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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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A Power-Law Formulation ofLaminar Flow in Short Pipes 

ABSTRACT 

Max Sherman 
Indoor Environment Program 

Applied Science Division 
Lawrence Berkeley Laboratory, 

University of California 
Berkeley, California 94720 

This report develops a theoretical description of the hydrodynamic relationship 
based on a power-law representation between the air flow and applied pressure for 
laminar flow in short pipes. It is found that short pipes can be described with a 
simple power law dependence on pressure, but that the exponent of the power law 
is itself a function of pressure. The entry length of the flow is derived based on a 
formulation for short, sharp-edged pipes. The theoretical formulation is com
pared to measured data. A dimensionless quantity, S, is defined to account for 
the power ·law behavior and maps simply to the flow exponent. The S number 
can be used to infer many of the characteristics of the flow and may prove useful 
in the inverse problem of determining flow geometry from fluid properties and the 
measured pressure and flow. 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings and Com
munity Systems Building Systems Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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INTRODUCTION 
When applying physical laws to complex situations, laws with different scaling 

properties may come into play simultaneously. The analysis of these situations is 
often made easier by using power law descriptions of the phenomena. The dimen
sionless numbers and exponents associated with such a description can be used to 
extract the essential characteristics of the system of interest. 

The system studied herein is the flow of an incompressible, viscous fluid 
through a short pipe in response to a pressure difference. There are two distinct 
loss mechanisms in operation: the energy required to accelerate the fluid from rest 
and the energy required to overcome the viscous losses associated with laminar 
flow. 

There are three types of problems to consider: flow prediction, viscometry, 
and systems characterization. In flow prediction the pipe characteristics and fluid 
properties are known and the flow vs. pressure response is desired. In viscometry 
the flow vs. pressure response and pipe characteristics are known and the fluid 
properties are desired. In system characterization the fluid properties and flow vs. 
pressure response are known and the pipe characteristics are desired. 

Power laws are often used as an empirical relationship for physical 
phenomena, when all that is known is that there is a smooth monotonic relation
ship between to measurable variables. Powy laws are often us2d in to describe 
turbulent flow situations (e.g., pipe-network or skin-resistance solutions ). In 
general power-law approaches to the solution of laminar flow problems are not 
used. This report can be used to help bridge the gap in formalism between lam
inar and turbulent flow by providing a rigorous power-law treatment of laminar 
flow. 

One area in which laminar flow has been treated using a power-law approach 
is that of buikdWg physics. The techniques for measuring the air leakage of build
ing envelopes - all treat the flow as a power-law function of the applied pressure. 
Justification for such treatment has been empirical, but as shown herein, a 
power-law formulation is a good description of the physical phenomena. 

BACKGROUND 
Regardless of the flow regime it may be possible to cast the mean velocity 

(hereafter referred to as the velocity) as a power law in the pressure drop: 

V QC D.Pn (l) 
If the power law were absolute, the exponent would be constant and completely 
independent of the applied pressure. If, however, the exponent is slowly-varying 
in pressure, the power law can be used in an approximate form where both the 
exponent and coefficient are slowly-varying functions of pressure. 

The exponent is only a good descriptor if it does not vary too much. A good 
criterion for determining the usefulness of the power law description is 
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1. dn I 
I oP dAP I << 1 
I I 

where oP is the range of pressure of interest around AP. 
(2) 

If this criterion is met then the power law is- a ·reasonable description. 
Regardless of the true functional relationship between the pressure and velocity, 
the following expression can be used to define ·the local exponent: 

n = ~p ~ (3) 
v dl::iP 

Laminar Entry Flow 

The problem of lami~~ flow in short pipes has been investigated for over a 
century. Several authors - have elected to treat it by linearizing the Navier
Stokes equation and all have come up with an equation of the following form: 

l::iP = 32 :2l v + m%pv2 (4) 

The first term can be recognized as the Hagen-Poiseuille equation for (fully
developed) laminar flow. As described in detail in the references, the second term 
results from acceleration of the fluid into its exit profile and the excess viscous 
losses resulting therefrom. 

The factor m can be calculated from the linearized theory and has also been 
measured. For pipes long enough for the exit profile to be parabolic, the parame
ter m can be treated as a constant; and the literature contains a range of values -
for it, 2.16 < m < 2.41, which gepend on the details of the linearization. The esti
mate of m=2.28 by Langharr will be used herein as being most representative. 

Inherent in the derivation of Eq. 4 are assumptions regarding the inlet flow 
and outlet flow conditions. As Prandtl and Tietjens9 -among others-have 
pointed out, these assumptions can be9ome suspect when pipe length become 
shorter than the entry length. Schiller introduced a correction to m for very 
short pipes with bell-mouthed inlets. A correction in the opposite sense, however, 
is required to account for flow contraction due to separation at (a sharp-edged) 
inlet. 

The experiments and theory used in refs 6-8, assumed a square inlet profile 
with no flow separation. For such a case, the corrections such as Schiller's are 
needed, but is often difficult to keep separation from occurring-especially outside 
a well-controlled laboratory situation. In this report we shall assume m need not 
be corrected and is a constant even for very short pipes. 

POWER-LAW EXPONENT AS A CHARACTERISTIC 

Equation 4 can be solved to yield the mean velocity as a function of the 
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applied pressure: 

or, equivalently, 

Q _ 8 rr v l ["". / 1 + rri p A 
2 
6. P _ 1] 

m V . 64rrZfL2[2 

(5.1) 

(5.2) 

To recast Eq. 5 in terms of a power law we must be able to find the power 
law exponent using Eq. 3: 

n = 'h [ 1 + [1 + m P d4 b.P ]-~ l (6) 
1024fL2/ 2 

Eq. 2 can be evaluated to show that the exponent is slowly varying enough to be 
a useful concept: 

I d I 
I b.P _n_ I = n (1-n) (2n-1) < 0.1 
I db.P I . 

(7) 

A pipe is characterized by its geometry (i.e., length, diameter, and perhaps 
the shape of the entry), but the system (of the pipe and the fluid) is more com
plex. The flow exponent as defined in Eq. 6 is a characteristic of the system. 
Comparison of its definition with expression for the mean velocity allows us to use 
the exponent in place of the pressure (or the velocity) to express many of the 
quantities of interest: 

The mean (volumetric) flow can b.e found by eliminating the pressure from 
Eqs. 5 and 6. 

Q = 81r vl 1-n 
m n-% 

(8) 

The standard Reynolds number (i.e., based on diameter and fluid velocity) can 
similarly be calculated: 

Re = 32 l 1-n 
m d n-% 

(9) 

The discharge coefficient is often used to describe the actual flow in terms of 
the equivalent perfect nozzle. 

· 26.P [ )
-~ 

cd = v -P-· (10) 

This expression can also be rewritten in terms of the exponent: 

"' ;-;-::: 
Cd= V ~ mn 

(11) 

From this expression it is clear that the value of m may have to change slightly 
for very short pipes (i.e., n-%) to reflect the shape of the inlet. 

L 
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The friction factor, (defined as :>..=( d/l)(t::.P /%pv 2) relates the shear at the· walls 
to energy loss in the fluid. 

A=mj__n_ 
I l-n 

(12) 

The friction factor is often used in the study of turbulence, because it. is indepen
dent of the flow; in the laminar regime, however, it is not. 

Entry Length 

The concept of entry length is often used to determine if the flow has reached 
its steady-state behavior. For lengths less than the entry length the flow is said 
to be developing, for lengths greater than the entry length the flow is developed 
(because the exit profile is parabolic) and for pipe length much greater than the 
entry length the .flow is said to be fully developed because entry effects can be 
ignored. 

One common approach to defining the entry length is as that length at which 
the profile becomes (approximately) parabolic, leading to an entry length of 
dRe/16. An examination of Eq. 4, however, suggests a slightly different value; 
namely, we choose the entry length such that the the frictional losses due to lam.
inar flow of a pipe of length equal to the entry length is equal to the entry loss 
(i.e., the two terms in Eq. 4 are equal). Thus, 

l = m Re d (13) 
e 64 

This definition leads to a somewhat smaller value for the entry length than the 
conventional definition and it can be expressed in terms of the exponent as fol
lows: 

le 1-n ( ) 
l = 2n-1 

14 

Thus the exponent and the length of the pipe relative to its entry length are 
uniquely related. As can be seen from the right-hand axis of Fig. 1, the entry 
length is quite sensitive to the exponent near the limits of its range. 

Comparison with Measured Data 

To determine whethe0 our power-law formulation is justified, we can use 
measured data. Kreith1 has measured the flow characteristics of pipes of 

·different dimensions (e.g., 0.45<l/d<17.25) Figure 1 contains a plot of the original 
data overlaid with the theoretical curve. The measured data relates the exponent 
to the dimensionless length of the pipe . 

.li.!l=.!!l..i. 
Re 64 le (15) 

The left axis is the data as presented in the source; the right axis is the dimen
sionless length from Eqs. 14 and 15. The last two curves demonstrate that the 
data agrees with the theory for all reasonable values of m and that this dataset 
cannot be used to refine the value of m. 
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The measurements were made for square inlet capillary tubes, rather than the 
bell-mouthed inlets assumed in refs. 6-8. Our theoretical curve gives reasonable 
agreement to within the precision of the data. It is especially important to note 
that there is good agreement for low exponent values in short pipes, suggesting 
that m may be taken as constant. A· more detailed experimental investigation, 
however, could determine the value of m and its dependence on length more pre
cisely. 

S NUMBER 
When the length of the pipe is equal to its entry length (i.e., the pressure 

drops due to the two terms of Eq. 4 are equal), the pressure drop is equal to a 
critical value: 

(16)" 

At pressures above this value the losses will be principally from the entry and at 
pressures below this the losses will be principally by steady-state viscous friction. 

This critical pressure value suggests that there is a non-dimensionalization of 
the pressure appropriate for short pipes. We define S number as follows: 

s = ~p (17) 
c 

Using this definition, the fluid flow, exponent, and entry length can be 
expressed in terms of the S number. 

Q = 8
::

1 (V1+8S -1) (18) 

n =% ( 1 + (1+88)-~) (19) 

l e 
-= 
l 

(20) 

Although Eq. 8 defines the flow in terms of the power-law exponent, it is not 
a power law. Our definitions of the flow exponent and S number can be used to 
reformulate Eq. 4 as a power law. 

Q = 167r vi ¢> sn (21) 
m 

where the power-law factor, ¢>, is defined as follows: 

¢> = (2/n)n(l-n)l-n(2n-lfn-l (22) 
This factor varies between one and two as a function of exponent. 

Eq. 21 is not a true power law because both the exponent, n, and the 
coefficient, specifically ¢>, have a pressure dependence, albeit small. As shown by 
Eq. 7, however, it is locally a power-law and may be treated as such within a res
tricted range of pressures. 

.. 
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The power-law factor is an artifact of the equation of interest not being a true 
power law. When the S number is near unity, the power-law factor is also unity 
and is slowly-varying. As the S number deviates significantly from unity, </> 

begins to slowly increase anq approaches the limit for either laminar or inertial 
flow. 

The S number, which is a non-dimensionalized pressure, is a good indicator of 
the shortness of the pipe. For large values of S the pipe is very short and can be 
characterized as an orifice in the limit. At small values of S the pipe is very long 
and is well-described by viscous flow equations. Fig. 2 shows the S-number 
dependence of the (dimensionless) length, discharge coefficient, and power-law 
factor. 

DISCUSSION 
The fundamental equation, Eq. 4, was derived in ref. 6-8 assuming a flat inlet 

profile and a parabolic exit profile. The parameter m could then be modified for 
pipes too short to establish fully-developed laminar flow. Kreith's data, however, 
fits the model using a constant m, when ostensibly the pipe was too short. Even 
in the limit of zero length (i.e., an orifice) our expression for the discharge 
coefficient (Eq. 11) yields a quite reasonable value (0.66) compared to that for a 
sharp-edged circular orifice (0.60). This formulation has also allowed a definition 
of entry length (Eq. 13) that is clearer and more directly tied to the physics than 
others. 

The ability of our constant-m model to work well for very short, sharp-edged 
pipes is largely fortuitous. The energy loss caused by acceleration of the fluid at 
the (entrance) contraction happens to approximate the extra energy required to 
produce the parabolic profile for a longer pipe. Thus, the formulation of this 
report can be used for all flow lengths provided that very short pipes have sharp-
edged inlets. · 

System Characterization 

When the S number is small (i.e., the pipe is long), formulations such as Eq. 4 
may prove the most straightforward to use-as in the case of viscometry. When 
S is very large, inertial forces dominate and the system can be treated as an 
orifice. For non-extreme values of S the power-law formulation may provide 
more insight into the problem. Such is especially the case when the problem is to 
characterize the pipe geometry based on measured system performance (i.e. pres
sure and flow). 

The local exponent, n, of the power-law characterizes the pipe. The exponent 
is uniquely related to the dimensionless length (Eq. 14) and similarly to the 
dimensionless pressure (Eq. 19) and discharge coefficient (Eq. 11). If one wished 
to know the properties of the leak (as in building physics), a measurement of the 
exponent and coefficient of the power law would be sufficient. In this inverse 
problem the flow data can be collected over a narrow range of pressures and fitted 
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to a power law: 
Q: Ktl.Pn 

The S number can be found directly from the exponent: 
S = 1.. (1-n)n 

8 (n-Y2) 2 

From Eqs. 8, 16, 22, 23 the area and. length of the 
uniquely, using the intermediates P and ¢>: 

c .y;;;;;;: 
A= KPn-v. 2mp 

c . ¢> 

mKPn 
I= c 

161r¢>v 

Having solved for the geometric properties of the pipe, 
could be used to predict the flow at a given pressure. 

Bridge to Turbulence 

(23) 

(24) 

pipe can be solved for 

(25.1) 

(25.2) 

any of Eqs. 4, 8, or 21 

The results derived herein are only applicable to flow in the laminar regime. 
However, by representing the two problems in parallel forms, similarities appear. 

The friction factor is often used to characterize the losses of fluids in pipes. 
Eq. 12 can be cast in more conventional terms as a function of Reynold's riumber: 

A= 16¢>2 ....!!!. .!!:.. Re1/n-2 
( ]

1/n-1 

64 l 
(26) 

As can be quickly verified, this expression reduces to the well-known laminar and 
orifice limits for n=1 and n=¥2, respectively. 

This formulation can be compared to that for turbulent flow at moderate 
Reynold's numbers. The Blasius formula11 gives the friction factor in smooth 
pipes for turbulent flow at 4x103 <Re< 105: 

)..Blasius = 0.316 Re-1/4 (27) 
Note that in this regime the flow follows a power-law of n=4f7. 

This similarity would allow networks of laminar pipes to be solved by the 
same approaches that Jeppson1 uses for turbulent ones. Other similarities are 
suggested, but have not yet been pursued. 

Other Geometries 

The expressions derived here were based on straight pipes of circular cross
section. It may be desired ~o analyze cases with different cross-sections or curved 
or crooked lengths. Baker1 has derived an equation similar to Eq. 4 for the case 
of flat plates with and without right-angle bends. As the form of the equation is 
the same, a power-law formulation can be similarly derived. The work suggests 
that the value of m could be increased to account for bends. Further 
modifications of Eqs. 5, 6, 16 would also prove necessary to account for different 
cross sections. 

L. 
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The application to building physics, mentioned in the introduction, involves 
system characterization, the solution of series/parallel networks, and non-circular 
cross-sections. To the extent that this problem could be treated as a single, 
equivalent circular pipe, the results of this report are applicable. The exact solu
tion of this problem, however, requires more development. 

NOMENCATURE 

A Open area of pipe [m2] 
cd Discharge coefficient [-] 
d Diameter of pipe [m] 
K Power-law coefficient [m3 /s-Pan] 

Length (along flow path) of pipe [m] 
n Power-law exponent 
Q Fluid flow through pipe [m3 /s] 
Re Reynolds number [-] 
s S number[-] 
!:l.P Pressure drop across pipe [Pa] 
8P Pressure range of interest [Pa] 
PC Critical pressure for short pipe [Pa] 
v Mean velocity of fluid [m/s] 
>. (Darcy) friction factor [-] 
1-l Viscosity of fluid [kg/m-s] 
v Kinematic viscosity (1-l/P) of fluid [m2 /s] 
¢> Power-law factor [-] 
p Density of fluid [kgjm3] 
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FIGURE CAPTIONS 

1) Kreith's data with their error bars shown as function of exponent. Left hand 
axis is the normalized length from the original reference. Right hand axis is 
pipe length divided by the entry length. Theoretical curve uses m=2.28 as 
derived in text. 

2) Dependence of length, discharge coefficient, and power-law factor with S 
number. 
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THEORY vs. MEASUREMENT 
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