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1. Introduction. 

In a perturbative formulation of string theory one considers string back

grounds as two-dimensional conformal field theories (for review see (1]). One 

refers to such string backgrounds as string vacua. For space-time supersymmet

ric string theories it turns out that the vacua correspond to N = 2 superconformal 

field theories (SCFTs) (2, 3]. The (2,2) vacua that will be considered in this pa

per, are those for which both left- and right-handed SCFTs haveN = 2 world 

sheet SUSY. 

A property used in the study of the space of possible string vacua is the possi

bility to deform a given vacuum continuously. One calls the coupling parameters 

of such continuous deformations the moduli of the string vacuum. Thus, in gen

eral, to each CFT a moduli space of continuous deformations is attached. This 

space is denoted by J\.1. By construction, each deformation of the vacuum will 

lead to a geometrically different target space. For example, in a circle compact

i:fication one may change continuously the radius, R, corresponding to just one 

real modulus. 

An important aspect of the moduli spaces of string vacua is that they re.:. 

spect a number of surprising symmetries. An example of such a symmetry is 

the well known duality symmetry in circle compactifications, which relates a cir

cle with radius R to one with radius 1/ R [4]. This duality is an automorphism 

of the conformal field theory, which gives rise to an isomorphism of two mod

els with distinct underlying geometry. The duality symmetry was generalized to 

d-dimensional (d > 1) toroidal compacti:fications (5, 6, 7, 8, 9] and to toroidal 

orbifolds (10, 11, 12]. In these cases, the symmetry groups are non-abelian, and 

conta.j.n elements relating small volumes target spaces to large ones. Such 'mod

ular' transformations are important in constructing an effective low energy field 

theory [7, 13, 14, 12, 15] and possible applications to cosmology [16]. 

So far, however, there is no systematic way to classify these symmetry groups. 

In [17] an approach to this problem is discussed using a description of (2,2) vacua 

in terms of 'orbifoldized' N = 2 Landau-Ginzburg (LG) models (this approach 
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was used later also in (18]). 1 It turns out that such models can be used to 

describe (2,2) vacua corresponding to target Kabler manifolds with vanishing first 

Chern class (19, 20, 21, 22, 23, 24, 25, 26]. These LG models ar~ characterized 

by superpotentials which are weighted homogeneous polynomials with isolated 

singularities. Using the mathematical theory of isolated singularities one may 

obtain insight in the structure of the symmetry groups mentioned above. 

In these proceedings we review the technique discussed in (17] and discuss 

some new examples for c = 6 and c = 9 compactifications. In addition to this, 

we discuss transformations that relate small volume compactifications with large 

volume compactifications. Before we discuss our results in detail, we review some 

of the properties of the (2,2) vacua that we will consider in this work. For most 

of the notation and general background on LG theories relevant for (2,2) vacua 

we refer to the reviews [22, 26]. 

The LG models that we will consider are characterized by superpotentials 

W(Xi) that are quasi-homogeneous functions with isolated singularities. The 

weight q, of the scalar chiral superfield Xi is its U(l)-charge at the critical point. 

Examples of such superpotentials are 

(1.1) 
i=l 

where z, = 1/qi. Such superpotentials correspond to Gepner models of the type 

fli'=1 k;, where k; = z,- 2 is the level of a minimal N = 2 SCFT using the A-type 

modular invariant [3]. 

Let us next briefly recall some of the properties an N = 2 SCFT should 

have in order to serve as a vacuum of string theory. Essential for a string-like 

interpretation are two conditions which come from the relation between the left

and right-handed properties of string states and their U(1)-charges. String states 

have holomorphic and antiholomorphic ( z and z dependent) parts. We denote the 

chiral holomorphic and chiral anti-holomorphic states by ( c, c). Their anti-chiral 

partners, which are obtained by complex conjugation in field space, are denoted 
1The study of the symmetries in the c = 3 cases was done already in [27, 28], although in an 

opposite way: the known symmetries in the (2, 2) c = 3 toroidal-orbifolds were used in order 
to find the symmetries of the c = 3 LG moduli. 
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by (a,a). In addition there axe (a,c) states, and their conjugated partners (c,a). 

In order to serve as a vacuum of the superstring the U(1) charges in the NS-sector 

must be integral. Furthermore, for a space-time interpretation the theory should 

have a central charge which is a multiple of three. 

The condition that the central charge be a multiple of three permits one to 

derive an algebraic equation describing the target space. It arises in the path inte

gral of the LG theory as delta-function constraint, 8(W), evaluated in a weighted 

projective space, WC pn-1• 2 This procedure is described in detail for the defor

mations of the models (1.1) in (20, 22], where it is claimed that this hypersurface 

is a candidate target space on which the string propagates. It is also possible 

to factor out the target manifold by a discrete automorphism group. Such orb

ifoldizing (not to be confused wit~ the first orbifoldization of the LG theory) of 

the target space gives rise to a different string vacuum. 

The addition of marginal deformations to a given vacuum, corresponds to a 

change in the geometry of the target space. A superstring vacuum has two differ

ent types of moduli; those associated with complex structure deformations and 

those associated with the Kabler structure deformations. Naively, the complex 

structure deformations axe given by the marginal operators of the ( c, c) ring. The 

marginal deformations in the (c, c) ring come from the (1,1) operators, where the 

notation denotes the left- respectively right-handed U(1)-chaxge, and describe 

perturbations of the superpotential. Some of the moduli in the ( c, c) ring come 

from the untwisted sector, and correspond to a perturbation of the superpoten

tial, while others come from the twisted sector of the orbifoldized LG model (25]. 

The Kabler structure deformations axe represented by the moduli coming from 

the (a, c) ring. These operators always come from the twisted sectors of the 

orbifoldized LG theory. 

The picture in which the ( c, c) moduli correspond to complex structure de

formations, while the (a, c) moduli correspond to Kabler structure deformations 

can be interchanged, that is, we can view the (c, c) moduli as deformations of 

2The identification Xi = e211'iq; Xi which give rise to the weighted projective space amounts 
to a twisting or 'orbifoldizing' of the original LG model by a product of cyclic groups. This 
twisting turns otit to correspond to the generalized GSO-projection (25]. 
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the Kabler structure (of a. possibly different ta.rget spa.ce) [29, 30, 31]. This inter

changing is a. consequence of a. symmetry qL __,. -qL of the N = 2 SCFT, where 

qL denotes the left-handed U(1)-cha.rge. This symmetry pla.ys a.n important role 

in the study of symmetries on the moduli spa.ce of (2,2)-superstring vacua. arising 

from orbifoldized LG models. In the genera.! scheme we will describe this sym

metry will be used to trea.t the discrete groups as a.cting on the Kabler structure 

moduli. 

This concludes our brief review of the basics of LG theories tha.t define (2,2) 

vacua. a.t the critical point. In the next section we discuss the genera.! scheme 

used in [17] to find physica.l symmetries on the moduli spa.ce of a. given N = 2 

LG theory. By construction, the symmetries found a.re those a.cting on the sub

moduli of ( c, c) untwisted deformations. We will give some new examples in 

the c=6 (K3) a.nd c=9 (CY) cases. In order to simplify the discussion we will 

further restrict to the surviving ( c,c) untwisted moduli of a.n orbifoldized CY 

manifold. 3 Subsequently, in section 3 we will discuss the technique from a. more 

geometrica.l point of view, leading to the conclusion tha.t stabilizing sub groups of 

the symmetry groups correspond to automorphism groups of the ta.rget spa.ce, i.e. 

of Ca.la.bi-Y a.u ( CY) manifolds. Fina.lly in section 4 we comment on a.n a.pplica.tion 

of our result involving a. symmetry between sma.ll volume compa.ctifica.tions a.nd 

la.rge volume compa.ctifica.tions. 

~e compa.ctification on the quotient of a CY manifold by a discrete group is interesting 
as it reduces the number of generations. 
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2. Symmetries on the Untwisted (c,c) Moduli Space. 

In this section we review the algorithm described in (17] for constructing 

symmetry groups acting on the moduli space of a given N = 2 LG model. After 

we discussed the general technique, we will present some new examples in the 

c = 6 and c = 9 ease. For simplicity we discuss the deformations of a model of 

the type (1.1), described by the superpotential 

n m 

W(X, a) = L Xf' + L a;<P;(X), (2.1) 
i=l j=l 

where <P; is a ( c, c) primary field of charge ( 1,1) (and therefore of super-dimension 

(1/2,1/2)); m is the number of such fields in the chiral ring and a; is a complex 

parameter. We call the space of couplings a= (a1 , ..• ,am) 'the a-moduli space'. 

The a-moduli space is a subspace of the full moduli space of geometrically 

different target-spaces of the string theory. The physical symmetries of this 

subspace correspond to generalized duality transformations which relate target 

spaces which differ geometrically but for which the physical theory is the same. 

Such symmetry transformations can be studied by performing certain field 

redefinitions of the chiral superfields X; (and their complex conjugates). The 

idea is tolook for those field redefinitions for which the kinetic term in theN= 2 

LG action remains a Kahler potential, and for which the effect on the superpo

tential can be expressed as a transformation involving only the parameters a, i.e. 

W(X, a) is changed to W(X, a') (up to an overall factor). As the physical theory 

is left unchanged, we conclude that the points a and a' in the moduli space are 

physically equivalent. We will call such a transformation a --+ a' a 'modular' 

transformation. In principle one may obtain in this way all the generators of 

such 'modular' transformations and the group thus generated will certainly be 

a subgroup of the full symmetry group acting on the moduli space of N = 2 

SCFTs. 

Let us explain this idea in more detail. For a given LG theory, consider the 

transformation 
1n· n· v , _ rr .. v 1 

.<\.i - v,,_.\.j . (2.2) 
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The U ( 1) symmetry in the N = 2 superconformal algebra restricts the powers ni 

to be such that the charges q(X;") are equal for all k. Under the field redefinition 

the kinetic term K is transformed to K', which must be a Kahler potential. Any 

non-singular linear transformation on the fields xi' mixing only fields of the same 

charge, changes K to a new Kahler potential. 4 The universality class of the flow 

of the kinetic term is preserved since the operator corresponding to the difference 

K' - K is an irrelevant perturbation. Thus, we are interested in transformations 

of the form 

(2.3) 

where U is a non-singular matrix, and the indices i,j run over all chiral scalar 

superfields with the same U(1) charge. Some of the solutions for U are diagonal 

matrices consisting just of phases 

s.t. (ai)l• = 1, (2.4) 

(there is no summation on the index i). 

In another simple case, U is a permutation matrix, permuting different super

fields Xi with themselves .. The property of the phase and permutation transfor

mation is that whatever the superpotential in (2.1) is (i.e., no matter what the 

values of a; are), the kinetic term and the part of W describing the Gepner model , 

are invariant. Only the moduli parameters, a, are transformed into a'. In the 

case where U is of the form (2.4), the parameters a' are related to a by phases. 

The point a= 0 is a fixed point of U. Such symmetries of the Gepner's models 

were described in reference [32]. In the permutation case, the a' parameters are 

related to the original ones by permutations. Even though the permutation sym

metry is obvious in the superpotential framework, its physical consequences are 

not trivial. For example, a permutation may relate a scale transformation or a d~ 

formation of the complex structure, on a toroidal orbifold, with a transformation 

which blows up orbifold singularities [17]. 

4 For example, if one chooses K = l:":1 x .. x .. , it is transformed to K' = 'f:. .. J(Utu) .. ;XiX; 
which is Kahler. In principle, there might be non-linear field redefinitions such that K' is a 
Kahler potential, but we do not consider those here. 
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Other solutions for U are possible if we start at a point in the moduli space 

which is a Gepner model of the type ~. 5 For that let us discuss the conditions on 

the matrices U coming from the requirement that the transformed superpotential 

W(X') corresponds to an untwisted (c, c) deformation of the original Gepner 

model. The deformed superpotential of the Gepner model~ is given by (1.1,2.1) 

N m 

W(X,a) = '2:Xf+2 + 'Laiq>i· (2.5) 
i=l i=l 

Let us perform a linear transformation on the superfields Xi. In order to study 

symmetries on the a-moduli, we should make sure that the new superpotential, 

W'(X, a') has the same form as the original W, i.e. 

N m 

W(X',a) = W'(X,a') = C(a)(l:Xf+2 + l:ajq>i) (2.6) 
i=l i=l 

This means the the deformations in W' are still described by marginal opera

tors from the chiral ring. The factor C (a) can be eliminated by rescaling the 

superfields. 

What are the conditions one gets on the entries of f.!? Expressing Xi in W(X') 
in terms of the superfields Xi, gives N terms of the form Xf+2

, i = 1, ... , N, 

with coefficients Ai(U, a). We also obtain N(N- 1) terms of the form Xlc+l Xi, 

i =/: j, With coefficients Aii(U,a). The coefficients of all the terms _in the new 

superpotential are functions of the entries of the matrix U and of the original 

moduli parameters, a. In order to satisfy (2.6), the coefficients ~(a) should 

be equal to C (a). This preserves the part of the superpotential describing the 

Gepner model. Hence we have at most N- 1 independent equations coming from 

this condition. Furthermore, we impose that the coefficients Ai;(U, a) will vanish. 

This guarantees that we only get terms which appear in the (c,c) ring, and gives 

rise to N(N- 1) equations. All together, one finds N'2- 1 complex equations: 

~(U,a) = ~+l(U,a), i = 1, ... ,N -1; 

Ailc(U,a) = 0, - j =/: k, j,k = 1, ... ,N. (2.7) 

5The discussion can be generalized to deformations of a model fli kf'' by considering each 
factor kf'' separately. · 
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Let us next determine some of the properties that the matrix U should have. 

The matrix U can be written as U = rU', where r is a complex number and 

det(U') = 1. The number r gives an irrelevant factor rk+2 between W' and K. 
Thus, we are left with the !f2 - 1 complex parameters of the matrix U'. The 

equations in (2. 7) are not linear equations, so one does not get in general a unique 

solution; a set of discrete solutions is possible. In the rest of this section we give 

examples of non-trivial solutions (in addition to the phase and permutation ones) 

in the c = 6 and c = 9 cases. 

2.1. An Example in the c = 6 case. 

The (2,2) string vacua, for which c = 6, correspond geometrically to either a 

complex two-dimensional torus or a K3-surface (which is also a projective complex 

two-dimensional surface). We will discuss the K3 compacti:fication. The space 

of K3 compacti:fications, viewed as string backgrounds, is simply connected and 

isomorphic to the homogeneous space 0(20,4)/(0(20) x0(4)). There is a discrete 

group of symmetries acting on this space which is conjectured to be isomorphic to 

0(20,4, Z) [33). We would like to consider the 'physical' moduli space obtained 

by modding out this discrete symmetry group. The c = 6 Gepner models form 

a finite set of points on that space. They are fixed by the phase transformations 

of the type (2.4), but they are transformed in general to different points under 

the action of other elements in 0(20,4, Z). However, this action will in general 

destroy the invariants of the singularity of the superpotential, hence dividing out 

this group from the moduli spaces is not very useful in the context of LG models. 

As a first step, therefore, we want to divide by a sub-group which preserves 

the invariants of the singularity. There are two different types of elements in such 

a group. The first type leaves the superpotential invariant for any a, although 

it acts non-trivially on 0(20,4)/(0(20) x 0(4)) (analogous to f(2) and f(3) in 

the c = 3 case [27, 17]). Such elements generate a sub-group closely related to 

the monodromy of the singularity. A discussion on those physical symmetries is 

presented in section 3. Below we will discuss an explicit example concerning the 

symmetries which act nontrivially on the a-moduli. 
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Consider a family of K3 surfaces parametrized by the superpotential 

W(X1,X2,X3) = 
X~+ X~+ .x1 + a1(X; Xi+ x; Xi+ Xi Xi) 

+a2XiXiXi + a3(XtX2X3 + XiX1X3 + XiX1X2). (2.8) 

The 6-dimensional ( c, c) moduli space in (2.8) is the space which is invariant 

under the twist group generated by the elements diag(1, a, a 2 ) and P123 (a cyclic 

permutation). It can be thus considered as the untwisted moduli of the K3 surface 

modded out by the above twist group. The transformation 

(2.9) 

where a 3 = 1, takes W(X1,X2,X3,a) to W'(Xf,X~,X~) which is explicitly 

W'=X~+.~+X~ 

(
90 + 9a1- 6a2 + 15a3) (X4X X X 4X X X 4X X) 

+ 3 + 3a1 + a2 + 3a3 1 2 3 + 2 1 3 + 3 1 2 

(
60- 21a1 + 2a2 + 6a3) (X3 X3 X3 X3 X3 X3) 

+ 3 + 3a1 + a2 + 3a3 1 2 + 1 3 + 2 3 

(
270 + 27a1 + 9a2- 18a3) x2.jy2x2 

+ 3 + 3at + a2 + 3a3 1 2 3' 
(2.10) 

up to an overall irrelevant factor. We thus arrive at the following conclusion: 

The LG model described by the superpotential (2.8) is equivalent upon the field 

redefinition (2.9) to the model with superpotential (2.10). 

The complete group of symmetries acting on the a-moduli is generated by field 

redefinitions of the type Up (permutations), UT (phases) and Us (presented in 

(2.9)). The group of symmetries which leaves the (a11 a2,a3) moduli invariant is 

isomorphic to T P< S3 , where T is the tetrahedral group and Sn is the symmetric 

group of n elements. The point (a17 a2, a3) = ( -10, 0, 0) is a fixed point, and 

thus the group T ~ S3 corresponds to an automorphism group of the K3 surface 

defined at this point. We will elaborate on this in section 3. 
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The transformation of the type Us plays a special role, as it relates finite 

parameters a to infinite ones. Combined with the other symmetries, and moti

vated by an explicit study in the c = 3 cases [27, 17], we conjecture that such 

symmetries relate small volumes of the target-space to large ones. This will be 

discussed in section 4. 

2.2. Examples for which c = 9 

For c = 9 (2,2) vacua, the target space is conjecturally either a torus or 

a Calabi-Yau (CY) manifold [3]. The moduli space of CY compactifications 

is disconnected. That is, we consider a possible equivalence on the boundary 

of each simply connected component as disconnected, so each simply-connected 

component defines a· family of CY manifolds with the same topology. In the 

following we will describe two examples of the symmetries acting on the (c, c) 

untwisted moduli which survive the action of a twist group Gt. (Other examples 

involving phase and permutation symmetries on the untwisted sub-moduli space 

surviving the action of a twist group on a CY manifold are presented in [18]). 

Consider the ( c, c) untwisted deformations of the LG theory corresponding 

to the Gepner model 64
, which are invariant under Gt = Z~ P< Z~ generated 

by the elements: diag( -1, 1, 1, 1), diag(l, 1, -1, 1), P12 and P34 , where Pii is a 

permutation of i and j. The surviving a-moduli space is 24-dimensional, and the 

superpotential is given by 

W=X~+X~+X:+X! 

+a1XiXi(Xt +X~) +a2XiXiXiX~ +a3XiXi(Xi +Xi)(Xi +Xi) 

+a4Xi..-Yi(Xj +X!)+ asXiX~(Xi + X~)(Xi +Xi) 

+a6XiX~(Xj +X!) + a7XiX~(X{ +Xi) 

+as(Xi + Xi)(Xi + X~)(X{ +Xi)+ a9(Xi + Xi)(Xi +X~)( Xi+ X!) 

+alo(Xt + Xi)(Xi + Xt) + auXiXt + a12Xt Xi. (2.11) 

The a-moduli space in (2.11) is invariant under the action of a symmetry group 
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generated by Gt, P13P24, diag( VI, v'i, 1, 1) and S, where 

S _ 1 (s 0 ) . 
- ~ 0 c(a)I ' 

1 ( 1 1 ) 
s = yC'2 . 1 -1 ' 1=(~ ~), 

where c( a) is an a dependent factor which is chosen such that W' contains X~ + 
X~+ X~+ x: up to an overall factor. (If one extends Gt to include also the element 

P 13P 24 , then on the invariant 14-dimensional a-moduli space c(a) = 1). The 

presence of the transformation of the type S is again an evidence for symmetries 

relating small volumes of the target-space to large ones. This transformation 

relates finite parameters a to divergent ones. 

The second example we consider is the group of symmetries acting on the 

a-moduli of deformations of the model 1 · 163 , which is invariant under Gt = 

Za I>< Za generated by diag( 1, a, a 2 ) ( a 3 = 1) and P123 acting on the superfields 

X.h i = 1, 2, 3, corresponding to the 163 factor. The invariant untwisted (c, c) 

moduli space is 46-dimensional. The deformed superpotential is given by 

W = ya +Xfs +Xis +XJs 

where 

+atA6 + a2A5B + aaA4B 2 + a4A4C + asA4Y + a6 A3& 

+a1A3 BC + aaA3BY + agA2B 2C +a10A2B 2Y + a11A2B4 + a12A2CY 

+ataAB5 + a14AB
3 C + atsAB3Y + atsABC2 + a11ABCY 

(2.12) 

c = x~xi + x~x; +Xi Xi. 

The group of symmetries acting on the a-moduli in (2.12) is isomorphic to (S3 P< 

T) x Za. The Za corresponds to a phase redefinition of the field Y ( Y-+ aY); 

the subgroup Sa corresponds to permutations of the fields Xi; the tetrahedral 

group is generated by the Za phase redefinition diag(a, 1, 1), and by the element 

S=-
1-(i ! ~)· y'=3 1 a2 .... 
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The transformation S acting on the superfields Xi should be followed by a rescal

ing of the field Y, Y -+ c( a) Y. The a dependant factor c( a) is chosen such that 

W' contains Y3 +Xf8 +XJ8 +XJ8 up to an overall factor. It is again remarkable 

that the transformation S relates finite parameters a to infinite ones. 

The general scheme can be used to study the symmetries on the moduli of 

Gepner models taken in any type of modular invariance. For example, we studied 

the symmetries on the moduli space of the model!· 16~/(Z3 l>< Z3 ). The label E 

means that each k = 16 factor is in the type E7 modular invariance. The twist 

group z3 ~ z3 is chosen such that the effective number of generations. is 3 [34], 

and thus the models are phenomenologically interesting. Among the symmetries, 

we find one which takes small volumes to big ones. It acts on a sub-space of the 

CY manifold, which is isomorphic to a complex torus, in a similar way as in the 

flat case. A detailed study of this example will be presented in [35]. 
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3. Symmetry Groups on the a-Moduli Space from 
Singularity Theory. 

It is the aim of this section to show that the theory of resolving singularities 

may be of use for a more general study of the symmetries on the moduli space 

of (2,2)-string vacua. Although much of the techniques we will discuss are in the 

context of c = 6 theories, they are in fact more general and could be applied, at 

least in principle, to the c = 9 theories as well. 

In the first subsection we will apply some ideas of singularity theory-to obtain 

a useful description of the a-moduli space of the untwisted ( c, c) deformations of 

a given LG theory. For this we will closely follow (17]. Subsequently, we will use 

this description to discuss the symmetry groups introduced in the previous section 

from a general point of view. In particular we will show that sub groups of the 

symmetry groups discussed in section 2 which stabilize certain deformations cor

respond to automorphism groups of CY manifolds. In the case the CY-manifold 

is a K3 surface we may use a classification theorem of automorphism groups of 

these surfaces, to identify (large) symmetry groups of certain (2,2)-vacua. · 

3.1. The moduli space of untwisted ( c, c) deformations of a given LG-theory. 

Let us explain briefly the description of the moduli space of untwisted. ( c, c) 

deformations. The moduli space of c = 6 (2,2) vacua which is formed by the 

untwisted marginal deformations of a LG model can be described as a symmetric 

sub-space, of the homogeneous space M = 0(20,4)/(0(4) x 0(20)), modded 

out by a discrete symmetry group which contains the monodromy group r. The 

group r is a topological invariant of the singularity of the superpotential in the 

LG model, so it is invariant . under arbitrary smooth deformations of the su

perpotential. This can be used to reformulate any smooth deformation of the 

superpotential in terms of the marginal operators that appear in the ( c, c) ring. 

The monodromy group gives rise to a fundamental domain for the marginal de

formations of the superpotential, on which the symmetry group meant in section 

2 acts. 
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To see this explicitly we will concentrate on a particular set of singularities 

summarized in tables 1 and 2 that are relevant in the c = 6 case. Tables 1-2 give 

a complete list of all the isolated singularities which can be compactified to a K3 

surface in C3 which is described by a single polynomial equation involving only 

four variables (see e.g.(36, 37]). Henceforth we will restrict to LG superpoten

tials that ·consist of only four fields (we exclude c = 6 models defined as tensor 

products c = 3 models, which correspond to toroidal orbifolds). The singularities 

in table 1 are the so-called exceptional modality-one singularities in the classifi

cation by Arnold (38]. For both table5 the central charge of the corresponding 

LG-theory is NJ2. The chiral ring of these LG theories all contain one field with 

dimension greater than one and none of dimension equal to one. In other words: 

the spectrum of these LG theories does not contain marginal operators, i.e. there 

are no physical moduli in any of these theories. However, there exists a math

ematical construction, called the compactification of the singularity which gives 

rise to new LG-theories which do contain physical moduli. The compactification 

of the singularities in tables 1-2 lead to LG-theories that correspond at the criti

cal point toN= 2 SCFTs on K3 surfaces. In particular, one may obtain in this 

way all Gepner models that are known to be defined on K3 surfaces, including 

typeD-modular invariants. They are thus labelled by some of the polynomials 

in tables 1-2. 

Since the compactification of a singularity is tightly related to its resolution we 

will explain first some generalities on resolutions of is6lated simple singularities 

focussing on the role of the monodromy group. Let us denote the polynomial 

defining the singularity by f(Xt, X2 , X3). To resolve or unfold a singularity means 

to change f analytically in 'all possible ways', so that the singularities that will 

appear as a result of this are of a simpler nature. Such analytical deformations 

preserve the (analytical) structure of the singularity. For example, consider the 

polynomial 

(3.1) 

which is the modality-one singularity K 12 in table 1. A priori there is no reason to 

expect that a generic resolution will correspond to an operator that appears in the 

14 



.. 

chiral ·ring of the superpotential. However, a result in [39] on resolving isolated 

singularities states that all possible deformations of a given superpotential can 

always be written in terms of linear combinations of operators that appear in the 

chiral ring. Thus, for the example in (3.1) it is enough to consider 

J, X 2 x3 xr "' xixixk 
a = 1 + 2 + 3 + L..J aijk 1 2 3 ' 

i=O,j=O,l 
lu:0,···5 

(3.2) 

which depends on 12 complex parameters and corresponds to elements in the 

chiral ring of the LG model with superpotential (3.1). 

It is customary (40] to describe the above resolution in terms of the hypersur

faces I:a defined as 

Eo= fo = 0. (3.3) 

The union of all of these surfaces constitutes a fiber space, denoted as 

(3.4) 

and turns out to be equivalent with the resolution (3.2). The base spaceS is the 

affine space of parameters aiik· The fiber 1r-1(a) is isomorphic to the surface Ea. 
The deformation is invariant under multiplication with the non-zero complex 

numbers, c•. Furthermore, there is always one element ai;lc for each of the 

polynomials in table 1-2 which corresponds to the single in:elevant operator in 

the LG theory. Restricting to the relevant operators, and taking into account the 

c· symmetry, we let the space 

s:- = s+- {o};c· (3.5) 

be the base space parameterizing all (untwisted) relevant perturbations. (Recall 

that there are no marginal deformations in this case.) In s+ we will consider two 

sub-spaces 

s:;g - {a E s+ I I:a non-singular} • (3.6) 

s:;m - {a E s+ I Ea has o~y simple singularities} . (3. 7) 
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The moduli space s: has a rich topology, so in order to describe it we need 

some invariant objects. An example of such an invariant turns out to be the 

monodromy group. Formally, the monodromy group of a singularity is defined 

by the embedding of the fundamental group of s~g into the integral homology of 

the surface Ea. Fortunately, due to a result in (41], the only non-trivial homology 

group turns out to be H2 (E00 , Z) ~ Z~-', which is for the singularities in table 

1-2 an even symmetric integral lattice, referred to as the Milnor lattice, denoted 

by La. Its dimension, i.e. the dimension of the integral homology group of Ea 

is given by the Milnor number J.l. and corresponds to the minimal number of 

independent deformations of the singularity necessary to describe its resolution 

(40]. 

In some cases the monodromy group has a more concrete definition, namely 

as the group generated by pseudo-reflections acting on a basis { ei} ~~i in La: 

X E La, (3.8) 

where q denotes the bilinear form on La. It satisfies q( ei, ei) = -2. Hence 

Seo (e.&) = -e.& and Se; ( x) = 0 for all x l. ei. The vectors { ei} are the so-called 

vanishing cycles of the singularity (40]. The group r is an infinite group for the 

singularities of tables 1 and 2. One has 

r c Aut(La), (3.9) 

where Aut( La) denotes the full group of isometries of the lattice La. The equality 

occurs exactly for the singularities of table 1 (40, 42]. 

It follows [39] that the monodromy group is a topological invariant of the 

singularity and hence invariant under smooth deformations of the superpotential. 

One may use this fact to find a fundamental domain for these deformations. For 

this one introduces a period map ¢>w: 

¢>w(a)(;) = 1 w(a) !.rca) 
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where Lc denotes the complexi:fication of the Milnor lattice. The holomorphic 

two-form on Ea is defined as 

(3.11) 

The notation 'P.R.' means to take the Poincare residue of the meromorphic three

form·1:(;~12~Zt. We refer the reader to [43, page 147] for an explanation of this 

map. 

Now it turns out [44] that the period map extends naturally to a multivalued 

holomorphic ramified map 

(3.12) 

Let D denote the component containing the image of S~m under the map <P 

induced by the period map. The monodromy group r acts on D discontinuously, 

so the space D ;r is a well defined complex space. This is called the fundamental 

domain for the lattice La. As is shown in [40] the map <P factorizes over c•, i.e. 

it extends to a map 

(3.13) 

Using this period map one can show [44] that for the singularities of tables 1-2 

(3.1~) 

where the equality occurs for only three singularities of the type K 12 , W12 , U12 

appearing in table 1. So we may describe the moduli space of the affine surfaces 

Ea by way of the fundamental domain D ;r. 
In order to find a description of the moduli space of the compactified surfaces 

Ea one has to study the compactification of D/r, which as we mentioned earlier, . 
arises through an embedding of S!m in s: = s+ - { 0} I c·. In general the 

compactification of Ea is obtained via a particular resolution, consisting of the 

addition of extra polynomials. In general such a resolution looks like 

<I 

q(Pola)<l 
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where Pola denotes a set of weighted homogeneous polynomials labelled by a 

in the variables Xi, i = 1, 2, 3, of degree at most N, where N is the Coxeter 

number associated with the singularity listed in the tables 1-2, i.e. it is the least 

common multiple of the weights of the original polynomial f. The new variable 

is denoted by Y. Its power na depends on the set of divisors of N which appears 

in q(Pola) = na/N (in the corresponding N = 2 SCFT, q is the U(1) charge). 

The coefficients aa are normalized using the c• symmetry. The precise form of 

the polynomials follows from the requirement that the resulting surface describes 

a compact CY surface, i.e. a K3 surface in the c = 6 case. All the fields of 

dimension less than one for the original uncompactified singularity become all 

marginal fields for the compactified singularity. In this way all the singularities 

of tables 1-2 give rise after compactification to K3 surfaces [45, 44]. 

Let us illustrate this for the example (3.2). The compactification of Ea corre

sponds to a particular deformation of Eo by adding a term X 4 to the polynomial 

fa 

-r x2 x3 x7 oooX42 
Ja = 1 + 2 + 3 +a 4 + (3.16) 

i=O.j:a1 ... .5; 
i .. l,j...0 ... 4 

where k = 42 - 14i - 6j. Ruling out the possibility of having a000 = 0 and using 

the c· -symmetry to normalize aooo = 1' we restrict to the space s: defined in 

(3.5). Thus the addition of the term x:2 amounts to an embedding 
..... 

(3.17) 

The surface defined by 

f - x2 x3 x7 v42 0 
- 1 + 2 + 3 + .J'\.4 = (3.18) 

is known to describe a K3 surface which has only simple isolated singularities. 

If one uses f as a superpotential in a LG model one finds that the content of 

the chiral ring coincides with that of the spectrum of chiral states of the c = 6 

Gepner model 1 · 5 · 40. Note that the terms of the sum in (3.16) correspond 

to the marginal deformations in the untwisted ( c, c) chiral ring of the deformed 
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Gepner model 1 · 5 · 40. The space of 

{ai;~cli = O,j = 1. .. 5; i = 1,j = 0 .. .4; k = 42- 14i- 6j} 

is what we called in section 2 the a-moduli space. The fact that one has to add 

a polynomial x4 of degree 42 follows from the details of the compactification of 

the affine surface Ea turning it into a K3 surface. In this example above there is 

only one coefficient (a= 1) in (3.15) so that n = N = 42. 

In general the equation !a = 0 at Y = 0 describes a curve in CP2 which has 

at most isolated simple singularities. That is, the surfaces Ea have for all a the 

same singularities, implying that there exists a uniform resolution 

rr': E ~ s+- {0}/C. (3.19) 

This describes a holomorphic family of K3 surfaces all having the same singularity 

structure. Because of this, one may describe the compactification alternatively 

in terms of a compactification of the space Djr. From [44] one learns that the 

compactification of D jr is obtained by adding the rational boundary components 

of D. The compactification of Djr is denoted by (D/f)* = D* /f. D* is a 

symmetric space in the coset 0(20,4)/(0(20) x 0(4)). Sd' is embedded in D* ;r 
by a map t/J, which is an extension of the period map </> introduced earlier, such 

that the following diagram is commutative 

S!m ~ Djr 
L L (3.20) 

s: ~ n·;r 

The embedding t/J turns out to be an isomorphism (40, 44] for the three singular

ities of the type K12, W12 , U12 in table 1. 

The space D* ;r is the submoduli space of K3 surfaces which are of the same 

type as Ea. We thus conclude that the space D* ;r corresponds to the moduli 

space formed by the (untwisted) marginal deformations of the LG theory defined 

by a compactification of a given singularity of tables i-2. This moduli space is a 
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sub space of the complete moduli space of all K3 surfaces denoted by M. That 

IS 

s:cM. 
The space M is well known. We recall from [ 46] that M is the simply connected 

space, 

M ~ 0(19,3)/(0(19) X 0(3)). (3.21) 

In other words: the homology lattice H2 ("E, Z) is the same for. all K3 surfaces 

'E. The latter is known to be the even self-dual Lorentzian lattice LK3 of rank 22 

(3.22) 

where E8 denotes the self-dual lattice associated with the Dynkin diagram of the 

Lie algebra of type E8 • The isometry group of this lattice, i.e. its automorphism 

group, is known to be the discrete group 0(19,3, Z) (46]. We thus conclude 

that the Milnor lattice of any of the compactified singularities in tables 1-2 is 

embedded into LK3· The results in (40, 44, 45], described above, now imply that 

this embedding can be alternatively described by using the period map 'ljJ, i.e. we 

have an embedding 

s: c n·;r c M, (3.23) 

where r is the monodromy group of the affine surface 'Ea. In fact, r is contained 

in the automorphism group of LK3 . The action of ron the symmetric subspace 

D* C M relates different points which are physically equivalent: under the action 

of r the superpotential of the corresponding LG model remains the same. That 

is, adding an untwisted marginal deformation the monodromy does not change. 

Of course the monodromy has in general a non trivial effect on the kinetic term 

of the LG-model. However, as the monodromy of the superpotential remains the 

same, the change of the kinetic term corresponds to a perturbation of the kinetic 

term which becomes irrelevant at the critical point (see e.g. (47]). 
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3.2. Physical symmetries on s: and automorphism groups of K3 surfaces. 

Let us now turn to the problem of finding symmetry groups on the moduli 

spaces: of untwisted marginal deformations of a (2,2) vacuum. The description 

of the moduli space in terms of the monodromy group turns out to be very useful 

to obtain a geometrical understanding of these groups. Recall that in section 2 

we presented an algorithm for finding the generators of such symmetry groups 

using certain field redefinitions of the LG theory. For most of the potentials 

it is in general not so easy to identify these groups. In this subsection we will 

describe these groups in a more geometrical way which allows one to identify 

certain sub groups as automorphism groups of CY manifolds. Again we will 

restrict ourselves to the c = 6 superpotentials, i.e. to K3 surfaces, since in this 

case the complete classification of automorphism groups is known (48]. However, 

most of the arguments hold for the c = 9 superpotentials as well. 

To describe possible symmetry groups on the moduli space of untwisted de

formations we will use the moduli space D* /f. We start with a more precise 

description of the Milnor lattice La. of the compactified singularity using. the 

Hodge decomposition of the two dimensional cohomology of of a K3 s~ace ~: 

(3.24) 

with 

dimH2•0(~) = dimH'·2 (~) = 1, (3.25) 

Any K3 surface is completely determined by the unique holomorphic two-form w 

(i.e. a form without poles or zeros) of which we saw an example in the previous 

sub-section. This two-form is an element in H2·0(~). 

Next we define the lattice Sy;, as 

that is, 

(3.26) 
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This lattice is referred to as the Picard lattice [49, 50]. Together with it we define 

its orthogonal complement by 

Obviously, 

IT'_- s.:J: ..Lt- E in 1f2('L., Z). . (3.27) 

(3.28) 

where LK3 is given in (3.22). It is known (49, 50] that any K3 surface is uniquely 

determined by its Picard lattice. 

The lattice Sr. has signature (1, k), k < 20 so that Tf' has signature (2, 19-

rank Sf')· It is not hard to see that the lattice La. which was defined in the previous 

section as homology lattice formed by the vanishing cycles of the compactified 

singularity is given as the Poincare dual of the lattice Sr.. 

Let us now explain the relevance of the automorphism group of a K3 surface 

in the discussion of the physical symmetries acting on the moduli space S;I". Let 

Aut( Sf') denote the automorphism group of the Picard lattice of a K3 surface E. 

Denote by f its subgroup generated by pseudo-reflections (defined in (3.8)). This 

group contains in particular the monodromy group r introduced in the previous 

section. To be more precise: the quotient f /f fixes the 'point' Y = 0 in (3.15) 

added at infinity by which we compactified the surface Ea.. 

A well known fact [49] states that the automorphism group of the K3 surface 

can be expressed as the quotient 

Aut(E) ~ Aut(Sf')/f. (3.29) 

We will assume that Aut(E) is a finite group. By definition Aut(E) leaves invari

ant (up to a complex phase) the holomorphic two-from w which defines the K3 

surface. To be more precise: for any element wE 1f2·0 (E) we have 

g*w = a(g)w, (3.30) 

with a(g) E c• and g E Aut(E). (The star above g denotes the pullback). If we 

denote the kernel of a by Gf', i.e. the elements g for which a(g) = 1, then we 
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have that 

(3.31) 

where it is known [49] that M can be at most equal to 66. One can show rather 

'easily, using the results in [51] that for each of the polynomials in table 1-2 M 

is at most equal to the Coxeter number N. (For the models corresponding to 

type A-modular invariants, N is the least common multiple of the powers in the 

defining polynomial.) If the three powers are co-prime it turns out that Aut(l:) 

is the group of phases ZN discussed in [32]. 

We now come to the main point. Let us consider a particular ~3 surface 

arising via the compactification of one of the singularities in tables 1-2, and fix 

a parameter a0 E s:, corresponding to a particular deformation. The action of 

the automorphism group Aut(l:ao) on the holomorphic two-form w(a0 ) defined 

in (3.30) is induced from an action on cpn (48]. (That is, it corresponds to a 

redefinition of the fields Xi)· The only transformations which preserve w(a0 ), 

which we consider, are linear transformations on the fields Xi. 6 It then follows 

from the definition (3.11) of w, that in terms of the LG model, Aut(l:ao) is an 

example of a sub-group of physical symmetries acting on the theory by a field 

redefinition. 7 

The action of the automorphism group Aut(l:ao) on the holomorphic two-form 

w(ao) can be lifted to the whole space of deformations St; the group Aut(l:~) 

acts non-trivially on the two-formsw(a) associated to deformations parameterized 

by a E s:, a ::j:. ao. The deformation for which a = ao corresponds to the fixed 

point of this group, which is the automorphism group of the K3 surface defined 

by the two-form w(ao). 

In section 2 we considered the example (2.8) where we found explicitly that the 

group Aut(l:) ~ TP<S3 acts on the moduli spaces: with fixed point (a1 , a2 , a3 ) = 
(-10,0,0). The non-abelian group Of ~ M9 of order 72 is contained in the 

maximal automorphism group of the K3 surface n=l X? -lO(XrXi + XrX5 + 
6 In principle, there may be non-linear transformations which preserve w. However, all the 

examples studied in [48] turn out to correspond to linear unitary field redefinitions. 
7Vacua for which Aut(!:ao) is not trivial are important as they usually correspond to models 

with an extended symmetry. 
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XiXl) = 0 in CP2 (see e.g. [48]). This is the sub-group of field redefinitions 

preserving w, i.e. preserving the superpotential and of determinant 1. 

The above found relation between the automorphism groups of K3 surfaces 

and the group of transformations described in section 2 by field redefinitions is 

in fact generalized to all possible a-moduli spaces. The groups generated by the 

field redefinitions described in section 2 contain the automorphism groups of any 

K3 surfaces that appears as a. possible deformation of the unperturbed surface. 

The automorphism groups correspond to the stabilizing subgroups in the group 

obtained from field redefinitions, acting non-trivially on the a-moduli of untwisted 

( c, c) marginal deformations. 

Remarkably, the classification of symplectic automorphisms of a K3 surface 

is knoWn (48]. It follows that each possible group GE is isomorphic to one of 

the 11 groups (or subgroups thereof) listed in table 3, shown a.t the end of this 

section. For the notation of these groups we refer to (48, 52]. The blank en

tries in the fourth column correspond to K3 surfaces that are not obtained via 

comp~tification of one of the singularities in tables 1-2. (See [48] for the corre

sponding surfaces.) The first K3 surface is closely related to the compactification 

of the singularity K 12 in tables 1-2 (see [38, 40, 53]) Lines 4,5 and 7 correspond 

to the deformed Gepner model 24 • The group F384 is generated by phase trans

formations and permutations. The group M20 contains the transformation of the 

typ~ S. Line 10 is the example mentioned a.bove, which we discussed in detail 

in section 2. The full automorphism group is obtained by taking the semi-direct 

product with the cyclic group ZM as in (3.31). So we conclude that the groups 

Aut(E) are subgroups of the 'modular' group obtained from field redefinitions in 

section 2. 

By construction, the groups GE are all sub-groups of 0(19, 3, Z) and therefore 

of 0(20, 4, Z) as well. This concl~des the discussion on the relation between sub

groups of the symmetry groups acting on the moduli space of untwisted marginal 

deformations of a (2, 2) c = 6 vacuum and automorphism groups of K3 surfaces. 

In principle the same argument holds also for the c = 9 case, however, much less 

is known about the structure of automorphism groups of CY manifolds (work on 

this subject is in progress (35]). 
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No. 
1 
2 
3 
4 

• 5 
"6 

7 
8 
9 

10 
11 

Oro order K3 surface 
L2(1) 168 XfX2 +XiX3 +XlX1 +Xt = 0 
~ 360 2:6 X _ 2:6 x2 _ 2:6 X3 _ o 

1 i- 1 i - 1..(" i -
Ss 120 l:s X _ 2:6 x2 _ I:s X3 _ o 1 i- 1 i- 1 i-

M20 960 2:1 xt + 12r11 xi= o 
F384 384 E1Xt = 0 
~.4 288 
T192 192 2:1 Xt - 2iv'3(Xr Xi+ XjX~) = 0 
H192 192 
Nn. 72 
Mg 72 2:~ Xf -10(XrXi + XiX~ + X~Xr) = 0 
T48 48 

Table 3: Finite automorphism groups of K3 surfaces 

which a.re nontrivial physical symmetry groups. 
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4. Transformations Relating Small and Large Volume 
Com pactificatio:ns. 

In this section we discuss a particular symmetry on the moduli space of (2,2)

vacua which relates small radius compactifications with large ones. For definite

ness we restrict here to c = 6 superpotentials. In order to reformulate the moduli 

problem for c = 6 LG theories in terms of metrics we use a knowri relation [54] 

between the metric and the holomorphic two-form on the K3- surface ~a· We 

remind the reader that a Kahler metric 9iJ is a CY metric (i.e. Ricci-fiat) if 

{)2 
R 3 = aiaJ log( det(gi1)) = o, (4.1) 

and correspondingly defines a unique class (up to isomorphism) in H1•1 (~a)· 

Now, for K3 surfaces (i.e. compact CY manifolds in complex dimension 2) this 

implies that a Kabler metric on it is Ricci-fiat if and only if there exists a positive 

constant c such that [54] 

(4.2) 

where Wa is the unique global holomorphic two-form characterizing the K3 surface, 

as defined in (3.11), and </> = Imgi,dZi I\ az, is the Kahler form on ~a· Now let us 

consider a deformed K3 surface defined by the two-form Wa· The volume of the 

surface corresponding to the metric 9iJ is given by 

(4.3) 

which is explicitly depending on the moduli a E s: of the K3 surface. Note 

that this is not the volume form obtained from the embedding of the surface into 

some projective space: the induced metric coming from the embedding is not 

Ricci-flat and gives rise to a volume form which can not be written in terms of a 

holomorphic and anti-holomorphic two-form. 

Let us next find generators in the symmetry group on the moduli space of a 

LG model that act nontrivially on the volume in (4.3). In particular, we will be 
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interested in the possibility of finding modular transformations that transform 

'small volumes to large ones'. We will follow the example in (2.8), with the action 

of an S transformation on the a-moduli. However, the same arguments will give 

the same conclusion in other cases where a type S transformation relates finite 

values of a to infinite ones . 

The limit a1 -+ oo in (2.8) is equivalent to (ab a2, a3) = ( -7, 9, 3) as can be 

found using (2.10). We will. denote the superpotential for given a parameters 

by Wa.1 ,a'l,a3 (XI,X2,X3)· The holomorphic twcrform (3.11) in both cases is the 

same, up to an overall factor 9/a1 at the limit a1 -+ oo. This can be seen as 

follows. At the limit a1 -+ oo, the superpotential is effectively 

(4.4) 

On the other hand, 

(4.5) 

where in (4.5) the x: are related to the xl by the types transformation (2.9). 

The Jacobian of the transformation (2.9) is 1, and thus the factor 9/a1 is estab

lished. Using (4.3) we conclude that the ratio between the volumes of the two 

corresponding models diverges, and thus small volumes are related to large ones. 
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Tables of Singularities 

In the following tables N denotes the dual Coxeter number of the singularity 

which equals the number of the least common multiple in the case the singularity 

is of the form Li xr. In the last collumn we have given the number of untwisted 

( c, c) deformations. It is computed for the compactified singularity, i.e. after 

adding a term with power equal to N. These tables can be found e.g~ in [37]. 

N Superpotential Type A 
24 x;x3+X~+X1 Q1o 8 
18 x;x3 + x~ + X2Xi Qu 9 
15 J<;X3+X~+Xg Q12 10 
16 J<;X3 + X2Xj +X~ Su 9 
13 x; x3 + X2Xj + X1Xi 812 10 
12 X'f+X~+Xj U12 10 
30 X'fX2 +X~ +Xj Zn 9 
22 X'fX2 + x1x~ + Xj Z12 10 
18 X'fX2 +X~ +Xj Z13 11 
20 X4 +Xs +X2 1 2 3 W12 10 
16 Xt +X1X~+Xj W13 11 
42 x2 +X3 +X7 1 2 3 K12 10 
30 X'f+X1X~ +Xj K13 11 
24 X'f+X~+Xj Kt4 12 

Table 1. The Exceptional Modality 1 Superpotentials with c = 3(~$2 ). 
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N Superpotential Type A 
18 Xf +Xi +Xi R2s9(J3,o) 14 
14 X[ +XiXt +Xj R241(Z1,o) 13 
12 X{X2 +X?+ X1Xj R245(Q2,o) 12 
12 X~+X~+Xj R236(W1,o) 13 

• 
10 Xf + X:jX3 + X1Xj R234(S1,o) 12 
9 Xi +X~ + .X1Xi R233(U1,o) 12 
10 X 5 +X5 +X2 

1 2 3 R22s(N1s) 14 
8 X{ +X~ +X2Xj R223 (Vi ,o) 13 
12 x12 +X3 +X2 1 2 3 Rt4s(J4,o) 18 
10 X{0 + X1X? + Xj Rt35(Z2,o) 17 
9 Xi +Xi +X1Xj R134(Q3,o) 16 
8 xs+X4 +X2 1 2 3 R124(X2,o) 17 
7 Xi+ X1Xi + X1Xj + X:jX3 R123(S2,0 ) 16 
6 xs+X3+X3 R122 16 1 2 3 
5 Xf +X~ +X1Xj Ru2 16 
6 X6+Xa+X2 1 2 3 Ru3 19 
4 X4 +X4 +X4 1 2 3 Rut 19 

Table 2. Remaining superpotentials tha.t embed in C3 with c = 3( ~v2 ). 
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