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New algebraic representations of quantum mechanics 

Shun-Jin Wang 
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and 
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Contrary to the usual view that quantum mechanics in configuration space 

has, in general, only one algebaic representation( the Heisenberg algebraic 

representation), we have proved that quantum mechanics in configuration space 

has, in general, alternative algebraic representations: (i) In a finite 

domain of configuration space, it can be expressed in terms of su(2) algebra; 

(ii) in an infinite domain of configuration space, it can be expressed in terms 

of su(l,l) algebra. The above results open a new possibility to reformulate 

quantum mechanics and provide more mathematical tools to solve diverse physical 

problems. Nonlinear relations of different Lie algebas may imply a unification 

of Lie algebras and their physical implications ( the quantum motion modes ) 

in a deeper nonlinear domain. This observation raises challenging mathematical 

and physical questions. 
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It is a common belief that quantum mechanics in configuration space, in gene-

ral case, can only be expressed in terms of the Heisenberg(H) algebraic repre

sentation or the Heisenberg-Weyl(HW) algebraic representation
1
'
1

; while only in 

particular cases it can be expressed in terms of other Lie algebras 3 , such as 

the so(4;2) algebra for the hydrogen atom, the u(3) algebra for the harmonic • 

oscillator, the su(2) algebra for the Morse potential of diatomic molecules. Of 

" 
course, even in H-algebraic or HW-algebraic representations, one still has the 

conjugate X- and P-representations for the space variables, and T- and E-repre-

sentations for the time variable. It is evident that these conjugate represen-

tations have the same algebras: H-algebra or HW-algebra with the canonical coor-

dinates or their conjugate momenta as variables. Here the H-algebra consists of 

" ' h = { X, P, 1 } w1th Heisenberg commutators as its algebraic relations, namely, 

[ X, p i < n=l > . ( 1 ) 

with the other commutators vanishing. The HW-algebra is defined by 

hw { a , a~ , a+ a , 1 } ( 2a ) 

with creation and annihilation operators defined as 

a = 1/5 ( X + iP ) , a""= 1/Jf ( X - iF ) , ( 2b ) 

and satisfying the following commutation relations 

[ a , a•] 1, [ a+a , a ] ( 3 ) 

with the remaining commutators vanishing. 

In short, the popular point of view is that in general, quantum mechanics 

in configuration space, has only one algebraic representation, i.e., the 

Heisenberg algebraic representation, or its equivalence, the Heisenberg-Weyl 

algebraic representation. In this note we shall indicate that the above popular 

viewpoint is only partly true,and that quantum mechanics in configuration space, 

in general, can find its alternative algebraic representaions. This 

opens the new possibility to reformulate quantum mechanics and provides more 

mathematical tools to solve diverse physical problems. In what follows, we 



3 

shall prove that (i) Quantum mechanics in a finite domain of configuration space 

can be expressed in terms of su(2) algebra; (ii) Quantum mechanics in an infinite 

domain of configuration space can be expressed in terms of su(l,l) algebra. 

The proof depends on a novel and profound fact: Lie algebras with different 

mathematical structures may have nonlinear relations, i.e., different Lie alge-

bras may reach their unification in a nonlinear domain.This observation may have ,8 

J 

;~ 

~ 

important physical consequences.In view of the well-known fact that a Lie alge-

bra may describe a hierarchy of quantum motion modes with raising and lowering 

operators representing elementary excitations and deexcitations respectively, 

the above Lie algebra unification may imply a corresponding physical unifica-

tion of different quantum motion modes in a deeper nonlinear domain. 

Our proof is given for the one-dimensional case. The generalization to multi-

ple dimensions is straightforward.Since quantum mechanics in configuration space 

is conventionally expressed in terms of the Heisenberg algebra,our proof is thus 

equivalent to proving: (i) H-algebra in a finite domain can be expressed in terms 

of su(2) algebra; (ii) H-algebra in an infinite domain can be expressed in terms 

of su(l,l) algebra. 

(i) Consider H-algebra in a finite domain, namely, 

{ 6 , " p6 1 } , ( 4 ) 

with 

" -i }._ Pe oe ( 5a ) 

e E [ 0 , .2Tt ] ( 5b ) 

Let 

" -i)_ J~ = Pe "P6 ( 6a ) 

which is one of the su(2) operators. Introduce the other su(2) operators as 

follows, 

Jf = j cos 8 

J:l = j sine 

sin9 1.. 
'l9 

+ cos8~ 

( 6b ) 

( 6c ) 



or 

J+ = Jt + i J.l exp{+i6 }(j ( 6d ) 

J_ = Jt - i J~ = exp{ -i e } ( j + JJ ) . ( 6e ) 

It is not difficult to prove the following su(2) commutators, 

[ Ji , Jj ] ( 7a ) 

or 

[ Jl , J± ] ± J± , ( 7b ) 

[ J+ , J- ] ( 7c ) 

It is easy to show that just as in the H-algebra case, the Casimir operator of 

the su(2) representation, (following from equations (6a-e)), is also a constant, 

• l l ~ 
J ... = Jf + J, + J3 = j ( j+ 1) , ( 8 ) 

where j is the irreducible label of su(2) algebra. 

From eqs. (7a-c), we have 

exp {.:!: i e } J ± I ( j ~ JJ > , ( 9 ) 

which leads to 

cos a 1/2 { J+/(j- J~) + J-/(j + JJ) } , ( 9a ) 

or 

9 arccos{l/2 [J+/ (j-J3 )+J-/ (j+J~)]} . ( 9b ) 

,-

Therefore the H-algebra can be expressed in terms of the su(2) generators, 

e arccos{l/2[J+/(j-J3 )+J-/(j+J3 )] } , lOa ) 

( lOb ) 

The Hamiltonian is now 
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H( arccos{l/2[J .. /(j-JJ)+J-/(j+J~)]}, J) ) 

H( su(2) ) . 

For the N-dimensional case, 

,., 
H(Xi. I Pi 

H 
H ( n ®sui ( 2) ) • 

i.. 

( lla ) 

( llb ) 

Thus quantum mechanics in a finite domain can be expressed in terms of su(2) al

+ gebra . 

(ii) Now consider H-algebra in an infinite domain, namely, 

" { X, P , 1 } , ( 12a ) 

where 

X E [- CX) , + oc ] , ( 12:0 ) 

" p ( 12c ) 

Introduce Su(l,l) generators as follows, 

ol\2 A A,2 
Kt=1/2(XP- X), K2= XP, K3=1/2(XP +X) , ( 13a ) 

or 

K+ Kt ± iK1 , ( 13b ) 

It is easy to show that Ki constitute su(l,l) algebra, namely, 

- iKJ I [ K~ I K; ] iK1 , [K; ,Kt] iK,2 I ( 14a ) 

[ Ko , K t ] :! K + [ K-1- I K- ] -2Ko 1 ( 14b ) 

and 

1 l l 
Kt + K, - K3 0 . ( 14c ) 
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The inverse is 

~1 -1 ( ~ P = (KJ - K1 ) K.3 . + K1 ) , P 

X ( K3 - K1 ) • 

( 15a ) 

( 15b ) 

Thus quantum mechanics in an infinite domain of configuration space can be exp-

ressed in terms of su(1,1) algebra, 

ft -f } H(X,P) = H( (KJ-K,}, ={(K3-Kf) (K,+Ki) 

H ( su ( 1, 1) ) . ( 16a ) 

For the N-dimensional case, 

~ 

H(X\,Pr: "' H(IJ(ilsu\. (1,1) ( 16b ) 
~ 

Before deepening our discussion of basic physical-mathematical problems, we 

would like to give several examples to illustrate the above general formalism. 

Since this work was stimulated by our study of quantum chaos in an attempt to 

reformulate several famous models in terms of familiar Lie groups and to make 

the Dynamical Group Approach to quantum irregular motions workable, we would 

like to give two examples from four famous models s . 

(A) The Kicked Quantum Rotator Model (KQRM) 6 , whose classical correspondence 

is the famous standard mapping in the study of classical chaos, has the follow-

ing Hamiltonian in the H-algebraic representation, 

H ( 17a ) 

But in terms of su(2) algebra, it reads 

H fi 2 /2I J; + l.o/2 { J+ /(j-J3) + J- /(j+J.3) } I:. d{t-nT) ( 17b ) 
h 

(B) The One Dimension Hydrogen Atom (ODHA) is another model extensively 

studied by theorists and the results can be tested by experiments 7 . In the 

H-algebraic representation, its Hamiltonian is 

H 
Al 

1/2 P - 1/Z + z E cos'-'lt . ( 18a ) 

In the su(1,1) algebraic representation, it reads 

• 

il 



\ 
'\,..( 

T 

H ( 18b ) 

The advantage of the alternative algebraic representations resides in that, 

firstly they provide more mathematical tools to solve a given physical problem. 

It may happen that in one algebraic representation the problem seems difficult 

to solve, while in other algebraic representation it becomes easier. Secondly, 

it is likely that the new algebraic representation may provide a new insight 

into the physical problems. For example, in the KQRM, since the H-algebra is 

noncompact and its unitary irreducible representation is of infinite dimensions, 

any truncation to finite dimensional Hilbert space always leads to an approxima-

tion and in general one doesn't possess a criterion for judging whether a trun-

cation is good or not, short of performing numerical calculations.However,in the 

su(2) algebraic representation,any j-irreducible representation space is a rea-

sonable subspa~e from the point of view of su(2) algebra.Therefore a good trun-

cation scheme is naturally that it should assume m = -j, -j+l, ..... j-1, j, since 

this is an invariant subspace according to the su(2) algebra. Yet, the dissipa-

tive properties of the KQRM can be understood even better in the su(2)-algebraic 

repiesentatibn. It is not difficult to prove in the su(2) representation that 

the KQRM Hamiltonian (17b) possesses no conserved quantity except the constant 

Casimir J 2 = j(j+l). It is the kicking term that destroys the constant of motion 

by the ladder operators J± . As the dynamical breaking term is strong enough to 

reach the excitation energy, i.e., coT I I ~ 1 , the dynamical symmetry of the 

system is thus seriously broken and the system therefore begins to be driven to 

chaotic motion by the perturbation V(t) 6 . Since the kinetic energy is (n'l2I)ml, 

both J•and J- play the same role of excitations if the system is initially in a 

small mqstates ( for instance, mo= 0 ) . Each kick brings the system a step far 

away from its starting point and increases its excitation energy.As j is finite, 

long term kicks will bring the system to a certain kind of stable distribution 

P(m). This leads to the saturation of the energy dissipation. As j approaches 

infinite, the increase of the excitation energy due to each kick will continue 

for ever. 

The above intriguing results also raise challenging questions. 
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In a nonlinear domain of Lie algebras, there is no absolute gap between 

different Lie algebras. Yet there even exists a nonlinear relations 

between a compact Lie algebra (su(2)) and a noncompact Lie algebra 

(H-algebra) . This observation makes us conjecture that in the nonlinear domain 

of Lie algebras, there may exist a unification or equivalence among different 

Lie algebras. The challenging question is how one can establish such a non- '' 

linear algebraic domain and explore its unification, classification, and how the 1 
v 

classical Lie algebras are related to the nonlinear algebraic domain. 

The physical significance of the above mathematical results are as 

follows. Suppose the Lie algebra Lt dscribes a quantum system at and produces 

energy(mass) spectrum Et (Mt), the Lie algebra L2 describe a different quantum 

system a~ and produces energy(mass) spectrum E2 (M2). A nonlinear relation 

between Lt and L2 implies a corresponding nonlinear relation between the 

tWO different quantUm SyStemS at and a~ 1 aS Well aS their energy(maSS) 

spectra E1 (M1) and E2(M~). If this conjecture is true, it will be an attractive 

and exciting field to explore. 

Let us look at how the nonlinear transformations eqs. (6a-e) and (9) fill the 

gap between compact Lie algebra su(2) and noncompact Heiseberg Lie algebra 

h. Since the su(2) representation, eq. (6a-e), is not in a Hermitian form (but 

it is related to Hermitian forms through non-unitary-similarity transformations) 

its irreducible bases constitute a set of hi-orthogonal bases8.The eigensolu-

tions of J 3 are 

Jj m) = [(2j)! /(j-m)! (j+m).' ~ Exp{+im9}, ( 19a ) 

and their orthonormal duals are 

J~) = [(j-m)! (j+m)! /(2j)! ]Js I 27t Exp{+im9} . ( 19b ) 

The hi-orthonormal condition is 

( ~ I j rri) = ~ m m' ( 19c ) 

It is straightforward to check that, 

J
1 I j m ) = j ( j + 1 ) I j m) ( 20a ) 



"' ,, 

\ 
'w' 

( 20b ) 

J.± I j m) [ ( j + m) ( j ± m + 1) ]~ I j m ± 1 > ( 20c ) 

The compactness of SU(2) is manifested by the ladder operators J± , which con-

tain proper cutoff factors. The cutoff factors (j+ J~) in eqs. (6d,e) and the 

cutoff factors [ ( j + m) ]1 in eq. (20c) give rise of an automatic cutoff of the 

irreducible bases and thus guarantee the finite dimensional property of the 

su(2) irreducible representations. On the contrary, the nonlinear transformation 

(9) clearly indicates that the cutoff factors of J~ are exactly canceled by the 

denominators (j ~ J;) and makes the transformed operators lose the cutoff proper-

ty. Thus the gap between the compact su(2) algebra and the noncompact H-algebra 

is filled up by eliminating the cutoff factors. This can only be realized by 

nonlinear transformations. Therefore we are led to the observation that gaps in 

the linear case can be filled up in the nonliear case. This indicates again 

that the nonliear mathematics is powerful in the unification of the physical-

mathematical world. 

We should note that the nonlinear transformations from H-algebra to the su(2) 

and su(1,1), i.e., eqs. (6a-c) and (13a), are also valid at the classical level. 

It is obvious that the H-algebra in the form of quantum commutators is still 

valid in the form of Poisson brackets. Here we show you that the nonlinear 

expressions of su(2) and su(1,1) algebras still preserve their algebraic rela-

tions at the classical level. From eqs. (6a-c) and (13a), it is not difficult 

to confirm the algebraic relations of su(2) and su(1,1) in the form of Poisson 

brackets, namely, 

K~ 
c. 

Kz 

J~ t J.' } 
J 

( 21 ) 

( 22 ) 

c. c. 
Where Ji and Ki are classical quantities and related to classical canonical 

variables { a , p6 and { X, P } through the same nonlinear transformations 

(6a-c) and (13a). The existence of nonlinear relations of different Lie alge-

bras at the level of poisson brackets may have further implications. 

The author is grateful to Professor W.J.Swiatecki for illuminating dis-
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