.0245 
boot 2.3316 0.6298 2.0113 0.2825 1.5439 0.0627 1.4472 0.0266 
jack 1.9103 0.2905 1. 7232 0.1'743 1.4307 0.0518 1.3922 0.0243 

]2 obs 6.5050 7.9044 6.7374 4.6524 5.9466 1.4554 5.9052 0.7037 
boot 4.8785 4.4541 5.6122 3.2223 5.4881 1.2391 5.6755 0.6501 
jack 6.5050 7.9044 6.7374 4.6524 5.9466 1.4554 5.9052 0.7037 

r obs 1.4201 0.1878 1.1257 0.0762 0.6704 0.0138 0.4685 0.0033 
boot 1.4199 0.1887 1.1256 0.0761 0.6703 0.0139 0.4683 0.0033 
jack 1.4201 0.1878 1.1257 0.0762 0.6704 0.0138 0.4685 0.0033 

where: 
a is the average distance to a fixed point 
~ is the harmonic average distance to a fixed point 
d is the average squared distance to a fixed point 

i is the average interpoint distance 
~ is the harmonic average interpoint distance 
; is the harmonic average squared interpoint distance 

T is the average nearest neighbor distance 

obs refers to the observed value by direct calculation 
boot refers to values generated by the Bootstrap method 
jack refers to values generated by the Jackknife method 
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2.5. Discussion 

2.5.1. Unit Square 

In the unit square analysis, several properties of the spatial statistics 

used become clear. First, both the nearest neighbor and average interpoint 

distance statistics decrease with increasing n. This is as expected, as the 

more points in a confined space, the smaller the distance must be between 

those points. While this property is accounted for in the expected values of 

T, the expectations for i and rz do not take into account the number of points 

in the sample, and thus the expectation for i, as. calculated, does not vary 

over n. 

Variation in the nearest neighbor distance from its expected value is_ 

probably due primarily to boundary effects. As described in chapter 1, one 

issue with the use of the nearest neighbor statistic is that, when n is small, 

the nearest point in a uniform distribution may be outside the boundary of 

the area. This property exists at any n for points near the edge of the area 

under consideration, but is particularly. critical when n is small, as the dis­

tances are relatively large. While this effect is important when comparing 

the observed r to the theoretically calculated expected value, it is possible 

an overriding concern would be the assumption of a uniform distribution of 

the underlying population at risk. The use of a randomization or permutation 

technique, as will be demonstrated in chapter 4, can partially control for both 

of these potential biases. 

The values of iJ and CP are consistent with· the expected values, and 

although a slight over.:.estimation appears to exist for ii, it is not statistically 

significant, and is probably due to random variation in the location of the 

sample points. The squared average interpoint distance (F) is consistent 
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with its expected value in all cases. The average· interpoint distance (7), 

however, appears to be underestimated. As 72 is so close to its expected 

value, it is probable that the difference in observed and expected values for 

i is due to the approximation of the expected value as the square root of the 

expected value of ?. Again, the underestimation is not statistically 

significant. 

The use of the Jackknife for the non-harmonic statistics in a unit square 

with no clustering is clearly not necessary, as the Jackknife adds no infor­

mation to what can be learned from the observed value. The Jackknife 

exactly estimates the mean, which is to be expected since, on reflection, the 

Jackknife mean is mathematically equivalent to the observed mean. With 

respect to. the harmonic means, the Jackknife estimate has a smaller vari­

ance than the observed harmonic mean, and thus is probably a slightly 

better estimator, although the difference in variances is very small. 

The Bootstrap method performs extremely well for the distance to a 

fixed point statistics, and for the nearest neighbor distance, but is a poor 

estimator of the average interpoint distances. This is due to the fact that in 

the Bootstrap sampling scheme, the same point may be selected twice or 

more frequently in the· same sample, or not at all. If n=4, each Bootstrap 

sample may contain one of the four points once, twice, three or four times, 

or not at all. If a point appears two or more times, its interpoint distance to 

itself will be 0, thus causing the mean to underestimate the true value. In 

harmonic means, the interpoint distance of 0 will be treated as infinite, as ~ 

is undefined. When this situation arose, the estimates ofT,?, and ihsrmonic for 

that replication were not used in the calculation of the overall harmonic 

means. As n increases, the proba~ility of a single point appearing more 

· than once in a Bootstrap sample decreases, and as such the Bootstrap 
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estimate performs better with increasing n. As such, the Bootstrap method 

cannot be effectively used for interpoint distance statistics. It should be 

noted that for the other statistics, the Bootstrap estimates had, by far, the 

lowest variances. This is a reflection on the number of Bootstrap samples 

taken, and thus is not directly comparable to the variances of the directly 

estimated values. 

In the second series of simulations, with clustering in the unit square, it 

becomes clear that all of the spatial statistics respond to the increased clus­

tering, as all statistics are reduced in the clustered scenario, compared to 

the random scenario. In the nearest neighbor statistics, a reduction in the 

"boundary effect" is observed more rapidly with increasing n, probably as a 

result of the clustering in the center of the square, which effectively "pulls" 

the points away from the boundary, thereby reducing the boundary problem 

described above. 

Comparing the a and T statistics observed in the clustered simulation to 

the expected values under no clustering in table 2.1 , the only cluster 

significant at a=O.OS is the .20-point simulated cluster. None of the clusters 

were statistically significant for the iJ2, 72, or T statistics. 

The clustering of the 6 point maps was not distinguishable from the 4 

point map with any statistics. The six point map was not significantly 

different from the four-point map, since both maps implied only one or two 

additional points in the cluster. Such small changes are not likely to be 

differentiated by these statistics. 
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2.5.2. Study Region 

As noted, the observed values of the nearest neighbor distance in the 

zip code region analysis were also greater than the expected values for the 

simulations with no clustering. This is probably the result of a continued 

boundary-effects problem, as described above. The harmonic mean inter­

point distance,· Thatmonit;, was much smaller than in the unit square simulations. 

All other statistics are larger due to the difference in scale. As the map is 

not one unit wide, these distances would be expected to be larger. 

The nearest neighbor distance and the average distance to a fixed point 

are the most sensitive statistics for detecting clusters, as can be seen in 

figure 2.8. This is consistent with the unit square, although the comparisons 

made in this figure are· not strictly correct, since the number of points in the 

clustered maps are different than in the non-clustered map, which will bias 

the ratio of the nearest neighbor distance and average interpoint distance 

statistics to be smaller than they should be .. Since the size of the zip code 

region is large, the effect of sample size on these statistics is small, as can 

be seen in table 2.5. The nearest neighbor distance in the clustered investi­

gation does not successfully measure clustering when compared to the 

expected value, however. 

The size of the cluster will also affect the ability of the statistics to 

detect clustering. The demonstration cluster, as seen in figure 2.7, is large, 

and thus the points added to simulate clustering will still be dispursed. It 

should be emphasized·that the "clustering" with four or six points in the ini­

tial map would not be measurable, since the number of points added to gen­

erate an elevated relative risk is small. 
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2.6. Summary 

Each of the spatial statistics evaluated in this chapter has its own 

strengths and weaknesses for use in the investigation of clusters. The 

nearest neighbor statistic, while probably the most commonly used of the 

spatial statistics described here, is actually not very sensitive to the cluster­

ing introduced in these simulations, as demonstrated in both the unit square, 

and in the study region. Indeed, of the seven statistics evaluated, the 

nearest neighbor was the least sensitive, when compared to its expected 

value, due to the strong effect the boundary of the study area has on its 

value. The average interpoint distance and the distance to a fixed point each 

measure slightly different aspects of clustering, and are appropriate for 

different types of clusters; the a statistics being more appropriate when a 

point source is hypothesized as the cause of clustering, while the T statistics 

are perhaps more appropriate for clusters where no causal hypothesis has 

been made. Both statistics are moderately sensitive at detecting clusters 

. when compared to their expected value, but the cluster must include a 

sufficient number of cases in order for the difference to become statistically 

detectable. 

No obvious benefit arises from the use of the Jackknife or Bootstrap 

techniques in either the unit square or zip code region. Indeed, the use of 

the Bootstrap method produces erroneous results when applied to average 

interpoint distances, as the sampling with replacement often results in 

selecting the same point more than once, making the Bootstrapped value of 

the Tor J2 statistic smaller than it is actually expected to be, and conversely 

making the ~ statistic correspondingly larger than it is expected to be. 

Since the Jackknife method perfectly estimates mean values, its use for 

these statistics, all of which are means, is redundant and unwarranted. 
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The behavior of these statistics in a unit square was predictive _of their 

behavior in the zip code region. The disadvantage of the zip code region is 

that expected values for the statistics could not be readily calculated. How­

ever, the unit square analysis showed ·that the simulated statistics were 

accurate estimates of the theoretically calculated expected values, and thus 

expected values in the zip code region can be approximated by the 

estimated values from the simulation in the zip code region without cluster­

ing. 

Based on these results, the· reanalysis of a spatial cluster, to be con­

ducted in chapter 4, will make use of direct estimation, and will not use the 

Jackknife or Bootstrap methods for estimation. As there are approximately 

15 children born with birth defects in the study region to be used in that 

chapter, the sample size should be sufficient for the detection of clus~ering, 

using these methods. 
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. Figure 2.7 
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3. Map Comparison 

3.1. Introduction 

The investigation of spatial clustering in epidemiology has become an 

important tool for public health professionals responding to public concerns, 

often raised in response to adual or perceived environmental health risks. 

Recent reports of cancer and birth defeds clusters (e.g. [1, 2]) have under­

scored the need for adequate statistical methods for the investigation of 

such clusters. Many of the statistics used for the initial investigation of a 

cluster are based on an assumption that is often violated: that the underlying 

population at risk is uniformly distributed in the· geographic region of con­

cern. This assumption is made in lieu of determining the adual spatial dis­

tribution of this underlying population, which may be impossible to do, and in 

any case would involve considerable effort. Methods to control for the spa­

tial distribution of the underlying population at risk have been introduced 

[3, 4], but these methods involve the use of considerable computer 

resources that may not be available to public health departments, and in 

addition require that the analysis be performed using spatial boundaries, 

such as those of census tracts, that are often not available. 

Often, the spatial distribution of a population at risk is not available 

(e.g., is not stored in eledronic form). An example of such a population is 

that of live births. While eledronic vital statistics files maintain some spatial 

data, such as zip code and possibly census trad, the precise address of 

residence at birth for live births is generally not maintained in eledronic 

form. To make use of ·the spatial distribution of live births in a cluster inves­

tigation, one must either restrid analysis to comparison of rates by census 

tract or zip code region (a method that is generally not sensitive to 
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clustering, unless the cluster is truly dramatic), or one must manually 

abstract the addresses from the confidential portion of the birth certificate, 

which is not always available for review. 

One alternative is to use some surrogate population, for which spatial 

location data are available, to represent the population at risk. Surrogate 

populations have been used extensively in epidemiology when information 

about the true population at risk is not available, or is difficult to obtain. (see 

for example [5-7]). To use such populations for cluster investigations, it is 

necessary to make the assumption that the surrogate population is distri­

buted in space the sa~e way as the true population at risk. One. logical sur-

. rogate population to consider for cluster investigations of specific birth 

defects is the pooled population of all birth defects, regardless of type. This 

potential surrogate population is advantageous since data on children bam 

with birth defects are available through registries [8, 9], since such registries 

may maintain street address in electronic form, and since these registries 

are often the focal point for cluster investigations. 

Confounding and selection bias also become an issue if a population 

with a particular genetic or socially-induced risk factor for producing children 

with defects lived in a small area. Such groupings can be easily con­

structed; a simple illustration might be that people with low socio-economic 

status (SES) may live in specific neighborhoods. The effect of such group­

ing of the referent population on the detection of a cluster depends on the 

location of the cluster with respect to the population that is grouped. If the 

cluster is located within such a population, it may not be detected as readily, 

due to the increased prevalence of defects within that area. In this situation, 

the clustering of the referent population may actually be of benefit, since it 

essentially controls for SES, or whatever confounding factor is causing the 

61 



grouping of the referent population, in the analysis. Spurious clustering, 

however, may also be observed if the neighborhood at high risk for the con- · 

founding factor (SES, in our example) is surrounded by neighborhoods at 

different risk due to the confounder. An example of this might be a low SES 

neighborhood bordering on middle class neighborhoods. Since the pre­

valence of disease in the low SES neighborhood is higher than that in the 

surrounding area, if a larger spatial unit, such as a census tract or zip code 

region, is used, the neighborhood may be falsely suspected of having a 

cluster of disease due to an environmental cause, rather than because of 

the confounding variable. 

While the assumptions made for other epidemiologic investigations with 

respect to surrogate populations may be unsubstantiated, in many cases, it 

has not been determined whether their use in spatial analysis is viable. 

Such use would be beneficial as data on the spatial distribution of the under­

lying population at risk is often not available, while data on surrogate popula­

tions (such as in registries) may be readily available. 

The focus of this chapter is to investigate whether the distribution of all 

birth defects can be applied as a surrogate for all live births in the investiga­

tion of clusters without incurring substantial bias. For the population of all 

birth defects to be used as a control population, it is necessary to show that 

this population is spatially not distinguishable from the population of live 

births; that is, that birth defects as a group are, at ·least approximately, ran­

domly scattered in the population of live births with respect to space. 
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3.2. Methods 

The study area for this investigation will be Santa Clara County, Califor­

nia. Santa Clara Cou~ty encompasses 1 ,293 square miles [1 0], and incor­

porates a large urban center in San Jose, the county seat, and in the "Sili­

con Valley" region of the north and northeast. The county has a birth rate of 

17.2/1 000 per annum [11 ], of which approximately 26.25 per 1 000 births are 

born with at least one birth defect (95% confidence interval [25.2,27.3]) [12]. 

During the years 1983-1985, 70,489 live births occurred in Santa Clara 

county [11, 13, 14], of which 1760 had one or more structural defects [12]. 

Data on birth defects in Santa Clara county are available from the California 

Birth Defects Monitoring Program [12] for the years 1983 to date, and data 

on address at birth were abstracted at the County vital statistics office. 

Santa Clara county has a population of about 1 ,400,000, with an ethnic 

makeup of 71% white~ 3% black, 8% asian, 17% hispanic and 1% other. 

Approximately 2% of Santa Clara County's population lives in rural areas. In 

1986, the county had a 6% unemployment rate, and the major occupations 

were agriculture, manufacturing, service, and retail [15]. 

A random sample of 218 live births was randomly selected from a data 

set containing all live births with no birth defects, as defined by the California 

Birth Defects Monitoring Program (see below), in Santa Clara County for the 

years 1983, 1984 and 1985. The number sampled was selected to assure 

approximately 200 cases in the dataset after exclusions. As birth address is 

not recorded in electronic form on county vital statistics tapes, the addresses 

of these live births, as recorded on the birth certificate, were manually 

abstracted from the vital statistics files in Santa Clara county. Seventeen of 

the addresses were excluded from analysis. Seven records were not avail­

able from the county, and 10 addresses were either incorrect (address could 
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not be located in the county street index [16], on the county assessor's 

maps [17], or using a commercial street map book [18]), or were post office 

boxes that do not reflect the actual location of the mother during gestation. 

The remaining 201 live births were used in this analysis. 
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Birth defects were identified using the California Birth Defects Monitor­

ing Program (CBDMP}, an active surveillance system enacted by state law 

in California. The CBDMP identifies children born with structural birth 

defects, defined as those included in the British Pediatric Association (BPA) , 

codes 740.0 - 759.9 that can be identified from 20 weeks gestation through 

the first year of life [8]. These data are collected from hospitals, genetic 

disease registries, physicians and other sources and are compiled for all 

counties in California, for live births, spontaneous abortions and still births 

after 20 weeks gestation, and for therapeutic and spontaneous abortions 

before 20 weeks gestation where the medical record indicates the presence 

of one or more structural defects. Surveillance by the CBDMP started in 

Santa Clara County in 1983. 

A random sample of 240 children born with at least one defect was 

taken from this registry for the years 1983, 1984 and 1985. The number 

sampled was also selected to assure a minimum of 200 children with birth 

defects in the final dataset. Street address at birth was abstracted from the 

CBDMP database. Twenty-four of the records were excluded from analysis, 

due to incorrect address, address not representative of location of the 

mother during gestation, as above, or no birth address listed in the registry. 

The addresses of the live births and of the children born with birth 

defects were then converted to spatial coordinates using a Summagraphics 

. digitizing tablet connected to a microcomputer running commercially avail­

able software (19]. Addresses were located using the county assessor's 



.. 

'"~· 

maps[17], in conjunction with a commercial street map book [18]. The 

county assessor's maps made use of the California Coordinate System of 

1983, zone Ill, which uses a selected point (120° 30' w, 36° 30' N}, as origin, 

and assigns coordinates based on feet in the X and Y direction from this 

arbitrary point [20]. Correction for the earth's curvature is not necessary so 

long as the points being digitized are in a limited geographic area. In all 

figures in this dissertation, the coordinate system has been removed to 

maintain confidentiality of the birth defect data. 

A statistical comparison of the two samples was explored using several 

methods: the Kolmogorov-Smirnov test and the t-test, applied to a distance 

measure, Hotelling's r'l test, applied to the coordinates of individual points, 

and nearest neighbor methods. 

To accomplish the univariate statistical analysis, the distance of each 

point iri both samples to a fixed point was calculated. For the purpose of 

this investigation, the fixed point used was determined by first pooling the 

samples of live births and birth defects, and then calculating the location of 

the centroid of the resulting population of 417 points, the "pooled centroid". 

A t-test, comparing the means of these two samples, was then performed. 

In addition, the Kolmogorov-Smimov test, a non-parametric test that com­

pares the cumulative frequency distributions was used [21 ]. 

Analysis of the spatial coordinates was performed using Hotelling's T2 

test [22]. Hotelling's r'l is a multivariate t-test, and assesses whether the 

variation of the mean x and y coordinates is because of chance or to some 

systematic difference. Hotelling observed that tz was related to an F distri­

bution with 2 and n-2 degrees of freedom according to equation 3.1 [22]. 

_ rz (n-2) 
F2.n-2- x 2 (n-1) (3.1) 

65 



Since it was unclear whether the assumption of bivariate normality 

underlying the use of the F distribution was met by the present data, a per­

mutation test was also performed. To accomplish this, points were randomly 

taken from the list of coordinates pooled from the samples of live births and 

birth defects and assigned to one of two groups, and the resulting rz value 

was calculated. This process was repeated 2000 times. The probability of 

the observed rz can then be compared to the 2000 values generated, and a 

"p-value" can be assigned. 

The reasoning behind this process is intuitive: if live births and birth 

defects are distributed in the same way, then statistically it doesn't matter 

which group any given point is assigned to, since the only variation is ran­

dom. We should, therefore, be able to assign the points to either group 

without affecting the rz value. In this particular case, there are 20~~;~ 61 pos­

sible combinations of these points, and to be truly rigorous, one would have 

to calculate the rz value for all of these points to make the comparison. A 

sufficiently detailed representation of the distribution can be obtained with 

just a few thousand such estimates, and hence the process was only 

repeated 2000 times. A "p-value" can be determined by observing what 

proportion of the rz values calculated in the permutation test exceed the 

observed value. 

Additional tests to determine the degree of spatial association between 

the two samples were performed using variations on the nearest neighbor 

statistic, as discussed by Sorenson (23]. The simple nearest neighbor 

statistic is the mean of the distances from each point to the point closest to 

it. In Sorensen's first approach, originally attributed to Pielou [24], nearest 

neighbor distances are evaluated by a contingency table. For each point in 

each group, it is determined whether the nearest neighbor is in the same 
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group, or in the opposite group. In the present study, this means that for 

each live birth, it is determined whether the nearest neighbor is also a live 

birth, or whether it is a birth defect. Similarly, for each birth defect it is 

determined whether the nearest neighbor is another birth defect or a live 

birth. A contingency table can then be set up as follows: 
BASE POPULATION 

Uve Births Birth Defects 

NEAREST Uve Births 
NEIGHBOR 

Birth Defects 

Sorenson and Pielou suggested that the contingency table data could 

then be evaluated by a 1} test. It should be noted that such a test is not sta-

. tistically correct, since the cells of the contingency table are not indepen­

dent. In addition, while this method provides some measure of spatial asso­

ciation, the loss of distance information by converting the continuous nearest 

neighbor distances to a dichotomous situation is undesirable. To avoid this 

loss of data, Sorensen suggests use of the coefficient of spatial association 

c.. In this method, four nearest neighbor distances are calculated: the sum 

of the distances from a point in group 1 to the nearest neighbor in group 1 

(d11), the sum of the distances from a point in group 1 to the nearest neigh­

bor in group 2 (d1:U, the sum of the distances from a point in group 2 to the 

nearest neighbor in group 2 (d:!2}, and the sum of the distances from a point 

in group 2 to the nearest neighbor in group 1 (d21). These four sums 

correspond to the cells of the contingency table above. The mean distance 

to a member of the same group is then given by equation 3.2; and the mean 

· distance to a member of the other group is given by equation 3.3. 

(d11 + d2:U 
a=--~ 

N 
(3.2) 
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(3.3) 

The coefficient of spatial association is then given by equation 3.4, where Cs 

ranges from -1 to 1. Sorenson notes that no statistical test of significance 

exists for c •. but that values approaching -1 indicate high dissociation, and 

values approaching 1 indicate high association [23]. Values near 0 indicate 

an indeterminate relationship, where each point is equidistant from the 

nearest neighbor in the same and in the complementary group. The program 

written to perform both of these nearest neighbor calculations (Nneigh4.c) 

appears in appendix B. 

a-b 
c.= a+b · (3.4) 

To :test the sensitivity of Hotelling's T2 to detect variation in the two 

populations, a series of. simulated clusters was introduced to the birth 

defects population. It is expected that if the methods are sensitive to 

differences in the two populations, then the introduction of such simulated 

clusters will result in the statistics indicating that the two populations are not 

the same, and that some systematic difference exists between the two popu­

lations. The clusters were created around fixed points at varying distances 

from the pooled centroid of the points. All clusters had a radius of 5000 feet 

(approximately one mile), a distance selected to be consistent with previ­

ously reported clusters (e.g. [25]). A total of 20 additional points were added 

to the map, for each cluster simulation. By using this many points, the clus­

ters are clearly visible in plotted maps of the study area (see figures 3.3-

3.11 ). As such, it would be expected that spatial statistics would detect this 

clustering as making the modified maps of birth defects dissimilar from the 

map of live births. 
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These clusters represent a bias in the spatial distribution of the com­

parison group that could result if a particular defect or group of defects were 

to cluster, either as a result of environmental causes such as airborne or 

hazardous material exposure, or for other reasons. 

In this example, only a sample of the total population of birth defects 

occurring in the county was taken. Since there are few environmental 

agents known to cause a wide variety of birth defects (so-called "universal 

teratogens"), to explain the inclusion of these clustered defects one could 

assume that some form of sampling bias occurred. Either the region where 

the cluster occurred was sampled more frequently, or some particular defect. 

or group of defects that had clustered was sampled more frequently. Such 

clustering could also reflect a clustering of mothers at high risk for giving 

birth to a child with a birth defect due to some non-environmental factor. 

3.3. Results 

Maps of Santa Clara County showing the spatial distribution of the sam­

ples of live births and of birth defects are presented in figures 3.1 and 3.2. 

Maps reflecting each of the simulated clusters are presented as figures 3.3-

3.11. 

The random sample of birth defects included 118 births with one defect 

(54%), 51 with two defects (24%), and 47 with three or more defects (22o/o) . 

Syndromes were identified in 30 (14%) of the births. The defects included in 

this random sample are listed in table 3.1. The distribution of maternal race 

for the sample of birth defects, and for all live births in Santa Clara County 

during 1983-1985 are shown in table 3.2. The average maternal age for the 

birth defects sample, and for live births in Santa Clara, were 27.1. Of the 

children in the birth defects sample, 61.4 percent were male, while among 
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live births in Santa Clara, 51.1 percent were male. 

The resulting distributions of the conversion of the coordinates of the 

children in the two samples to distance from the pooled centroid are 

described in table 3.3. 

Table 3.1 
., 

Defeds Present in Random Sam81e of 216 
Birth Defeds in Santa Clara ounty 

De fed BPA #in Samete %of Defeds 

Mobius Syndrome 352 2 0.3 
Abnormalities of Jaw 524 9 1.4 
Spina Bifida 741 2 . 0.3 
Nervous System Anomalies 742 22 3.4 
Anomalies of the Eye 743 35 5.3 
Anomalies of the 
Ear, Face and Neck 744 61 9.3 
Bulbus Cordia and 'Defeds of 
Cardiac Septal Closure 745 40 6.1 
Other Cardiac Defeds 746 21 3.2 

Other Anomalies of 
Circulatory System 747 29 4.4 
Respiratory Defeds 748 22 3.4 
Cleft Up/Cleft Palate '749 22 3.4 
Other Anomalies of 
Alimentary Trad 750 63 9.6 
Digestive System Defeds 751 21 3.2 
Anomalies of Genital Organs 752 59 9.0 
Anomalies of Urinary System 753 24 3.7 
Musculoskeletal Defeds 754 73 11.2 

Other Anomalies of Umbs 755 41 - 6.3 
Other Anomalies of Skull 
and Face Bones 756 38 5.8 
Anomalies of Integument 757 42 6.4 
Chromosomal Anomalies 758 18 2.7 .. 
Other Defeds 759 5 0.7 
Fetal Alcohol Syndrome 760 2 0.3 
Congenitallnfedion n1 4 0.6 

Totals 655 100 
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Race 

Table 3.2 
Maternal Race in Random Sample of 216 

Birth Defects and 201 Uve Births 
in Santa Clara County, 1983-1985 

# of Children o/o of Children #of 
in Defects in Defects Uve Births 

Sample Sample in Sample. 

white nonhispanic 
white hispamc 
black 

176 
8 
1 

81.5 117 
3.7 38 
0.5 24 

asian 
other 

17 7.9 1 
14 . 6.5 36 

Table 3.3 
Univariate Characteristics of 

Uve Birth and Birth Defect Samples 

Uve· Birth Data 
n=201 

a = 5.86 miles 
var(a) = 22.33 

minimum a= 0.60 miles 
maximum a = 28.257 miles 

Birth Defect Data 
n=216 

a= 5.88 miles 
var(a) = 17.08 

minimum a = 0.24 miles 
maximum a = 27.59 miles 

o/o of 
Uve Births 
in Sample 

54.1 
17.6 
11.1 
0.5 

16.7 

The Kolmogorov-Sniirnov statistic is the maximum absolute difference 

between the two cumulative distributions. Calculation of the Kolmogorov­

Smirnov statistic was performed using the SPSSX computer program [21 ]. 

The observed value for the Kolmogorov-Smimov statistic was 0.07 45. The 

z-value associated with this statistic was 0.76 with a 2-tailed p-value of 

0.61 0. The cumulative distributions of the live birth and birth defect samples 

are shown in figure 3.12. 

The analysis of distances with a univariate t-test resulted in a t value of 

-0.03, with an associated p-value of 0.978. 

The observed Hotelling's T2 for the samples of 201 live births and 216 

. birth defects was 0.286, with a p-value of 0.867, when converted according 

to equation 3.1 and compared to an F distribution with 2 and 415 degrees of 

freedom. The permutation approach yielded a distribution of T2 values with 
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a mean of 1.97 and a standard deviation of 1.99. The randomized p-value, · 

that is, the probability that a f2 exceeds the observed value of 0.286 based 

on the distribution of the permutation, is 0.865. 

The contingency table approach to nearest neighbor distances resulted 
in the following table: 

BASE POPULATION 
Uve Births Birth Defects 

NEAREST Uve Births 
NEIGHBOR 

86 

I 113 

103 

Birth Defects 115 

The x2 for this table is 1.008, with a p-value of 0.685. The coefficient of 

spatial association, Cs was calculated to be 0.044. 

The results of the sensitivity tests are next presented. Univariate 

analysis by using the Kolmogorov-Smimov test on each of the nine clusters 

is presented in Table 3.4. The distance from the cluster to the pooled cen­

troid of the birth defects and live births in the initial analysis is presented. 

The comparison group in all cases was the unmodified sample of live births. 

These results are presented pictorally in figures 3.13-3.21. 
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Table 3.4 
Kolmogorov-Smirnov Analysis of Modified Birth Defects Maps 

Dataset ·Distance from Kolmogorov K-S p-value 
cluster to Smirnov z 
centroid Statistic 
{miles} 

Uve Births 
Birth Defects 0.075 0.76 0.610 

First Cluster 0 0.105 1.096 0.181 
Second Cluster 1 0.093 0.969 0.304 
Third Cluster 2 0.078 0.816 0.519 
Fourth Cluster 3 0.045 0.469 0.980 

Fifth Cluster 4 0.097 1.008 0.261 
Sixth Cluster 5 0.107 1.116 0.166 
Seventh Cluster 10 0.109 1.132 0.154 
Eighth Cluster 15 0.109 1.132 0.154 
Ninth Cluster 20 0.109 1.132 0.154 

The results of the r2 test comparing the cluster investigat~ons esta­

blished in the birth defects group to the live birth sample are presented in 

table 3.5. The distance of each cluster to the pooled centroid of both groups 

is shown, along with the centroid of the group on the map scale (1 map 

unit=1 000 feet) . 
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Table 3.5 
Multivariate Analysis of Santa Clara Map 

Dataset Distance from "K y Hotelling's . p-value 
cluster to (map (map T2 
centroid units) units) 
~miles} 

Uve Births 93.9n 300.189 
Birth Defects - 95.433 299.483 0.286 0.87 

First Cluster 0 94.719 299.797 ·o.2n 0.87 
Second Cluster 1 98.438 296.062 0.425 0.81 
Third Cluster 2 102.144 292.301 0.611 0.74 
Fourth Cluster 3 105.849 288.540 0.834 0.66 

Fifth Cluster 4 109.555 284.n8 1.092 0.58 
Sixth Cluster 5 113.261 281.017 1.383 0.50 
Seventh Cluster 10 131.789 262.211 3.230 0.20 
Eighth Cluster 15 150.317 243.405 5.432 0.07 
Ninth Cluster 20 168.845 224.599 . 7.638 0.02 

3.4. Discussion 

Two major points become clear from the results of these analyses. 

First, there is little evidence to support the alternative hypothesis that the 

population of live births and the population of birth defects in Santa Clara 

County are spatially different, in some systematic fashion. Second, the spa­

tial statistics available for use in this study are generally insensitive to detect 

these specific perturbations in the spatial pattern of birth defects, as evi­

denced by their failure to detect most of the simulated clusters introduced to 

the maps-a clustering relatively obvious by simple examination of the 

maps. 

One source of potential bias in the methodology used in· this study is 

the process of digitization. While the computer hardware for this process is 

accurate, the identification of the exact location of a street address using 

assessors maps and commercial street maps is not precise. There is rea­

sonable confidence that digitized locations are near the actual location of the . 

address digitized (within 500 feet). Due to imprecise street number notation 



on the assessor's maps, it is possible that some addresses were shifted one 

or two houses from their true location. On the scale used for this analysis, 

this error is minor. In addition, since the error introduced is random, and as 

it applies equally to both the live birth locations and to the locations of chil­

dren born with a birth defect, it is not thought that this error compromises 

the results of this study". 

Another ·potential source of bias related to the address data used is 

associated with the difference in address sources. The addresses used for 

live births were those recorded on the birth certificate; information collected 

from the parents at the time of delivery.· Addresses used for children with a 

birth defect were abstracted from the medical record, and may not be the 

same as that shown on the birth certificate. No comparison has yet been 

made between addresses in the CBDMP's registry and those on the birth 

certificate. Such a comparison would help clarify whether any appreciable 

difference exists between the two sources. As the bias introduced here was 

random, with respect to spatial distribution, it was unlikely to be a significant 

problem in this analysis. A possibly more serious problem associated with 

address is the migration between first trimester and birth, as discussed in 

chapter 1. If this migration is differential with respect to birth outcome, the 

resulting measures of association would be biased. The effect of migration 

was not assessed in the present study. 

None of the statistics used yielded strong evidence for differences 

between the sample of live births and the unmodified sample of all birth 

defects. No major differences can be seen in the maps showing the two 

samples (figures 3.1 and 3.2). The mean difference in distance to the 

pooled centroid was approximately 20 feet, which is less than one house­

length. While the sample of birth defects has a slightly smaller variance 
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compared to that of all live births, the difference in the standard deviations is 

small compared to the. scale of the county, and thus this variation is prob­

ably unimportant. Indeed, a t-test comparing the distributions of the dis­

tances to the pooled centroid yielded a p-value of 0.978. The Kolmogorov­

Smirnov test also yielded results consistent with no measurable difference 

between the two maps, with a p-value of 0.67. Nearest neighbor methods 

yielded corresponding results, and although no p-value can be attached to 

the coefficient of spatial variation, c,, the observed value of 0.044 is close to 

0, which is consistent with no association or dissociation., The variability of 

the p-values reflects the different measures being used, and is oversha­

dowed by the lack of significance of all values. 

The Hotelling's J-2 test gave a p-value of 0.867. As this can be con­

sidered to be a refined measure of the univariate t-test, this p-value is con­

sistent with the value of 0.978 noted above. The simulated p-value gen­

erated using the permutation test of 0.865 is close to the p-value from the 

F-distribution, indicating that the r2 statistic based on the assumption of nor­

mally distributed data is robust and simulated p-values are not necessary. 

The results of the sensitivity analysis present a discouraging view of the 

ability to determine whether two populations are interchangeable. The intro­

duction of highly significant clusters was usually not detected by either the 

Kolmogorov-Smimov test, or the J-2 test. In both cases, the distance 

between the cluster and pooled centroid affected both the value of the statis­

tic, and the statistic's ability to detect the change. In the case of the 

Kolmogorov-Smimov test, when the cluster occurred within two miles of the 

centroid, the cumulative distribution· of birth defects can be seen to rise 

rapidly above that of live births at the point of the cluster, providing the max­

imum absolute difference used in this method (figures 3.13-3.15). 
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When the cluster was between three and five miles of the pooled cen­

troid, however, the effect was to make the cumulative distribution of dis­

tances of birth defects more closely match the distribution of distances of 

live births (figures 3.16-3.18). This is because in the initial map, the cumula­

tive distribution of birth defects is below that of live births for distances 

between approximately three and six miles, and hence adding 20 birth 

defects shifts the cumulative birth defects distribution, making it roughly col­

linear with that of the live births. 

When the cluster occurs at greater than 1 0 miles from the pooled cen­

troid (figures 3.19-3.21 ), the maximum absolute difference in the two cumu­

lative distributions is caused by the cluster, as can be seen by the· sudden 

increase in birth defects at the distance of the cluster from the centroid in 

the figures. All three absolute differences happen to be the same, and the 

statistic is thus constant for the last 3 clusters. 

The Hotelling's fZ test is also sensitive to the location of the cluster in 

relation to the pooled centroid. This is because this test functions in the 

same way as a univariate t-test, measuring the distance between the means 

(in two dimensions, the distance between the centroids). In this demonstra­

tion, a fixed number (20) of additional birth defect children were added to 

each modified map. As such, the further these clustered points are from the 

pooled centroid, the more the centroid of all 236 birth defects will be moved 

from its initial value. Indeed, for this particular situation, the cluster must be 

approximately 17 miles from the pooled centroid to be detected at a level of 

a=0.05. The change in fl. as distance .increases is shown in figure 3.22. 

The lack of sensitivity of these methods and the sensitivity to distance 

of the perturbation from the centroid weaken the argument that live births 

and birth defects are interchangeable as comparison groups for the 
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investigation of clusters, but this possibility cannot be ruled out. Certainly no 

dramatic· difference in the two spatial distributions exists, and further investi­

gation using the spatial distributions of the two populations interchangeably 

is not ruled out. At this stage, evidence for discounting further investigation 

using the two populations interchangeably might include visual evidence that 

the two populations ~re spatially concentrated in different parts of the 

county, or differences between the populations as detected by one of the 

methods used in this chapter. While more sensitive methods are necessary 

to determine the extent to which these two populations may be different, the 

development of such methodology is beyond the scope of this presentation. 

The use of a surrogate population in the spatial investigation of clusters 

would be a beneficial tool to health departments, registries, and others who 

are charged with responding rapidly to inquiries from the public about 

whether clustering is going on. Since spatial data on surrogate populations 

such as all birth defects are .often readily available in electronic form in the 

same registry where the "numerator" data are contained, expensive and 

time-consuming additi~nal data collection could be avoided, and a rapid 

response made. In addition, studies previously not possible due to lack of 

referent data could be performed. This method can also serve as a filter, 

permitting the rapid separation of investigations which are important to pur­

sue, from an epidemiologic perspective, from those which are less likely to 

yield meaningful results. 

An additional advantage of using surrogates from the same registry 

stems from the precision of street address. Many studies of clusters have 

used study areas considerably larger than the actual exposure as data, par­

ticularly data on controls, are available in aggregated form at the census 

tract, zip code or county level. When street address is available, it becomes 
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possible to more narrowly define the region of exposure, and to identify 

which cases and which non-cases are actually exposed. The result is a 

reduction in misclassification, as exposure no longer needs to be assumed 

to occur over the entire region, which will increase the power of such a 

study to detect an effect, should one exist. The results presented in this 

chapter suggests that the use of all birth defects as a surrogate for all live 

births is reasonable, as the two populations appear to be spatially distributed 

in a similar manner. 
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Figure 3.1 
Random Sample of 201 Live Births 

in Santa Clara County 
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Figure 3.2 
Random Sample of 216 Children with Birth 

Defects in Santa Clara County 
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Figure 3.3 
Simulated Cluster of 20 Birth Defects 

Distance=O miles from Centroid 
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Figure 3.4 
Simulated Cluster of 20 Birth Defects 

Distance=1 mile from Centroid 
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. Figure 3.5 
Simulated Cluster of 20 Birth Defects 

Distance=2 miles from Centroid 
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Figure 3.6 
Simulated Cluster of 20 Birth Defects 

Distance=3 miles from Centroid 
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Figure 3.7 
Simulated Cluster of 20 Birth Defects 

Distance=4 miles from Centroid 
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Figure 3.8 
Simulated Cluster of 20 Birth Defects 

Distance=S miles from Centroid 
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Figure 3.9 
Simulated Cluster of 20 Birth Defects 

Distance= 1 0 miles from Centroid 
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Figure 3.10 
Simulated Cluster of 20 Birth Defects 

Distance= 15 miles from Centroid 
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Figure 3.11 
Simulated Cluster of 20 Birth Defects 

Distance=20 miles from Centroid 
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Cumulative Probability Distributions 
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Figure 3.13 
Cumulative Probability Distributions 
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Figure 3.14 
Cumulative Probability Distributions 
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Figure 3.15 
Cumulative Probability Distributions 

Cluster at 0=2 miles 
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Figure 3.16 
Cumulative Probability Distributions 

Cluster at D=3 miles 
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Figure 3.17 
Cumulativ~ Probability Distributions 
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Figure 3.18 
Cumulative Probability Distributions 

Cluster at 0=5 miles 

. . 

I . . . . 

5 10 . 

••••••••••••••••o•-••••••••.,•••••••.,••••• 

Live Births 
............. Birth Defects 

15 20 25 

Distance to Centroid 

100 



0 
0 

CX) 

0 

co 
0 

0 
0 

0 

Figure 3o19 
Cumulative Probability Distributions 

Cluster at D= 1 0 miles 

l . . . . . . . . . . . . . . . 

. r· .. 
/ 

0 . . . . . . 
0 . . . 

·•·······•·················•··············· 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 10 15 

Live Births 
Birth Defects 

20 25 

Distance to Centroid 

101 



. ?:-

.0 ca 

.0 
e 
a.. 
Q) 
> 
~ 
::l 
E 
::l· 

(..) 

0 . 

·~ 
0 

<0 
0 

~ 
0 

C\1 
0 

0 
0 

0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.20 
Cumulative Probability Distributions 

Cluster at D=15 miles 
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Figure 3.21 . 
Cumulative Probability Distributions 

Cluster at 0=20 miles 
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4. Demonstration of Method 

4.1. Introduction 

In this chapter, the idea of using all birth defects as a surrogate com~ 

parison population will be illustrated using a cluster of birth defects that has 

been previously analyzed and has been shown to exhibit spatial clustering. 

Background information about this cluster will first be presented, and then a 

demonstration using three of the seven statistics evaluated in chapter 2 will 

be presented. 

4.2. Background Information on Cluster 

Beginning in the Summer of 1986, the California Birth Defects Monitor­

ing Program (CBDMP) began to receive independent reports ·of a possible 

cluster of oral cleft defects (Cleft lip with or without Cleft palate) in a neigh­

borhood in San Jose, California. Four children were identified as cases for 

this cluster, having been born with an oral cleft defect during the years 

1980-1986. Three of these four children were born between 1983 and 1986. 

Since data on the underlying population at risk, and data on all birth defects 

in the area, were not available for 1980, this re-analysis was restricted to the 

three children born between 1983 and 1986. In the original investigation, 

analysis using the baseline data maintained in the CBDMP registry 

confirmed an estimated-·9-fold elevation in the expected prevalence of oral 

clefts in the neighborhood, based on estimates of the number of births in the 

neighborhood g.enerated from vital statistics data available for the census 

t~ the neighborhood was in, and the prevalence of oral clefts of 1.9 cases 

per 1,000 live births, calculated for the San Francisco Bay Area [1 ]. The 

excess was statistically significant (p<O.OS). 
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All births in the cluster occurred in a 0.2 square mile neighborhood of 

San Jose. The neighborhood was defined for epidemiologic analysis as the 

area bounded by the census tract boundary to the west and north (the boun­

dary in this area is a major road), a hilly, mostly uninhabited area to the 

east, and an uninhabited open space to the south. 

Two exposure route allegations, water and air, were made in associa­

tion with this cluster report. The hypothesized water exposure was to a 

creek running through the neighborhood which carried discharge water from 

groundwater clean-up activities occurring at two nearby Environmental Pro­

tection Agency "Superfund" sites. While the· creek was known to contain 

some quantity of the organic ·contaminants 1,1, 1-trichloroethane (TCA) and 

trichlorotrifluoroethane (FREON) this creek was not a known source of drink­

ing water to the neighborhood. The drinking water of all four mothers of the 

.index cases was sampled, and no detectable levels of either TCA or FREON 

were detected. In addition, the mothers were interviewed as part of the 

investigation, and all denied having direct contact with the creek. 

Allegations of air exposure to sewer odors have been documented in 

the neighborhood for the previous 20 years. No data were available on the 

chemical composition of the odors during the period of concern, but air mon­

itoring in the neighborhood for 12 organic constituents showed all values 

were consistent with ambient levels in the San Francisco Bay Area . 

Neither of the two alleged environmental causes was consistent with a 

"point-source" allegation that could be evaluated with the average distance 

to a fixed point statistic a, as contaminant levels in drinking water are not 

related to distance from the source, and as no point source for the air pollu­

tion was identified. 
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All three of the cases in this cluster exhibited cleft lip, with or without 

cleft palate (oral clefts), defined as children identified through review of the 

medical record with British Pediatric Association (BPA} code 749. Other birth 

defects that occurred in this tract during the period 1983-1986 are shown in 

table 4.1. Two additional oral cleft cases occured elsewhere in the census 

tract. 

4.3. Methods 

Table 4.1 
Birth Defects in Study Tract 

1983-1986 
Birth Defect 

Cleft Up/Palate 
Down Syndrome 
Prune Belly Syn. 
Deformities of Foot 
Coronal Synostosis 
Deformities of Hip 
Congenital Infections 
multiple anomalies 

BPA 
Code 

749 
758 
756.72 
754.7" 
756.006 
755.66 
n1 

#of cases 
in Tract 

6 
2 
1 
1 
1 
1 
1 
1 

Street addresses were abstracted for all children born with birth defects 

in this census tract during the years 1983-1986 from the CBDMP, and were 

manually located and digitized from county assessors maps, as was done 

for the samples in Chapter 3. Street addresses for all live births occurring 

during the years 1983-1987 were abstracted from the birth certificates main­

tained by the county, and were also digitized. It is important to note that the 

birth dates for cleft lip cases in the cluster, all birth defects in the tract, and 

live births occurring in the tract do not perfectly overlap. Uve births from 

1987 were included in .the data set because initially it was thought that birth 

defect records for 1987 would be available before completion of this · 

research from the CBDMP. While birth defects data were not available for 
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1987, the live birth data was left in, since the spatial distribution of live births 

did not appreciably change and it was not possible to selectively remove 

these points without redigitizing all live-birth addresses. 

Since no point source exposure was identified that would be appropri­

ate for this investigation, the distance to a fixed point measures d, d2 , and 

dt.monir; were not used to investigate this cluster. The nearest neighbor dis­

tance, r, and the average interpoint distance measures, ; and i2 were used .. 

The harmonic average interpoint distance, ;hllmronit; was not calculated as it 

was found in chapter 2 that no additional information was provided by this 

statistic, and the decrease in variance compared to i was trivial. 

Two sets of analyses were performed. One analysis was limited to the 

three cluster ·cases occurring between 1983 and .1986. The second analysis 

compared the five identified cases of oral clefts in the entire census tract to 

various comparison groups. 

For each of the analyses, two primary comparison groups were used: 

the set of all birth defects (including the three cluster cases), and the set of 

all live births (including those born with a birth defect). In addition, for the 

investigation of the clustered cases of oral clefts, comparisons were also 

made with the set of all birth defects and the set of live births restricted to 

those actually in the neighborhood. 

When using the randomization or permutation approaches to determin­

ing the distribution of the statistic, it is necessary to include the cases from 

the cluster in the comparison group. The reasoning behind this is that one 

is trying to determine what the probability is of generating the particular 

configuration hypothesized to be a cluster by chance. The null hypothesis, 

that no clustering is present, implies that the configuration of these 

"clustered" cases occurred by chance. By examining the sorted list of 

107 



randomized or permuted spatial statistics, and noting what proportion of 

them are greater than the observed statistic from the clustered cases, one 

can establish a "p-value". A summary of the analyses performed appears in 

table 4.2. 

Cases 

Clustered Oral Clefts 
1983-1986 {n=3) 

All Oral Clefts 
in Tract 
1983-1986 {n=5) 

Table 4.2 
Analyses Performed 

Comparison Groups 

All Birth Defects in Tract 1983-1986 {n=13) 
All Uve Births in Tract 1983-1987 {n=373) 
All Birth Defects in Neighborhood 1983-1986 {n=5) 
All Uve Births in Neighborhood 1983-1987 {n=143) 

All Birth Defects in Tract 1983-1986 (n=13) 
All Uve Births in Tract 1983-1987 ( n=373) 
All Birth Defects in Tract 

Except Oral Clefts 1983-1986 (n=8) 

A$ was noted in chapter 2, the interpoint distance and nearest neighbor 

statistics are both sensitive to the number of cases being evaluated, and 

thus to compare one population to another using these statistics, it is neces­

sary to insure both statistics are calculated from the same number of points. 

To accomplish this, permutation and randomization techniques were used. 

In the analysis of ·all three clustered oral cleft cases, all [ 13] combina­

tions of the 13 birth defects in the tract taken three at a time were gen­

erated, and the corresponding statistics were calculated. The distribution of 

these statistics was then used to establish the level of significance for the 

observed statistics from the four clustered cases. Similarly all [~) combina­

tions of the five birth defects in the neighborhood were used to generate a 

distribution based on the neighborhood, and all possible [~] combinations of 

birth defects in the tract except the oral clefts was used to generate a distri­

bution from the birth defects excluding the defect of interest. A similar 
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strategy was used for the other case definitions. 

Since 373 live births occurred in the tract during the time period avail­

able, a randomization approach similar to that used in chapter three was 

used for these comparisons. For each comparison, 2000 random samples of 

the number of points in the case group were taken with replacement from 

the 373 points, and the spatial statistics were calculated. The resulting dis­

tributions may be taken to be equivalent to the permutations generated for 

the birth defects group, above. 

4.4. Results-Clustered Oral Cleft Analyses 

Maps of the live births in the tract, the three cluster cases, the other 

birth defects in the tract, and the live births in the neighborhood where the 

cluster occurred appear as figures 4.1-4.4. The results of the investigation of 

the three clustered oral cleft cases that occurred between 1983 and 1986 

compared to the appropriate comparison groups are shown in table 4.3. 

Using tract-level comparison groups, clustering is detected using all 

three statistics. Using all birth defects or all live births did not appear to 

make much difference in this analysis, as both show a significant clustering 

present. 

When using neighborhood-level comparison groups, the clustering of 

the oral cleft cases is not detectable using these statistics. Neither all 

defects nor all live births produced a p-value of less than 0.05 for any statis­

tic. 

109 



Table 4.3 
Spatial Analysis of 

Three Clustered Oral Clefts (1983-1986) 

' i j2 

Observed Values 0.346 0.659 0.622 

p-values 
Comparison Group: 
All Defects in Tract 0.017 0.021 0.028 
All Uve Births in Tract 0.036 0.055 0.062 
All Defects in Neighborhood 0.200 0.200 0.300 
All Uve Births in Neighborhood 0.074 0.136 0.175 

4.5. Results-All Oral Clefts Analyses 

A map showing all cases of oral clefts in the census tract appears in 

figure 4.5. The results of the investigation of all five oral clefts in the tract 

are presented in t~ble 4.4. 

Table 4.4 
Spatial Analysis of 

Five Oral Clefts in the Tract (1983-1986) 

Observed Values 

Comparison Group: 
All Defects in Tract 
All Uve Births in Tract 
All Defects Except Clefts in Tract 

4.6. Discussion 

' 2.209 

0.565 
o.n2 
0.446 

i 
4.040 

p-values 

0.273 
0.565 
0.179 

22.965 

0.292 
0.577 
0.268 

The reported cluster of oral clefts was easily detected by all three of the 

statistics used when census-tract level comparison groups were used. A 

problem with the pemutation approach used with the birth defect comparison . 
groups is that often a ·small number of permutations are possible, leading to 

somewhat imprecise p-values. This is particularly evident in the comparison 

of all defects in the neighborhood to the oral cleft clusters in table 4.3. 
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Comparison of the clusters to the spatial distribution of live births and 

all birth defects at the neighborhood level produced non-significant results; 

oral clefts are no more spatially clustered in the neighborhood than live 

births or other birth defects are. This must be interpreted in conjunction with 

the prevalence proportion of the defect in the neighborhood. 11'Jus, while no 

clustering within the neighborhood was observed, it was known that the pre­

valence of oral clefts in this neighborhood was nine times what would be 

expected from baseline data in the San Francisco Bay Area. If one consid­

ers an environmental cause for these birth defects, it would not necessarily 

be expected that these defects would cluster more closely than live births 

within the neighborhood they are in, unless the environmental cause was so 

specific in location that .only a few houses were affected. Thus failing to 

detect clustering within the neighborhood provides additional information on 

the possible risk factor, since it may be concluded that this risk factor affects 

the entire neighborhood, and not one specific area 

The detection of clustering within the larger area such as a census 

tract, or zip code region, may be beneficial in cases where an excess of the 

disease is not detected based on rates for that geographic area, and the 

researcher is interested in whether clustering of the defect of interest is 

occurring within the area for which prevalence proporation denominator data 

are available. It is clear from this research that in such a situation, one can 

use the spatial distribution of birth defects as a surrogate for the distribution 

of all live births in determining whether such clustering is occurring. 

A sufficient number of birth defects other than the cluster cases must 

be present in the area to be studied to make use of the spatial distribution of 

birth defects as a surrogate for all live births. The number necessary will 

depend on the number of cases in the purported cluster, and is determined 
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by the size of [~), where n is the number of all birth defects to be used. as a 

comparison, and c is the number of birth defects in the cluster. Table 4.5 

shows the minimum detectable p-value for the permutation approach, based 

on different cluster and comparison group sizes. The data are presented 

graphically in figure 4.6. 

It should be noted that these minimum deteCtable p-values are based 

solely o~ the combination of (~), and it is probably wise to have more than 

one or two children with defects in addition to those in the cluster for the 

comparison to be truly valid. 

In this chapter, the use of simulation and permutation techniques with 

spatial statistics has been demonstrated.in the reanalysis of a real cluster of 

birth defects. The use of birth defects as a surrogate population for the true 

population at risk did not diminish the significance of this cluster, and in gen­

eral appeared to perform adequately for the assessment of the cluster. It is 

clear that the size of ttie cluster and the number of birth defects in the com­

parison group will determine how sensitive the resulting test can be. 
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Table 4.5 
Minimum Detectable Probabilities 

Using Permutation Approach 
With Birth Defects as Comparison Group 

Number Number of Defects in Comparison Population 
in Cluster 3 4 5 6 7 -8 9 10 

3 0.250 0.100 0.050 0.029 0.018 0.012 0.008 ,. 4 0.20 0.067 0.029 0.014 0.008 0.005 
5 0.166 0.048 0.018 0.008 0.004 
6 0.143 0.036 0.012 0.005 
7 0.125 0.028 0.008 

8 0.111 0.022 
9 0.100 

10 

11 12 13 14 15 16 17 18 

3 0.006 0.005 0.003 0.003 0.002 0.002 0.002 0.001 
4 0.003 0.002 0.001 <0.001 
5 0.002 0.001 <0.001 
6 0.002 0.001 <0.001 
7 0.003 0.001 <0.001 

8 0.006 0.002 <0.001 
9 0.018 0.004 0.001 <0.001 

.10 0.091 0.015' 0.003 <0.001 
11 0.083 0.012 0.002 <0.001 
12 o.on 0.011 0.002 <0.001 

13 0.071 0.009 0.002 <0.001 
14 0.067 0.008 . 0.001 <0.001 
15 0.063 0.007 0.001 
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Figure 4.1 
Live Birth~ in Census Tract (n=373) 

Santa Clara County 1983-1987 
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Figure 4.2 
Index Cases for Oral Cleft Study (n=3) 

Santa Clara County 1980-1986 . 
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Figure 4.3 
All Birth Defects In Tract 

for Oral Cleft Study ( n= 13) 1983-1986 



Figure 4.4 
Live Births in Neighborhood (n=143) 

Santa Clara County 1983-1987 
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Figure 4.5 
All Oral Cleft Births in Tract (n=S) 
Santa Clara County 1983-1986 
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5. Epidemiologic Implications 

5.1. General Comments 

Investigations of clusters serve two fundamental purposes; a social one, 

in which they assuage community concern over adverse health outcomes 

from perceived exposures, and a scientific one, in which hypotheses are 

generated to explain the clustering phenomenon [1, 2]. Both purposes 

demand a rapid, unbiased response plan, in which the needs of the com­

munity are addressed while maintaining standards of scientific rigor. The 

cost of conducting a full-scal.e case-control study of a cluster requires a prel­

iminary screening method, such as that described by Grether, et al [3], be 

used. In this preliminary screening process, basic information that may be 

readily available to registries or health agencies is used to make an assess­

ment of the significance of the perceived cluster. This assessment will often 

require the evaluation of the closeness of spatial aggregation of the cluster 

cases. 

5.2. Results of Investigations 

All three of the basic spatial statistics investigated were found to be 

robust in their response to violations of the fundamental assumptions under­

lying their use. A major concern in the use of the nearest neighbor and 

average interpoint distance statistics is that the distances that contribute to 

these means are not completely independent, and thus the assumption of 

independence is violated. The use of Jackknife or Bootstrap methods for 

these statistics is therefore not necessary, as they yield equivalent results. 

The use of harmonic means, as suggested by Mantel [4] resulted in larger 

variances and it is not clear from this investigation what, if any, benefit is 
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derived from their use in the spatial analysis of clusters. Indeed, a combina­

tion of the harmonic technique and the bootstrap method produces errone­

ous results, since when the same point is drawn more than once in the 

same bootstrap sample, the value of the harmonic mean becomes infinite. 

The expeded values of each of these statistics is derived based on the 

assumption of uniform distribution of the underlying population at risk. As 

the underlying population at risk may not be uniformly distributed in space, 

as demonstrated in chapter 4, the use of these theoretically calculated 

expedE:l.d values in the analysis of geopolitical maps should be practiced 

with caution. A better estimate of the "expected value" of the statistics in a 

given area may be the values generated .from randomization or permutation 

methods, which result in null distributions from which estimates of p-values 

for the observed statistic may be determined. 

The assessment of whether the population of all birth defects is analo­

gous to the population of all live births performed in chapter 3 attempted to 

analyse whether the spatial patterns were sufficiently similar to permit their 

use interchangeably. From this analysis, it was concluded that there is little 

evidence to suggest that the two populations are fundamentally different, in 

terms of their spatial distribution. The problem encountered in this analysis 

is that it is not possible to prove conclusively that two distributions are the 

same. One can only . demonstrate that they are not statistically different 

according to the metric in use. Since no striking differences between the 

live births and the birth defects were noted using any of the methods 

demonstrated, it is probably justifiable to proceed on the assumption that a 

major bias will not be introduced by using the surrogate population. The use 

of all birth defects as a surrogate for all live births is further justified, since 

any clustering of other birth defeds in space will introduce a conservative 
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bias-that is, it will reduce the power to detect a cluster. Hence if a prelim­

inary analysis, using all birth defects as the comparison population, yields 

evidence of spatial clustering, further efforts to ascertain the spatial distribu­

tion of all live births are unwarranted. 

In the investigation of a cluster in Santa Clara County, California, 

presented in Chapter 4, the nearest neighbor distance and the average 

interpoint distance statistics were applied in the reanalysis of an alleged 

cluster of oral clefts (cleft lip and cleft palate). Various comparison groups 

were used to evaluate clustering within the census tract, and within the 

neighborhood in which the· cluster occurred. While clustering was apparant 

using any of the comparison groups at the census tract level, clustering was 

not apparent within the neighborhood. This was indicative that, while an 

excess of oral clefts was occurring in the neighborhood, spatial clusteriog 

within that neighborhood was not occurring. These results are consistent 

with either a random cluster, or with an environmental cause that places the 

entire neighborhood at risk. 

One way of putting clusters "in perspective" is to consider how fre­

quently a similar cluster would be expected to occur simply by chance. 

Since clusters of birth defects occur with small numbers of cases, their distri­

bution can be considered to be Poisson, and an analysis can be performed 

to determine how frequently a cluster with the number of cases observed 

would actually occur. For the cluster in chapter 4, 143 births occurred in the 

neighborhood during the four year period 1983-1986. The baseline rate of 

oral clefts in the San Francisco Bay Area has been estimated to be 1.9/1 000 

[5]. Calculating i = np, we estimate i to be 0.2727. Applying the Poisson 

formula shown in equation 5.1, where k is the number of oral cleft cases in 

the cluster, we can establish the probabilities for one or more cases of oral 
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cleft occurring in the neighborhood. 

(5.1) 

A registry faced with limited resources to perform in-depth analysis of 

every cluster report reeeived could make use of this Poisson argument for 

prioritizing which investigations to perform first. The Poisson method thus 

may· also be a useful adjunct to the spatial methods in the investigation of 

clusters. From a scientific perspective, a cluster. that would be expected 

only once every 1 0 years in California may be a greater cause for concern 

than .a cluster such as this one, for which approximately eight such clusters 

are expected to occur in California each year. Recognizing the dual pur­

poses of cluster investigations, discussed above, some effort must go into 

the investigation of any cluster. The use of spatial statistics tC? determine the 

degree of clustering is one tool that can contribute to such investigations. 

Table 5.1 
Poisson Distribution of Oral Clefts 

in Cluster of 143 births 

Number of Cases Probability of Cluster 
of Oral Cleft Occurring by Chance 

0 
1 
2 
3 
4 

5.3. Spatial Methods in Cluster Problems _ 

0.7621 
0.2070 
0.0281 
0.0025 
0.0002 

The use of spatial statistics such as the nearest neighbor distance, 

average interpoint distance, and distance to a fixed point has the ~dvantage 

of using ·continuous data in a continuous sense, rather than dichotomizing it 

as is done by many other spatial statistics, particularly space-time methods 
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such as the Knox statistic [6]. A drawback in their use, however, is that the 

means are not calculated from statistically completely independent values. 

As was noted in chapter 1, the nearest neighbor distances and the average 

interpoint distance statistics both lack complete independence. However, 

the impact of this lack of independence appears to be minimal on their per­

formance, as was seen in chapter 2, and it appears this lack of statistical 

independence can be disr~arded in most studies .. 

To make use of these continuous spatial statistics in the proper sense, 

it is necessary to use the exact location of the cases being evaluated. In 

methods such as the Density Equalized Map Projections of Salvin et al [7], 

examples have usually made use of the centroid of the census tract as the 

point location for all cases occurring in that tract. While this technique per­

·mits an assessment of ·clustering over a larger area, such as a city, it cannot 

serve in the analysis of smaller areas. When street address of the cases is 

known, digitization techniques can be used to better approximate the distri­

bution of cases and the comparison population. Bias in the digitization is 

minimal and non-differential with respect to disease status, and provides a 

rapid means of assigning cartesian coordinates. The use of digitization has 

the added advantage of maintaining confidentiality of the data, as demon.:. 

strated with the maps in this dissertation. 

5.4. Implications of Using All Birth Defects as a Surrogate Population 

The use of all birth defects as a surrogate for all live births in the spatial 

investigation of clusters appears justifiable, based on the results of the ana­

lyses in chapters 3 and 4. Such use makes the assumption that no "univer­

sal teratogen" is modifying the spatial distribution of all defects in space, 

compared to the distribution of all live births. This assumption is probably 
\ 
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generally valid, provided the defects in the cluster are a small proportion of 

the total comparison population. It is important that sufficient non-clustered 
I 

defects be present to prevent the clustered cases from completely "washing 

out" any observable effect. 

Birth defect registries that collect population-based data on defects 

within a state or county are prime responders to cluster reports. In Califor­

nia, the CBDMP receives, on average, two reports per month of clusters 

occurring within the state [5]. Such reports are evaluated following an esta­

blished protocol which. includes the spatial analysis of the reported clu~ter 

[3). Such investigation is done to determine whethe,r clusterin_g can be attri­

buted to the spatial distribution of the population, and has often been difficult 

due to lack of appropriate data describing the spatial location of live births in 

the area of the cluster. The source of data on live births is usually the 

county vital statistics office, and often street address is not available. When 

this is the case, determination of whether clustering is simply due to spatial 

variation in population density has not been adequately assessed. 

Application of the method introduced in this dissertation, using registry 

data for the comparison group, will permit a more rapid assessment of spa­

tial clustering, and will permit such assessment even when data on the loca­

tion of live births are not readily available. 

It is clear from the demonstrations in Chapters 3 and 4 that, at least in 

this instance, the spatial distributions of the population of live births and that 

of all birth defects are similar! Biases that could result in spurious evidence 

for clustering could occur if the spatial distribution of the comparison group 

was, in some way, more dispursed in space than the underlying population 

at risk. 
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One example of how this could occur can be thought of by referring to 

figure 4.4. Consider a situation where only seven birth defects occurred in 

the tract for the study years-the three cluster cases, and one additional 

defect in each of the four "neighborhoods" of the tract. Under this cir­

cumstance, using the four remaining defects as a comparison would be 

misleading, as the. nearest· neighbor to each defect would be in another · 

neighborhood, and hence further away than the nearest live birth. In this cir­

cumstance, both the nearest neighbor and the average interpoint distance 

statistics would yield erroneously high values when based on birth defects 

alone, which, when compared to the cases in the cluster, would make one 

think strong clustering of the cases was present. To avoid this, one must 

make sure that either the birth defects are not so sparse in the population 

that they fail to pick up gross variation in the spatial distribution of live births, 

or one must verify that no major "clumping" of live births, due to geological 

or other barriers, is occurring in the study area. 

Spatial clustering must be an adjunct to detection of an excess of 

disease. It is clearly possible to have an excess of disease occurring in 

some area, such as a census tract, without having "clustering" of the 

disease. Similarly, it is possible for clustering to be detected in data even 

though no excess of the disease has occurred. The former situation may be 

beneficial in helping to eliminate environmental causes that are not plausible 

for the disease pattern, while the latter situation may indicate that an 

increased rate of disease is present within a smaller area than was used in 

the calculation of rates (as was the case in the example in chapter 4). This 

increase may be due to some environmental cause, or may be a random 

occurrence. It is clear that when an excess is thought to exist, further exam­

ination of the spatial distribution of the cases may yield insight into possible 



environmental causes. 

5.5. Implications of use of geopolitical boundary 

The most commonly used boundaries in epidemiologic investigations 

are geopolitical, such as census tracts zip code regions and counties. By 

defining exposure on the basis of these regions, one may misclassify a 

significant proportion of the cases as exposed, who are actually not exposed 

to the risk factor of concern. In the example in chapter 4, 2 of the 5 cases 

of oral cleft that occurred in the tract (40%), would be misclassified if one 

considered the entire tract "exposed." Thus, some care should go into the 

definition of the boundary of the cluster. The use of digitization allows 

greater freedom to select an appropriate boundary. While the use of street 

address requires additional work to ascertain the location of cases, the 

benefit is a more useful method of analysis, since with a more precise boun­

dary, the possible environmental and other causes of the cluster can be nar­

rowed down more effectively. 

5.6. Epidemiologic utility of this method 

Based on the results of these investigations, and based on prior proto­

cols (e.g. [3]) and editorials (e.g. [1]), the following protocol for the investiga­

tion of neighborhood or community clusters reported to registries is pro­

posed. 

1. Initiation of Investigation through report of index case{s) to regis­

try. When a cluster is reported to a registry, the investigator first needs 

to gather information on cases identified by th~ reporting party to be 

part of the cluster. The goal of this data collection is to characterize as 

completely as possible the population at risk, according to the reporting 
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party, and to insure that reported cases are, in fact, truly cases of birth 

defects. Information should also be gathered on environmental or other 

factors thought to be possible causes of the cluster, if any. 

2. Background Information. Information on environmental and other 

factors that have been previously suggested as risk factors for the out­

come under consideration should be reviewed early in the investigation. 

It is possible that genetic or other factors may explain, in part or in total, 

the prevalence of the outcome, and environmental factors may not play 

·a significant role. Examples of such outcomes include many chromo­

somal defects and· fetal alcohol syndrome, for which the risk factors are 

genetic and behavioral, respectively. 

3. case Definition. Based on the results of the initial report, a case 

definition should be established for the cluster. This case definition 

should include the precise condition(s) for which clustering is sug­

gested, the time period during which the cluster occurred, the spatial 

area in which the cluster occurred, and any other data that will help 

characterize who is a case. To avoid bias, the case definition should 

be based on standardized methods. The condition should be defined 

based on commonly used classification such as the BPA. Multiple 

types of birth defects should be grouped in the cluster only if there is a 

biological reason for doing so~ Otherwise, different defects should be 

treated as separate in the analyses that follow. The time period and 

area in which the cluster occurred should be defined, if possible, based 

on the exposure that i"s hypothesized to cause the outbreak. If no 

exposure is hypothesized, effo.rts should be made to define possible 

risk factors for the disease, and exposure to these risk factors should 

form the basis for defining the area and time period at risk. To avoid 
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spurious results, it is critical for the region of concern and the time 

period to be defined based on some hypothesis, rather than based on 

the location and date of birth of the cases. The index case, and other 

cases initially reported to the registry, should be reviewed carefully to 

insure they satisfy the case definition. Those who do not completely 

satisfy the case definition should either be excluded, or treated 

separately. 

4. Define Boundaries of Neighborhood. The boundaries of the neigh­

borhood to be cOnsidered must be defined in conjunction with the case 

definition. Boundaries should, if possible, reflect natural breaks in the 

spatial distribution of live births, such as geophysical features (hills, 

bodies of water, etc.) or otherwise unpopulated or sparsely populated 

areas {industrial parks, vacant lots, etc.). If such natural breaks are not 

available, the investigator may have· to resort to using major roads or 

other, less distinct boundaries. The purpose of careful boundary 

definition is to insure that those within the boundary are exposed to the 

environmental factor of concern, while those outside the boundary are 

not. 

5. Perform Additional Casefinding. Once the boundaries of the area of 

concern and the case definition have been established, additional 

casefinding, using registry data if available, should be undertaken. 

6. Determine Population at Risk. In addition to finding additional cases 

of the outcome of concern, a measure of the population at risk must be 

established. If vital statistics data are available, the investigator may be 

able to use live births as the comparison population, thereby calculating 

a direct estimate of the relative risk. Often vital statistics data are not 

available for the neighborhood in which the alleged cluster is occurring. 
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When this is the case, rates can be calculated for a larger geopolitical 

area, such as a census tract, zip code region, or county,_and data on all 

birth defects in the region for the time period of concern can be used in 

the spatial analysis below to determine whether clustering within this 

larger area is occurring. 
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7. Determine Prevalence of Outcome. Using the estimate of the popula­

tion at risk, the prevalence of the defect of concern should be calcu­

lated. If this prevalence is in excess of the baseline prevalence from 

the registry for the same region, further investigation may be warranted. 

Grether et al [3] recommend a p-value of less than 0.01 before consid­

erable resources are expended on further investigation of the cluster. 

This seems to be an arbitrary value, and in some circumstances, it may 

be deemed beneficial to continue the cluster investigation with a larger 

p-value, particularly if the exposure of concern is well characterized and · 

is biologically plausible as a risk factor. 

8. Spatial Clustering. Determination of whether clustering is occurring 

within the neighborhood may provide additional insight as to the relation 

between environmental factor and defect, or may clarify a relative risk 

that is not statistically significant in a larger geopolitical area. If a point 

source of the environmental cause such as a dumpsite or a smokestack 

is considered, the "distance to a fixed point" statistics are appropriate 

measures of the clustering. If the exposure source is not a single loca­

tion, but occurs throughout the neighborhood, the distance to a fixed 

point is not appropriate, but the average interpoint distance, or alter­

nately the nearest ·neighbor statistic, will be. It is useful to note that the 

clustering of defects in the neighborhood, when evaluated in a larger 

area such as a census tract, provides an assessment of whether an 



excess of that particular defect is occurring in that neighborhood. Thus 

if the population of all birth defects is being used as a surrogate for the 

live birth population, the spatial analysis of the cluster defects compared 

to all defects in the tract may provide reassurances on whether a true 

excess of the defect of concern is present. 

9. Further assessment of the cluster. If the data analyses above result 

in a bona fide cluster of defects, with a significant excess of the disease 

of concern and clustering in a specific area, a true case-control study 

could be initiated. Biological plausibility, strength of association in the 

above analyses, and ability to conduct an unbiased study will all contri­

bute to the decision of whether such a case-control study can be per­

formed. 

5.7. Summary 

The three major goals of this dissertation were to compare three spatial 

statistics to determine which were most suited to the investigation of spatial 

clusters, to evaluate whether all birth defects could be used as a surrogate 

for all live births in the investigation of these clusters, and to demonstrate 

· the spatial evaluation of neighborhood clusters using spatial statistics and all 

birth defects as a surrogate comparison population. 

Comparison of the statistics to their theoretically calculated values in a 

unit square demonstrated that when clustering was not present, the statistics 

yielded reasonable approximations of their expected values. It was found 

that nonparametric estimation using the Bootstrap and Jackknife procedures 

was not necessary, as the statistics were robust when the assumptions of 

normality and independence were violated. Calculation of harmonic means, 

as suggested by Mantel [4] did not yield appreciably better measures of 
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clustering. It was concluded that comparing calculated statistics for a set of 

events for which clustering was suspected to a non-clustered set would 

detect whether clustering was present, provided the two samples were the 

same size. 

Evaluation of whether all birth defects could be used as a surrogate for 

all live births in the spatial analysis of a cluster showed that the population 

of all birth defects appears to be randomly distributed among all live births in 

space for the example presented, and thus such a substitution is probably 

feasible. Sensitivity tests of the statistics used for this analysis, however, 

indicated that power to detect clustering was dependent on the distance of 

the cluster from the centroid of the live birth population, and that small varia­

tions would not be detected. 

The reanalysis of a known cluster of oral clefts in Santa Clara Cou~ty 

demonstrated that using all birth defects as a comparison group, and apply­

ing a randomization procedure, was successful at emulating the results 

obtained by using all live births. Thus, the use of all birth defects as a surro­

gate for live births may be a viable aHernative when data on the population 

at risk is not available. · 

In conclusion, this dissertation has presented a possible alternative 

method for investigating whether clustering of birth defects may be occurring 

in space. The use of this method will improve epidemiologic investigations of 

clusters by more accurately defining the spatial area in which the cluster is 

occurring, thereby reducing misclassification, and will permit the investigation 

of clusters for which no data are available on the population at risk, provided 

a population-based registry is collecting suitable data on birth defects in the 

affected area. 
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6• Appendicies 



6.1. Appendix A - Software for Chapter 2 

6.1.1. Monte.c 

Variable 

*fp 
*ofile 
BOO TUM 
COUNT 
REP LIM 
ai2evar 

ai2exp 

aievar 

aiexp 

aihevar 

aihexp 

aipd 
aipd2 
aipdhm 
ba2avg 

ba2bias 
ba2var 
bah bias 
bahvar 
baiavg 
baibias 
baihavg 
baivar 
baixO 
baiyO 

bd2avg 
bd2bias 
bd2var 
bdavg 
bdbias 
bdhbias 
bdhdavg 
bdhvar 
bdvar 
bravg 

brbias 
brvar 
db2exp 

Important Variables 

Contains 

pointer to output file 
pointer to name of output file 
number of bootstrap replications (max=1 000) 
number of simulated points (max=50) 
number of monte carlo simulations to perform 
variance of expected average squared 
interpoint distance . 
expected value of average squared 
interpoint distance statistic 
variance of expected average interpoint distance 

expected value of average interpoint 
distance statistic 
variance of expected average harmonic 
interpoint distance 
expected value of average harmonic interpoint 
distance statistic 
observed average interpoint distance statistic 
observed average squared interpoint distance statistic 
observed average harmonic interpoint distance statistic 
bootstrap average squared interpoint distance 

bootstrap bias of ba2avg 
bootstrap variance of ba2avg 
bootstrap bias of baihavg 
bootstrap variance of baihavg 
bootstrap average interpoint distance 
bootstrap bias of baiavg 
bootstrap average harmonic interpoint distance 
bootstrap variance of baiavg 
x-coordinates of bootstrap sample points 
y-coordinates of bootstrap sample points 

bootstrap average squared distance to a fixed point 
bootstrap bias of bd2avg 
bootstrap variance of bd2avg 
bootstrap average distance to a fixed point 
bootstrap bias of bdavg 
bootstrap bias of bdhdavg 
bootstrap average harmonic distance to a fixed point 
bootstrap variance of bdhdavg 
bootstrap variance of bdavg 
bootstrap average nearest neighbor distance 

bootstrap bias of average interpoint distance 
bootstrap variance of average nearest neighbor distance 
expected value of average squared distance to 
a fixed point statistic 
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db2var variance of expected average squared distance 

dbaravg 
to a fixed point 
observed average distance to a fixed point statistic 

dbarvar variance of observed average distance to a fixed point 
dbexp expected value of average distance to a fixed point 
dbhexp expected value of average harmonic distance 

to a fixed point 

dbhmavg observed average harmonic distance to a 
fixed point statistic 

-~ dbhmvar· variance of observed average harmonic distance 

dbhvar 
to a fixed point 
variance of expected average harmonic distance 
to a fixed point 

dbsqravg observed. average squared distance 
to a fixed point statistic 

dbsqrvar variance of observed average squared 
distance to a fixed point 

dbvar variance of expected average distance to a fixed point 
fixx x-coordinate of fixed point 
fixy y-coordinate of fixed point · 
jai2avg ~ckknife average squared interpoint distance 
jai2bias ias of jackknife average squared 

jai2var 
interpoint distance 
variance of jackknife average squared 

jaiavg 
interpoint distance 
~ckknife average interpoint distance 

jaibias ias of jackknife average interpoint distance 

jaihavg ~ckknife average harmonic interpoint distance 
jaihbias ias of jackknife average harmonic 

jaihvar 
interpoint distance 
variance of jackknife average harmonic 

jaivar 
interpoint distance 
variance of jackknife average interpoint distance 

jd jackknife average distance to a fixed point 
.d2 ~ckknife average squared distance to a fixed point 
Jd2bias ias of jackknife average squared distance 

to a fixed point 

jd2var variance of jackknife average squared distance 

jdbias 
to a fixed point 
bias of jackknife average distance to a fixed point 

jdh ~ckknife average harmonic distance to a fixed point 
jdhbias ias of jackknife average harmonic distance 

jdhvar 
to a fixed point 
variance of jackknife average harmonic distance 

jdvar 
to a fixed point 
variance of jackknife average distance to a fixed point 

Jr jackknife average nearest neighbor distance 

jrbias bias of jackknife average nearest neighbor distance 
jrvar variance of jackknife average nearest neighbor distance 



ravg 
rexp 
rpoint 
rvar 

varpd 
varpd2 

varpdhm 

;~ 
z 

observed average nearest neighbor distance statistic 
expected value of average nearest neighbor statistic 
index of randomly selected bootstrap point 
variance of observed average nearest neighbor distance 
(in function expected, used to mean variance of 
expected average nearest neighbor distance) 
variance of observed average interpoint distance 
variance of observed average squared interpoint distance 

variance of observed average harmonic interpoint distance 
x-coordinates of simulated points 
y-coordinates of simulated points 
correction factor for random number generator 
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#include "stdio.h" 
#include "math.h" 

/* PROGRAM: monte WRITTEN: May, 1989 
PURPOSE: This program is the base program for the 
simulation of seven spatial statistics. This version 
of the program generates simulated points on a unit 
square, then calculates the nearest neighbor distance, 
the average interpoint distance and variations, and the 
the distance to a fixed point and variations. The 
statistics are calculated three ways, directly, and by 
means of bootstrap and jackknife methods. The program 
also calculates the expected values of these statistics 
using the formulae of Schulman, 1986. The output 
of this program is a dataset that can be read into the 
carlo program either by means of a pipe in unix, or by 
creating a (very large) intermediate file by redirection 
of standard output. 
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NOTE ON ZIP CODE REGIONS: Modifications to this program were 
done to permit analysing data in a zip code region. These 
modifications are not included in this dissertation, but 

*I 

are easily accomplished by modifying the code that simulates . 
the points to read standard input instead. 

NOTE ON CLUSTERS: Modifications to this program were done 
to simulate clusters of cases in the center of the unit 
square. These modifications are also not included in this 
dissertation, but involve adding a restriction on where some 
proportion of the cases are allowed to be, and continuing to 
regenerate random numbers until this restriction is met. 

FUNCTIONS: mainline, expect, strap, jack, choose, xhypot 

/* define globally recognized variables *I 
int COUNT =4, BOOTLIM=500, REPLIM=1 000, reps, z; 
float rexp, db2exp, dbexp, dbhexp, aiexp, ai2exp, aihexp, 

ravg, aipd, aipd2, aipdhm, dbaravg, dbsqravg, dbhmavg; 
FILE *fp; 

r start main program which runs once only *I 
main() 
{ 

char *ofile; 
void mainline(), expect(); 

/* define name of output file *I 
ofile = ''test.out"; 
r establish correction factor for random number generator *I 
Z=(int)pow(2.,31.)-1.; 

/* open outpUt file *I 
if((fp=fopen(ofile,"w"))==NULL) { 



} 

} 

printf("Cannot open output file\n"); 
exit(1 ); 

r call function expected with centroid 0.5,0.5 *I 
expect(0.5,0.5); 

r seed random number generator *I 
srand(getpid()); 

r call function mainline once for each simulation • I 
for(reps=O ;reps<REPLIM;reps++) { 

maanline(); 
} 

r close output file */ 
fclose(fp); 

r- -END MAIN PROGRAM--- -------*/ 
r BEGIN SIMULATION FUNCTION-----*/ 

void mainline() 
{ 

int ia, ib, ic, id, ie, ig, ih; 
float x[50], y[50],r[50], fixx,fixy,hypo,rvar, 

varpd, varpd2, varpdhm, xhypot(), dx, dy, 
dbar(SO], dbarvar, dbsqrvar, dbhmvar; 

void strap() •. jack(); 

r initialize array variables */ 
for(ia=O;ia <COUNT; ia++){ 

} 

x[!a]=O.O; 
y aa]=O.O; 
d ar[ia]=O.O; 
r[ia]=O.O; 

r establish random x andy coordinates in range 0-1 */ 
for(ib=O;ib < COUNT;ib++){ 

;(:gJ~~~~:~:n~g~~~~~~~ 
} 

r place fixed point at (0.5,0.5) */ 
fixx=0.5; 
fixy=0.5; 

r initialize statistic variables *I 
ravg=O.O; aipd=O.O; 
aipd2=0.0; aipdhm=O.O; 
dbaravg=O.O; dbsqravg=O.O; 
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dbhmavg=O.O; rvar=O.O; 
dbarvar=O.O; dbsqrvar=O.O; 
dbhmvar=O.O; varpd=O.O; 
varpd2=0.0; varpdhm=O.O; 

ie=O; 

r calculate observed statistics *I 
for(ie=O;ic < COUNT; ic++){ 
· r[iC]=9.9; 
dbar{ic]=xhypot(fabs(xpc]-fixx),fabs(y[ic]-fixy)); 
dbaravg=dbaravg+dbar[ic]; 
dbsqravg=dbsqravg+pow(dbaqic] ,2.0); 
dbhmavg=dbhmavg+(1.01dbar[Jc]); 

} 

for(id=O;id < COUNT; id++){ 
dx=fabs(x[ic]-x[id]); 
dy=fabs(y[ic]-y[id]); 

} 

if (id I= ic){ · 
hypo=xhypot(dx,dy); 
if (r[ic] > hypo) r{ic]=hypo; 

} 

if(id > ic){ 

} 

hypo=xhypot(dx,dy); 
alpd=aipd+hypo; 
aipd2=aipd2+pow(hypo,2.0); 
if (hypo I= 0.0) aipdhm=aipdhm+(1.01hypo); 
ie++; 

ravg=ravg+r[ic]; 

dbaravg=dbaravg/(float)COUNT; 
dbsqrcivg=dbsqravg/(float)COUNT; 
dbhmavg=dbhmavgl(float)COUNT; 
ravg=ravg/(float)COUNT; 
aipd=aipd/{float)ie; 
aipd2=aipd2/(float)ie; 
aipdhm=(aipdhm/(float)ie ); 

r calculate variances for r and dbar *I 
for(id=O;id < COUNT;id++){ 

} 

rvar=rvar+pow((r[id]-ravg),2.0); 
dbarvar=dbarvar +pow( (dbar[id]-dbaravg) ,2.0); 
dbsqrvar=dbsqrvar +pow( {pow{ dbar[id],2.0 )-dbsqravg) ,2. 0); 

rvar=rvar/(float)(COUNT*(COUNT-1)); 
dbarvar=dbarvarl{float){COUNT*(COUNT-1 ) ) ; 
dbsqrvar=dbsqrvarl(float){COUNT*(COUNT-1 ) ) ; 
dbhmavg=1.01dbhmavg; 
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} 

dbhmvar=((pow(dbhmavg,4.0)/pow(dbaravg,4.0))*dbarvar); 

I* calculate variances for aipd *I 
for(i~=O;ig <COUNT; iQ.++){ 
for(lh=O;ih <-COUNT; lh++){ 

} 
} 

if (ih > ig)( 
dx=fabs(x[!g]-x[!h]); 

} 

dy=fabs(y[ 19]-y[ 1 h]); 
hypo=xhypot(dx,dy); 
varpd=varpd+pow(fabs(hypo-aipd),2.0); 
varpd2=varpd2+pow(fabs(pow(hypo,2.0)-aipd2),2.0); 

varpd=varpd/(float) (ie*(ie-1 )); 
varpd2=varpd2/(float)(ie*(ie-1 )); 
aipdhm=1.0/aipdhm; 
varpdhm=((pow(aipdhm,4.0)/pow(aipd,4.0))*varpd); 

/*' output results of observed data to output file *I 
fprintf(fp,"o/od %7.5f %7.5f %7~5f %7.5f %7.5f %7.5f %7.5f", 

reps,ravg, aipd, aipd2, aipdhm, dbaravg, dbsqravg, 
dbhmavg); 

fprintf(fp," %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f %7.51\n", 
rvar, varpd, varpd2, varpdhm, dbarvar, dbsqrvar, 
. dbhmvar); 

/*'call bootstrap function with this simulated set *I 
strap(r,dbar,x,y); 

/*call jackknife function with this simulated set *I 
jack(r,dbar,x,y); 

/*' --END OF FUNCTION MAINLINE--------------- *I 
. . 
/* ---------BEGIN EXPECTED FUNCTION--------------- *I 

void expect(fixx,fixy) 
float fixx, fixy; 
( 

/*FUNCTION: expect WRITTEN: May 1989 
PURPOSE: This function calculates the expected values of 

the spatial statistics in a unit square with the fixed 
point as passed to it, according to the equations in 
Schulman, 1986, except nearest neighbor, for which the 
equation can be found in Shaw, 1986 

FUNCTIONS: choose 
*I 
float rvar, db2var, sigsqr, dbvar, choose(), aievar, ai2evar, 
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dbhvar, aihevar; 

r calculated expected nearest neighbor *I 
rexp=1.01(2.0*sqrt((float)COUNT)); 
rvar=0.0681pow((float)COUNT,2.0); 

r calculate expected average interpoint distances */ 
ai2exp=2.0*2.0*((1.013.0)-pow((1.012.0),2.0)); 
aiexp=Sqrt( ai2exp); 
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r the following is the expected variance of the 
average squared interpoint distance statistic *I 

ai2evar=(1.0/choose(COUNT,2))*( (2.0*((float)COUNT-1 )*(2.0/5.0)) + 
(4.0*((float)COUNT-1 )*((1.019.0)-(1.019.0))) + 

8.0* !floatlCOUNT-1l*!(1.0/12.0)+(1.0/12.0)-(1.0/8.0))) -
8.0* float COUNT-1 * (1.0/8.0)+(1.0/12.0)+(1.0112~0)))-
2.0* float COUNT-3 * 2.019.0)) + 
8.0* 1.0/4.0)*((2.0*((float)COUNT-2)*(1.0/4.0))+(1.014.0))) -
4.0*( (float)(C0UNT*2)-3)*((1.014.0)-2*( (1.0/12.0)+(1.0112.0))))); 

r variance of expected average interpoint distance *I 
aievar=ai2evarlpow( {2.0*aiexp ),2.0); . 

r approximate harmonic expected's as direct expecteds *I 
aihexp=aiexp; 
ai hevar=aievar; 

r calculate expected average squared distance to a fixed point*/ 
db2exp= (1.0/3.0) + (1.0/3.0) + pow(fixx,2.0) + pow(fixy,2.0) -

(2*((fixx*(1.0/2.0))+(fixy*(1.0/2.0)))); . 
db2var= (1.0/(float)COUNT)*((1.015.0) + (1.015.0) + 

. 2*((1.0/3.0)*(1.0/3.0))) -
4*((fixx*(1.0/4.0))+(fixy*(1.0/4.0)))) + 
4:pow(f!xx,2.0):((1.013.0)-(1.014.0))) + 
4 pow(fJxy,2.0) ((1.013.0)-(1.014.0))) -
pow(((1.013.0)+(1.013.0)),2.0)) + 
4*((1.013.0)+(1.013.0))*((fixx*(1.012.0))+(fixy*(1.0/2.0)))) + 
8*fixx*fixy*(((1.012.0)*(1.0/2.0))-((1.012.0)*(1.012.0)))) -
4*((fixy*((1.013.0)*(1.012.0)))+(fixx*((1.012.0)*(1.0/3.0)))))); 

r calculate expected average distance to a fixed point*/ 
sigsqr=( (float)COU NTI *db2var; 
dbexp=(sqrt(db2exp)) (1.0-(sigsqrl(8*db2exp*db2exp))­

((15.0/128.0)*((sJgsqr*sigsqr)lpow(db2exp,4.0)))); 
dbvar=(1.0/(float)COUNT)*((sigsqrl(4*db2exp)) + 

!!

7.0*sigsqr*sigsqr)/(32.0*pow(db2exp,3.0))) -
15.0*pow(sigsqr,3.0))1(512.0*pow(db2exp,5.0))) -
225.0*pow(sigsqr,4.0) )1(16384.0*pow(db2exp, 7.0)))); 

r approximate harmonic expected's as direct expecteds *I 
dbhexp=dbexp; 
dbhvar=dbvar; 



} 

r output results to output file *I 
fprintf(fp,"E %7.5f %7.5f %7.5f %7.5f %7.5f%7.5f %7.5f", 

rexp,aiexp,ai2exp,aihexp,dbexp,db2exp,dbhexp); 
fprintf(fp," %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f %7.5M", 

rvar, aievar, ai2evar, aihevar, dbvar, db2var,dbhvar}; 

/* ---END EXPECTED FUNCTION-------------- *I 

r ---BEGIN BOOTSTRAP FUNCTION------------- *I 

void strap(r,dbar,x,y) 
float r{SO], dbar{SO], x[SO),y[SO]; { 

r FUNCTION: strap WRITTEN: May 1989 

*I 

PURPOSE: This function performs a bootstrap analysis on 
the spatial statistics using the simulated values from 
functaon mainline. 

int rpoint, bk, bb, be, bd, be, bf, bg, bi, bj; 
float bootr{1 000], bootdbar{1 000], bootdb2[1 OOO),rpinter, 

boothmd[1000], bravg, bdavg, bd2avg, bhdavg, 
brvar, bdvar, bd2var, brbias, bdbias, bd2bias, 
baix[SO], baiy[SO),baipd(1 000l,bai2pd[1 OOO],baihm[1 000], 
baiavg, bai2avg, baihavg, baavar,ba2var,bahvar,baibias,ba2bias, 
bhyp,xhypot(), bahbias, bdhbias, bdhvar, intrand;; 

I* initialize array variables • I 
for(bd=O;bd<1 OOO;bd++){ 

} 

bootr(bd~=O.O; bootdbar{bd]=O.O; 
bo~tdb2 bd]=~.O; b~othmd(bdJ=?.O; 
bei!pd(b ]=0.0, baa2pd[bd]=O.O, 
baahm[bd]=O.O; 

if (bd < 50){ 
ba!x(bd]=o.o: 
baay[bd]=O.O, 

} 

/* initialize statistic variables • I 
bravg=O.O; bdavg=O.O; -
bd2avg=O.O; bhdavg=O.O; 
baiavg=O.O; · bai2avg=O.O; 
baihavg=O.O; brvar=O.O; 
baivar=O.O; ba2var=O.O; 
bahvar=O.O; bdvar=O.O; 
bd2var=0.0; btihvar=O.O; 
brbias=O.O; baibias=O.O; 
ba2bias=O.O; bahbias=O.O; 

· bdbias=O.O; bd2bias=O.O; 
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bdhbias=O.O; 

.r repeat all of the following BOOTLIM times *I 
for(bk=O ;bk<BOOTLIM ;bk++) { 

} 

r establish a bootstrap sample with replacement 
and calculate statistics *I 

for(bb=O; bb< COUNT; bb++){ 

} 

rpinter=(float)rand()/z; 
rpoint=(int)(rpinter*( (float)COUNT)); 
bootr[bk)=bootr[bk]+r[ rpoint]; 
bootdbar(bk]=bootdbar(bk)+dbar( rpoi nt]; 
bootdb2[bk]=bootdb2[bk]+pow(dbar(rpoint],2.0); 
booth md[bk]=boothmd[bk]+( 1 . 0/dbar( rpoi nt]); 
ba!x(bb]=x(rpo!nt]; 
ba.y bb]=Y rpomt]; 

r calculate average interpoint distances for bootstrap sample */ 
bj=O; 
for(bf=O ;bf<COUNT;bf++) { 
for(bg=O;bg<COUNT;bg++) { 

} 
} 

if (bg>bf) { 
bhyp:xhtpot(fabs(baix[bf]-baix[bg]), fabs(baiy[bf]-baiy(bg])) ; 
ba1pd[bk =baipd[bkl+bhyp; 

} 

bai2pd[b ]=bai2pd[bk]+pow(bhyp,2.0); 
if(bhyp I= O){baihm(bk)=baihm(bk]+(1.0/bhyp);} 
bj++; 

bootr[bk]=bootr[bk]/(float)COUNT; 
bootdbar[bk]=bootdbar(bk]/(float)COUNT; 
bootdb2{bk]=bootdb2[bk]l(float)COU NT; 
boothmd[bk]=boothmd[bk]/(float)COUNT; 
baipd[bk]=baipd[bk]l(float)bj; 
bai2pd[bk]=bai2pd[bk]/(float)bj; 
baihm[bk]=baihm[bk]/(float)bj; 

bravg=bravg+bootr[bk]; 
bdavg=bdavg+bootdbar(bk]; 
bd2avg=bd2avg+bootdb2(bk]; 
bhdavg=bhdavg+boothmd(bk]; 
baiavg=baiavg+baipd[bk]; 
bai2avg=bai2avg+bai2pd[bk]; 
baihavg=baihavg+baihm[bk]; 

r end of bootstrap replications, calculate means * 1 
bravg=bravg/BOOTLIM; 
bdavg=bdavg/BOOTLIM; 
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. bd2avg=bd2avg/BOOTLIM; 
bhdavg=bhdavg/BOOTLIM; 
baiavg=baiavg/BOOTUM; 
bai2avg=bai2avg/BOOTLIM; 
baihavg=baihavg/BOOTLIM; 

r calculate bootstrap variance and bias*/ 
for(be=O;be<BOOTLIM;be++){ 

} 

brvar=brvar +pow( (bootr(be ]-bravg) ,2.0); 
baivar=baivar +pow( (baipd(be ]-baiavg) ,2. 0); 
ba2var=ba2var +pow( (bai2pd(be ]-bai2avg) ,2. 0); 
bdvar=bdvar+pow( (bootdbar(be]-bdavg ),2.0); 
bd2var=bd2var +pow( (bootdb2[be]-bd2avg) ,2.0); 
brbias=brbias+(bootr(be ]-ravg); 
baibias=baibias+(baipd[be ]-aipd); 
ba2bias=ba2bias+(bai2pd[be]-aipd2); 
bdbias=bdbias+(bootdbar[be]-dbaravg); 
bd2bias=bd2bias+lbootdb2[be ]-dbsqravg); 
bahbias=bahbias+ baihm[be]-(1.0/aipdhm)); 
bdhbias=bdhbias+ boothmd[be]-(1.0/dbhmavg)); 

brvar=brvar/(float)(BOOTLIM-1); 
bdvar=bdvar/(float)(BOOTLIM-1 ); 
bd2var=bd2var/(float)(BOOTLIM-1 ); 
baivar=baivar/(float)(BOOTLIM-1); 
ba2var=ba2var/(float)(BOOTLIM-1 ); 
bahvar=(pow((1.0/baihavg),4.0)/pow(baiavg,4.0))*baivar; 
bdhvar=(pow((1.0/bhdavg),4.0)/pow(bdavg,4.0))*bdvar; 
brbias=brbias/(float)BOOTLIM; 
bdbias=bdbias/(float)BOOTLIM; 
bd2bias=bd2bias/(float)BOOTLJM; 
baibias=baibias/(float)BOOTLIM; 
ba2bias=ba2bias/~float)BOOTLJM; 
bdhbias=bdhbias/ float)BOOTLJM; 
bahbias=bahbias/ float)BOOTUM; 

r output results to output file *I 
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fprintf(fp,"%d o/o7.5f %7.5f %7.5f o/o7.5f %7.5f %7.5f o/o7.5f", 
reps,bravg,baiavg,bai2avg,(1.0/baihavg),bdavg,bd2avg,(1.0/bhdavg)); 

fprintf(fp," %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f", 
brvar,baivar, ba2var, bahvar, bdvar, bd2var,bdhvar); 

fprintf(fp," o/o-7.41 %-7.4f %-7.4f o/o-7.4f %-7.41 %-7.41 %-7.41\n", 
brbias,baibias, ba2bias,bahbias,bdbias,bd2bias,bdhbias); 

} 

r -----END BOOTSTRAP FUNCTION------------*/ 
r ---BEGIN JACKNIFE FUNCTION------------*/ 

void jack(r,dbar,x,y) 
float r[50], dbar[50], x[50], y[50]; 
{ 

r FUNCTION: jack WRITTEN: May 1989 



PURPOSE: This function performs a jackknife analysis of 
the spatial statistics using the simulated data from 

·mainline. 
*I 

int ja, jb, jc, je, jf, jg, jk, jl, jm, jn, jp; 
float jravg(SO] ,jdavg[SO] .Jd2avg[50l ,jdhavg(SOl ,jr ,jd,jd2,jdh, 

jrvar,jdvar, jd2var, vf1x, jaiavg, Jai2avg, jaihavg, jai[SO], 
~ai2[50],jaih[50], jx[SO], JY[SO],jaivar, jai2var, jaihvar, 
jdhvar, xhypot(), xh, jrbias, jaibias, jai2bias, jdbias, jd2bias, 
jaihbias, jdhbias; 

/* initialize statistic variables *I 
jr=O.O; jd=O.O; 
jd2=0.0; jdh=O.O; 
jaiavg=O.O; jai2avg=O.O; 
ja!h~vg=O.O; )r:bia_s=O.O; 
JatblaS=O.O; Ja12blas=O.O; 
jdbias=O.O; jd2bias=O.O; 
jrvar=O.O; j~var=O.O; 
!d~var=O.O; .J~hvar=O.O; 
!9.!Var=O.O; Jal2var=O.O; 
Jathvar=O.O; 

/* initialize array statistics *I 
forOC=O ;jc<SO; · JC++) { 

jravgUc)=O.O; j~avg[jc]:=O.O; 
!d~avg[jcl=O.O; . J.dhavg~c]=O.O; 
!XU~]=O.O, JYUCl=O.O, 
~9.![j~]=0.0; . Jal2[j~]=O.O; 
Jatfi[jc]=O.O, · 

} 

/* establish jackknife samples and calculate statistics *I 
forua=O;ja<COUNT; ja++){ 

je=O; 
forOb=O;jb<COUNT;jb++) { 
ifOa != jb){ 

} 
} 

jravgUa]=jravgUa]+r{jb]; 
jdavgUa]=jdavg[ja]+dbar{jb]; 
jd2avg~a]=jd2avg[ja]+pow( dbar{jb] ,2. 0); 
jdhavg ·a]=jdhavgUa]+(1.01dbar[jb]}; 
JxQe]=x :b]; 
Jy[je ]=y b]; 
je++; 

ji=O; jp=O; 
forug=O;jg<(COUNT-1 );jg++){ 
forOk=O;jk<{COUNT-1 );jk++){ 

if Qk.[j?' ]jg) <.[j ] h (fab li [j ] . [jk]) Jal a =Jal a +X ypot s\Jx g -JX , 
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} 

} 
} 

· fabs(jyUg]-jyUk])); 
jai2Ua]=jai2Ua]+pow(xhypot(fabs(jxUg]-jxUk]), 

fabs(jyUg}-jyUk])) 12.0); 
if (jaiUa]> 0) { jaih[ja]=JaihUa]+ 

(1.0/(xhypot(fabs(jxUg]-jxUkD~ 
fabs(jyUg]-jyUk])))); 

} 
jl++: 

} 

jp++: 

jravgUa]=jravgUaV(float)(COUNT-1); 
jdavgUa]=jdavgUa]/(float)(COUNT-1 ); 
jd2avgUa~=jd2avgUa]/(float)(COUNT-1 ); 
~dhavgUa =1.0/(jdhavgUa]/(float)(COUNT-1)); 
Jai[ja]=Jai ·a]/(float)jl; 
jai2[ja]=jai2[ja]/(float)jl; . 
jaih[ja]=1.0/(jaih[ja]/(float)jp); 

Jr=jr+jravgUa]; 
Jd=jd+jdavgUa]; 
Jd2=jd2+jd2avgUa]; 
Jdh=jdh+jdhavgUa]: 
jaiavg=jaiavg+jaiuaJ; 
Jai2avg=jai2avg+Jai2Ua]; 
jaihavg=jaihavg+jaih[ja]; 

jr=jr/(float)COUNT; 
jd=jdl(float)COUNT; 
Jd2=jd2/(float)COU NT; 
~dh=jdh/(float)COU NT; 
Jaiavg=jaiavg/(float)COUNT; 
jai2avg=jai2avg/(float)COUNT; 
Jaihavg=Jaihavg/(float)COUNT; 

r calculate variances */ 
for(jf=O ;jf<COU NT ;jf ++} ( 

jrvar=jrvar+pow((jravgUf]-jr),2.0); · 

} 

jdvar=jdvar+pow((jdavg[jf]-jd),2.0); 
jd2var=jd2var +pow( (jd2avg[jf]-jd2} 12.0); 

for(jm=O;jm<:(COUNT-1 );jm++) ( 
forO_n=O;jn<(COUNT-1 );jn++){. 
if Qn>jm)( 

Jaivar=jaivar +pow( (xhypot(jxUm]-jx[jn] I 
y[jm)-jyUn])-jaiavg)~ 2.0); 

jai2var=jai2var +pow( (pow(xhypot(jxUm )-jxUn] I 
jyUm ]-jy[jn]) 12.0 )-ja12avg) ,2. 0); 

} 
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} 

} 
} 

I* calculate biases*/ 
jrbias=(jr-ravg); 
jaibias=(jaiavg-aipd); 
jai2bias=(jai2avg-aipd2); 
JdbiaS=(jd-dbaravg); .. 
~d2bias=(jd2-dbsqravg); 
~aihbias=(jaihavg-aipdhm); 
Jdhbias=(jdh-dbhmavg); 
vfix=(float) (COUNT-1 )/COUNT; 
jrvar=jrvar*vfix; 
jdvar=jdvar*vfix; 
jd2var=jd2var*vfix; 
jaivar=jaivar*vfixl(float)(jl* W-1 ) ) ; 
jai2var=jai2var*vfixl(float)(jl*(jl-1 ) ) ; 

jaihvar=( (pow(jaihavg ,4.0)/pow(jaiavg ,4. 0) )*jaivar); 
jdhvar=((pow(jdh,4.0)/pow(jd,4.0))*jdvar); 

I* print output to output f.ile *I 
fprintf(fp,"o/od %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f", 

reps,jr,jaiavg, jai2avg, jaihavg,jd,jd2,jdh); 
fprintf(tp," %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f %7.5f",. 

jrvar,jaivar, jai2var, jaihvar,jdvar,jd2var, jdhvar); 
fprintf(fp," %-7.4f %-7.41 %-7.4f %-7.4f %-7.4f %-7.4f %-7.41\n", 

jrbias,jaibias, jai2bias, jaihbias, jdbias, jd2bias, jdhbias); 

r ----END JACKKNIFE FUNCTION-----------~--- */ 
r --BEGIN UTILITY FUNCTIONS------------------ *I 

float xhypot(x,y) .float x,y; { 

} 

r FUNCTION: xhypot WRITTEN: May 1989 
PURPOSE: Function takes two floating point variables 
corresponding to distance between two points on x and y axis 
and returns a floating point variable of the distance 

*I 
between the points. 

float z; 
Z=pow(x,2.0)+pow(y,2.0); 
Z=Sqrt(z); 
return z; 

float choose(n,m) int n,m;{ 

r FUNCTION: choose WRITTEN: May 1989 
PURPOSE: Function calculates n choose c. Used by expected 
value function. 
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} 

*I 
int fa, fb, fc; 
float nfact, mfact, nmfact; 

· float chose; 
nfact=1.0; · 
mfact=1.0; 
nmfact=1.0; 
for (fa=1 ;fa<= n; fa++){ 
nfact=nfact*( (float)fa); 

} 
for (fb=1 ;fb<=m; fb++H 
mfact=mfact*( (float)fb); } . 

for (fe=1 ;fc<=(n-m);fC++){ 
nmfact=nmfact*((float)fc); 

} 
chose=nfact/(nmfact*mfact); 
return(chose); 

r - END OF UTILITY FUNCTIONS---.----- *I 
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.. 

6.1.2. Carlo.c 
Important Variables 

Variable Contains· 

*ofile 
*fp 
dum1-7 
aa-agO 
xmin 
xmax 
sum 
s 
s2 
g1 
~2 

name of input file 
file pointer 
dummy variables for reading in values 
arrays to hold input variables 
minimum value of statistic 
maximum value of statistic 
sum for calculating mean 
standard deviation 
variance 
skewness 
kurtosis 
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#include <stdio.h> 
#include <math.h> 

r PROGRAM: carlo WRITIEN: May 1989 
PURPOSE: This program takes the output file from 
program monte and summarizes the results. It was 
written as a separate program to permit examination 
of the intermediate data, if so desired. 

FUNCTIONS: stats */ 

r definition of global variables */ 
int COUNT=100Q; 

main() 
{ 

FILE *fp; 
void stats(); 
char *ofile, line[150]; 
int rep,i,j; 
float aa(1 OOO],ab[1 OOO],ac(1 OOO],ad(1 000], 

ae[1 OOO],af[1 OOO],ag(1 OOO],dum1,dum2, 
dum3,dum4,dum5,dum6,dum7; 

r open file for reading */ 
ofile="test. out"; 
if((fp=fopen(ofile,"r"))==NULL){ 

} 

pnntf("cannot open input file"); 
exit(1 ); 

r initialize array variables*/ 
for(i=O;i<1 OOO;i++) { 

) 

aa~~=O.O; ab[il=O.O; 
ac ~ =0.0~ ad[i =0.~; 
ae 1 =0.0, af[1]=0.0, 
ag i =0.0; 

r read in and discard the "expecteds" from 
input file, then read in variables for analysis */ 

fgets(line, 150,fp); r expected line */ 

for(i=O;i<COUNT;i++){ 
fscanf~fp,"0/od",&rep); fscanf(f~," %f",&dum1 ); 
fscanf fp," %f",&dum2); fscanf(fp," %f",&dum3); 
fscanf fp," %f",&dum4); fscanf(fp," %f",&dum5); 
fscanf fp," %f",&dum6); fscanf(fp," %f",&dum7); 

forO=O;j<7;j++){ 
fscanf(fp," %*f"); 

} 
fscanf(fp, "o/o *d"); 
forO=O;j<21 ;j++){ 

fscanf(fp," %*f"); 
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... 
} 

} 
fscanf(fp, "% *d"); 
for(j=O ;j<21 ;j++ ){ 

fscanf(fp," %*f"); 
} 
aalil=dum1; ab[i]=dum2; 
ac i =dum3; ad[i]=dum4; 
ae i =dum5; af(i]=dum6; 
ag i =dum7; 

r pass data for analysis by stats fundion, 
ejed page and print titles for each analysis */ 

printf("observed r'n"); 
stats(aa,COUNT); 

printf("observed i\n"); 
stats(ab,COUNT); 

printf("observed i'"2\n"); 
stats(ac,COUNT); 

printf("observed iharm\n"); 
stats(ad,COUNT); 

printf("observed d\n"); 
stats(ae,COUNT); 

printf("observed cf'Z\n"); 
stats(af,COUNT); · 

printf("observed dharm\n"); 
stats(ag,COUNT); 

r rewind the dataset for the second pass 
to analyse variances*/ 

rewind(fp); 

fgets(line, 150,fp); r expeded line */ 

for(i=O ;i<COUNT;i++ ){ 
fscanf(fp, "%d" ,&rep); 
for(j=O;j<7;j++){ .. 

fscanf(fp," %*1"); 
} 
fscanf fp," %f",&dum1 ; 
fscanf fp," %f",&dum2 ; 
fscanf fp," %f" ,&dum3 ; 
fscanf fp," %f",&dum4 ; 
fscanf fp," %f",&dum5 ; 
fscanf fp," %f",&dum6 ; 
fscanf fp," %f" ,&dum7); 
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} 

fscanf(fp, "% *d"); 
for(j=O ;j<21 ;j++ ){ 

fscanf(fp," % *f"); 
} 
fscanf(fp, "% *d"); 
for(j=O;j<21 ;j++){ 

fscanf(fp," o/o*f"); 
} 

aa~~=dum1; ab(i]::dum2; 
ac i ::dum3; ad[i]::dum4; 
ae i =dumS; af[i]::dum6; 
ag i =dum7; 

r print titles, pass variances to stat function 
for analysis *I 

printf("observed r variance\n"); 
stats(aa,COUNT); 
printf("observed i variance\n"); 
stats(ab,COUNT}; 
printf("observed i"2 variance\n"); 
stats(ac,COUNT}; 
printf("observed iharm variance\tl"); 
stats(ad,COUNT); 
printf("observed d variance\n"); 
stats(ae,COUNT); 
printf("observed d"2 variance\n"); 
stats(af,COUNT}; 
printf("observed dharm variance\tl"); 
stats(ag,COUNT); 

r rewind dataset for third pass to 
analyse bootstrap values */ 

rewind(fp); 

. fgets(line, 150,fp); r expected line */ 

for(i=O;i<COUNT;i++)( 
fscanf(fp, "% *d"); 
for(j=O;j<14;j++) ( 

fscanf(fp," o/o*f"); 
} 
fscanf fp, "%d" ,&rep); 
fscanf fp," %f",&dum1 ); 
fscanf fp," %f",&dum2); 
fscanf fp," %f" ,&dum3 ; 
fscanf fp," %f",&dum4 ; 
fscanf(fp," %f" ,&dumS ; 
fscanf(fp," %f" ,&dum6 ; 
fscanf(fp," %f" ,&dum7 ; 
for(j=O;j<14;j++) { 

fscanf(fp," % *f"); 
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• 
} 

} 
fscanf(fp, "% *d"); 
forO=O;j<21 ;j++ ){ 

fscanf(fp," % *f"); 
} 
aalil::dum1; ab{i]::dum2; 
ac i ::dum3; ad(i]::dum4; 
ae i ::dum5; af{t]::dum6; 
ag i ::dum7; 

printf("bootstrap Nl"); 
stats(aa,COUNT); 
printf("bootstrap N'l"); 
stats(ab,COUNT); 
pri ntf("bootstrap i"2\n "); 

· stats(ac,COUNT); 
printf("bootstrap iharm\n"); 
stats(ad,COUNT); 
printf("bootstrap d\rl"); 
stats(ae,COUNT); 
printf("bootstrap d"2\n"); 
stats(af,COUNT); 
printf("bootstrap dharm\n"); 
stats(ag,COUNT); 

r rewind dataset for fourth pass, analysing · 
bootstrap variances */ 

rewind(fp); 

fgets(line, 150,fp); r expected line ., 

for(i=O ;i<COUNT;i++) { 
fscanf(fp, "% ~d"); 
forO=O;j<14;j++){ 

fscanf(fp," o/o*f"); 
} 
fscanf(fp, "o/od" ,&rep); 
forO=O;j<7;j++){ 

fscanf(fp," o/o*f"); 
} 
fscanf(fp," %f",&dum1 ; 
fscanf(fp," %f",&dum2 ; 
fscanf fp," %f",&dum3 ; 
fscanf fp," %f",&dum4; 
fscanf fp;'' o/of" ,&dum5 ; 
fscanf fp," %f",&dum6 ; 
fscanf fp," %f",&dum7 ; 

forO=O;j<7;j++){ 
fscanf(fp,"' o/o*f"); 

} 
fscanf(fp, "% *d"); 
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} 

forU=O;j<21 ;j++){ 
fscanf(fp," %*f"); 

} 
aalil=dum1; ab{i]=dum2; 
ac i =dum3; ad(.i]=dum4; 
ae i =dum5; af(r]=dum6; 
ag i =dum7; 

printf("bootstrap r variance\n"); 
stats(aa,COUNT); 
printf("bootstrap i variance\n"); 
stats(ab,COUNT); 
printf("bootstrap i"'2 variance\n"); 
stats(ac,COUNT); 
printf("bootstrap iharm variance\n"); 
stats(ad,COUNT); 
printf("bootstrap d variance\n"); 
stats(ae,COUNT); 
printf("bootstrap d"2 variance\n"); 
stats(af,COUNT); 
printf(."bootstrap dharm variance\n"); 
stats(ag,COUNT); . 

r rewind for fifth pass, analysing 
bootstrap biases */ 

rewind(fp); 

fgets(line, 150,fp); r expected line ., 

for(i=O;i<COUNT;i++){ 
fscanf(fp, "% *d"); 
forU=O:j<14;j++){ 

fscanf(fp," %*f"); 
} 
fscanf(fp, "%d" ,&rep); 
forU=O;j<14;j++){ 

fscanf(fp," %*f"); 
} 
fscanflfp," %f",&dum1 ; 
fscanf fp," %f" ,&dum2 ; 
fscanf fp," %f",&dum3 ; 
fscanf fp," %f",&dum4 ; 
fscanf~fp," %f" ,&dum5 ; 
fscanf fp," %f",&dum6 ; 
fscanf fp," %f",&dum7); 

fscanf(fp,"o/o*d"); 
forU=O;j<21 ;j++){ 

fscanf(fp," %*f"); 
} 
aaD]=dum1 ; ab(i]=dum2; 
ac[i]=dum3; ad(i]=dum4; 
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ae[!]=dumS; a~[i]=dum6; 
ag[l]=dum7; 

printf{"bootstrap r bias\nll); 
stats{aa,COUNT); 
printf{"bootstrap i bias\n"); 
stats{ab,COUNT); 
printf{"bootstrap i"2 bias\n"); 
stats{ac,COUNT); 
printf{"bootstrap iharm bias\n"); 
stats(ad,COUNT); 
printf("bootstrap d bias\n 11

); 

stats(ae,COUNT); 
printf("bootstra.2_ d"2 bias\n"); 
stats(af,COUNT); 
printf("bootstrap dharm bias\n11

); 

stats{ag,COUNT); 

r rewind dataset for fifth pass, analysing 
jackknife. values • I 

rewind{fp); 

fgets{line, 150,fp); r expected line */ 

for{i=O ;i<COUNT;i++ ){ 

} 

fscanf{fp, II% *d"); 
forO=O ;j< 14 ;j++) ( 

fscanf(fp," %*f"); 
} 
fscanf(fp, II% *d11

); 

forO=O;j<21 ;j++)( 
fscanf(fp," %*f"); 

} 
fscanf(fp, 11%d11 ,&rep); 
fscanf fp, II %f" ,&dum1 ; 
fscanf fp, 11 %f",&dum2 ; 
fscanf fp, 11 %f",&dum3 ; 
fscanf fp, 11 %f",&dum4 ; 
fscanf fp, 11 %f",&dum5 ; 
fscanf fp, II %f" ,&dum6 ; 
fscanf fp, 11 %f",&dum7); 
forO=O;j<14;j++)( 

fscanf(fp," %*f"); 
} 

aalil=dum1; ab{i]=dum2; 
ac i =dum3; ad{.i]=dum4; 
ae i =dum5; af[1]=dum6; 
ag i =dum7; 

printf{"jacknife r\n"); 
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stats(aa,COUNT); 
printf("jacknife i\n"); 
stats(ab,COUNT); 
printf("jacknife i"'2\n "): 
stats(ac,COUNT); 
printf("jacknife iharm\n"); 
stats(ad,COUNT); 
printf("jacknife a\n"); 
stats(ae,COUNT); 
printf("jacknife d"'2\n"); 
stats(af,COUNT); 
printf("jacknife dharm\tl"); 
stats(ag,COUNT); 

r rewind dataset for sixth pass, analysing 
variances of jacknife statistic*/ · 

rewind(fp); 

fgets(Jine, 150,fp): r expected line */ 

for(i=O ;i<COU NT;i++) { 

} 

fscanf(fp,"o/o*d"); 
forO=O:j<14;j++) { 

fscanf(fp," o/o*f"); 
} 
fscanf( fp, "% * d"); 
forQ=O;j<21 ;j++){ 

fscanf(fp," % *f"); 
} 
fscanf(fp, "%d" ,&rep); 
forQ=O;j<7:j++){ 

fscanf(fp," o/o*f"); 
} 
fscanf fp," o/of",&dum1l; 
fscanf fp," %1" ,&dum2 ; 
fscanf fp," o/of" ,&dum3 ; 
fscanf fp," %f",&dum4; 
fscanf fp," %f",&dum5); 
fscanf fp," %f" ,&dum6); 
fscanf fp," o/of" ,&dum7); 
forO=O;j<7;j++){ 

fscanf(fp," % *f"); 
} 

il=dum1; abP]=dum2; 
i =dum3; ad[i]=dum4; 
i =dumS; af[i]=dum6; 
i =dum7; 

printf("jacknife r variance\n "); 
stats(aa,COUNT); 
printf("jacknife i variance\tl"): 
stats(ab,COUNT); 
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printf("jacknife i"2 variance\n"); 
stats(ac,COUNT); 
printf("jacknife iharm variance\n"); 
stats(ad,COUNT); 
printf("jacknife d variance\n"); 
stats(ae,COUNT); 
printf("jacknife d"'2 variance\n"); 
stats(af,COUNT); 
printf("jacknife dharm variance\n"); 
stats(ag,COUNT); 

r rewind dataset for seventh and final pass, 
analysing bias in jackknife statistic *I 

rewind(fp); 

fgets(line,150,fp); r expected line*/ 

for(i=O;i<COUNT;i++){ 

} 

fscanf(fp,"%*d"); 
for(j=O ;j<14;j++) { 

- fscanf(fp," %*f"); 
} 
fscanf(fp, "%_*d"); 
for(j=O;j<21 ;j++){ 

fscanf(fp," % *f"); 
} 
fscanf(fp, "%d" ,&rep); 
for(j=O ;j<14 ;j++) { 

fscanf(fp," %*f"); 
} 
fscanf fp/' %f",&dum1 ); 
fscanf fp," %f",&dum2); 
fscanf fp," %f",&dum3); 
fscanf fp," %f",&dum4~; 
fscanf fp," %f" ,&dum5 ; 
fscanf fp," %f",&dum6 ; 
fscanf(fp," %f",&dum7); 

aa~~=dum1; abfi]=dum2; 
ac i =dum3; ad i]=dum4; 
ae i =dum5; af[i]=dum6; 
ag i =dum7; 

printf("jacknife r bias\n "); 
stats(aa,COUNT); 
printf("jacknife i bias\n"); 
stats(ab,COUNT); 
printf("jacknife i"2 bias\n"); 
stats(ac,COUNT); 
printf("jacknife iharm bias\n"); 
stats(ad,COUNT); 
printf("jacknife d bias\n"); 
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} 

stats(ae,COUNT); 
printf("jacknife d"2 bias\n"); 
stats(af,COUNT); 
printf("jacknife dharm bias\n"); 
stats(ag,COUNT); 

r close file */ 
fclose(fp); 

r----- ---END PROGRAM MAIN---------------*1 
r- -BEGIN FUNCTION STATS-----------------*1 
void stats(x,n) 

float x[]; int n; 
( 

rFUNCTION: stats WRITTEN: May 1989 
ORIGIN: originally written by S. Salvin in Fortran 
PURPOSE: this fundion calculates various summary statistics 
for an array passed to it of length n and generates a histogram 

*I 

float xmi·n, xmax, itab[SO], sum, xbar, s, s2, 
s3, s4, dx, temp, g1, g2, imax, ifad, 
xl, xr; 

int i, ii, j, k~ ntab[SO], iscale, npts; 

r initialize variables for histogram *I 
iscale=30; k= 1 o; 
r establish and print general statistics */ 
printf("General Statistics\n"); 
fo r(i=O ;i<k;i++) ( 

ntab[i]=O; 
} 

r calculate minimum, maximum, and mean *I 
xmin=x(1]; 
xmax=x(1]; 
sum=O.O; 
for(i=O ;i<n ;i++) ( 
if(xmin>x(i]){ 

xmin=x[i]; 
} 
if(xmax<x[i]) ( 

xmax=x[i]; 
} 
sum=Sum+x[i]; 

} 
xbar=sum/(float)n;. 

r calculate variance, standard deviation, 
skewness and kurtosis*/ 

s2=0.0; 
S3=0.0; 
S4=0.0; 
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dx=(xmax-xmin)/(float)k; 
for(i=O;i<n;i++)( 

temp=x[i]-xbar; 
s2=S2+powltemp,2.0l: 
s3=S3+pow temp,3.0 , 
s4=S4+pow temp,4.0 ; 
for(ii= 1 ;ii<=k;ii++) ( 

} 

if(x[i]>(ii*dx+xmin)) continue; 
ntab{ii-1 ]=ntab[ii-1]+ 1 ; 
break; 

} 
if(s2<=0.0){ 

printf(" ··-· variance=O.O *****\rl"); 
exit(O); 

} . 

s2=S2/(n-1 ); 
s=Sqrt(s2}; 
s3=S3/(n-1 }; 
s4=S4/(n-1 ); 
g1=S3/pow(s,3.0); 
g2=(s4/pow(s,4.0))-3.0; 

printf" nobs = %o\n",n); 
printf "mean = %f\n" ,xbar); 
printf "s2 = %1\r,.',s2}; 
printf "s.d. = %f\n",s); 
printf "g1 = %f\n",g1 ); 
printf "g2 = %f\n",g2); 
printf "min = %f\n",xmin); 
printf "max= %1\n",xmax); 

r generate histogram *I 
imax=O.O; -
for(i=O ;i<k;i++) ( 

if(ntab[i]<imax) continue; 
imax=ntab[i]; 

} 
ifad=imaxliscale+1; 
for(i=O ;i<k;i++) ( 

itab[i]=ntab[i]lifad+ 1 ; 
} 
printf(" ------ freqaency tabulation -----\nO); 
printf("interval frequency histogram\n"); 
xl=xmin; · 
for(i=O;i<k;i++){ 

xr=xl+dx; 
npts=itab[i]; 
printf(" %8.5f to %8.5f %8d ",xl,xr,ntab[i]); 
for(j=O ;j<npts ;j++) { 

printf("*"); 
} 
printf(''\n"); 
xl=xr; 
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} 
printf(''\n %Sf observations approximately per *O,ifact); 

} 

/*----------END FUNCTION STATS---------------*1 

., 



6.2. Appendix B - Software for Chapter 3 

6.2.1. Squish.c 

Variable 

N 
ADD 
RADIUS 
X MEAN 
YMEAN 

;~ 
newx 
newy 
theta 
newr 
z 

Important Variables 

Contains 

Number of points to be read in 
Number of points to be added to create cluster 
Radius of area in which cluster points are added 
X-coordinate of center of cluster 
Y-coordinate of center of cluster 
x-coordinates of input data 
y-coordinates of input data 
x-coordinate of new "clustered" point 
y-coordinate of new "clustered" point 
polar angle coordinate of new "clustered" point 
polar radius coordinate of new "clustered" point 
correction factor for random number generator 
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# include <math.h> 
# include <stdio.h> 

r PROGRAM: squish WRITTEN: December, 1989 
PURPOSE: Reads in a series of x,y coordinates of points 
in Santa Clara County, and then generates a cluster by 
adding additional points in a specified area. Outputting 
all data to standard output. 

FUNCTIONS: rectx, recty *I 
main() 
{ 

float x(300], y[300], rectx(),recty(), 
. . ~e~, ~ewy, newr, theta, RADIUS, XMEAN,YMEAN; 
lnt 1a, lb, IC, 1d, dum1, dum2, Z, N, ADD; 

r define parameters for program *I 
N=216; ADD=20; 
RADIUS=1.491, XMEAN=94.733, YMEAN=299.8233; 

r- seed random number and establish correction factor *I 
srand(getpid()); 
Z=(int)pow(2.,31.)·1.; 

r initialize array variables *I 
for(ia--Q;ia<300;ia++) { 

} 

x(!a]=O.o·; 
y(la]=O.O; 

r read in original x,y coordinates *I 
for(ib=O;ib<N ;ib++) { 

} 
scanf("%d %f o/of o/od", &dum1, &x[ib), &y[ib], &dum2); 

r re.autput input points with identifiers *I 
for(ie=O ;ic<N ;ic++) { 

} 

printf(" . %d %7.3f %7.3f 2\n", 
ic+202,x[ic] ,y[ic]); 

r establish new points in cluster and output 
points are established by calculating their 
polar coordinates and then converting.to 
cartesian coordinates *I 

for(id=O;id<ADD;id++) { · 

} 

newr=(float)( (rand()l(float)z)*RADIUS); 
theta=(float)((rand()l(float)z)*(2. *3.14159265)); 
newx=rectx( newr,theta)+XMEAN; · 
newy=recty( newr, theta)+ YMEAN; 
printf(" o/od %7.3f %7.3f Zvl", 

id+iC+202,newx,newy); 
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r------------END OF PROGRAM MAIN----------------------- */ 

r ----------BEGIN UTILITY FUNCTIONS--------------------- */ 
} 

float rectx(r,theta) 
float r,theta; 
{ 

} 

r FUNCTION: rectx WRITIEN: December 1989 
PURPOSE: This function takes the polar coordinates of 

. a point and returns the corresponding cartesian· "x" 
coordinate*/ 

float x; 
double cos(); 
X=r*( (float)cos(theta)); 
return x; 

float· recty(r,theta) 
float r,theta; 
{ 

} 

r FUNCTION: recty WRITIEN: December 1989 
PURPOSE: This function takes the polar coordinates of 
a point and returns the corresponding cartesian "y" 
coordinate */ 

float y; 
double sin(); 
Y=r*((float)sin(theta)); 
return y; 

r-----END OF UTILITY FUNCTIONS---------- */ 
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6.2.2. Nneigh4.c 
Important Variables 

Variable Contains 

C1 
C2 
COUNT 
r1~ 

~~0 
r21[] 

~~ 
group[] 
g 
contin[] 
a 
b 

number of points in group 1 
number of points in group 2 
total number of points 
nearest neighbor within group 1 
nearest neighbor within group 2 
nearest neighbor in group 2 of point in group 1 
nearest neighbor in group 1 of point in group 2 
x coordinates input from standard input 
y coordinates input from standard input 
group membership of (x,y) coordinate read in 
indicator for placing distance in appropriate cell 
data for contmgency table 
mean distance to point in same group 
mean distance to point in opposite group 
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#include "stdio.h" 
#include "math.h" 

main() r PROGRAM: nneigh4 WRITIEN: January 10, 1990 
PURPOSE: Program generates nearest neighbor 

data for within and between group stats 

{ 

to perform contingency table analysis and 
to generate the coefficient of spatial association 
as described in Sorenson 

SUBROUTINES: None 
*I 

int ia, ib, COUNT, C1, C2,group[500],j, k, dum1 ,g, contin[4]; 
float x[500],y[SOO],r1 [250], mintst, 

r2[250],r12[250],r21 [250],r,a,b; 

COUNT =437; C1 =201; C2=236; 

r initialize array variables *I 
a=O.O; b=O.O; 
for(ia=O;ia<500 ;ia++) { 

} 

if(ia<250){ 

} 

r1 ~a]=O.O; 
r2[ia)=O.O; 
r12(!a]=0.0; 
r21 (la]=O.O; 

x~a]=O; 
y(ia]=O; 
group(ia]=O; 

r read in coordinates and group membership*/ 
for(ib=O;ib<COUNT;ib++) { 

} 
scanf("%d %f %f %d",&dum1, &x[ib], &y[ib], &group[ib]); 

r establish data for contingency table *I 
for(j=O ;j<COUNT;j++) { 

r=99999.9;· 
for (k=O;k<COUNT;k++){ 

if(k != j){ 
mintst=sqrt(((x[k]-x[Jl)*(x[k]-xU]))+ 

< (y[kJ-yU]} * (y[kJ-y[Jl))); 
if (mintst < r) { 

r=mintst; 
if (group[J1=1 ){ 

} 

if (group[k)=1) g=O; 
if (group[k]=2) g=2; 

if (group[J1=2}{ 
if (group[k]=2} g=3; 

if (group[k)=1) g=1; 
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} 
} 

} 

contin[g]++; 
} 

} 

/*print results of analysis *I 
printf "Contingency Table Analysis of Nearest Neighbor\n\n"); 
printf " BASE GROUP\n"); 
printf" · Group 1 Group 2\n"); 
printf "N.N. Group\n"); 
printf " Group 1 o/od o/od\n" ,contin[O],contin[1]); 

o/od\n" ,contin[2],contin[3]); printf " Group 2 o/od 
printf "0); 

I* calculate distance for cell a of table *I 
for O:=O:j<C1 ;j++){ 

r1 01=99999.9; 
for (k=O;k<C1 ;k++){ 

if (k I= j){ . 

} 

mintst=Sqrt(((x[k]-xP,])*(x[k]-x[Jl))+ 
{(y(k]-y[j]) (y[kJ-y[j]))); 

if (mintst < r1 [j]) r1 [Jl=mmtst; 

/* calculate distance for cell d of table *I 
for O;=O;j<C2;j++){ 

r20]=99999.9; 

} 

for (k=O;k<C2;k++) { 
if (k != j){ 

} 

mintst=sqrt(((x[k+C1 ]-x[j+C1 ])*(x[k+C1]-x[j+C1 ]))+ 
((y[k+C1]-y[j+C1 ])*(y[k+C1]-y[j+C1 ]))); 

if (mintst < r2[J1) r2[j]=mintst; 

r calculate distance for cell b of table *I 
for {j=O;j<C1 ;j++) { r establish r for group 12 *I 

r12U]=99999.9; . 
for (k=O ;k<C2 ;k++) { 

mintst=Sqrt{((x[k+C1~-x[j])*(x[k+C1]-x[j]))+ 
((y[k+C1 ]-y j])*(y[k+C1]-y[j]))); 

if (mintst < r12U]) r12 ')=mmtst; 
} 
b=b+r12[J1; 

} 
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} 

r calculate distance for cell c of table */ 
for O=O;j<C2;j++){ 

r21 [)1=99999.9; 
for (k=O;k<C1 ;k++){ 

} 

mintst=sqrt(( (x[k]-x[j+C1]) *(x[k]-x[j+C 1]) )+ 
( (y[k]-y[j+C 1]) * (y(k]-y[j+C 1 ]) ) ) ; 

if (mintst < r21 [Jl) r21 U]=mmtst; 

b=b+r21 (j]; 
} 

r calculate variables for coeff. of spatial association */ 
a=a/COUNT; 
b=b/COUNT; 
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6.3. Appendix C - Software for Chapter 4 

6.3.1. stats.c 

Variable 

~~UNT 
fixx 
fixy 
ravg 
aipd 
aipd2 
dbaravg 
dbsqravg 
dbhmavg 
rvar 
varpd 
varpd2 
dbarvar 
dbsqrvar 

dbhmvar 

Important Variables 

Contains 

x-coordinates of input dataset 
y-coordinates of input dataset 
number of points in input dataset 
x-coordinate of fixed point 
y-coordinate of fixed point 
average nearest neighbor distance 
average interpoint distance 
average squared interpoint distance 
average distance to fixed point 
average squared distance to a fixed point 
average harmonic distance to a fixed point 
variance of average nearest neighbor distance 
·variance of average interpoint distance 
variance of average squared interpoint distance 
variance of distance to fixed point 
variance of average squared distance to 
fixed point 
variance of average harmonic distance to fixed point 
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#include <stdio.h> 
#include <math.h> 

f' PROGRAM: stats WRITTEN: February 1990 
PURPOSE: Program generates observed nearest neighbor 
average interpoint distance and distance to a fixed 
point statistics for input data sets. 

FUNCTIONS: xhypot */ 

main() 
{ 

int ia, ib, ic, id, ·ie, ig, COUNT; 
float x[500], y[500],r(500], fixx, fixy, hypo, rvar, 

varpd, varpd2, varpdhm, xhypot(), dx, dy, 
dbar(SOO], dbarvar, dbsqrvar, dbhmvar, 
ravg, aipd, aipd2, dbaravg, dbsqravg, dbhmavg; 

char *title; 

title= "SPATIAL ANALYSIS OF ALL UVE BIRTH DATA"; 

r establish number of input data points*/ 
COUNT=343; 

f' initialize array variables */ 
for(ia=O;ia < COUNT; ia++){ 

} 

x~:a]=O.O; 
y ta]=O.O; 
d ar[ia]=O.O; 
r(ia]=O.O; 

r read in points for analysis*/ 
for(ib=O;ib<COUNT;ib++) { 

scanf("%f %f", &x[ib], &y(ib]); 
} 

f' establish fixed point as reference ford-bar stats */ 
fiXX=101.38; fixy=288.48; 

r initialize other statistics */ 
ravg=O.O; aipd=O.O; 
aipd2=0.0; dbaravg=O.O; 
dbhmavg=O.O; dbsqravg=O.O; 

r calculate statistics*/ 
ie=O; . 
for(ie=O;ic < COUNT; ic++){ 

r(ic]=99999999.9; 

dbar(ic]=xhypot(fabs(x[ic]-fixx),fabs(y~c]-fixy)); 
dbaravg=dbaravg+dbar(ic]; 
dbsqravg=db~qravg+pow(dbar(ic],2.0); 
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} 

dbhmavg=dbhmavg+(1.0/dbar[ic]); 

for(id=O;id < COUNT; id++){ 
dx=fabs(x(ic]-x(id]); 
dy=fabs(y(ic]-y(id]); 
if (id != ic){ 

hypo=xhypot(dx,dy); 
if (r(ic] > hypo) r[ic]=hypo; 

} 
if(id > ic){ 

} 

hypo=xhypot( dx,dy); 
atpd=aipd+hypo; 
aipd2=aipd2+pow(hypo,2.0); 
ie++; 

} 
ravg=ravg+r[ic]; 

dbaravg=dbaravg/(float)COUNT; 
dbsqravg=dbsqravg/(float)COU NT; 
dbhmavg=dbhmavg/(float)COUNT; 
ravg=ravg/(float)COUNT; 
aipd=aipd/(float)ie; 
aipd2=aipd2/(float)ie; 

r initialize variances*/ 
rvar=O.O; 
dbarvar=O.O; 
dbsqrvar=O.O; 
dbhmvar=O.O; 
varpd=O.O; 
varpd2=0.0; 
varpdhm=O.O; 

r calculate variances for nearest neighbor and 
average distance to a fixed point statistics*/ 

for(id=O;id < COUNT;id++){ 
rvar=rvar+pow((r(id]-ravg),2.0); 

} 

dbarvar=dbarvar +pow( (dbar[id)-dbaravg) ,2.0); 
dbsqrvar=dbsqrvar+pow((pow(dbar[id],2.0)-dbsqravg),2.0); 

rvar=rvar/(float)(COUNT*(COUNT-1 )); · 
dbarvar=dbarvar/(float)(COUNT*(CCUNT-1)); 
dbsqrvar=dbsqrvar/(float)(COUNT*(COUNT -1 )); 
dbhmavg=1.0/dbhmavg; 
dbhmvar=((pow(dbhmavg,4.0)/pow(dbaravg,4.0))*dbarvar); 

r calculate variances for average interpoint 
distance statistics *I 

for(ig=O;ig < COUNT; ig++){ 
for(ih=O;ih <COUNT; ih++){ 

if (ih > ig){ 
dx=fabs(x(ig]-x[ih)); 
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} 

} 
} 

} 

dy=fabs(y[ig]-y[ih]}; 
hypo=xhypot(dx,dy); 
varpd=varpd+pow(fabs(hypo-aipd),2.0); 
varpd2=varpd2+pow(fabs(pow(hypo,2.0 )-aipd2) ,2.0); 

varpd=varpdl{float) (ie*(ie-1 )); 
varpd2=varpd2/{float)(ie*(ie-1) ); 

r print report of results */ 
printf{"%s\n0,title); 
printf("Nearest Neighbor Statistics:\n r = %f variance= %10, 

ravg, rvar); 
printf("Average Distance to Fixed Point (%f,%f) Statistics\n", 

fixx,fixy); 
printf "d = %f variance = %f\n" ,dbaravg,dbarvar); 
printf "cf'2 = o/of variance= o/of\n",dbsqravg,dbsqrvar); 
printf "dharm = %f variance= o/of\nO,dbhmavg,dbhmvar); 
printf "Average lnterpoint Distance Statistics\n"); 
printf "i = o/of. variance = o/of\n",aipd,varpd); 
printf "i"2 = o/of variance= %f\n",aipd2,varpd2); 

r -END OF FUNCTION MAIN-----:-------- */ 

r ------BEGIN UTILITY FUNCTIONS------------ *I 

float xhypot{x,y) float x,y;{ 

r FUNCTION: xhypot WRITTEN: May 1989 
PURPOSE: Function takes two floating point variables 
corresponding to distance between two points on x and y axis 
and returns a floating point variable of the distance 

*I 
between the points. 

float z; 
Z=pow(x,2.0)+pow(y ,2.0); 
z=Sqrt(z); 
return z; 

} . r -----END OF UTILITY FUNCTIONS---------- */ 
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6.3.2. perm.c 
Important Variables 

Variable Contains 

luNT 
xsamp[] 
ysamp[] 
ravg 
aipd 
aipd2 

x coordinates of input dataset 
y coordinates of input dataset 
number of points in input dataset 
x coordinates of sample of 4 
y coordinates of sample of 4 
average nearest neighbor distance 
average interpoint distance 
average squared interpoint distance 
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#include "stdio.h" 
#include "math.h" 

r PROGRAM: perm WRITIEN: February 22, 1990 

*I 

PURPOSE: Program generates nearest neighbor and average 
interpoint distance statistics for all permutations of 4 
of all birth defects occurring in tract 5031.04. 

FUNCTIONS: xhypot() 

main() 
{ 

int ia, ib, ic, id, ie,ig,ih,ij,ik, COUNT; 
float x[14], y[14],r[4], hypo,xs.amp[~].ysamp[4], 

xhypot(), dx, dy, ravg, a1pd, a1pd2 ; 

r initialize array variables */ 
for(ia=O;ia <COUNT; ia++){ 

l 

x!!a]=O.O; 
Y. la]=O.O; 
1f ia<4){. . 

} 

xsamp[!a]=O.O; 
ysamp[la)=O.O; 
r[ia]=O.O; · 

r set the number of points to be read into the program *I 
COUNT=14; 

r read in the x andy coordinates from standard input*/ 
for(ib=O;ib<COUNT;ib++) { 

scanf("%f %1", &x[ib], &y[ib]); 
} 

r generate all samples of size 4 */ 
for(ig=O;ig<14;ig++) { 

for(ih=ig+ 1 ;ih<14;ih++){ 
for(ij=ih+ 1 ;ij<14;ij++) { 

for(ik=ij+ 1 ;ik<14;ik++) { 

xsamp 0 =XIig]; ysamp~O]=y[ig]; 
xsamp 1 =X ih]; ysamp 1 )=y[ih]; 
xsamp 2 =X ifl; ysamp[ ]=y(ij]; 
xsamp 3 =X ik]; ysamp[3)=y[ik]; 

r initialize statistic variables ., 
ravg=O.O; 
aipd=O.O; 
aipd2=0.0; 

r calculate statistics., 
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} 

} 
} 

} 
} 

ie=O; 
for(ie=O;ic < 4; ic++H 

r[ic]=99999999.9; 

} 

for(id=O;id < 4; id++){ 
dx=fabs(xsamppc]-xsamp[id]); 
dy=fabs(ysamp[ic]-ysamp[id]); 
if (id I= ic){ 

hypo=xhypot(dx,dy); 
if {r[ic] > hypo) r[ic]=hypo; 

} 
if(id > ic)( 

} 

hypo=xhypot(dx,dy); 
a.Jpd::aipd+hypo; 
aipd2=aipd2+pow(hypo,2.0); 
ie++; 

} 
ravg=ravg+r[ic]; 

ravg=ravg/4.; 
aipd=aipdl(float)ie; 
aipd2=aipd2/(float)ie; 

printf("%f %f %M",ravg,aipd,aipd2); 

*I r----END OF PROGRAM MAIN-------­

r- BEGIN UTILITY FUNCTIONS-------*/ 

float xhypot(x,y) float x,y;{ 

} 

r FUNCTION: xhypot WRITIEN: May 1989 
PURPOSE: Function takes two floating point variables 
corresponding to distance between two points on x and y axis 
and returns a floating point variable of the distance 

*I 
between the points. 

float z; 
Z=pow(x,2.0)+pow(y,2.0); 
Z=Sqrt(z); 
return z; 

r---END OF UTILITY FUNCTIONS---------*/ 

176 



, .. 

6.3.3. perm2.c 
Important Variables 

Variable Contains 

z 

X~ 
bOUNT 
xsampD 
ysampO 
ravg 
aipd 
aipd2 

in program main, correctin factor for 
random number generator 

x coordinates of input dataset 
y coordinates of input dataset 
number of points in input dataset 

· x coordinates of sample of 4 
y coordinates of sample of 4 
average nearest neighbor distance 
average interpoint distance 
average squared interpoint distance 
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#include "stdio.h" 
#include "math.h" 

r PROGRAM: perm2 WRITIEN: February 23, 1990 
PURPOSE: Program generates nearest neighbor and · 
average interpoint distances for 2000 random samples 
of 4 points from the population of all live births 
in tract 5031.04. 

*I 
FUNCTIONS: xhypot() 

main() 
{ 

int ia, ib, ic, id,. ie,ig,ih,ij, COUNT,z; 
float x(373], y(373],r[4], hypo,xsamp[4],ysamp[4], 
· xhypot(), dx, dy, ravg, aipd, aipd2; 

rseed random number generator and 
correction factor */ 

Z=(int)pow(2.,31.)-1.; 
srand(getpid()); 

r initialize array variables */ 
for(ia=O;ia < COUNT; ia++){ 

} 

X!!a]=O.O; 
Y. ta]=O.O; 
tf ia<4){ 

} 

x.samp[!a]=O.O; 
ysamp[ta]=O.O; 
r[ia]=O.O; 

/*'read in coordinates from standard input*/. 
for(ib=O;ib<COUNT;ib++){ 

scanf("0/of o/of", &x[ib], &y[ib]); 
} 

r establish random samples of size 4 *I 
for(ig=O;ig<2000;ig++){ . 

for(ih=O;ih<4;ih++){ 

} 

ij=(int)( ( rand()/(float)z)*( (float)COUNT)); 
xsamp(!h ]=x[!ij; 
ysamp[th ]=y[tj]; 

/*'initialize average variables*/ 
· ravg=O.O; 

aipd=O.O; 
aipd2=0.0;. 

ie=O; 
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) 

} 

r calculate statistics*/ 
for(ie=O;ic < 4; ic++){ 

r(ic]=99999999.9; 
for(id=O;id < 4; id++){ 

dx=fabs(xsamp~c]-xsamp[id]); 

} 

dy=fabs(ysamp[ic]-ysamp[id]); 
if (id != ic){ · 
hypo=xhypot( dx,dy); 
if (r[ic] > hypo) r[ic]=hypo; 

} 
if(id > ic){ 

} 

hypo=xhypot( dx,dy); 
a1pd=aipd+hypo; 
aipd2=aipd2+pow(hypo,2.0); 
ie++; 

} 
ravg=ravg+r(ic]; 

ravg=ravg/4.; 
aipd=aipd/(float)ie; 
aipd2=aipd21(float}ie; 

. printf("%f 0iof %M",ravg,aipd,aipd2); 
} 

r-----END OF PROGRAM MAIN---------- *I 

r -------BEGIN UTILITY FUNCTIONS---------- */ 

float xhypot(x,y} float x,y;{ 

} 

r FUNCTION: xhypot WRITTEN: May 1989 
PURPOSE: Function takes two floating point variables 
corresponding to distance between two points on x and y axis 
and returns a floating point variable of the distance 

*I 
between the points. 

float z; 
z=pow(x,2.0)+pow(y,2.0); 
Z=sqrt(z); 
return z; 

r -------END OF UTILITY FUNCTIONS---------- */ 
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