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Abstract 

We discuss the physics of matter that is relevant to the structure of com­
pact stars. This includes nuclear, neutron star matter and quark matter and 
phase transitions between them. Many aspects of neutron star structure and its 
dependance on a number of physical assumptions about nuclear matter prop­
erties and hyperon couplings are investigated. We also discuss the prospects 
for obtaining constraints on the equation of state from astrophysical sources. 
Neutron star masses although few are known at present, provide a very direct 
constraint in a.s much as the connection to the equation of state involves only 
the assumption that Einstein's general theory of relativity is correct at the 
macroscopic scale. Supernovae simulations involve such a plethora of physical 
processes including those involved in the evolution of the precollapse configu­
ration, not all of them known or understood, that they provide no constraint 
at the present time. Indeed the prompt explosion, from which a constraint had 
been thought to follow, is now believed not to be the mechanism by which most, 
if any stars, explode. In any case the nuclear equation of state is but one of 
a multitude of uncertain factors, and possibly one of the least important. The 
rapid rotation of pulsars is also discussed. It is shown that for periods below 
a certain limit it becomes increasingly difficult to reconcile them with neutron 
stars. Strange stars are possible if strange matter is the absolute ground state. 
We discuss such stars and their compatibility with observation. 

tCopyright of these lecture notes is reserved by the author and by his sponsor, DOE. The author 
may separately publish, or expand upon and publish these notes as a separate book. This right is 
not waived by permiting the organizers of the Dronton Summerschool to have the notes published 
as a part of its proceedings. 
This work was supported by the Director, Office of Energy Research, Office of High Energy and 
Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract 
DE-AC03-76SF00098. 
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Particle physics, nuclear physics of dense matter and astrophysics are connected 
through Einstein's theory of general relativity. Having derived the special theory, 
in which time and space were intimately related, Einstein realized that a theory of 
gravitation, even for static objects, could not involve just the spatial coordinates. 
The source of the gravitational field, say a material body, must generate a result that 
effects space-time. Neutron stars are so dense, as we shall soon see, that this becomes 
an intimate part of their description. It is not possible to formulate Einstein's gen­
eral theory without getting involved in the considerable apparatus of the geometry 
of curvilinear coordinates, and measures of curvature such as the Christoffel symbols 
and the Ricci tensor. This apparatus is most briefly and very clearly given in a small 
book by P. A. M. Dirac based on a course of lectures at Florida State university given 
in the 1970's. For a complete treatment see the books by Misner, Thorne and Wheeler 
[1], and Weinberg [2). I shall give some small taste of the theory in the appendix. 
Not unexpectedly, Einstein's field equations can be derived as the conditions for the 
stationarity of an appropriately defined action. For the gravitational fields the action 
density involves the metric functions, which describe, in particular how the invariant 
interval between two space-time events can be measured, dr 2 = 9Jlv(x1 , • • • x 4 )dxJldxv, 
which in flat space-time is the familiar invariant dr 2 = dt 2 - dx 2 - dy 2 - dx 2 • The 
gravitational action is ( cf. [3]), 

----------------------------------------------1-----=~----------------
.Cg = --l6_1r_GRv-:9 (1) 

where G is Newton's constant, R is the Ricci scalar curvature and g is the determinant 
of the metric, 9Jlv· We also define .Cm = LmF9 for the Lagrangian, Lm, of the matter 
fields </>, and construct the total action 

(2) 

The coupled field equations for the matter and metric functions emerge as the con­
ditions that yield vanishing variation of the action with respect to the metric and 
matter fields. They can be written as 

(3) 
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(4) 

where G~-' 11 = R~-'11 - !Y11- 11 R is Einstein's curvature tensor and T~-' 11 
IS the matter­

radiation stress-energy tensor, 

(5) 

The first of the field equations are the familiar Euler-Lagrange equations. We shall 
encounter them in studying theories of dense nuclear matter. The second is Einstein's 
field equations, and expresses the way in which all forms of energy contributing to 
the stress-energy warp space-time. The form of the stress-energy tensor appearing 
above is different from the canonical form familiar in field theory. That they are the 
same is shown in an example in the appendix. 

We don't usually think of the matter Lagrangian and field equations as de­
pending on the metric because we usually ignore gravity and so the metric tensor 
is a diagonal constant, 911- 11 = (1, -1, -1, -1)8~-'11 • In strong gravitational fields this 
is not true, and we need to justify it for nuclear and particle physics as they enter 
astrophysics. This we now do. In the process we become familiar with gravitational 
units, and get a qualitative description of neutron stars. 

In empty space outside a static spherical star of radius R and mass M, 
Schwarzschild showed that the solution of Einstein's equations have a simple form. 
All but the diagonal components of the metric vanish, and they are simple. The line 
element is 

( 
2GM) ( 2GM)-1 

dr 2 = 1- -r- dt2- 1- -r- dr2
- r2d() 2

- r 2 sin2 Od¢}, (r > R) (6) 

A guide to the derivation is given in appendix, which also serves as an introduction 
to the mathematics encountered in the general theory. I want to show you that the 
metric functions, 9th 9rr in front of dt 2 and dr2 change by an infinitesimal amount 
over the distance between nucleons in a star that is near the limit of collapse to a 
black hole, and hence even for the most massive neutron star. If this is true, and it 
is as we shall show, it is of great practical importance. It means that we can solve 
the problem of the matter fields in fiat (Minkowski) space. We then put the result 
of that calculation into the right side of Einstein's equations. This amounts to a 
partial decoupling. The matter stress-energy (equation of state) can be derived in 
the absence of gravity and the result put into Einstein's equations to find out how 
gravity arranges the matter. \Ve will see that a compact star near the limit of collapse 
has very high density and is what is referred to as a neutron star. To do this I need 
to show you how to compute in gravitational units G = 1 = c. 

1 = c = 3 X 1010 cm/s 
1 = G = 6.7 x 10-8 cm3 g-1 s-2 

3 
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These can be treated as equations so that for example, 

1 s = 3 x 1010 em 

1 g = 7.4 X 10-29 em 

1 s-2 = 1.5 x 107 g/cm3 

1 erg= 1 g cm2 s-2 = 8.2 X 10-50 em (8) 

Next we estimate the mass and radius of a star near the limit. Notice that the 
metric becomes singular at r = 2M. For actual stars, this radius is interior to the star 
itself where the Schwarzschild solution does not hold and the singularity therefore does 
not exist, but in the special case where the star lies within its "gravitational radius", it 
must be a black hole. Let us estimate the properties of a star near the limit, R =2M. 
Assume that gravity packs nucleons up to their hard cores, say r 0 ~ 0.5 x 10-13 em. 
Then 

where A is the number of baryons in the star and m is their mass 

m = 940 MeV= 1.7 X 10-24 g = 1.2 X 10-52 em 

1 MeV = 1.6 X 10-6 erg 

Hence substituting eq.(9) into the equation, R =2M we find, 

A 213 = ro/(2m) = 1.9 x 1038 

Putting this answer back into the expressions for radius and mass we have 

A= 2.6 X 1057 

R = roA 1/
3 = 7 km 

M = R/2 = 3.5 km = 2.3M0 

where I used the solar mass, 

M 0 = 2 x 1033 g = 1.5 km 

(9) 

(10) 

(11) 

(12) 

(13) 

So here we have an estimate of the baryon number, radius and mass of a star at 
the limit. We expect a smaller mass and larger radius than the values given by 
the Schwarzschild relation, because in actual examples where the mutual coupling 
of gravity and matter is retained [4), instability to collapse sets in even before the 
Schwarzschild condition is reached, say, 

(14) 
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The average density of such an object is 

(15) 

where to= 2.5 x 1014 g/cm3 is the energy density of symmetric matter at saturation. 
Since the density of the star near the limit is supernuclear and since it must be charge 
neutral else the repulsive Coulomb force will overwhelm gravity, it will be dominated 
by neutrons and is called a neutron star. Putting the mass and radius into the metric 
we have (using the fact that at the origin g00 = 1), 

9rr(R) = (1 - 2M)-1 = (1 - ~)-1 = 10/ 7 
9rr(O) R 10 

(16) 

So the metric changes by a small amount over the dimension of the star. It changes 
by 2r0 / R = 2A-113 ~ 10-19 of this over the spacing of nucleons in the star. Later 
we shall also be interested in pulsars with very high angular velocity. Since the 
gravitational attraction must exceed the centrifugal repulsion else the star would fly 
apart, we are assured that the curvature of space-time due to rotation must be even 
less than that due to the mass, which we just saw is completely negligible in any local 
frame in a region spanning the distance between many nucleons. So in solving the 
field equations for matter, we make negligible error for neutron stars by solving them 
in the absence of gravity and then using the resulting stress-energy tensor, which is 
diagonal in a co-moving frame[2), 

(17) 

in Einstein's field equation to find how matter is compacted under the influence of 
gravity. 

In the special case of a static star, Einstein's equations take a special form first 
written down by Oppenheimer and Volkoff. The derivation would take us far afield. 

47rr2dp(r) = 
_ GA1(r)dAf(r) ( p(r)) ( 47rr3p(r)) ( _ 2GM(r))-

1 

r 2 
1 + t(r) 

1 + M(r) 1 r 

dA1(r) = 47rr2t(r) dr 

(18) 

(19) 

The interpretation is very simple. Think of a shell of matter in the star of radius 
r and thickness dr. The second equation gives the mass energy in this shell. The 
pressure of matter exterior to the shell is p(r) and interior to it p(r) + dp(r). The 
left side of the first equation is the net force acting outward on the surface of the 
shell by the pressure, and the first factor on the right side is the attractive force 
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of gravity acting on the shell by the mass interior to it in Newton's theory. The 
remaining three factors are the exact corrections for general relativity. So these 
equations express the balance of internal pressure and gravity. They are the equations 
of hydrostatic equilibrium in general relativity. The equation of state p = p( €) is the 
manner in which matter enters the equations of star structure. Otherwise they are 
completely specified and their correctness is confirmed by the observational tests of 
general relativity. The most impressive of these are concerned with the pulsar binary 
known by its celestial coordinates as 1913+ 16, and studied for sixteen years [5]. 
The orbits orientation precesses at a rate of more than 4 degrees per year compared 
with Mercury, the former classic confirmation which is only 43 seconds per century! 
Einstein's gravitational radiation prediction, which effects the orbital motion of the 
binary pulsar pair causing the orbit to decay, is confirmed to less than one percent. 
All other variants of Einstein's theory of gravitation are ruled out at this level of 
accuracy. At the rate of decay of the orbit due to the radiation of gravity waves, the 
two members of the binary will collide in about 108 years. \Vhile this is a long time, 
it is to be compared with the galaxy age of 1010 years. It is of possible importance 
to the question of strange quark nuggets as cosmic radiation, as we discuss later. 

Newton's theory is a special case of the 0-V equations obtained by dropping 
the last three factors in eq. 18. 

2 
... ... 
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Figure 1: Schematic illustration of the solution of the 0-V equations 
over a broad range of central densities. See discussion in text. 

The Oppenheimer-Volkoff equations can be integrated from the origin with the 
initial conditions that M(O) = 0 and an arbitrary value for the central energy density 
€(0), until the pressure, p(r), becomes zero. That point, R, defines the radius of the 
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star, and M(R) its mass. For the given equation of state, there is a unique relationship 
between the mass and central density, t(O). So for each possible equation of state there 
is a unique family of stars, parameterized by, say, the central density. For an equation 
of state spanning a very wide range of densities, a schematic solution is shown in Fig. 
1. The abscissa is the central density of the star, which as just discussed can be 
used to parameterize the unique solution of the Oppenheimer-Volkoff equations for a 
given equation of state. At central densities about 108 the density of say Fe here on 
earth, there is the famous class of stars called white dwarfs. They consist of highly 
compressed very neutron rich iron and nickel isotopes. As their mass approaches 
1.4M0 they become unstable: They are supported against gravitational collapse by 
the pressure of relativistic electrons. For high enough mass, this is insufficient, and 
the star becomes unstable. Though very dense by earthly standards, white dwarfs are 
five orders of magnitude less dense than neutron stars, which range roughly in central 
density from a little below nuclear density to 5 or 10 times above (""" 1014 X the density 
of iron). It is the Fermi pressure of the nucleons and eventually for high densities, the 
repulsive nuclear force that stabilizes neutron stars. It should be clear, but is worth 
mentioning in any case, that neutron stars are held together by the gravitational 
attraction and not by the nuclear force. After all nuclei themselves are stable only for 
A < 250 and neutron matter not at all. Indeed, except possibly for the very lightest 
neutron stars, gravity has compacted the neutron matter so severely that the most 
important part of the nuclear force is the repulsion. If gravity were switched off a 
neutron star would explode! The pressure in the core of the more massive neutron 
stars may be so high that baryons dissolve into a quark matter phase. At typical 
densities of the core it is easy to confirm that the chemical potential of two flavor 
(non-strange) quark matter will exceed the strange quark mass, so that if there is 
a quark core, it will contain all three flavors of quarks. We also show in Fig. 1 an 
hypothetical family of strange stars. These are pure quark stars, and could exist if 
strange quark matter is lower in energy per nucleon number than the mass of the 
nucleon. As we will discuss later in detail, this hypothesis is not only plausible, but 
is not ruled out by any known fact. 

Of course we do not know the equation of state of dense nuclear or neutron 
star matter. Therefore in Fig. 6 several families are shown for different values of the 
nuclear compression. It will be noted that each family has a maximum mass star, 
called the limiting mass and that the central density of the limiting mass star is higher 
the softer1 the equation of state. The part of the curve for which the slope is positive 
corresponds to stable configurations. For negative slope, one can readily verify that 
the star is unstable to radial perturbations. In fact those beyond the maximum are 
unstable to collapse to black holes or to dispersal, depending on the sense of any 
perturbation that moves them off their equilibrium configuration. 

1 When two equations of state in the form p = p( c) vs c or c(p )/ p vs p, where p, c, p are pressure, 
energy density and baryon density, the one for which p or cf p is smaller at the same value of the 
independent variable is said to be softer, the other stiffer. 
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It is in the limiting mass that a constraint on the equation of state arises. 
Obviously an acceptable equation of state must have a limiting mass at least as large 
as the largest observed mass. It is of some importance to have reliable estimates of the 
maximum neutron star mass, so that a distinction can be made between light black 
holes whose only signature would be their gravitational effect on a companion, from 
a neutron star that is otherwise also invisible, whether because it is not producing 
pulsed radiation, or because we do not happen to lie on the cone swept out by the 
radiation during the stars rotation. 
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Figure 2: Showing the slow varia­
tion of the period of the Vela pulsar, 
p = 1.2503 X w-lJ sfs. Also three 
"glitches" are seen in the time frame, 
thought to correspond to star quakes. 
(6] 

2 Why Pulsars are Neutron Stars 

About 400 pulsars have been found since the discovery by Hewish and Bell in 1967 of 
the pulsed signals received by a radio-telescope. The period of the pulses range from 
milliseconds to seconds, and is interpreted as the period of a rotation. Why? Since 
the period is observed on earth using a radio telescope we know that the pulsar is 
losing energy. Over time the amplitude of vibrations is diminished by energy loss, but 
not the frequency. For rotation the frequency is damped. This is what is observed, 
as in the example shown in Fig. 2. Although by most normal standards the period 
of pulsars is very stable, it does measurably change over time, and depending on the 
period, its rate of change can be determined by making observations over time of days 
to weeks or months. Known pulsars have period rate of changes falling in the range, 

w-lS < p < w-13 sjs (20) 

In addition, ordinary stars have magnetic fields ("' 100 gauss) and rotate. When they 
collapse from a radius of 106 km to 10 km, both the rotation frequency and field are 
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scaled up by the conservation laws of angular momentum and magnetic flux. The field 
is typically scaled to 1012 gauss. There is other evidence of such strong fields. The 
remnant of the crab supernova is still accelerating with an apparent energy input of 
,....., 1038 ergs/s, and the most likely source of input energy is the absorption of magnetic 
dipole radiation from the fast pulsar within it. Energy balance implies about the same 
strength for the magnetic field as quoted above, 

38 dE d 1 2 1 n6 2 4 . 2 
10 ergs/ s = - dt = - dt ( 2 I w ) = "6 n B w sm a 

Given the observed period and rate of change of period, 

1 p,.....,_s 
30 ' 

P,....., 4 x 10-13 s/s 

we find (taking sin a = 1), 

B,....., 4 x 1012 gauss, I,....., 2 x 1044 g cm2 

1 2 48 
Erot "' 2/w ,....., 4 X 10 ergs 

where I use 

3.5 x 1024 gauss em= 1 

(21) 

(22) 

(23) 

(24) 

in gravitational units. The field will in general be oriented in a different direction 
than the rotation axis, say by an angle a. It is believed, but not understood, that 
radiation over a broad band of frequencies is emitted within some angular spread 
along the magnetic axis [7, 8]. Given the rotation, one has a beacon which we see as 
pulses as the star rotates. 

We can use the period of rotation to estimate an average energy density of a 
millisecond pulsar. For the star to hold together under the opposing forces of gravity 
and centrifuge, we must have, 

2GmAf n2R 
a R2 > m~t (25) 

Hence for the average density, 

& = M/ (437r n3) 37r 14 I 3 ._ n > (aP)2 = 3.3 x 10 g em (26) 

where the last equality holds for a millisecond pulsar. The factor a is unity in Newto­
nian physics and is empirically found to be about 0.65 in General relativity [9]. Since 
to~ 2.5 x 1014 g/cm3

, we learn that the average density of a pulsar has to be about as 
large or larger than nuclear density and so pulsars must be neutron stars. In actual 
models that I have studied, pj p0 ranges from 3 for stiff equations of state to 5 for 
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the standard compression found a decade ago in the analysis of the giant monopole 
resonance in nuclei (I< = 210 MeV) to 6 or more for softer equations of state. Clearly 
the stiffer the equation of state the more sensitive the neutron star limiting mass will 
be to properties near saturation. 

The range of densities in neutron stars is enormous, ranging from matter at 
"' 1015 times that of ordinary metals here on earth to zero, the last millimeter of 
gas in the atmosphere. The density profiles of neutron stars ranging from one at 
the limiting mass of the equation of state from which it is constructed, to a rather 
light one, are shown in Fig. 3. Notice that the central region is in all cases highly 
compacted, and fairly constant, and the edge is very abrupt, except for the lightest 
which has a very thick crust. The kinks and wiggles are not numerical inaccuracies 
but correspond to features of the equation of state. Three regions, and the source for 
and general nature of the equation of state in each is indicated in Table 1. 

-M 

E 
0 -0) -

3 

M/M0 = 1.81 

0.491 

Radius (km) 

Figure 3: Energy density profile of sev­
eral neutron stars. Dots show point in­
terior to which 95 % of the stars mass 
is contained. Roman numerals refer 
to three density ranges of equation of 
state ( see table 1). [1 0] 

Chemical Potentials and Phase Equilibria 

Neutron stars are not made purely of neutrons as their name suggests, for such a star is 
beta unstable. They are instead a mixture of many species that is in generalized beta 
stability or said otherwise, in equilibrium, under the constraint of charge neutrality. 
A star is charge neutral to a high degree because gravity is the force that holds it 
together, and gravity is much weaker than the repulsive Coulomb force so that all 
but a very small excess of net charge will be expelled from the star. So we must learn 
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Table 1: Density regions needed to describe neutron star surface, I, II, and interior, 
III. 

Region Density Nature of Reference 
g/cm3 Matter 

I 2 X 103 < p < 1 X 1011 crystalline: [11] 
light metals 

II 1 X lOll < p < 2 X 1013 crystalline (12] 
heavy metals, 

relativistic electrons 
III > 2 X 1013 relativisitic this work 

nucleons, hyperons, 
leptons (pions) 

how to construct equilibrium mixtures of particles. Secondly, at high density, perhaps 
realized in the cores of neutron stars, we believe that a phase transition from the 
confined state of i,ndividual hadrons to the unconfined state of quark matter occurs. 
In the latter case the quarks are confined over a much larger region than the space 
occupied by a single nucleon, and in the astronomical context, over a macroscopic 
region. Within this region, they are relatively free. We are therefore also interested 
in the possible transition between phases. 

3.1 Chemical Equilibrium 

Chemical potentials are used to express the condition of equilibrium of a multi­
component system in which transformations among the components are possible. 
The transformations define relations among the chemical potentials. Usually there 
are conservation laws involving attributes of the particles, such as baryon number 
and electric charge. Then the chemical potentials of all components can be written in 
terms of as many independent chemical potentials as there are such conservation laws. 
Finally the independent chemical potentials are determined by the conservation laws 
themselves. It is important to realize that the equilibrium chemical composition can 
be found without any detailed knowledge of reaction rates, nor indeed is it necessary 
to enumerate any more of the transformations or reactions among the constituents as 
is required to write their chemical potentials in terms of those representing the con­
served attributes. One example of a conservation law or constraint is that of charge 
neutrality of a star. The reason for the constraint is that the repulsive Coulomb force 
is so much stronger than the gravitational, that a star can tolerate very little net 
charge. Above a very small limit that we will calculate later, excess charged particles 
of the same sign will simply be expelled. Thus neutron star matter is to high accuracy 
charge neutral. The other independent chemical potential in this example is that for 
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baryon number. It can be determined by the density at which we want to obtain the 
energy and pressure of the matter. 

From the quark content of the baryons it is easy to establish, using table 2, 
the connection between the quark chemical potentials and those for baryon number 
(as for the neutron), electric charge and strangeness, 

Jlb = Jlu + 2j.ld 

Jlq = Jlu - Jld 

Jlk = Jld - Jl~ (27) 

Here, Jlb, Jlq, Jlk denote the chemical potentials for positive unit baryon number, elec­
tric charge and strangeness respectively. (The k stands for K0 in this context.) For 
any system in which these are the conserved particle attributes, the chemical potential 
of any particle can be expressed as, 

(28) 

where b;, q;, s; are the baryon number, electric charge and strangeness of the particle 
i, all in integer units. The above relations are usually needed in computing the phase 
equilibrium and transition point between hadronic and quark-gluon phase. 

3.2 Phase Equilibrium 

Consider the following schematic problem for a neutron star which is assumed to 
consist of neutrons, protons and electrons at low and moderate density, but which in 
the interior has such a high density that the baryons are converted to quark matter. 
First we write the relation that connects the hadron chemical potentials using the 
transformation n +--+ p + e + iie. Both directions on the arrow indicate that we are 
interested in the equilibrium condition. Neutrinos leak out of the star because, being 
massless, they have the escape velocity so that their number is not conserved. There­
fore we set Jlv = 0. From this the proton chemical potential can be written in terms 
of the neutron (for baryon charge) and electron (for negative electric charge) chemical 
potentials, Jlp = Jln - Jle· This is a simple example of a general fact: Upon writing 
down the transformations (reactions) among the species in a chemical equilibrium, 
chemical potentials of all species can be written in terms of just the number of chemi­
cal potentials that correspond to conserved charges. In this case, baryon and negative 
electric charge. In a star we require charge neutrality, the two long-range forces in 
question being such that any excess net charge would be expelled by the repulsive 
Coulomb force. The charge can be written in terms of the chemical potentials anal­
ogous to eq. (39) below, since the total charge density will involve integrals over the 
filled Fermi seas of charged particles, and the chemical potentials will appear either 
in momentum distribution functions or in limits of integration. Charge neutrality, 

(29) 
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provides a second relation among the chemical potentials, where qH denotes the elec­
tric charge density in the hadronic phase. So there is one independent chemical 
potential, say Jln which we now write J1 = Jln for brevity. So 

(30) 

Assume at this point that when the density of neutron star matter as described here 
is high enough, it will undergo a phase transition to a quark-gluon plasma, which 
we assume here to consist of an equilibrium mixture of u, d quarks and electrons (for 
charge neutrality). So we can write the Jlu,Jld in terms of Jln(= J.L),Jle using eq. (27). 
Our first problem then is to find the point at which the hadron phase begins to turn 
into the quark phase. This is the beginning of the mixed phase. At its boundary as 
approached from the hadron phase, we must have the temperatures, pressures and 
chemical potentials of the two phases equal. This assures thermal, mechanical and 
chemical equilibrium respectively. There is an expression for the pressure in each 
phase as a function of chemical potentials of the constituents of that phase, and the 
temperature. An example in the quark phase is seen in eq. (47) below. Such an 
expression containing the quark chemical potentials can be rewritten in terms of the 
hadron and electron chemical potentials using eq. (27), to give an expression for 
the pressure in the quark phase, PQ(J.L, Jlp, Jle, T). In the hadronic phase and at the 
boundary between hadron and mixed phase the relation eq. (30) holds so we have at 
the boundary, 

PH(J.L, Jlp(Jl), Jle (JL ), T) = PQ (p, J.Lp(Jl), Jle(Jl), T) (31) 

So the above is an equation that· J1 satisfies on the boundary between the hadron and 
mixed phases. We could sketch a plot of p versus J1 for each phase. Because of the 
-B in the pressure expression, eq (37), in the quark phase, at low J1 it will lie below 
the pressure in the hadron phase. So for J1 below the crossing point, which is the 
solution to the above equation, matter will exist in the hadron phase. The solution 
to the above equation defines the location of one point in the T- J1 plane. Solving it 
at many values of T defines the boundary between hadron and mixed phases. 

Similarly, in the quark phase charge neutrality, 

(32) 

defines a relation between the chemical potentials, but a different one than in the 
hadron phase. Let its solution be expressed as 

Jlp = J.L~(J.L), Jle = J.L~(J.L) (33) 

We get a different equation for J1 on the boundary between the mixed phase and 
quark phase, and hence a different boundary than described above. It is determined 
as the solution of, 

PH(Jl, J.L~(JL ), J.L~(J.L ), T) = PQ (J.L, J.L~(J.L ), J.L~(J.L ), T) (34) 
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The pressure also will in general be different on this boundary at the same T, .and 
all the chemical potentials as well, as compared to the other boundary. In the mixed 
phase all these quantities will vary continuously from the hadron boundary to the 
quark boundary. In an entirely analogous way to that described above, the boundary 
in the T - p plane between the mixed and quark phase can be drawn. 

In the mixed phase between the above described boundaries the expression for 
charge neutrality involves the charge of both participating phases, 

(35) 

where X = (p- PH )/(PQ - PH) (and PH, PQ denote the baryon number density in 
the hadron and quark phases at the boundary between hadron and mixed phase and 
mixed phase and quark phase respectively) varies from 0 to 1 at the hadron and quark 
boundary respectively, and denotes the volume ratio of quark to hadron phase in the 
mixture. As before this equation allows us to solve for J.lp, J.le as functions of p, which 
varies between its two boundary values. Then all other quantities of interest, which 
are the same linear combination of hadron and quark quantities in the mixed phase 
as above, can be computed. 

We have outlined how the chemical potentials can be derived in terms of T, p 
in the entire plane. So we can calculate all quantities depending on them, such as the 
energy density, baryon density, etc. The above problem may seem more involved than 
the usual text book problem (cf. Landau and Lifshitz). That is because here we have 
two conserved quantities, baryon and electric charge, for which there are independent 
chemical potentials, in terms of which all others can be written. In the usual examples 
(gas-liquid) there is only one. In the latter case, the phase coexistence region is a 
line in the T - p plane. In our case it is a region bounded by two lines, which owe 
their existence in our example to the fact that there are two (or more) conservation 
laws. (For an example of three conservation laws, appropriate to baryon, charge and 
strangeness conservation see [13]). 

Frequently, instead of the baryon chemical potential as independent variable, 
one would like to have the baryon number density. This one can of course obtain in 
the three regions by employing the expression of the baryon number as a function of 
chemical potentials. 

4 Quark Matter 

We do not have a rigorous theory ofdense nuclear matter and QCD is not a theory for 
which we can derive practical results for the equation of state either. We shall begin 
therefore with a simple model of quark matter, based on the notion of asymptotic 
freedom and the MIT bag model. This is actually easier, because it is crude, than 
the more difficult problem of hadronic matter in the confined phase, that we take up 
later. 
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We assume that the quarks are free within the spatial region occupied by quark 
matter, and that this region differs by a volume energy from the ordinary vacuum of 
confined quarks (hadronic matter). We can get analytical expressions in two limits, 

1) T = O,m # 0 2) T # O,m = 0 (36) 

from the expressions for a Fermi gas of quarks. The pressure, energy density, baryon 
number density and entropy density are 

(37) 

where f.J(k) = jm} + k2 and 

n(k,J1J) = (exp[(t1(k)- J-lJ)/T] + 1)-1 (38) 

is the Fermi distribution function. The factor 1/3 occurs in the baryon density because 
there are three quarks per baryon. The bag pressure is denoted by B, and represents 
the positive energy shift per unit volume in the deconfined vacuum relative to the 
confined vacuum. The quark degeneracy for each flavor is 'YJ = 2spin X 3color· 

Other properties of possible interest are for example the electric charge density 
or the strangeness, 

q = I: 
2
11

2
q1 roo (n(k,J11)- n(k, - 11,))k

2dk 
1 1r lo (39) 

where qf is the quark electric charge. 

4.1 Zero Temperature 

For the first of the two limiting cases above, the distribution functions become step 
functions at the energy JlJ· In that case we can use standard integrals (ref. [14]. p87), 
to express the results. For example, 

[k k4 
lo Jm2 + k2dk 

1 [ 3 3 3 vk2 + m 2 + k ] = - k vk2 + m2 - -m2kVm2 + k2 + -m4 ln( ) 
4 2 2 m 

( 40) 
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Table 2: The six known quarks and their quantum numbers 
) 

Name Mass baryon charge 1sospm strange- charm beauty truth 
(MeV) number projection ness 

u 5 1/3 2/3 1/2 ·0 0 0 0 
d 7 1/3 -1/3 -1/2 0 0 0 0 
s 150 1/3 -1/3 0 -1 0 0 0 
c 1500 1/3 2/3 0 0 1 0 0 
b 5000 1/3 -1/3 0 0 0 1 0 
t >80000 1/3 2/3 0 0 0 0 1 

where kFJ is the Fermi momentum defined in terms of the chemical potential, 11-J = 
(m}+k}1 )

112
• The above results are suitable for compact star calculations in which the 

nucleons are believed to be dissolved into quarks by the high pressure in the interior 
of the star, since temperatures are in the KeV region for compact stars shortly after 
birth and therefore completely negligible on the nuclear scale. 

4.2 Massless Quark Approximation 

We can also obtain analytic expressions if the quarks are massless, even if the temper­
ature is finite. After some manipulation and using the standard integrals, 

l
oo X 1!"2 

dx · --
. o 1 +ex- 12' (42) 

we can obtain the explicit forms; 

( 43) 
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(44) 

For the massless Bose gas of gluons- of degeneracy /g = 2 x Be, we similarly obtain 
the contributions; 

p 
87r2 T4 
45 

f - 3p 

s 
327r2 T3 

45 
( 45) 

where we use, 

15 
(46) 

For massless quarks and gluons, we thus have, for example, 

87r
2 4 ""' ( 7 2 4 1 2 2 1 4) 

P = 45 T + L.t 60 7r T + 2 T 1-l f + 47r21-l f - B 
f 

(47) 

The lowest order gluon interactions have been calculated [15, 16, 17], and 
result in the following modification, 

p = 81r
2 
T 4 ( 1 _ 15a8 ) 

45 47r 

""' ( 7 2 4 ( 50 as) ( 1 2 2 1 4) ( 2as)) +L.t -1rT 1--- + -TI-lJ+-1-lJ 1-- -B 
f 60 217r 2 47r2 7r 

( 48) 

and corresponding changes in t:, s = 8pf8T and p = l 'L-J 8pf81-lf· The coupling con­
stant is denoted by a 8 • (Many authors have employed a common chemical potential 
for all flavors and apply a factor Nf to the quark contributions to the t:, p etc. This 
is incorrect for Nf = 3, since such matter is neither charge symmetric nor has it zero 
strangeness.) 

4.3 Quark Star Matter 

In the preceding subsections we have derived expressions for the equation of state of 
quark matter in the bag model. These will be useful to us later in connection with 
the possible existence of neutron stars with quark matter cores. Let us)n this section 
consider, as an example, hypothetical stars made of quark matter. We will discuss 
this topic at a more advanced level in the last section. 
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One thing that we have remarked about stars is that they are charge neutral, 
and that they are equilibrium configurations; that is to say they are a mixture of 
species that are in chemical equilibrium at their temperature (effectively zero for a 
mature neutron star) and therefore at their lowest energy. Since the time scale of 
a star is effectively infinite compared to the weak interaction time scale, and weak 
interactions violate strangeness conservation, then quite obviously the strangeness 
quantum number of quarks is not conserved in a star. Any neutrinos or photons that 
are produced in the decay of a high momentum u or d quark near the top of the Fermi 
surface, to a low momentum s quark will leak out of the star. The star's energy is 
thereby lowered by loss of their energy and by lowering of the average energy of the 
quarks. Chemical equilibrium is therefore found without regard to the conservation 
of strangeness of the quarks. 

We have derived expressions for the pressure and energy density of quark 
matter in terms of the quark chemical potentials above. Now we will need to dis­
cuss how these latter quantities are determined. According to the above discussion 
of strangeness non-conservation, the relationships between the quark chemical po­
tentials are determined solely by conservation of electric charge and baryon charge 
conservation. So possible transformations that conserve these charges can be written 
with reference to table 2. 

/ld = Jls 

/ld = Jlu + /le 

/lc = flu (49) 

Note that these follow also from eq. (27) with Ilk = 0 (for strangeness non-conservation) 
and lle = -p9 • From an expression for electric charge density we can write the con­
dition of charge neutrality. From eq. ( 41) we can write, 

(50) 

where the last term is the electron contribution. Finally the expression for the baryon 
number density in eq. ( 41) provides a fifth relation for chosen density with which the 
five chemical potentials flu, J-ld, J-l 8 , J-lc, J-le can be determined. 

Knowing the quark chemical potentials we can now compute the pressure and 
energy density of the quarks. Since the electron mass is small it can be neglected, 
or kept in analogous expressions to eq. ( 41) for electron contribution. The B should 
be dropped, and the electron statistical weight, 2, substituted for quark weight, 6; 
ie multiply p, t: by 1/3. The result is then added to the pressure and energy of the 
quarks to get the total. This provides a complete description in the approximation 
of the bag model to the equation of state for quark star matter. 
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4.4 Strange and Charm Stars 

As a hypothetical example let us use the equation of state described just now for cold 
quark star matter to compute the structure of stars made from it. This is done by 
solving eqs. (18, 19), with the above equation of state for the pressure and energy 
density. At low and moderate baryon densities, which we can estimate from eq. (41) 
(putting m 1 = 0 for ease), we find that the chemical potential for charm does not 
approach the magnitude of the charm quark mass, and so it is not populated, while 
the strange quark is populated at moderate density. However at very high density 
the charm quark is also present. We choose a value of the bag constant that yields 
an energy per baryon at p = 0 of E/A = f/ p = 990 MeV; ie above the nucleon mass. 
In Fig. 4 the resulting star mass as a function of central density is shown. The lower 
curve is the gravitational mass of the star, defined in eq. (19); ie 

M = 47r foR E(r)r2dr (51) 

The upper curve is the mass of the equivalent number of baryons if the star were 
disassembled into neutrons at infinity. It is obtained by integrating the number 
density over the proper volume, which can be read from the Schwarzschild metric as 
dV = e>..r2drd cos Od<P. 

[R ( 2GM(r))l/2 
.A1A = 47rmn Jo p(r)/ 1- r r 2 dr (52) 

where mn is the neutron mass. (We have not proven it, but it is true that the spatial 
metric has the same form inside and outside the star. 

On the gravitational mass curve the regions of positive slope are stable accord­
ing to the qualitative argument given in the appendix. Closer study[11] shows that 
in the absence of viscosity the sequence of stars at high density, fc"' 1018 g/cm3 , in 
the neutron star models studied in the early 1960's, are unstable to long wavelength 
radial vibrations which would carry some of the very high density matter in the core '. 
inside its Schwarzschild radius, and thus lead to collapse of the star to a black hole. 
It is not clear at this time whether viscosity would stabilize the star, as it does in 
the case of rotation. What is true is that the bulk viscosity of quark matter is very 
high[18]. Stability to vibrational modes is a difficult subject and is beyond the scope 
of these lectures. What is true is that such stars are stable against disassembly of 
their equivalent number of neutrons to infinity, because the gravitational mass lies 
always below the baryon mass (MA)· This is in contrast to the analogous high den-
sity family of neutron stars studied in the 1960's which where therefore manifestly 
unstable configurations[19]. 

In case viscosity does stabilize the high density stars, they would constitute a 
new family of stars, which we could call charm stars because of the presence of charm 
quarks in their cores. The quark distribution of such a star near the peak in mass is 
shown in fig. 5. 
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Figure 4: Gravitational mass of 
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mass. 
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Figure 5: The distribution of quarks 
in a charm star near the limiting mass 
of the family. 

How could such stars be made? Almost certainly not in a supernova. Either 
neutron stars or strange stars are of lower density and are the ground state, and would 
be the natural product, depending whether hadronic or strange matter is absolutely 
stable, respectively. They could be relic stars from the early universe, having formed 
while the density of matter was still very high. This scenario needs to be investigated 
in detail. Otherwise it is conceivable that they are made in the relativistic collision of 
neutron (or strange) stars. The collision energy would serve to compress the matter, 
the outer lying layers forming the inertial confinement within which the compression 
is achieved. 

Notwithstanding the uncertain creation mechanism, it is interesting that an­
other long lived compact star configuration may exist, subject of course to verification 
of stabilization of vibrational modes by viscosity, within a wide range of equilibrium 
values of E /A for quark matter from significantly above the nucleon mass to any­
thing below. We recall that on theoretical grounds we expect the energy per nucleon 
of strange matter to be near (within lO's of MeV) that of the nucleon itself[20, 21]. 
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5 Nuclear and Neutron Star Matter 

The idealized matter of the interior of nuclei and the matter of neutron stars have 
similarities and differences which need to be understood. The similarities include the 
fact that they are composed of hadrons and the densities are the same within an order 
of magnitude or less. The differences arise from two facts. (1) Nuclei are bound by 
the charge symmetric nuclear force, but neutron stars are bound by gravity. Hence in 
nuclei, N ~ Z. However since the repulsive Coulomb force is so much stronger than 
the gravitational force that binds stars, the net charge in a star must be very small, 

(Znete)e G(Am)m --+ Z _ Z Z 10_36 A 
R2 < R2 net - p + e < (53) 

(where we use ttcje2 = 137 and tt = 1.1 x 10-27 g cm2 s-1 = 2.6 x 10-66 cm2 .) 

Although Zp is not nearly so small as Znet, it is considerably smaller than A/2. So 
nuclei are symmetric and neutron stars are asymmetric. (2) There is another and 
profound difference arising from the weak interaction time scale Tw f"V 10-10 seconds. 
Because of the high density of neutron stars and the fact that baryons obey the Pauli 
principle, it is energetically favorable for nucleons at the top of the Fermi sea to 
convert to other baryons, including strange ones (hyperons). This is possible because 
strangeness is conserved only on the strong interaction time scale, not on the weak. 
Even the time scale of supernova is long compared to that of the weak. So strangeness 
is not conserved in astrophysical objects. It wouldn't be conserved in stable nuclei 
either, but energetically it is not favorable to have hyperons in the ground state 
because their masses exceed the nucleon mass by more than the Fermi energy of 
the nucleons. Nuclear reactions on the other hand are so fast that strangeness is 
conserved. So the matter studied in nuclei or their reactions has zero net strangeness, 
whereas neutron stars can and almost certainly do contain hyperons. 

These are the differences. Of course the properties of such systems as the 
hot symmetric non-strange matter produced in relativistic nuclear collisions and the 
cold asymmetric charge neutral and strangeness carrying matter of neutron stars are 
related in any comprehensive theory of matter. It is through relativistic nuclear field 
theory that I shall make the connection between them. This theory can be generalized 
to incorporate nucleons and higher mass baryon states, interacting through exchange 
of mesons[22]. Its coupling constants can be fixed by properties of symmetric nuclear 
matter. It describes numerous properties of finite nuclei [23, 24, 25, 26]. It can be 
extended to finite temperature[22, 27]. It can be extrapolated to hot dense matter and 
its composition (nucleons, deltas, and their excited states)[22], and to dense neutron 
star matter[28]. One and the same theory with fixed coupling constants describes: 

1. Symmetric nuclear matter and the matter produced in high energy collisions 
when the field equations are solved subject to the constraints of isospin sym­
metry and strangeness conservation. 
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2. Neutron star matter when th.e field equations are solved subject to the con­
straints of charge neutrality and generalized equilibrium. 

Therefore we are able to conveniently characterize the neutron star matter equation 
of state by the compression modulus of the corresponding symmetric matter and the 
other properties by which the coupling constants are fixed, amJ shall always do so. 
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Figure 6: Generic relations for neutron stars for several equations of 
state as labeled according to compression /( (with m;at.fm = 0.8). For 
the R-M plot the limits imposed by a 1.6 ms and 0.5 ms pulsar are 
shown. Stars below these curves are stable for still shorter periods (see 
eq. (25)). 
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Neutron stars are not pure in neutron as their name implies, and as they were 
first thought of. Charge neutrality is automatically respected by pure neutron matter, 
but this is not the lowest energy state of dense neutral matter. Some neutrons would 
beta decay until equilibrium between neutrons, protons and electrons is reached. This 
is expressed by the relation, Jlp = Jln- Jle among the chemical potentials (see eq.(28). 
The neutrino produced in the beta decay leaks out of the star because, being mass­
less, it has the escape velocity, thus lowering the star's energy. Therefore we set 
its chemical potential to zero, because its number is not conserved in the star. At 
higher density as the chemical potentials increase, other thresholds are reached and 
additional particle species are populated. In a Fermi gas model the thresholds are 
found from the masses of the particles. For example, the A hyperon has unit baryon 
charge, zero electric charge, and one negative unit of strangeness and mass 1115 MeV 
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(see table 3). As noted already, strangeness is not conserved on the time scale rel­
evant to a star, so the chemical potential is simply JlA = Jln = Jlb, and when this 
exceeds the A ma:ss, this hyperon will be in equilibrium in the star and will be one 
of its constituents. In general the particle thresholds depend on the interactions as 
well. The isospin symmetry energy arising from the coupli~g of baryon isospin to the 
neutral rho meson is very important in this respect. Obviously it favors conversion of 
neutrons to baryons of opposite isospin projection, consistent of course with charge 
neutrality. For these reasons neutron star matter is very complex in composition and 
the Lagrangian used in nuclear field theory has to be generalized to include these 
complications[28]. Fig.23 shows the result of such a general calculation for the pop­
ulations of neutron star matter. For low density, the charge neutral uniform matter 
is almost pure in neutron, but with a small proton and electron admixture in equal 
numbers; when with increasing density the electron Fermi energy increases to the 
muon mass then the muon as well will be populated. The pion, as we discuss later, 
may also condense and then a.t densities beginning at about three times nuclear, hy­
peron thresholds are reached, and with further increase in density become important 
components of neutron star matter. Neutron stars therefore are not made of neutron 
matter but rather of hadronic matter that is in the lowest energy state consistent 
with charge neutrality. This matter we call neutron star matter. Its composition 
depends on the density as is easily understood from the forgoing discussion. The 
Lagrangian must therefore be general enough to describe these complexities and a 
suitable generalization of the a, w, p theory, used to describe nuclear matter and finite 
nuclei, is[28], 

£ = L 'lj;B(i/p,Op,- ffiB + 9uBa- 9wB/p,Wp,- !9pB/p,T · Pll-)?jJB 
B 

+ !([) ao11a- m 2 a 2 ) - lw wJJ.v + lm 2 w wJJ. 2 11 17 4 p,v 2 'w J1. 

+ L -/f;>..(i!JJ.[)JJ.- m>..),P>.. 
>.. 

(54) 

The first line is the sum of baryon Lagrangians and the interactions with the scalar, 
vector and vector-isovector mesons (a, w, p ). The spinor for the baryon species, B, 
one of those listed in table 3, is denoted by ,PB, and -/f;B = ,p1/o denotes the adjoint. 
(\Ve use the conventions of [29].) The second line contains the Lagrangians of the 
scalar and vector mesons, whose interactions with the baryons give rise respectively 
to attraction and short range repulsion. The third line contains the Lagrangian for 
the isovector meson which couples to the isospin of baryons and gives rise to the 
charge symmetry energy. This line also contains self-interaction terms of the scalar 
field. The last line contains the Lagrangians for the leptons (electrons and muons) 
which are important agents in the charge neutra.lity of neutron star matter. The sum 
over baryons is over the charge states of nucleons, deltas and hyperons. It is of course 
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essential to keep track of the individual charge states so that charge conservation 
can be enforced (zero in a star an<,l one half the baryon density in charge symmetric 
nuclear matter). 

When the corresponding Euler-Lagrange equations are solved by replacing the 
meson fields by their space-time constant mean values, and the nucleon currents by 
the ground state expectation generated in the presence of the mean meson fields, one 
obtains the so called mean field approximation (MFA). It is in this approximation 
that nuclear field theory has been typically solved and applied. Henceforth the meson 
fields, a, w, p , denote these mean field values. The field equations in uniform matter 
are, 

(il~f)'-'- ffiB + 9uBf7- 9wB/I-'W'-'- !9pB/'-'1'3p~)tPB = 0 

whose eigenvalue of particle and antiparticle can be found as 

eB(k) = 9wBWo + 9pBPo3hB + Jk2 + (mB- 9uBa)2 

eB(k) = -9wBWo- 9pBPo3hB + Jk2 + (mB- 9uBa)2 

(55) 

(56) 

(57) 

The meson field equations in uniform static matter, in which space and time deriva­
tives can be dropped, are, 

Wo 

Po3 

'""'9wB L.J-2 nB 
B mw 

'""'9pB I - L.J-2 3BnB 
B mP 

- -bmn9u(9ua)2 - cg17 (gua) 3 

+I: 2JB ~ 1 9uB fkB ffiB- 9uBf7 k2 dk 
B 21r Jo Jk2 + (mB- 9uBa)2 

(58) 

(59) 

(60) 

\\'e have replaced the baryon source currents, by their ground state expectation values; 
the ground state is defined as having the single-particle momentum eigenstates with 
eigenvalues given by eq.(56) filled to the Fermi momentum. We will discuss shortly 
how the Fermi momenta. of the various species, B, are to be found so that the system 
is in chemical equilibrium. An example of a ground state expectation with a familiar 
meaning is the baryon density; ({JB/otPB) = (1/711/JB) = nB. For details especially as 
concerns the source for the scalar meson, see ref. [10]. In the above equations, ]3B 

is the isospin projection of baryon charge state B and kB is the Fermi momentum 
of species B. Only the time-like components of the vector fields and the isospin 3-
component of the charged p field have non-vanishing values on account of the isotropy 
of nuclear matter and electric charge conservation, respectively. The baryon number, 
charge and strangeness densities are 

nB = (2JB + 1)bBk1/(67r2
) 

QB = (2JB + 1)qBk1f(67r2) 

SB = (2JB + 1 )sBk1/(67r2). 
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Of course the total baryon and charge densities are 

p=EnB (64) 
B 

q=EQB (65) 
B 

Table 3: Baryon and meson states. Spin is J, isospin is I, baryon number is b, charge 
is q and strangeness is s. 

m J I b q s 
(MeV) 

N 939 1/2 1/2 1 0,1 0 
~ 1232 3/2 3/2 1 -1,0,1,2 0 
A 1115 1/2 0 1 0 -1 
E 1190 1/2 1 1 -1,0,1 -1 
.::. 1315 1/2 1/2 1 -1,0 -2 
n 1673 3/2 0 1 -1 -3 
7r 139 0 1 0 -1,0,1 0 

J(+ 494 0 1/2 0 1 1 
J(O 494 0 1/2 0 0 1 
[{0 494 0 1/2 0 0 -1 
!{- 494 0 1/2 0 -1 -1 

The above equations hold at zero temperature. Finite temperature results can 
be obtained in the usual manner of writing the partition function for the system and 
carrying out the appropriate manipulations [22, 30]. The results are simple to state. 
In all the expressions containing a sum over B, it is extended over antiparticles as 
well, since they are thermally excited. Their quantum numbers like baryon number, 
charge, isospin, strangeness and chemical potentia.ls are the negatives of the particles. 
The thermal densities for baryon charge of both baryons and antibaryons are given 
respectively by, 

(66) 

(67) 

and similarly for the electric charge and strangeness. Note that nB and fiB are defined 
as baryon charge densities, not number densities, so that if there are antibaryons 
present, fiB will be negative, counting the baryon charge rather than particle number. 
This is what is needed so that for exampleeq.(64) should count the total net baryon 
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charge of the system. The thermal factor is also introduced into all the integrals 
over momentum in the scalar field equation above, and in the expressions below for 
pressure and energy density. 

Compute from the ground state expectation value of the expression of the 
canonical stress-energy tensor, 

T~'v = -g~'v .c + L 8.C 8v </> 
¢ 8(811</>) 

(68) 

the stress-energy for this theory and compare with eq.(17) to read the energy density 
and pressure. Employ the field equations to rewrite the energy density as, 

(70) 

The first step in the application of the above theory is to fix the three coupling 
constants, 9u, 9w, 9p· One can verify in infinite nuclear matter by inspection of the 
field equations that these occur only as ratios to the corresponding meson masses. 
So ground state properties determine only the ratios. Additionally the coefficients, 
b, c, of the scalar self-interactions must be determined. This can be done using five 
saturation properties, namely the binding energy B = f/ p- m = 16.3 MeV, baryon 
density, p0 = nn + np = 0.153 fm- 3

, symmetry energy coefficient 

t (71) 

The scalar effective mass of this theory, m* = m- 9uCT, is related at saturation to the 
to the Landau effective mass of non-relativisitic theory m£, by, 

(72) 
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where the Fermi momentum of the nucleons at saturation, kp, is related to the density 
in the usual way, p0 = 2k}/(37r2

). Landau effective mass is~ 0.83m [31]. This which 
yields m;at.fm = 0. 78. Finally the compression modulus at saturation, f{, is thought 
to lie in the range 200- 300 MeV [32, 33, 34, 35, 36], 

f{ = 9 [p2~ (.:.)] 
8p2 p p=po 

(73) 

Of course the hyperons are absent in the ground state because of their high masses 
compared to the Fermi energy of the nucleons, so they cannot be determined from 
the properties of ordinary nuclei. 

The importance of controlling the effective mass that matter has at satura­
tion can be understood because for given binding and saturation density it uniquely 
specifies the vector coupling constant through, 

Eo B ( gw ) 2 Jk2 *2 - = A + mn = - Po + F + msat. 
Po mw 

(74) 

This relation follows from Eqs. (58,69) and the saturation condition 8( t:/ p )/ 8k = 
0 evaluated at k = kp. The vector coupling in turn controls how stiff or soft at 
high density the equation of state is for a given fixed f{. That is because of the 
quadratic term in w0 that appears in energy and pressure, eqs. (69, 70), which from 
the field equation, eq.(58), gives a quadratic baryon density behavior to the energy 
and pressure. Therefore for fixed f{, the equation of state becomes stiffer at high 
density as m;at. decreases, as can be seen from the above relation. For fixed m;at., it 
becomes stiffer as /{ increases. These are the reasons why it is important to bring 
both of these parameters under control, through the freedom afforded by the scalar 
self-interaction terms in Eq.(54). Without this control, the application of the theory 
to neutron star properties or other high density phenomena can be very misleading. 

Table 4: Coupling constants for several K and forB/A = 16 MeV, p = 0.15 fm-3 , 

asym = 32.5 MeV and m;atfm = 0.8. [13] 

K (gu/mu) 2 (gw/mw) 2 (gpfmp)2 b c 
MeV (fm) 2 {fm)2 {fm)2 
220 9.678 4.356 5.025 0.01164 -0.004042 
250 9.216 4.356 5.025 0.008209 0.007385 
300 8.492 4.356 5.025 0.002084 0.02780 
350 7.820 4.356 5.025 -0.004618 0.05015 

We are interested here in describing the structure of observable neutron stars, 
identified as pulsars. The epoch of observation is generally thousands to several mil­
lions of years after formation, and the star while still very hot by earthly standards 
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(107 - 109 K), is cold on the nuclear scale of MeV ( = 1.16 x 101° K). We take T = 0 
therefore. A description of neutron star matter appropriate to this is obtained by 
imposing the conditions of charge neutrality and chemical equilibrium. The total 
charge can be computed as above. Equilibrium is obtained through the relations 
among the chemical potentials that correspond to the possible reactions among the 
constituents. Because of the long time scale of stars as compared to the weak interac­
tion time, which is the only interaction that changes strangeness, strangeness is not 
conserved in a star. In this case the strangeness chemical potential Jlk for positive 
unit strangeness is set to zero. In general, the chemical potential of particle i with 
baryon charge bi and electric charge qi (in units of e) is given by, 

Jlk ..:... 0 (75) 

where Jlb and Jlq are the chemical potentials for unit positive baryon and electric charge 
and correspond to the two conserved quantities in neutron star matter. Chemical 
equilibrium is then expressed as 

(76) 

which determines the Fermi momenta, while for the leptons, 

( 2 k2)1/2 Jl>. = m;.. + >. = q;..Jlq (77) 

The solutions are the positive values of the Fermi momenta. They are to be set to 
zero until positive solutions exist. A description of neutron star matter is then ob­
tained as the self-consistent solution to a system of coupled non-linear equations in 
7 + N unknowns, as follows: 

(1) three field equations for the meson fields ( cr, w, p) 
(2) equation for electrical neutrality (JL 9 ) 

(3) equation for baryon density (Jlb) 
( 4) two equations for lepton Fermi momenta, ( ke, k~-') 
(5) N equations for the Fermi momenta of N baryon species in chemical equi­

librium (kn, kp, kA, ... , k=., .. . ). 

When the solution is obtained the equation of state t: = t:(p ), p = p(p) can be 
calculated. Such a system of non-linear equations is generally difficult to solve, which 
probably accounts for the fact that most applications of equations of state to neutron 
star structure approximate the star as either pure in neutron, or else as involving beta 
equilibrium in the restricted sense of equilibrium among only neutrons, protons and 
electrons. This is not really very useful in connection with the mass constraint on the 
equation of state, because both are gross approximations. Two early studies, one by 
Pandharipande [37], and one by Bethe and Johnson [38] did include hyperons. These 
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works are non-relativistic so the equation of state explicitly violates causality at high 
density, and of course must be wrong even at a lower density than the point where 
causality is first violated. The work of Bethe and Johnson suggests a smaller fraction 
of hyperons than in the work of Pandharipande. However it suffers from the fact that 
no control was placed on the compression and the symmetry energy, even though 
neutron stars are highly compressed and isospin asymmetric. The hyperon fraction 
that I find is of similar importance as found by Pandharipande. The advantage of 
the present approach is that it is relativistically covariant, and the coupling constants 
of the theory are related to nuclear matter properties in a way that allows one to 
investigate the dependance of neutron star structure on nuclear matter properties. Is 
there such a dependance? Although the density at the center of a neutron star may be 
quite high it would be incorrect to assume that properties near saturation density are 
not important. This is so because the center contributes little to the mass on account 
of the volume element. I find that the mean density is only three to five or so times 
nuclear density for the star at the mass limit, and even less otherwise, depending 
on how stiff or soft the equation of state is. (See Fig. 7). Moreover the equation of 
state at higher density is connected to that near saturation through continuity and 
causality. 
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Figure 7: Fraction of mass of that 
neutron star at the mass limit that is 
resident in matter at densities greater 
than p. 
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Figure 8: Compares equation of 
state of neutron star matter with and 
without hyperons included in the equi­
librium composition. 

We illustrate in Fig.8 the equation of state in the form of E /A = t/ p vs p for 
two cases, one in which only beta equilibrium between neutrons, protons and electrons 
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is taken into account, and one in which full equilibrium between all particle species to 
convergence is taken into account. The latter is considerably softer than the former, 
for the reason that the Fermi pressure of neutrons and protons near the top of the 
Fermi sea is relieved by allowing them to hyperonize. The corresponding results for 
neutron star masses is shown in Fig.9 and we see that gravity very effectively exploits 
the softening at higher density introduced by hyperonization. A similar reduction in 
limiting mass can be found between pure neutron matter and n+p matter. 

6 Pion and Kaon Condensation 

Pion condensation was a subject of much investigation a few years ago, especially for 
symmetric nuclear matter and nuclei. Pions are more likely to condense in neutron 
star matter. Condensation occurs in nuclear matter if the pion energy becomes de­
generate with the normal state, which might happen if the interaction is attractive 
and strong enough. However in neutron stars, charge neutrality favors pion conden­
sation. This is so because as a function of increasing density, neutrons at the top of 
the Fermi sea will decay to proton plus electron. The electrons are fermions and their 
Fermi level increases with further increase in density. When the electron chemical 
potential (Fermi energy) becomes equal to the effective pion mass in the medium, it 
will be favorable thereafter for negative pions to play the role that the electrons had 
in preserving charge neutrality because they are bosons and can all condense in the 
lowest state. Thus while J.le = /-ln - /-lp is essentially zero in symmetric matter, it is 
positive in neutron star matter, thus favoring the 1r- since J.l·r = /-le· On the other 
hand the other charge states of the pion are excluded since /-l-,r+ = -pe and J.l-,ro = 0. 

When pions condense the growth of the electron chemical potential with fur­
ther increase in density is arrested at a value equal to the effective pion mass. This 
means that the electron chemical potential cannot approach the mass of the negative 
kaon, which is greater than that of the pion, and so they cannot condense. Condensa­
tion of the other kaon states is even less likely for the same reason as given above for 
the other charge states of the pion. This conclusion regarding kaon condensation is 
in contradiction to recent suggestion that kaons might condense at rather low density 
in nuclear or neutron matter[39]. However our criticism of this work, as of early work 
on pion condensation, is that it is based on a theory that cannot describe the normal 
state of nuclear matter, so how are we to rely on its prediction of an abnormal state? 

Since the hyperons have charges of both signs and carry the conserved baryon 
charge, charge neutrality can be achieved mainly among baryons at sufficiently high 
density. This means that the electron chemicai will initially be an increasing function 
of density, will saturate if and when it becomes equal to the pion effective mass, will 
remain essentially saturated through a range of density, and then will decrease as 
the hyperon populations grow. The pions at this point will be reabsorbed. So pion 
condensation is an intermediate density phenomenon in neutron stars. This can be 
seen in Fig.23. I do not find that pion condensation has a large effect on neutron 
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star structure, an example of which can be seen in Fig.10. In this calculation the 
effective pion mass was taken to be the vacuum mass. This probably overestimates 
the role of the pion. In neutron star matter, the pion experiences a repulsive s-wave 
interaction which would increase its effective mass. It experiences also an attractive 
p-wave interaction which however it must pay for by having a finite momentum. Our 
earlier estimate of the effective mass due to the latter is"' 200.MeV[40]. 
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Figure 9: Neutron star masses com­
pared with and without inclusion of 
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2~-------------------, 

ntp+h+pi 

1.5 
\ .....-::::--

~ \ c 
:::l n+p+h 
r.t) 1 ~ - v 
~ 

0.5 
K = 210 Mev 

04-~~~-r~~~~~~~ 

14 14.5 15 15.5 

log k c g/cm3} 

Figure 10: Neutron star masses com­
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7 Limiting Neutron Star Mass and the Equation 
of state 

I have shown you that neutron stars are complex in composition. Models that treat 
them as pure in neutron or treat only beta equilibrium among neutrons, protons and 
electrons are inadequate since they overestimate the limiting mass by as much as a 
half a solar mass or more. This is very large in comparison with the range in which 
the limiting mass can lie. For a non-interacting neutron gas, which provides a lower 
limit because there is no repulsive force, the limiting mass is"' .75M0 . At the other 
extreme the hardest equations of state without full equilibrium among species give 
"' 2.75M0 . So the effective range in which it can fall is about 2 solar masses, and 
taking into account more realistic models is less than this. 
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2 parameter constraint at saturation, 
(Band po), and with four, (K and m* 
in addition) [41]. 

Do we know the limiting mass in nature? We do know of the existence of 
about 400 pulsars, but we know the masses of only seven[43]. This is because mass 
measurements are possible only for binaries. However the number of neutron stars 
whose masses can be measured may change dramatically in the coming years because 
of the discovery of fast pulsars, many of them in binaries, found within globular 
clusters. Globular clusters are self-bound aggregates of 105 - 106 stars of which there 
are about 150 in our galaxy. They are especially dense in stars, and over time they 
expand and contract. It is believed that frequent inelastic collisions occur which form 
binaries. In any case, of the seven known masses, the most massive is 4U0900-40 for 
which M = 1.85 ± 0.3M0 . The most accurately measured is PSR1913+16 for which 
M = 1.442 ± .003 [5]. With so few known masses it is unlikely that we know the 
most massive one. Therefore we can know only a lower limit on the maximum mass 
which translates to a lower limit on the stiffness of the equation of state. In Fig.ll 
I show calculated limiting masses from the above described theory as a function of 
compression K. This summarizes many such calculations as shown in Fig. 6. There 
is some uncertainty owing to the fact that one of the saturation properties used to 
fix the coupling constants is the nucleon effective mass at saturation. While this is 
apparently known in a narrow range, there remains some uncertainty. To account for 
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PSR1913+16 we need f{ > 200 MeV. To account for 4U0900-40 at the most probable 
mass we need /{ > 300 J\IeV or at the lower limit /{ > 200 MeV. 

Of course it is possible to criticize the above results as being model dependent. 
Nonetheless the model contains a lot of physics, much more than parameterizations, 
or models based on potential interactions of nucleons which become acausal at high 
density, and which omit the large effect of equilibrium in the star. Recall that our 
theory is constrained at saturation by five nuclear properties and at all densities, but 
most importantly as a constraint at high densities, it is causal. These are strong 
constraints and should be contrasted with theories or parameterizations with fewer 
constraints. To emphasize this we contrast results for the linear (b = 0 =c) and non­
linear versions of nuclear field theory which allow respectively three and five properties 
to be constrained at saturation (two and four respectively for the symmetric matter 
equation of state). We show in Fig.12 that in the first case the theory computed 
in mean field approximation can be made to agree at saturation, but no where else, 
with the theory which includes vacuum renormalization, which we study later. In 
contrast, with the additional constraints (I< and m*), the mean field theory agrees 
within three percent up to ten times nuclear density, although the constraints apply 
only at saturation density! (41 ]. 
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Table 5: Effective stiffness for several equations of state 

Description 
This work I<= 500 MeV, m* jm = 0.8 
This work I<= 300 MeV, m* jm = 0.8 
This work I<·= 200 MeV, m* /m = 0.8 
This work I<= 300 MeV, m*/m = 0.75 
This work I<= 300 MeV, m* jm = 0.85 

Friedman and Pandharipande [44] 
BCK (45, 46] K = 180 MeV 1 = 2.5 

Let us compare results with a recent work that purports to explain neutron 
star masses with much softer equations of state[42]. In Fig.13, results from that 
work are shown for the limiting mass of pure neutron stars and stars with only 
neutrons, protons and electrons. Essentially I agree with these results as far as they 
go. However the authors claim on the basis of their calculations that neutron stars 
can be accounted for with K as low as 120 MeV. What the figure clearly shows is that 
there is a substantial reduction in limiting mass in going from pure neutron to beta 
equilibrium. This is well known. There is a further reduction due to hyperonization 
as I have frequently emphasized which is shown by my calculation by the solid line. 
When all of this is taken account of, K has to be much larger than the low value 
they quote. This illustration is rather typical of calculations that are incomplete 
with respect to the space of baryon types or which are constrained by only several 
saturation properties. 

8 Supernovae 

It is a fascinating thought that the heavier elements in our bodies were created in the 
thermonuclear burning of massive stars. Starting from a hydrogen gas and after some 
107 years in the life of such a star, having reached a point in its evolution at which 
about a Chandrasekhar mass of iron core had been evolved, the core commences to 
collapse and now on a time scale of seconds, an enormous explosion occurs with a 
kinetic energy of 1051 ergs (1028 tons of TNT) expelling into the cosmos many of the 
elements of which we and our planet are made. Such events are so spectacular, with 
a brightness of 1010 times that of the sun, that some are visible to the naked eye 
in daylight, and several have been recorded in ancient history, such as the Crab, by 
Chinese observers, 900 years ago. No supernova has occurred in our own galaxy for 
hundreds of years, although the expected rate is about one type II every hundred 
years. 

In the same event the inner core, some tenth or so of the total mass, forms a 
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neutron star or black hole, or in the case of lighter progenitors, a white dwarf. 
Why the cores of massive stars begin to collapse is easy to understand but 

why they explode has preoccupied scientists for several decades and a fairly detailed 
understanding is only now emerging. 

Since it has been thought that supernovae might provide information on the 
equation of state of dense matter, we will spend a little time studying the problem. 
Of course nuclear physics is an important ingredient in understanding the. entire 
evolution of the star, not just the final few moments. But it is this last that we shall 
be interested in here. 

8.1 General Features 

Supernovae involve a number of factors of comparable importance but high uncer­
tainty. Among the factors in this connection we note: 

(1). Stars in the range 8 < MfM0 < 100 which evolve to be the progenitors 
for type II supernovae, undergo a series of nuclear fusion reactions for 107 years, 
evolving from a hydrogen gas to layers of heavier elements and eventually an iron 
core. The mass and entropy of the core are crucial but highly uncertain because 
of the large network of nuclear reactions and their rates that must be simulated, 
some of them known and others highly controversial. The results of the simulation 
of such an evolution provide the initial conditions for the simulation of the collapse. 
The presupernova evolution calculations yield iron core masses in the range ,...._ 1.3-
2.5A10 [47]. 

(2). When thermonuclear reactions in the star have produced an iron core 
of approximately a Chandra.sekha.r mass no additional energy source is available to 
sustain the core against collapse under the force of gravity. Up to the critical iron 
core mass, it has been the pressure of the relativistic electrons that have supported 
the iron core, just as in white dwarfs. The collapse proceeds on the millisecond time 
scale. 

(3). When the core reaches supernuclear density a shock originates at a radius 
that is interior to the iron core at a. point that includes about 1/2M0 . It must 
propagate outward through the remaining iron core and expel most of the stars mass 
beyond the core, > 8A10 . Otherwise no supernova and neutron star; instead a black 
hole. 

( 4). The shock suffers severe energy loss as it propagates through the infalling 
overlaying core to the mantle that it must expel. The losses are due to the fact that 
the shock front dissociates nuclei loosing about. 10 MeV per nucleon in doing so. 

(5). The lower limit on the iron core mass found in published stellar evolution 
calculations is,...._ 1.27 .MG[48]. This is marginally within the domain of possible success 
of the prompt explosion. Obviously from the above points, the smaller this mass the 
more favorable for the success of the prompt shock mechanism. Recent work has 
therefore focussed on attempts to make plausible a lower core mass. 
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(6). Neutrino physics is as yet highly uncertain and is treated differently by 
the various groups doing supernova simulations. Some early claims [46, 49] to success 
were later understood to be mistaken, by failing to account for neutrino losses of the 
core. The excess of electron neutrinos provided an unrealistic pressure boost to the 
shock [50]. 

8.2 Prompt Bounce and Ejection 

Five years ago, at the level of approximation employed then, it was found that su­
pernova explosions could be simulated if the equation of state was sufficiently soft 
at high density [46, 49]. This finding was then inverted and it was widely claimed 
that by their occurrence, supernovae inform us that the equation of state is soft. The 
scenario invoked at that time was that after nuclear burning had reached its end 
point in the pre-supernova star, having evolved about a Chandrasekhar mass of iron 
core, the core commenced to collapse. Upon reaching supernuclear density the inner 
core rebounds, sending out a shock wave that promptly expels most of the infalling 
material, typically 10 or more solar masses (10M0 ) into a supernova explosion. In 
the particular case of SN1987 A, about 16 Af0 has to be ejected. With the particular 
approximations made in this collapse-bounce-explode scenario, sufficient explosion 
energy could be generated if the nuclear equation of state was assumed to be very 
soft. Claims for the success of the prompt mechanism have floundered in two ways. 

( 1) Three years ago, I showed that the equation of state that gave successful 
explosions was too soft to be consistent with the observed masses of several neu­
tron stars [51, 35, 52]. The softer the equation of state the smaller the mass that 
can be supported against gravitational collapse, and the favored BCK equation of 
state cannot support the observed masses. In brief, the explosion energy was bought 
in those simulations at the expense of neutron star mass. We show in Fig.15 that the 
so-called BCK equation of state used in the Stony Brook-Brookhaven simulations, 
and referred to as their "preferred" one (49] is too soft to support known neutron 
star masses. In the one case we use a Z/ A ratio of 1/3 which is on the average 
appropriate for the matter of the collapsing material. Later as the neutron star is 
formed, further neutronization occurs because it leads to a lower energy state and 
hence softer equation of state. Therefore we show also the neutron star masses for 
a Z/ A ratio more appropriate to the evolved neutron star matter, and of course the 
limiting mass is even less. The appropriate lepton contributions to pressure and en­
ergy are included in both cases. In neither case are the observed neutron star masses 
supported by this equation of state. Effectively the explosion energy in the supernova 
simulations has been bought at the cost of neutron star mass. It might be claimed 
that the BCK equation of state is intended for use only at lower densities than in the 
core of a neutron star. However in one of the models ( # 40) reported in ref. [46] the 
maximum central density achieved just before bounce is 12p0 so in fact it was used 
at very high density by its authors. It might also be claimed that it stiffens at high 
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density for some reason or other. However new physical effects will come into play at 
high density only if they are energetically favorable because physical systems arrange 
themselves so as to find the lowest possible energy. Of course any processes that lower 
the energy also soften the equation of state. Examples of this are the neutronization 
and hyperonization whose softening effect on the equation of state were discussed 
earlier. I recently read another formulation of the same idea by Bet he in discussing 
dense matter. "The results of these considerations are that the repulsive nuclear loops 
saturate, but the attractive forces increase rapidly in magnitude .... These behaviors 
follow the general rule that repulsive interactions tend to screen themselves so as to 
cut down the repulsion, while attractive interactions do not."[53] Similar criticism 
of the claim that the equation of state effective for neutron stars structure might be 
stiffer than that for the supernova material and thus rescue the BCK equation of 
state has been made in ref.[ 52]. The claimed success of the prompt mechanism has 
also been criticized by Van Riper [54] who points out the critical importance of the 
core mass, which is subject to considerable uncertainty due to the complex network 
of nuclear reactions that build it during the pre-collapse era. 

(2) It was shown by Bludman [55, 50] and Bruenn [56] that the neutrino physics 
used in the papers that had claimed successful explosions had failed to account for 
important processes which reduce the chance for the explosion to occur promptly. The 
first generation of neutrinos are electron neutrinos produced by the neutronization of 
matter, p + e-+ n +lie· Because neutrino opacity goes as the square of their energy, 
these neutrinos would be trapped as the density approaches 1012 g/cm3 . However the 
early work failed to account for the down scattering of neutrinos to lower energy, for 
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which the cross-sections that cause trapping are smaller. The neutrinos down-scatter 
because the electrons have to up-scatter on account of the Pauli blocking by occupied 
states. The partial deleptonization of the core during infall causes the shock to form 
at a deeper point inside the iron core, meaning that the shock must propagate through 
a greater overlaying mass of iron. It suffers severe energy losses in doing so. This loss 
is easily calculated. For each 1/2M0 of iron core through which the shock propagates 
the dissipation is 

(78) 

where B is the nuclear binding energy and A is the number of nucleons in a solar 
mass. This dissipation energy is about five times the entire kinetic energy of the 
explosion. (That of SN1987A is estimated to be 1 - 3 1051 ergs.) Bludman finds 
that even using the very soft equation of state of BCK and a small iron core, which 
is favorable to the prompt ejection, the explosion fails with these improvements in 
neutrino physics. 

There is now universal agreement among those who have studied the problem, 
including now the authors of the original papers [57] that the prompt mechanism 
fails when the best physics to date is incorporated. Perhaps it fails just because it is 
prompt! It is vulnerable to energy losses on the one hand and on the other its time 
scale is too short for this energy loss to be replenished from the tremendous energy 
that will be released ultimately as the proto-neutron star sinks into its gravitational 
potential. (On the time scale of the prompt scenario, the proto-neutron star is still 
very hot and has a radius of ,..._ 100 km, whereas it will finally shrink to ,..._ 10 km, 
with consequent further release of energy due to gravitational binding.) 

Typically the shock is overwhelmed by the energy loss caused by the heating 
and disintegration of nuclei as it propagates. As noted above, for each 1/2M0 of iron 
that the shock has to propagate through it looses about five times as much energy 
as is typically seen in the kinetic energy of the supernova explosion. Yet a hundred 
times this energy will soon be released in binding energy of the neutron star. It will 
appear mostly in neutrinos because they can escape on a shorter time scale than 
photons. Evidently since stars do explode, nature finds a way of converting enough 
of this neutrino energy into explosion energy. This brings us to the next scenario. 

8.3 Neutrino Reheating Explosion 

J. Wilson discovered this mechanism[58], and others [59] have contributed very im­
portantly to recent refinements. As we just saw, the shock typically stalls and turns 
into an accretion shock at several hundred kilometers. Most of the material of the 
pre-supernova star is still falling inward toward this point. If it is not expelled, the 
star will collapse to a black hole. For the next several hundred milliseconds, after 
core bounce, the matter behind the stalled shock is heated by partial absorption of 
an intense neutrino flux from the evolving neutron star as it gives up binding energy. 
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The heated material expands pushing the accretion shock front out to greater dis­
tance and leaving a hot rarefied bubble region ih its place. A weak explosion may be 
the result of this. However, more likely this matter again stalls, but now at greater 
distance where the neutrino flux is smaller so that neutrino absorption is reduced. 
Meanwhile because of expansion the matter has cooled. Together with these factors 
and under the force of the infalling matter, the shock front would be pushed in again 
and the cycle would repeat itself since at the new closer position reheating by neutrino 
absorption would reoccur. But the important new realization is that for the next few 
hundred milliseconds there is another energizing mechanism, neutrino-antineutrino 
annihilation in the bubble region which raises the pressure in this region. It is only 
a matter of time until there is sufficient energy deposition to unbind the material at 
the stalled shock and with surplus energy with the resulting ejection in a supernova. 
It is now believed by a number of workers in the field that this is a fairly accurate 
description of how stars explode. A strong case for it, and the need for the hot bub­
ble is discussed by Colgate[60]. It is a mechanism which unique among earlier ones, 
couples some of the binding energy being released by the proto neutron star to the 
outer layers over an extended time. 

In this rather long term mechanism, matter spends much time at sub- nuclear 
density. Nuclear density plays a role in the explosion only at the time of high com­
pression just before the bounce. It will not be surprising therefore if its effects are 
masked by the long evolution after the (stalled) bounce. 

As it appears at present, the prompt mechanism may ultimately be found to 
produce supernovae in the lightest progenitors and the late-time neutrino reheating 
mechanism to be responsible for the explosion of all the others. It is hoped and ex­
pected that this long outstanding problem will be solved within the next year or two. 

Conclusions for supernovae: 

1. It has not been established that supernovae provide a constraint on the equation 
of state of nuclear matter as was frequently quoted. There are many other 
factors involved of comparable importance but high uncertainty. 

2. It is not presently understood why stars explode, though the late time mecha-. . .. 
msm IS promtsmg. 

9 Vacuum Polarization and Neutron stars 

So far the only known effective relativistic field theory that can describe nuclear 
matter and finite nuclear properties is the scalar-vector-isovector ( u, w, p ) theory that 
we have described above. That it provides a good description of numerous properties 
of nuclear matter and finite nuclei lends support to its use in deriving the properties 
of matter at high energy density, but below the expected transition to a quark-gluon 
plasma. It is known how to incorporate vacuum renormalization [61, 27], and this 
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has been done in several recent works on nuclear matter and neutron stars[62, 63]. It 
so far was not been studied systematically in a way that preserves the five important 
properties of nuclear matter at saturation, the binding, density, compression modulus, 
effective mass and symmetry energy until our recent work[41]. Therefore it had 
not been possible to disentangle the renormalization effects from those produced by 
shifting nuclear matter properties. Moreover, vacuum polarization in neutron star 
matter that is in generalized beta equilibrium had not been investig.ated previously, 
except in the chiral-sigma model[64], which seems incapable of describing the normal 
ground state of finite nuclei, producing instead a bubble configuration [65]. Here we 
discuss such a systematic investigation of nuclear and neutron star matter for the 
u, w, p theory. This requires the form of the theory in which cubic and quartic self­
interactions of the scalar field are included[66], and renormalized, for they, together 
with the nucleon interaction with the scalar, vector and vector-isovector mesons, 
permit the five saturation properties to be controlled [22, 67, 10, 68]. 

Most calculations based on nuclear field theory have been done in the mean 
field approximation. However, as is well known, the presence of matter alters the 
vacuum, by altering the masses of antiparticles. The energy of the filled sea therefore 
shifts with density. There are well known procedures for renormalizing the theory 
with respect to nucleon, and scalar and vector mesons[27]. So far it is not known how 
to renormalize the vector-isovector meson, and we shall regard as phenomenological 
the energy contributed to asymmetric matter by the coupling of this meson to the 
isospin current, with this coupling chosen to reproduce the empirical symmetry energy 
coeffi ci en t. 

With the inclusion of vacuum renormalization energies, the energy density is 
given by 

(79) 

where EMFA is the energy density calculated in MFA, eq. (69). The last two terms 
represent the contributions from renormalization of the nucleon and scalar meson[27], 
and are given by, 

(80) 

(81) 

where 

(82) 

and mn and m(1 are the nucleon and u mass. The approximation which includes the 
vacuum renormaliza.tion is known as the relativistic Hartree approximation (RHA)[27]. 
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The field equations can be found either as the solutions of the Euler-Lagrange 
equations, or equivalently,· as the values that minimize the energy density at fixed 
baryon density. They are the same as those written earlier, eqs. (58,59) except that 
the equation for the scalar field, eq. (60), is modifies by the polarization terms above, 

(83) 

The pressure is given in RHA by, 

PRHA = PMFA- VN- Vu (84) 

where PMFA is the pressure previously obtained, eq. (70). 
As before, the five important properties of nuclear matter, mentioned earlier 

can be used to fix the coupling constants 9u/mu,9w/mw,gpjmp, and the parameters of 
the scalar self-interactions, band c. In uniform matter, it is only the ratio of coupling 
constant to mass on which the theory depends, except for the scalar mass, which 
appears independently in the vacuum renormalization energy. For that mass we take 
mu = 600 MeV. The binding, saturation density and symmetry energy coefficient 
are relatively well known[69]. The compression modulus has been the subject of 
considerable debate in the last several years. However a recent analysis of a broad 
body of evidence[35], and recent new experiments on the giant monopole resonance[36] 
both suggest that I< ~ 300 MeV, and this is the value we adopt throughout. 

Table 6: Nucleon-meson coupling constants, corresponding to I< = 300 MeV, B /A = 
16.3 MeV, Po= 0.153 fm-3

, asym. = 32.5 MeV, m;at.fm = 0.78. 

MFA 
RHA 

9.031 
9.249 

4.733 
4.732 

4.825 
4.823 

b 

.003305 

.005723 

c 

.01529 
.000601 

We first assess the effect of the vacuum polarization on the binding energy 
of normal nuclear matter, by adjusting the coupling constants so that the satura­
tion properties discussed earlier are reproduced in both the mean field (MFA) and 
the relativistic Hartree approximation (RHA). The corresponding coupling constants 
are given in Table 4, and the comparison of the two approximations can be seen in 
Fig. 16, for both nuclear matter and pure neutron matter. The equation of state in 
both approximations are surprisingly alike, differing at most by about three percent 
even at ten times nuclear density. This is a very encouraging result, since in the many 
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applications of the theory to finite nuclei and neutron stars, the MFA has been em­
ployed up till now. Next we show in Fig. 17 the separate contributions to the equation 
of state arising from the two-body, as well as the three and four-body terms in the 
energy and the two contributions VN and Vu of the vacuum renormalization. Aside 
from the region near saturation, the three and four-body terms, and the vacuum 
renormalization energies are all rather independent of density. They become rela­
tively unimportant compared to the two-body energy at higher density. The scalar 
renormalization energy, Vu, is particularly small. It can be regarded as an advantage 
of the u, w, p model that the vacuum polarization energies are relatively constant, 
and have so little effect when the coupling constants are renormalized so that the fiv.e 
saturation properties are reproduced. The implication of the above result is that the 
neglect of vacuum renormalization, which in principle could produce drastic changes 
in the nuclear properties, is unlikely to be very important in many applications to 
finite nuclei and to neutron star structure. 

The solution to the above system of equations, the field equations, constraint 
equations and conditions of chemical equilibrium among the baryon species and lep­
tons can be presented as the value of the three field variables and two chemical po­
tentials. (We represent the scalar field by the effective nucleon mass m* = m- g00 u.) 
We show such solutions for the full case of general equilibrium in neutron star matter, 
which contains nucleons, hyperons and leptons in Fig. 18, and in the case that hyper­
ons are absent, and beta equilibrium exists between neutrons protons and leptons, in 
Fig. 19. The Fermi momenta of the baryons and leptons can be reconstructed from 
these quantities through eqs. (75-77). There are two points of special interest. In the 
case that hyperons are absent, the field strength of the (time-like component) of the 
neutral rho-meson, p03 , is a monotonic increasing function of density. Recall that the 
isospin symmetry energy density arising from this meson is 

(85) 

where the p field strength, p03 is given in terms of the isospin projection of the various 
constituents and their densities by Eq.(59). In contrast to the above behavior of the p 
meson field strength in neutron-proton matter, or pure neutron matter, the hyperons 
cause it to saturate, as revealed in Fig. 18. This happens for two reasons: As hyperons 
become prevalent in the star, they enter in such isospin states that tend to reduce 
the large negative isospin of the dominant population, the neutrons, in accord with 
the above symmetry energy, always consistent with the absolute constraint of charge 
neutrality imposed by the long-range Coulomb force. Second, as we discuss later, the 
hyperons are more weakly coupled to the meson fields than are the nucleons. For 
both reasons, hyperons tend to cause the contribution to the symmetry energy of the 
rho meson to saturate. 

A second feature of interest in Figs. 18 and 19 is the saturation of the electron 
chemical potential, J-le by the hyperons. This occurs because charge neutrality can be 
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achieved more economically among hyperons and nucleons when the electron chemi­
cal potential becomes of the order of the their mass difference, than among nucleons 
and additional relativistic leptons. The saturation of J.le by hyperons in neutron star 
matter has special significance for the possible condensation of negative pions. When 
J.le exceeds the effective mass of the pion in matter2

, then the negative pion is ener­
getically more favorable for maintaining charge neutrality than additional relativistic 
electrons. This is because pions are bosons, and they can all.condense in the lowest 
energy state. In this event, pions saturate J.le· However, from Fig. 18, the hyperons 
saturate the electron chemical potential at J.te < 190 MeV. Therefore pions cannot 
condense if their effective mass in matter exceeds this value. On the other hand, pions 
experience a repulsive s-wave and attractive p-wave interaction with nucleons. The 
attraction in the latter case has to be bought at the expense of finite momentum. In 
neutron-proton beta stable neutral matter, pions cause J.te to saturate at 177 MeV 
[40]. The smallest plausible value of the pion effective mass is its vacuum value. So 
pions may condense in neutron star matter over a certain finite interval of density 
for which J.te would otherwise exceed the pion effective mass. The interval is of finite 
extension because as we see in Fig. 18, J.te reaches a maximum and then decreases 
as hyperon populations increase. Assuming, as a maximum estimate of the effects 
of pion condensation, that pions condense at their vacuum mass, the solution of the 
equations for neutron star matter are shown in Fig. 20. The plateau region in J.le is 
caused by the pion condensation which arrests the growth of J.le· Of course the use of 
a single valued pion effective mass is an approximation, and the use of the vacuum 
mass provides an estimate of the maximum effect of pions in neutron star matter, 
according to the above discussion. 

The equation of state of stable, charge-neutral, neutron star matter is shown in 
Fig. 21, with and without vacuum renormalization. We also show by way of contrast, 
the equation of state for pure neutron matter, with vacuum renormalization. The 
equation of state for stable neutron star matter lies considerably below that for pure 
neutron matter. This softening is a result of the conversion of energetic nucleons to 
hyperons and the relaxation into an equilibrium population of many baryon species, 
in contrast to the non-equilibrium population of only the neutron in pure neutron 
matter. A study of these results reveals how inappropriate is the idealization of 
pure neutron matter for neutron stars. This is reinforced by an examination of the 
composition of neutron star matter, including the renormalization of the vacuum, 
which is shown in Fig. 22. The threshold for the first hyperon lies little above two 
times nuclear density. In principle other baryon resonances like the delta could also 
be present, but under the assumption of equal coupling of nucleons and deltas, they 
do not appear in the density domain of neutron stars. For very low densities, neutron 
star matter is almost pure in neutron. However the electron and proton populations 
rise rapidly, even below nuclear density. These populations are initially equal, as a 

2 We shall refer to the dispersion relation energy, k0 = Jmi + k 2 + TI(k0 , k) evaluated at k0 = J.l.e, 
as the effective pion mass 
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result of the constraint of charge-neutrality. (Excess charge would be blown off a star 
by the Coulomb force, which is so much stronger than the gravitational.) At densities 
still below nuclear density, the increasing chemical potential of the electrons makes 
it favorable for muons to replace electrons at the top of the Fermi distribution. At 
a little more than twice nuclear density, the increasing nucleon Fermi energy makes 
it favorable for the E- to replace a neutron and lepton at the top of their respective 
Fermi distributions. Thereafter other thresholds are reached, the A, E0

, :=:-, and so 
on. Under the assumption of equal coupling of nucleon and delta to the meson fields, 
the latter does not appear in the density domain of neutron stars. This is because 
the most favored charge state is the ~-, because it can replace a high momentum 
neutron and electron, but it has isospin projection -3/2, the same sign as that of 
the dominant species, the neutron, but three times the magnitude. It is therefore 
highly isospin unfavored. The lepton populations decrease at densities above the 
hyperon thresholds, as these populations increase. Eventually charge neutrality is 
achieved, mainly among the baryons themselves. As we have mentioned before[lO], 
this could effect the electrical conductivity of a neutron star, and hence the lifetime 
of its magnetic field and active life as a pulsar. 

In the case that the effective pion mass is assumed to equal its vacuum mass, 
they condense in neutron star matter. The populations in this case are shown in 
Fig. 23. The principle difference caused by pion condensation is that because they 
are bosons, they quench the lepton populations, and by altering the manner in which 
charge neutrality can be achieved, rearrange the hyperon populations. At sufficiently 
high density, the pions themselves are quenched by the hyperons. At moderate density 
above nuclear density, the pions are almost as populous as protons, being the principle 
agent of charge neutralization in that domain. 

Such large hyperon populations in dense neutron star matter are supported by 
the non-relativistic calculations of Pandharipande [37] but not by Bethe and Johnson 
[38]. However since these early works, it has been realized that when such calculations 
based on two-body interactions are carried to convergence, nuclear matter saturates 
at twice the empirical density [70]. Moreover, even though neutron stars have dense 
interiors, and are the most isospin asymmetric objects known, the compression mod­
ulus and symmetry energy were not listed among the seven constraints on the early 
work [38]. As we show later, about half the mass of the heaviest neutron stars is 
composed of matter in the lower density domain below 3p0 , so that such uncertainties 
as those mentioned are quite important for neutron star structure. Moreover, such 
uncertainties propagate, by continuity, into the high density domain. The ordering of 
thresholds for the higher baryon states in both of the above works [37, 38] suggests 
that the symmetry energy at higher density becomes small in comparison with that 
expected from the coupling of baryons to the rho-meson, as was discussed elsewhere 
[10]. 

The equation of state of neutron star matter in general equilibrium, repre­
sented as pressure as a function of energy density, is compared in Fig 24 with that 
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of beta stable matter involving only neutrons, protons and leptons, and with pure 
neutron matter. Also the case where pions condense is shown. In all cases the vacuum 
renormalization is included. We note that the causal limit, p = f, is respected by these 
relativistic theories, in contrast to theories of matter described in the Schroedinger 
approach. 

The equations of star structure need to be integrated to p = 0. Therefore 
we supplement the high density equation of state of this work by the appropriate 
equation of state of the lower density domains of matter[12, 11], as in our previous 
work[10, 68]. 
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Figure 16: Binding energy, B /A 
f/ p - m, of nuclear and pure neutron 
matter as a function of density, com­
puted with and without vacuum renor­
malization, denoted as RHA and MFA 
respectively. The corresponding nu­
clear matter properties are listed in 
Table 6. [41] 
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Figure 17: For nuclear matter, the sep­
arate contributions of the two-, three­
and four-body terms and the vacuum 
polarization energies. [41] 

10 Other Dependences of Neutron Stars 

We have calculated the families of neutron stars both with and without vacuum polar­
ization. Again the coupling constants are those of table 6, which give identical nuclear 
matter properties in both approximations. The effect on neutron star masses is found 
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Figure 19: Similar to Fig. 18, for beta 
equilibrium among n, p and leptons. 
[41] 

to be negligible, not because the vacuum polarization energies are negligible, but be­
cause the coupling constants in both cases give the same five saturation properties 
of nuclear matter and therefore yield essentially the same equation of state over the 
entire relevant density range as was shown in fig. 16. Consequently all of our earlier 
investigations of neutron star structure, and in particular the limits that we found 
to be imposed on the equation of state by neutron star masses, stand unchanged. 
In the remainder of the paper we shall show the results only for the RHA (vacuum 
polarization included). 

The properties of symmetric matter at saturation do not, of course, yield any 
information about the hyperon-meson couplings. We investigate first the uncertainty 
associated with this. Moszkowski[71], using quark counting arguments, suggests that 
these couplings should be reduced over that of nucleons by 

(86) 

On the other hand from evidence on hypernuclei, Walker[72], suggests that x should 
be smaller, around 0.4. No matter what the coupling strength, even if free, hyperons 
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RHA. Properties of the corresponding 
nuclear matter and the coupling con­
stants in Table 6. [41] 

are expected to appear in neutron star matter[73]. We compare three cases in Fig. 25. 
A modest reduction in limiting mass results from the reduction of x from universal 
coupling (x = 1) to the value suggested by Moszkowski. The value suggested by 
Walker would lead to an even greater participation of hyperons in dense matter, with 
the first threshold occurring at little over twice nuclear density. This is because the 
vector repulsion is more important than the scalar attraction, and the weakening of 
the coupling constants is therefore favorable to hyperons in the dense region. We 
suspect that this last coupling is probably too drastic an estimate of the relative 
hyperon to nucleon couplings to mesons, and shall use Moszkowski's coupling in the 
remainder of the paper. This is also the coupling employed for the calculation of the 
equations of state shown in Figs. 21 and 24. 

We summarize the effects on the limiting neutron star mass of uncertainties in 
the hyperon couplings over a range of Kanda fixed m;at in Fig. 26. From Fig. 11 one 
could infer approximately the limiting mass at another m*. The effect of hyperons is 
always to reduce the limiting neutron star mass. The amount of the reduction can 
vary compared to a pure neutron star approximation by up to a solar mass, but not 
less than 1/4 solar mass 
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Figure 23: Relative populations m 
neutron star matter as a function of 
density [41]. Pions are included. 

Next for the three equations of state shown in Fig. 24, we show the correspond­
ing star masses in Fig. 27. Protons make their appearance in neutron star matter 
below the central density of the lightest neutron stars, so the pure neutron stars and 
the beta stable stars are shifted in mass with respect to each other, with the latter 
being lighter because of the softer equation of state. The first hyperon threshold 
occurs a little above 2p0 and is plainly visible both in the equation of state (Fig. 24) 
and in the star mass as a function of central density. At the limiting mass, the ef­
fect of beta equilibrium is a reduction of mass of about ~M0 and hyperons cause 
a further reduction of about the same amount. Here we use the hyperon coupling 
suggested by Moszkowski. As shown above, the effect would be even larger were the 
coupling suggested by Walker used. In either case, the effects are larger the smaller 
the compression modulus of symmetric matter(74]. 

It is sometimes claimed that neutron star masses are not sensitive to the den­
sity domain of normal nuclei, and are therefore insensitive to nuclear matter proper­
ties. This is manifestly untrue for the lighter stars, since their central densities are 
not high. It is also not true for stars at the limiting mass. Although the cores of 
neutron stars at the limiting mass are dense, the mass of a star is not dominated 
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Figure 25: Neutron star mass as a 
function of central density for three 
choices of hyperon coupling (see Eq.86 
). Computed in RHA. [41] 

by the central density. The reasons are two: the star is three dimensional and rel­
ativistic. The consequence is illustrated in Fig. 7. There we show the fraction of 
mass M(p)/M that is composed of matter at densities greater than p. What we 
find for K = 300 MeV is that about 50 % of the mass is composed of matter at 
densities less than 3p0 while the central density is Pc = 7.2p0 , so that the limiting 
mass star is dominated neither by low nor high density. Besides, we have explicitly 
shown elsewhere how the limiting star mass depends on such saturation properties as 
K and m;at. [34, 35]. This is so, not only because an appreciable portion of the stars 
mass is contributed by matter near saturation density, as shown in the figure, but 
also because the equation of state is everywht:'re specified by its coupling constants, 
which determine alike the saturation properties as well as the high density behavior 
of the equation of state. One may argue with the model of nuclear matter but not 
with the inextricable connection of all domains of the equation of state through the 
coupling constants of theory. A disadvantage of equations of state based purely on a 
parameterization is that such a connection is absent. 
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Figure 27: Neutron star mass com­
puted for the four equations of 
state shown in Fig. 24 . This shows 
how pure neutron matter overesti­
mates the star mass. [41] 

It is possible as more observational data is gathered, that the gravitational redshift 
and the mass of a gamma ray burster (neutron star) will become available for the same 
star. If the spectral line between 300 and 500 I< e V [75, 76] can be unambiguously 
associated with the gravitational redshift of electron-positron annihilation at the star's 
surface, an interesting additional constraint on the equation of state will be imposed. 
We show the gravitational redshift as a function of neutron star mass in Figs. 28. 
The surface redshift is defined as the fractional shift in the wave-length of light that 
is emitted from the star surface, 

~.X 
Z = - = eA(R) - 1 

.X 
(87) 

where the radial metric function, .X(r), is given by, 

81r lr 2M e-2A(r) = 1-- f.(r)r 2dr = 1- -, 
r o r 

for r > R (88) 

where M is the star mass, R its radius and f.(r) is the radial distribution of energy 
density in the star, all of which are obtained as solutions to the Oppenheimer-Volkoff 
equations. 
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In Figs. 29 and 30 we show the gravitational binding and baryon number of 
neutron stars as a function of their mass, and in Fig. 31, the fraction of baryons that 
are strange is shown. This attains a value of 20-30 % for the star at the limiting 
mass. This star, with central density Pc ~ 7.2p0 , is dominated by hyperons in the 
central core, as can be inferred from Fig. 22. The loss of binding at the lower limit 
of the range of neutron stars, which occurs for M ~ 0.069M0 and a central density 
of p ~ 0.46p0 , and the rapid growth in radius as this limit is approached from above, 

·correspond to each other. At the upper range of masses, the rapidly declining radius, 
and increasing redshift, binding and strangeness fraction are all· precursors of the 
gravitational collapse to a black hole, as the mass approaches the limiting mass. This 
occurs for a central density Pc ~ 7.2p0 , and the corresponding mass is M ~ 1.8M0 . 

12 Summary of Constraints on the Equation of 
state 

We have reviewed the prospects for obtaining constraints on the equation of state 
from astrophysical sources. Neutron star masses although few are known at present, a 
situation which may soon change as remarked earlier, provide a very direct constraint 
in as much as the connection to the equation of state involves only the assumption 
that Einstein's general theory of relativity is correct at the macroscopic scale. This 
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is almost as secure as Maxwell's equations. There are nevertheless a number of 
uncertainties, prime among them, as concerns extracting the compression modulus, 
are the hyperon couplings. Nevertheless what is abundantly clear is that any model 
that omits their presence in the star will underestimate the stiffness of the equation of 
state. Supernovae simulations involve such a plethora of physical processes including 
those involved in the evolution of the precollapse configuration, not all of them known 
or understood, that they provide no constraint at the present time. Not even the 
broad category of mechanism for the explosion has been agreed upon (prompt shock, 
delayed shock) until recently. In Fig. 32 we summarize our findings from a number 
of sources of information on the compression modulus (35]. 

We evaluated the vacuum polarization effects on the equation of state and 
neutron stars in the u, w, p theory. These effects are not negligible, although they are 
considerably smaller than found for the chiral sigma model(64, 78]. However it was 
found that when the coupling constants are renormalized so as to reproduce the five 
saturation properties of nuclear matter in each case, whether or not renormalization 
is carried out, the eq~ation of state and neutron star properties are virtually identical 
in the two approximations. On the other hand, when only the saturation density and 
binding are controlled as in ref.(63], the equation of state and neutron star properties, 
computed with and without vacuum polarization diverge at higher density. Failure to 
adequately constrain the equation of state at saturation can therefore lead to spurious 
conclusions in applications to dense matter as in neutron stars, as well perhaps in 
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applications to nuclear structure, especially for properties that depend on ]{ or m*. 
The question of the sensitivity of neutron star masses to the saturation prop­

erties of the corresponding nuclear matter was studied. First, as discussed above, 
whether the a, w, p theory yields the same or different equation of state at high den­
sity when vacuum polarization effects are incorporated, depends on how tightly the 
saturation properties are controlled. So within this theory, which is the only known 
relativistically covariant field theory of matter that can account for both nuclear 
matter and finite nuclei, the saturation properties and the higher density behavior 
are intimately connected. In fact this has to be true of any comprehensive theory 
of matter, since the coupling constants everywhere specify the equation of state. It 
need not be true of parameterizations of the equation of state, for which there is no 
underlying theory. Second, we explicitly demonstrated, that although the density 
of matter at the center of a neutron star at the mass limit is fairly high, Pc ~ 7 po, 
the mass of a star even there, is not dominated by dense matter. Instead, fully one 
half is contributed by matter at densities less than three times nuclear density. This 
also establishes a dependance of the limiting star mass on the equation of state near 
saturation. 

We calculated a number of additional neutron star properties, that may be­
come tests of the theory as more data on neutron stars becomes available. We reem­
phasized the role of equilibrium in neutron star structure and the equation of state. 
The fraction of baryons that are hyperons in the limiting mass star is about 20 per­
cent, and hyperons are the dominant baryons in the central core. 

53 



2.---------------------. 20 

.... ··· 
.. .. · 

neutron stars 

" 
K =300 MeV B114=200 MeV 

n.m. ~ 

1.5 15 P=1.5 ms 

0.5 

E 
2£ 

hybrid stars 

B 114=170 MeV 

(I) 10 
hybrid stars / :;, 

:.0 ·············· co 
a: .. ·········· 

5 ...... ······r 
P=0.5 ms 

0 
14 14.5 15 15.5 16 0 0.5 1 1.5 

log kc g/cm3) M I Msun 

Figure 33: Generic relations for hybrids are the same as for neutron 
stars as Fig. 6, but hybrid stars may have a first order phase transition 
between hadron and quark phases (the region of (nearly) constant Af). 
Dotted regions are unstable. Stable regions marked by solid lines. [77] 

13 Stars with Quark Cores: Hybrids 

2 

In earlier sections we have studied quark matter, neutron star matter and nuclear 
matter, and have discussed phase transitions between the confined and deconfined 
states. Such transitions may be induced in relativistic collisions between nuclei be­
cause of the high density and temperature produced. The phase transition from the 
deconfined to confined phase almost certainly took place in the early universe. It 
may also take place in the cores of the more massive neutron stars [79]. Such stars, I 
call hybrid. (Possibly the first calculation of the structure of a star for which a first 
order phase transition of unspecified nature occurs was made by C. K. Chung and T. 
Kodama, Rev. Bras. Fis. 8 (1978) 404.) 

Usually it is (tacitly) assumed that hadronic matter, in which quarks are 
confined in nucleons as in the nuclei of which the world around us is made, is the 
absolute ground state of the strong interactions. In this case such hadronic matter can 
coexist with quark matter at sufficient pressure, but if the pressure is released, that 
matter will return to the hadronic state. If the pressure due to gravity is sufficiently 
high in the core of a compact star we expect that it will convert to quark matter so 
that the star has a quark core and a neutron star exterior, and the whole would be 
bound by gravity. 

We have learned the techniques of dealing with phase transitions, and do not 
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need to further discuss them. Instead We show in Fig. 33 some of the features that 
arise in this case. The less massive stars will of course be purely neutron stars, in 
the sense already described (equilibrium mixture of nucleons, hyperons and leptons). 
The most massive ones will, if the phase transition occurs at low enough densities 
to be realized in the star, have a core made of u,d,s quarks. It is easy to show that 
already at moderate densities the Fermi energy of the u,d, quarks exceeds the mass 
of the s-quark, so that it is also populated. In the mass vs, central density plot, 
two possibilities are shown. In the one (B 114 = 170 MeV) the mixed phase occurs in 
the density range of about log tc = 14.7 to 15(tc/to::::::: 2 to 4). Stars in this range of 
central densities are unstable, or only marginally stable. Below this region the stars 
of the sequence are pure neutron stars; above it they are hybrids with quark core·s 
and a neutron star mantle. In the second case (B 114 = 200 MeV) the pure neutron 
stars have central densities as high as log tc = 15.1(tc ::::::: 5t0 ). Stars with central 
densities falling in the mixed and quark phase above this density Of course the values 
of the bag constant for which these behaviors occur depends on the nuclear equation 
of state which here has /{ = 300 MeV and m;at. = 0.8m. In this case, for B 114 a little 
larger than 200 MeV, the central density in the star sequence never attains a high 
enough value to reach the phase transition. 

In the two examples discussed, the maximum mass of the sequence of stars 
is above 1.5M0 , in the on~ case a pure neutron star and in the other a hybrid. For 
intermediate values of B 114 the limiting mass becomes smaller and between 180 and 
190 MeV has a value of about 1.4M0 and switches from being a hybrid star (at 
B 114 = 180 MeV with mass 1.35M0 ) to a pure neutron star (at B 114 = 190 MeV with 
mass 1.48.M0 ). The macroscopic properties of these compact objects, their masses and 
radii, are very similar. Whether their surface properties are sufficiently different as to 
allow a distinction between them has not so far been investigated. It is conceivable 
for example that star quakes and microquakes may distinguish between them since 
these phenomena may be related to seismic activity associated with changing stresses 
as the star's rotational frequency diminishes and the stress is released in a quake 
which is signaled by a sudden small change in the period (fig. 2). It may be possible 
therefore to gain information on the phase transition in cold equilibriated matter from 
compact stars. 

As with neutron stars, the window in M, and hence in A ""' M fm, for which 
fast rotation can be sustained is very narrow, which is inevitable since both types of 
stars are bound by gravity. This is seen in the second part of the figure. 

In Fig. 34 we compare the density profile of neutron and hybrid stars and a 
star we will discuss in detail, and have alluded to earlier, a strange star, one that 
would exist if strange matter were the absolute ground state. 
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14 Fast Rotation of Pulsars and the Equation of 
state 

Several years ago it was believed that a very fast pulsar had been discovered in the 
remnant of the recently discovered supernova 1987 A. This stirred great interest in 
the implications such fast rotation as 2000 times per second might imply for the 
equation of state of matter. One obvious problem is that at some point centrifuge 
will overwhelm gravity. This places an absolute upper bound on rotation (see eq.(25). 
The discovery has later been withdrawn. However I have emphasized in my work, and 
will discuss it in greater detail later, that there are search biases against the detection 
of pulsars below about a millisecond. I discuss the reason latter, and it is presented 
in detail in ref. [81]. Essentially you can think of it this way. In making a survey of 
the heavens for pulsars you can spend all your time and computer resources in aiming 
the radio telescope at one direction in the sky, and be very certain that if there is a 
pulsar there you will find it. You will have wasted all your resources if there is not 
one in that direction. Hence the first compromise decision that must be made. For 
the moment I recall that the fastest known pulsar has a period of 1.558 ms [82] with 
celestial coordinates 1937 + 21. Since then a total of ten millisecond pulsars have been 
found. They have been found right down to the effective limit of sensitivity! 

Einstein's equations for the structure of a rotating star are much more involved 
than the 0-V equations that we have been studying. As far as the absolute upper limit 
on the frequency is concerned (called the Kepler frequency), it can be approximated 
by eq. (25) with the empirica.l factor cited. It approximates the values obtained 
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by exact numerical integration of the equations of rotating star structure very well 
[9, 83]. We have shown in some of the Figures (6, 33) the boundary in the mass­
radius relation for which stars can rotate rapidly. It was evident that none of our 
models could sustain rotation as fast as 1/2 ms. Some neutron star models can do 
so [9], but as we pointed out [84] and reconfirmed (80], the central density is so high 
( tc > 12to) as to call into serious question whether the star can be composed of 
individual hadrons. From geometrical considerations alone, the baryon density for 
cubic close packing of classical spheres of radius equal to the charge radius of protons 
is 1.6p0 • If packed to the 'hard core radius' say 0.5 fm, the factor is 6. 7. And this 
does not reflect the effects of the uncertainty principle which would give nucleons 
enormous momenta with which to destroy each other's structure if packed to such 
densities. Very fast pulsars are not likely to be neutron stars or hybrids. This raises 
an issue of fundamental significance which we discuss in the next section. 

To make matters worse, our discussion above is in terms of the Kepler fre­
quency. It has been known for some time however that the limit on rotation is not in 
practice set by the Kepler frequency: it is only an absolute upper limit. In practice 
the limit is set by gravitational radiation reaction instabilities, that are especially 
active in hot stars, and all neutron stars are hot when born (see ref. (85]). Therefore 
if one is born with very rapid rotation, say caused by the spin-up due to angular 
momentum conservation of an especially rapidly rotating progenitor, it will rapidly 
spin down by radiating gravitational waves until as a result of its cooling these insta­
bilities are damped by viscosity which increases as 1/T2

• At that time the pulsar is 
no longer the rapid rotor it started as. 

However the full import of this instability has not been appreciated until we 
investigated its effects on modern theories of dense matter[86, 87]. There we found 
that the effective limiting frequency is only 60 - 70 % of the Kepler frequency. This 
effectively limits the possibility of understanding a neutron star as a fast pulsar only 
for periods greater than about 1 ms. While the theoretical analysis is beyond the 
scope of these lectures, it is important to know the result. 

15 Fast Pulsars, Strange Stars 

There is presently no evidence to support the commonly held assumption, apparently 
anthropocentric, that the confined hadronic phase of individual nucleons and nuclei 
is the absolute ground state of the strong interaction. The fact that most of the 
mass in every object that we know, from our own bodies to all the visible galaxies 
resides in nucleons and nuclei tells us for certain only that this is a possible phase 
of matter and that it is very long lived; not necessarily that it is the lowest energy 
one. How misleading the present composition is in revealing the nature of the ground 
state is immediately exposed by noting that the lowest energy state of the confined 
phase is Fe56 and there is very little of that in the universe. From the QCD energy 
scale it is quite plausible that the deconfined (3-:ftavor) strange-quark-matter phase is 
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lower in energy(20, 21], and we show that the present upper limit on the abundance 
of strange nuggets in the earth's crust does not rule out this possibility. Indeed the 
universe would be almost identical in either case. We are only just now entering an 
era in which advances in technology may allow the detection of the necessarily subtle 
signals that might be present if the universe exists in a metastable phase, albeit long­
lived, instead of the ground state. The most promising signals, both from the point of 
view of prospects for their existence as well as for their detection, are submillisecond 
pulsars. The shorter the period of rotation the more secure the conclusion that the 
universe is in a metastable phase of matter[88, 84]. 

Of course the assumption that the confined hadronic phase is the ground state 
cannot be realistically challenged by resort to specific models of the equation of state of 
dense nuclear matter, nor of quark matter, but rather by use of model independent 
limits, and when it is necessary to invoke models of matter, by exploration of the 
most general forms subject only to the minimal generally accepted constraints. Our 
approach within this framework is to exhibit the difficulties and contradiction encoun­
tered in trying to understand very rapid rotation of pulsars if they are assumed to be 
neutron stars. We then show how these are naturally resolved under the assumption 
that strange matter is the absolute ground state. 

15.1 Bias against short periods of present pulsar surveys. 

As of this writing there are ten known millisecond pulsars with periods ranging be­
tween 1.6 ms to 7.9 ms, all of them discovered recently, and of course 400 others, 
with a mean period of 700 ms and a maximum period of 4 s. What is not generally 
realized however is that searches for radio pulsars are biased, being least sensitive to 
short periods[81]. The bias exists because of compromises involving choices of sam­
pling rates of the radio signal, number of frequency channels, the sophistication of the 
algorithm for correcting the data because of the differential dispersion of the radio 
frequencies in the bandwidth of the receiver caused by the unknown column height of 
the interstellar plasma, the number of iterations over such corrections and the Fourier 
analysis of the corrected data that has to be carried out at each stage. Therefore the 
world's data on radio pulsars does not represent the underlying population because 
of this search bias against detection of short periods, especially below 1 ms[89], and 
most of the large surveys have had no sensitivity below about 4 ms as emphasized 
by[81]. And empirically fast pulsars are seen only at radio frequencies. The cutoff 
in short periods that appears in Fig. 35 is therefore possibly only an artifact of the 
search sensitivity. The growing number of pul:-ar discoveries with periods right down 
to the cutoff suggests that this is so and presents a special opportunity and challenge 
to radio astronomy! For while the discovery of additional millisecond pulsars is excit­
ing, both because of their novelty and for what they may reveal of the evolutionary 
processes involved in their creation and the environment of galactic globular clusters, 
which are now understood to provide an environment that is especially favorable for 
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the incubation of fast pulsars[90], the discovery of a single sub-millisecond pulsar, 
say below 1/2 ms, addresses the fundamental issue of the ground state, and would 
provide strong if not conclusive evidence that we inhabit a metastable phase. 

50 

C/) 40 .._ 
co 
C/) 

:::l 
a. 30 -0 
.._ 
Q) 20 
.0 

E 
:::l 
z 10 

0 
, 0 ·"4 10" 3 10" 2 10" 1 10 

Period in seconds 

Figure 35: Distribution of pulsar periods. There is a relatively strong 
attenuation in sensitivity of radio pulsar surveys for periods below 
about 1 ms. Pulsars are identified by their celestial coordinates. 

15.2 Difficulty in reconciling fast pulsars with neutron stars. 

The relevance of fast pulsars is easily understood in terms of their stability against 
mass loss, expressed as the dominance of gravity over centrifuge (see eq.(25), 

(89) 

where n is the angular velocity, and a~ 0.65 is an empirical GR correction to New­
tonian physics[9]. This places a model independent constraint on the average energy 
density of the star. In actual stars the density increases monotonically toward the 
center. To discover the implication of fast rotation on the central density of the star, 
we must solve Einstein's equations for star structure using computed or hypothetical 
equations of state. For very high central densities, it is expected that matter con­
sisting of individual nucleons will dissolve into quark matter, of which strange quark 
matter, an approximately equal mixture of u,d,s quarks, is lower in energy than non­
strange 2-flavor quark matter. The problem resolves itself into understanding at what 
rotational period, stability requires a central density that exceeds the phase transi­
tion density. Three questions arise at this point: (1) Can a compact star rotate very 
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rapidly and with central density that is plausibly below the phase transition point so 
that it is a neutron star? (2) Can a hybrid star, a neutron star with a quark core, 
rotate very rapidly? (3) What is the minimum rotational period in either case? One 
way of attempting to answer these questions is by examining the properties of stars 
based on specific theories of dense nuclear matter. The drawback of this approach 
is that we do not have an impeccable theory of dense matter, and we certainly can­
not solve QCD to obtain an equation of state. We cannot be assured therefore that 
of a finite collection of specific theories we have spanned the characteristics of the 
equation of state of nature. Our approach is therefore to carry out an exhaustive 
grided search, similar to our earlier one [77, 80], over a flexible parameterization of 
the equation of state that is constrained only by causality, its smooth matching to the 
sub-nuclear equation of state[91, 12] and the requirement that the maximum mass 
neutron star be at least 1.44M0 . The result is summarized in Fig. 36, of a search 
over more that 1400 models of the equation of state,spanning a broad spectrum of be­
havior from soft to stiff at low density and independently at high, and including first 
or second order phase transitions representing pion or kaon condensates, for example, 
subject only to the above minimal constraints. The least central density required 
by the condition of stability to rotation is shown as a function of rotation period. 
Particular theories of nuclear matter can yield results that lie above or on this curve, 
but not below! So as to be conservative, we have included the effect of gravitational 
radiation-reaction instabilities as a reduction in the Kepler frequency, OaR = f30K, 
at the minimum estimate, /3 = 0.91 [85]. The correction may be much larger, like 
/3 ~ 0.7, for realistic neutron star models[87]. Two important conclusions can be 
reached. Pulsars with periods longer than 1 ms can be understood as neutron stars 
having modest central densities as low as three times nuclear density. In contrast, 
pulsars with periods shorter than 1/2 ms must have very high central densities if 
they are bound only by gravity, as is the case for neutron stars since neutron matter 
is unbound, and so is nuclear matter above about A=250. For such short periods 
the density must be so high as to render implausible the contention that the star is 
composed of individual nucleons. We do not know from experiment at what density 
the expected phase transition to quark matter occurs, and we have no guide yet from 
lattice QCD simulations. But from geometric considerations it is implausible that 
nucleons survive at densities above a few times nuclear density[84]. 

The minimum rotation period found in the exhaustive search over equations 
of state was 0.42 ms. The dotted curve in Fig. 36 is merely an extrapolation. It 
appears that no star bound only by gravity can have P < 0.4 ms. These figures 
for the period correspond to the conservative estimate of GR instabilities. While we 
wish to be conservative in arriving at our conclusions, we also want to stress that for 
realistic equations of state the GR instabilities increase the scale of the period axis 
in Fig. 36 by about a factor 1.3 [86, 87]. So it is doubtful that any phenomenological 
neutron star model can have a stable period as low as 0.55 ms, and from our study 
of neutron stars computed from realistic equations of state calculated in relativistic 
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Hartree-Fock approximation including two-particle correlations and based in one case 
on the well known Bonn meson-exchange potential that reproduces scattering data 
so well, it is doubtful that neutron stars can rotate with periods below about 1 ms 
[87]. 

For compact stars that are bound only by gravity (in contrast to hypothetical 
stars made of self-bound matter, as may be the case for strange quark matter), the 
mass radius relationship has a characteristic form shown in Fig. 37. For low masses, 
where the gravitational attraction is weak, the star is large. For higher masses, 
near the limit for collapse to a black hole, the radius decreases very rapidly with 
increasing mass. For such stars, only those very close to the mass limit can rotate 
rapidly because there the radius is least and the mass greatest (see Eq.(89)). In other 
words, a very rapidly rotating neutron (or hybrid star) must be very finely tuned in 
mass, or equivalently baryon number. Therefore if two very fast pulsars of about the 
same period but different masses are found, both cannot be a star bound only by 
gravity, that is to say a neutron or hybrid star. 

If very rapidly rotating pulsars cannot be reconciled with neutron stars the 
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least drastic hypothesis that can be considered next if pulsars with periods in the 
range 0.4ms ~ P < lms are discovered, is that they are neutron stars with quark 
cores, what we have called hybrid stars[77]. There is no natural limit on their central 
density. In their cores the nucleons are dissolved into quarks by the high pressure 
induced by gravity. Such stars could exist if the confined phase is the ground state; 
they are bound only by gravity and consequently the radius-mass relation is of the 
generic form shown in Fig. 37 just discussed. However, there are theoretical grounds 
to doubt that hybrid stars are plausible candidates for fast pulsars, but no proof at 
this time(80, 83]. Very briefly, the attributes of an equation of state that would allow 
a star bound only by gravity to have stable rapid rotation is that it be soft at low 
and intermediate density, and very stiff at high, at or near the causal limit. The 
last requirement seems incompatible with the notion of asymptotic freedom in the 
deconfined phase. Moreover in the exhaustive search reported earlier [80], we found 
that hybrid stars, with the necessary restriction that the mixed phase has its lowest 
density above nuclear saturation, cannot rotate faster than the fastest neutron star 
models and then only with the stiffness just spoken of that seems incompatible with 
the notion of asymptotic freedom. 

In view of the difficulties of reconciling a neutron or hybrid star with fast 
rotation, the implausibly high density for neutron matter, the stiffness at high density 
required of the equation of state that seems incompatible with quark matter, the fine 
tuning in mass of the star so as to place it close to the termination point, all of which 
arise in trying to reconcile a star that is bound only by gravity with fast rotation, an 
altogether different possibility needs to be examined. 

15.3 Strange matter as the absolute ground state. 

Witten[20] hypothesized that strange quark matter consisting of an approximately 
equal mixture of u,d,s quarks is absolutely stable, as a solution to the so-called missing 
mass or dark matter problem. It is believed by some astronomers, based both on 
cosmological arguments (closure of the universe) and on the observations that the 
luminous matter of the universe is apparently subject to greater gravitational forces 
than the luminous matter itself would exert, that there is much more matter in the 
universe, indeed within our own galaxy, than can be seen. Such matter is referred 
to as dark matter, and has been the subject of much speculation. Witten reasoned 
that since the universe in the early high temperature era almost certainly passed 
through the deconfined quark matter phase, of which three-flavor quark matter is 
lower in energy than two flavor, then if strange matter were the ground state, much 
matter would have remained in this phase. If it is the ground state, then objects from 
microscopic to star-like quantities would be stable, since it is self-bound. Such matter 
in microscopic lumps called strange nuggets would be non-luminous and therefore 
invisible as objects in space. Hence the suggestion that it formed the dark matter 
of the universe. However it was very soon shown that even if it is the ground state, 
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strange matter would have evaporated in the high temperature era into ordinary 
hadrons [92], and there would be no relic strange matter. So strange matter as a 
candidate for dark matter was not a viable suggestion. However, it may still be true 
that it is the ground state, and we discuss how this is both plausible and violates no 
known facts. 

We know that non-strange quark matter is higher in energy per baryon than 
nuclear matter, otherwise nuclei would decay promptly into it. It must be higher by 
about the QCD energy scale, "' 100 MeV, established by lattice simulations. As a 
rough estimate treat the quarks as a Fermi gas. The energy density scales as t: "'{Jl-4 

and the baryon density as p "' 1 p,3 , where 1 is the degeneracy, 2 or 3. Comparing 
the two types of quark matter at the same baryon density, then p, "' ,-113 so that 
3-flavor quark matter has an energy per baryon, t:/ p, of about a factor (2/3)113 "'0.9 
times that of 2-flavor, or about 100 MeV lower. That places 3-flavor quark matter at 
about the same energy as nuclear matter. However, even if strange matter is lower 
in energy, ordinary nuclei can decay into the strange quark phase phase only on a 
time scale long in comparison with the age of the universe, since it is inhibited by 
the need for A simultaneous strangeness changing weak interactions where A is the 
atomic number[21]. This is because it is energetically unfavorable for the transition 
to take place one quark at a time since this would only produce hypernuclei. It is 
important in the above argument to realize that surface and shell effects place a lower 
but uncertain bound (A=l0-1000) on the baryon number for which small nuggets of 
strange matter are bound even if strange matter in bulk is absolutely stable[21]. 

Althogh the mass of the strange quark is larger than that of the u and d quarks, 
at any density above several times nuclear, the quark chemical potential exceeds the 
mass difference, and u,d,s quarks are almost equally populous. However because of 
the mass difference there is a slight deficit of strange quarks, and this provides a 
nugget with a positive charge. This insures that the nugget will repel nuclei, and so 
will be inert except in a neutron rich environment such as neutron stars or the late 
stage of star collapse when the density exceeds the neutron drip density, or in very 
high temperature matter where the kinetic energy of charged particles may overcome 
the Coulomb barrier. The anomalously low charge to mass ratio Z /A provides a 
signature for their identification if they occur on earth with sufficient concentration 
to be found. However as we shall see, the concentration expected on earth is very 
small. We will discuss this later. Because of their high density, a few times nuclear 
density, the surface gravitational force acting on nuggets with A > 1017 would exceed 
the electrostatic forces holding solid material together so that they would sink toward 
the center of the earth[21]. 

15.4 Strange quark stars. 

If strange-quark matter is self-bound and absolutely stable as as has been suggested[20, 
93], the structure of compact stars made of it would be entirely different from that 
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discussed above[20, 94, 95]. For strange stars gravity merely prevents them from fis­
sioning into smaller bodies, and of course imposes a mass limit: they are otherwise 
bound by the strong interaction. Denote the normal energy density of such matter, 
the density at which the internal pressure vanishes, by fb· A small nugget therefore 
has mass M = ~1!" R3 fb, so that, unlike neutron stars, or more generally stars bound 
only by gravity, the mass radius relation for small mass is R ex: Afl/3 , and has a 
generically different forrri as shown in Fig. 37. Therefore the entire family of strange 
stars can rotate rapidly, not just those near the limit of collapse to a black hole[84], 
since for such a radius-mass relation the expression for the Kepler frequency, Eq.(89), 
is a constant for low mass stars and changes for those near the mass limit only in 
the sense of increasing. Also from Eq.(89) we can derive a condition on the normal 
density of self-bound stable matter that will allow all such stars to rotate with period 
P: [80] 

3 (!1)2 (ms)2 
fb 2': -- - = 1.3fo - . 

41rG a P 
(90) 

For example, all strange stars can rotate with P = 1/2 ms if fb > 5.2fo (where fo = 
2.5 x 1014g/cm3 is normal nuclear density). Gravitation radiation-reaction instabilities 
are unimportant for quark stars because of the expected high viscosity[18], so the 
correction (3 quoted earlier for neutron stars does not need to be applied. Thus three 
problems are solved if strange quark matter is the ground state; very short periods 
are possible, below 0.4 ms, provided only that the normal density satisfies the above 
model independent relation, high central densities as required by fast rotation are 
natural for quark matter and a star does not have to be finely tuned in mass to be 
stable at very fast rotation. 

Based on the bag model of confinement and the range placed on its parameters 
by the condition that strange quark matter is the ground state, several authors have 
asserted that strange stars cannot rotate very rapidly[83, 96, 97) or can do so only 
marginally[98]. There is an unfortunate confusion in logic there in translating a 
statement that is true of a crude model to a statement about nature. We have 
emphasized elsewhere that whether or not strange stars can rotate very rapidly is · 
entirely an experimental question, not a theoretical one[84]. For to determine on 
theoretical grounds whether the energy per nucleon in strange matter lies below that 
in Fe56 withE/A= 930 MeV, which would make it absolutely stable, or lies above the 
nucleon mass at 939 MeV, would require one percent accuracy, an accuracy certainly 
not possessed by the bag model, nor indeed by lattice QCD now or in the foreseeable 
future. Neither theory nor confinement models can rule out the hypothesis that 
strange matter is stable, nor conversely can they be used to assert that it is. 

If the hypothesis is true, then some or all pulsars may be strange stars rather 
than neutron stars. Strange stars can be produced in at least two ways[99, 100). 
If the density in the core of the more massive neutron stars exceeds the transition 
density to quark matter, the core will spontaneously convert to non-strange quark 
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matter. In turn, this will weak decay to strange matter, and then conversion of the 
entire star will occur on a short time scale. If a nugget of strange matter falls into a 
star, it will gravitate to the center and lie dormant until the star collapses. When the 
density exceeds the neutron drip density, the nugget will begin to grow, and convert 
the entire neutron star produced in the supernova. It is possible that the universe 
is sufficiently contaminated by strange nuggets, whose abundance is discussed in the 
next section, that the second process will always preempt the first. 

15.5 Strange matter compatible with terrestrial searches. 

If strange stars exist, there will be present on earth some abundance of strange nuggets 
accumulated as cosmic rays over the earth's lifetime. We now estimate an upper limit 
to see if strange matter as the ground state is ruled out by present experimental lim­
its. From 16 years of observations on the binary pair of compact stars with celestial 
coordinates 1913+16, the decay of the binary orbit has confirmed Einstein's gravita­
tional radiation to an accuracy of less than one percent[5]. Eventually the decay of 
this orbit will cause the compact stars to collide, and some fraction of their material 
will be injected into the galaxy. The decay time is short compared to the galactic 
age. In our estimate of the abundance of such material that has accumulated on 
earth, we employ accepted cosmological figures for those items that are available, and 
overestimates of others, so as to get an upper bound on the concentration of strange 
nuggets. For this purpose we need the age of the galaxy (1010 years), the frequency 
of type II supernovae (1/(100 yr)) [101], the fraction of pulsars that occur in binary 
compacts ( < 1/100), the fraction of mass ejected from a collision (1/10) [102]. We 
find a mass density of debris from compact star collisions of < 10-29g/cm3

• (For 
the volume of the galaxy in which the ejecta is contained we take 1r x 82 x 2 kpc3 ). 

As an extreme overestimate, assume that all such compacts were strange and that 
all mass is ejected in minimum mass fragments (A :::::! 1000 [21]). We find a number 
density of strange nuggets of < 10-8 /cm3

• Assuming a typical galactic velocity of 
107 cm/s, there would be an influx of< 1015 /cm2 over the age of the earth (5 X 109 

yr). (However, the velocity assumed corresponds to the measured typical velocity of 
pulsars transverse to the galactic plane[103]. If the isotropic component is less, then 
our flux is an overestimate.) The earth's crust is not tranquil. Mountains are cast 
up and then eroded, continents drift, tectonic plates collide, slide one over the other. 
Material that can be recognized as once having been at the earth's surface, resurfaces 
in the lava of volcanic eruptions, having been subducted to the molten core below the 
mantle[104]. Estimating a geologic mixing depth of the order ten kilometers, a very 
conservative one, then even if all such nuggets were stopped at the surface, they would 
be diluted to a concentration of< 1010 /cm3 or less over geologic times, or << 10-14 

nuggets per nucleon given an earth density of 5g/cm3 • This extreme overestimate 
is to be compared with the upper limit established by experiment of 10-14 [105]. So 
the hypothesis cannot be ruled out by present experimental limits on the abundance 
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of strange nuggets in the earth's crust! There are probably no favorable samples on 
earth for strange nugget searches, in view of the high degree of dilution. Meteorites 
have their surfaces burned off in traversing the atmosphere if they are not completely 
destroyed, and so also are not favorable. However the moon's surface has been ex­
posed to the hypothetical strange cosmic rays without geologic mixing, and with only 
minor meteoritic disturbance of its surface since very early times, and so moon rock 
might prove to be a favorable sample for mass spectroscopy (because of the anoma­
lously small Z/A of strange matter) or for a Coulomb back scattering experiment 
such as that of ref.[105]. 

It has been understood for several years that even if strange matter is the lowest 
energy state when cold, and that the early universe passed through this phase, it was 
so hot at the time that strange matter would have evaporated into hadrons[99, 92]. 
Little if any primordial material is expected to have survived. For these reasons and 
those developed in the preceding paragraphs we understand that the universe would 
have evolved along essentially the same path and aside from very subtle signals would 
appear the same now, no matter which is the ground state. Only at the death of 
massive stars when dense matter that is cold on the nuclear scale is produced in the 
resulting neutron stars, may conditions for the creation of cold strange matter occur 
for the first time. Whether such conditions have ever been achieved depends on the 
unknown phase transition density, and whether it has been reached in the core of any 
neutron star. 

15.6 Motivation for submillisecond pulsar searches. 

It is not possible to prove that the ordinary confined hadronic phase of nucleons and 
nuclei is the ground state. It can only be disproved with the discovery of a lower one. 
As remarked, the QCD energy scale makes strange matter an equally plausible ground 
state. A strong indication that it is so would be the discovery of submillisecond pul­
sars, especially several of different masses. While mass measurements are scarce, we 
note that the recent discoveries in globular clusters and the expected high population 
of fast binary pulsars in them may change this situation dramatically. It could of 
course be a. coincidence that the lower limit on the period sensitivity of radio pulsar 
surveys, resulting from the particular compromises chosen in present day searches, 
matches the actual cutoff in pulsar periods. But the accelerating discovery rate of 
millisecond pulsars with periods right down to the limit of present day sensitivity 
suggests the tantalizing prospect that there are even faster ones. Improvement of the 
sensitivity is not beyond present technology and as physicists and astronomers we 
may learn as a result something that we do not know but ought to, the structure of 
the true ground state of the strong interaction. 
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15.7 Accelerator searches for strange nuggets. 

Having motivated, hopefully, a search for submillisecond pulsars, we wish to affirm the 
importance of accelerator based attempts[106, 107, 108] to produce strange nuggets 
in relativistic nuclear collisions[109, 110]. These are long-shot experiments: the dense 
matter produced for ::::::::: 10-22 s is hot and has no time to develop a net strangeness. 
Strange nuggets, if strange matter is stable, could be produced only as the result of 
two types of simultaneous fluctuations that separate strange and anti-strange quarks, 
and that also cool the nugget so that it does not evaporate. Moreover the number 
of quarks accessible to nuclear collisions may be too small to defeat the finite num­
ber destabilizing effects[21]. Cross sections in any case will be very small. But th~ 
production and capture of a strange nugget, besides being incontrovertible evidence, 
may prove important as a compact energy source(111]. So while the astronomical 
prospects for discovery of strange matter appear better to us, the practical conse­
quences of laboratory production are potentially enormous. 
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16 Appendix 

16.1 Stress-Energy 

The canonical stress-energy tensor that is derived from the invariance of the La­
grangian to infinitesimal displacements (see eg. [29]) is 

TP.II = -gll-11 .c + I: a.c a~~ <P (91) 
t/> a(ap.¢) 

where the sum is over the various fields, ¢, in .C. For the Lagrangian of the real scalar 
field, say u, corresponding to a chargeless meson, the Lagrangian has the well known 
form, 

.C = !( ap.uallu- m;u2 ) = !(gp.>.a>-uallu- m!u2
) 

where a11- = ajaxw In flat space, 911- 11 is just the diagonal tensor, 

0 
-1 
0 
0 

0 
0 

-1 
0 
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In general relativity it is neither diagonal nor constant under the most general cir­
cumstances. Notice that we have rewritten the usual first expression for .C to display 
explicitly the metric. Now we can calculate TJJ" from eq. (5). Do so and show that 
the result agrees with that obtained from the usual expression above. 

16.2 Schwarzschild Solution 

1. Consider a static star so that 9JJv are independent of time (x0 = t) and g0m = 0. 
We choose spatial coordinates x 1 = r, x 2 = 0, x 3 = ¢>. The most general form 
of the line element is then, 

(94) 

We may replace r by any function of r without disturbing the spherical sym­
metry. We do so in such a way that W(r) = 1. Then we may write, 

(95) 

where>., v are functions only of r. Compare with ds 2 = 9JJv dxf.l. dx" to read off, 

Hence from 

goo = e2v(r)' etc 

gf.l.V = gf.l.V = 0, (J-l =I v) 

for J-l = p 
for J-l =I p 

(96) 

(97) 

(98) 

(repeated indices, one as a superscript, one as a subscript, are always summed 
unless otherwise stated) we have in this special case, 

(99) 

So 

(100) 

2. Recall the covariant AIJ and contravariant Af.l. vector notation and the raising 
and lowering rules, 

A A v A" = g"JJA., 
f.1. = gf.l.V ' .- (101) 
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The Christoffel symbol is defined in terms of derivatives of the metric functions, 

r J.IVU = !(9J.LV,U + 9J.LU,V- 9vu,J.L) (102) 

where , r7 means differentiation, 

(103) 

It is frequently convenient to raise the first suffix on the Christoffel symbol, 

r J.L - J.L).f vu - 9 >.vu (104) 

It is symmetric in the lower two suffixes. In the case considered above, derive 
the non-vanishing Christoffel symbols, 

r6o = 111 e2(v->.) r o _ 1 
10 - II 

r l - \1 
11-1\ 

q2 = -re-2>. 
q2 = n3 = 1/r 
n3 =cot() 

n3 = -r sin2 () e-2>. f53 = - sin() cos () 

3. The Ricci tensor is defined by 

Hence derive for the case under consideration, 

( -v" + ,\lvl -1112- 2;1)e2(v->.) 

II \I I I 2 2N 
II -All +11 --

r 
(1 + rv1 

- r -\1)e-2>. - 1 

R22 sin2 
() 

4. Einstein made the assumption that in empty space outside a star 

Hence show from the vanishing of Roo, R11 that 

A1 + 11
1 = 0 

(105) 

(106) 

(107) 

(108) 

(109) 

(Do not confuse v, ,\ when used to denote indices and when used to denote 
the metric functions.) For large r, space must be unaffected by the star and 
therefore flat, so that -\, 11 tend to zero. So 

(110) 
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Hence show that 

(1 + 2rv')e2
" = 1 

Show that this integrates to 

- 2v 2M 
9oo = e = 1-­

r 

(111) 

(112) 

where M is the constant of integration. By studying the Newtonian approxi­
mation one identifies it with the mass of the star. From the foregoing results 
show that, 

2>. -2v ( 2M)-1 
9n = -e = -e = - 1 - -r- (113) 

This completes the derivation of the Schwarzschild solution of Einstein's equa­
tions outside a spherical static star. It was the first, and one of only three exact 
solutions that have been found. The second was found by Friedmann (1922) 
and is important for cosmology because it is a time dependent one. A third 
solution has been recently found by Senovilla, which unlike the other two has 
no singularity [112]. It may have profound implications for cosmology. It is the 
singularity of earlier solutions which led to the hypothesis of the 'big bang'. 

16.3 Stable Star Configurations 

Stability of stellar structures is a very important and complicated problem to analyse 
rigorously. Here we deal only with a qualitative treatment. Sketch the hydrostatic 
equilibrium curve for the mass of a neutron star as a function of its central density, 
showing the mass increasing to a maximum and then decreasing. Consider a star 
that lies on the portion of the curve where 8Mj8Ec > 0. Imagine that the density 
of the star is perturbed by a small amount, so that it is shifted off the curve. Its 
mass is still M but its central density has changed. If it has been compressed it 
finds that its mass is too small for its new density. It will therefore expand since 
the gravitational attraction corresponding to this mass has been determined by the 
hypothetical hydrostatic equilibrium curve you have drawn to have a smaller density. 
Alternately, we may reason that the mass of the star that is in equilibrium at the 
perturbed density of our star M is larger than M. So the gravitational force in our 
star will be too weak to maintain the compression at the perturbed value; it will 
expand to its former equilibrium configuration. Similarly if it has been perturbed in 
the opposite direction off the equilibrium curve, it will be impelled back. Therefore 
the portions of the equilibrium curve which have positive slope are stable. Use the 
same reasoning to find that the portions of negative slope are unstable, by showing 
that a perturbation that takes the star off the curve is subject to forces that move it 
further away. 
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