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INTRODUCTION 

Radiochemical analyses have provided cross section values1-8 for the production of 

specific nuclei in heavy ion reactions with heavy actinide targets such as 248Cm, 249Cf, and 

254Es. Data from heavy ion experiments in which actinide target nuclei are bombarded by 

projectiles with kinetic energies very near the nuclear Coulomb barrier show that nuclei with 

mass and charge close to the values of the target nuclei are formed with large cross sections, of 

the order of thousands of micro barns. These large production cross sections lead to the con

clusion that the heavy products are formed from binary transfer reactions rather than from 

compound nucleus formation. De-excitation of a compound nucleus via the emission of many 

particles and the consequent severe depletion via fission at each step would be expected to 

result in very small cross sections. Based on a simple binary transfer mechanism, we showed 

earlier9 that many of the reactions producing neutron-rich target-like products have rather small 

Q values. Thus the residual heavy products have low excitation energies, and the probability 

for losses due to prompt fission and particle emission are greatly reduced compared to products 

produced by complete fusion with resultant large excitation energies and subsequent particle 

emission or fission. Previous heavy ion experiments have shown that the cross section for 

formation of a specific product nucleus depends strongly on the total number of nucleons trans

ferred. Differences in the mass surface, i.e., the ground state Q values for the reactions, also 

strongly affect the cross section. In our previous report9, we tabulated the calculated excitation 

energies for transcurium products up to Z=103 (later extended to below target products with 

Z=92 to 96) for binary reactions between 160, 180, 20Ne, and 22Ne projectiles and 245Cm, 

246Cm, 248Cm, 249Cf, and 252Cf targets, and for 12C and 48Ca projectiles with 254Es and 257Fm 

targets. Projectile energies approximately equal to the calculated Coulomb barriers were 

considered. For higher projectile energies, the excess kinetic energy was apportioned between 

the products according to the fraction of the projectile mass transferred to the heavy product. 

The computer program, described here, is identified as PWAVEDS. It was developed 
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to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombard

ments. The objective was to calculate cross sections that agree with experimental results for 

ions of different charge and mass and to develop a predictive capability. It was undertaken 

because previous heavy ion calculations, for which programs were readily available, appeared 

to focus primarily on reactions resulting in compound nucleus formation and were not particu

larly applicable to calculations of binary reaction cross sections at low interaction energies. 

There are two principal areas in which this computation differs from several other par

tial wave calculations of heavy-ion reaction cross sections. First, this program is designed 

specifically to calculate cross sections for nucleon exchange interactions and to exclude interac

tions that are expected to result in fusion of the two nuclei. A second major difference in this 

calculation is the use of a statistical distribution to assign the total interaction cross section to 

individual final mass states. 

Ion trajectories are designed to limit the calculated cross sections to binary exchange 

interactions. It is assumed that in near-grazing collisions nuclei will scatter and exchange 

nucleons but will not fuse. If the collision is energetic enough to distort and drive the nuclei 

together significantly, the interaction will result in fusion. To eliminate fusion events from the 

calculated cross section, only trajectories having radial kinetic energies in a small interval 

above the Coulomb barrier are allowed. 

The desired trajectories are selected by using the Rutherford formula to find the point of 

closest approach of the two ions. The distance of closest approach corresponds to radial kinetic 

energy in this formula. By selecting an appropriate range for the closest approach, the desired 

range of radial kinetic energies is selected. 

Specifically, the distance of closest approach must be equal to or less than the sum of 

the projectile and target radii, Rl+R2, and greater than the distance between the centers of 

these nuclei when they are in a position which simulates the fission saddle point configuration. 

In this problem, a distance of R2+(0.6)Rl between the nuclear centers has been used to repre-
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sent the saddle point separation. 

Experiments show that heavy ion bombardment of massive target nuclei at energies 

near the Coulomb barrier can result in the exchange of nucleons when the reaction is 

energetically allowed. Experimental conditions indicate that only a brief contact between the 

·• nuclei is necessary for the exchange of many nucleons. The observation that one, two, or more, 

up to as many as eleven nucleons may be exchanged with different probabilities indicates that 

the nucleon transfer can be represented by a statistical process. In the current computation, the 

calculated geometric cross section is distributed among the transfer of 1 to 12 nucleons with the 

Gaussian probability centered on a mean value proportional to the amount of nuclear overlap 

for each case. 

Cross sections were calculated for products with Z larger than that of the target assum

ing a binary transfer reaction mechanism. Yields for the heavy products as a function of the 

number of nucleons transferred and as a function of the kinetic energy of the projectile are 

given. The calculation also includes the effects of nuclear kinematics due to changes in the 

mass and charge of projectiles and targets. 

CALCULATIONAL METHODS 

Total Cross Section for Binary Reactions 

The starting point for this problem was a calculation of the geometric cross section for 

interaction between projectiles and target atoms. This was calculated from the classical 

hyperbolic, i.e., positive-energy, solution for the repulsive inverse-square force problem. 

Equations applicable to the two-body repulsive central force problem are given in Appendix A. 

Coulomb forces alone determine the relative motion of projectile and target nuclei in this 

solution so the resulting trajectories are accurate only until the nuclei first make contact and 

short range nuclear forces become important. 

The general solution for the orbit of a particle about a fixed point for a repulsive 
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Coulomb force is given by: 1/r=(mzz 1 )(e/L)2(1 +Ecos9), where £ 2= 1 +(2Es/zz 1 e2
)

2
. 

If only central forces act in a two body system, the orbit lies in a plane so only two coordinates, 

(r) and (9), are required to define the motion. In a conservative system there are two constants 

of motion, the total energy (E) and the angular momentum (!). The reduced mass of the system 

is represented by (m); z and z 'are the nuclear charges and s is the impact parameter of the 

incoming ion. Orbits of central force problems represent conic sections with one focus at the 

scattering point. The parameter (E) defines the nature of the orbit. This problem is concerned 

only with systems having total energy greater than zero, corresponding to E> 1, which leads to 

hyperbolic trajectories for the Rutherford orbits. The simple form of the orbit equation given 

above requires that the center of force be located at the or gin of the coordinate system and that 

the 9=0 and 180° axis must pass through the focii of the hyperbola. Under these conditions the 

value of cos9 must be negative so 9 will always be in the second and third quadrants and be 

symmetric about 180°. (Some details of the solution used here are given in Appendix A of this 

report. For a complete treatment, see Goldstein10
, Chapter 3.) 

Our program solves the equation of Rutherford orbits for selected values of the fixed 

parameters E, m, z and z 1 , and for a range of values of the impact parameters. The impact 

parameter correlates directly with the system angular momentum, L, and with the distance of 

closest approach, corresponding to cos 9=-1 in the orbit equation. The calculated value of 

closest approach is not accurate if it is less than the sum of the two ionic radii because of 

nuclear forces which disturb the orbit. Extending the calculation into the region of nuclear 

overlap, while not representing accurate configurations, does, however, provide a good meas

ure of the radial kinetic energy of the ions at their point of contact. 

The concept of two nuclei moving together along their line of centers is useful in estab

lishing limits of integration on geometric cross sections which represent binary reactions 

between heavy ions. Specifically, if motion along the (r) coordinate is stopped by Coulomb 

repulsion prior to the nuclei coming into contact, no interaction occurs because the relative 
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kinetic energy is below the Coulomb barrier. If the turning point comes just as the nuclei make 

contact, the energy is at the barrier and the grazing trajectory results; if the nuclei come into 

contact while they are still moving together with excess kinetic energy they will be forced 

together in a configuration which, to some extent, will resemble a fission saddle point configu

ration. If motion along this axis goes beyond this saddle point the two nuclei would be expect

ed to fuse into a compound nucleus. Thus, trajectories which bring the two ions into contact, 

but not into the saddle point configuration, are expected to result in binary reactions. 

Two adjustable parameters, CD and RD, (see Appendix A, Eqs. 11 and 12) were used to 

designate the trajectories which we have defined to result in binary interactions. For RD<O the 

ions do not make contact so no interaction is possible. At RD=O the distance of closest ap- · 

proach is equal to the sum of the two nuclear radii representing a grazing trajectory. For tra

jectories with RD>O, the two ions come into contact and binary reactions can occur. The 

second parameter, CD, is used to establish a point which separates the region in which binary 

reactions are expected from that in which fusion of the two ions is predicted. Thus, trajectories 

for which CD>O lead to fusion and make no contribution to the binary cross section; if CD<O 

and RD>O the interaction results in a binary exchange of nucleons. 

For any set of input parameters the program will find the impact parameters and the 

corresponding angular momenta for which RD=O and CD=O. Integration of the impact parame

ter area within these limits results in the desired geometric cross section and the corresponding 

angular momenta are used as the limits of summation in the partial wave calculation. Compar

ing cross section values derived by these two methods reveals the effect of angular momentum 

quantization which can be significant for interactions very near the Coulomb barrier. Appendix 

B lists all variables and constants used in the computer program. Appendix C gives a listing of 

the program, and Appendix D shows the complete flow diagram. 

Nucleons Transferred 

Heavy ion trajectories that satisfy the criteria, CD<O<RD, will result in physical contact 
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between the two nuclei for times usually not in excess of 2.0 x 10-21 s. This is ample time for 

the exchange of several nucleons. It is assumed that during the interaction, nucleons can move 

either from projectile to target or in the reverse direction with statistically defined probabilities. 

It was further assumed that the most probable number of nucleons exchanged would be correlat

ed with the volume of the nuclear overlap region and that the exchange of greater or lesser 

numbers would be represented by a normal (Gaussian) distribution about the most probable 

value. The standard deviation of the Gaussian is an adjustable parameter. 

Program lines 1110 through 1150 estimate the most probable number of nucleons 

exchanged and lines 1305 through 1345 assign the total cross section for binary interactions 

among twelve different mass numbers according to the Gaussian distribution. These program 

steps are repeated for each incremental step in the impact parameter over the interval 

CD<O<RD. The current program sums only nucleon transfers from projectile to target al

though transfers in the other direction could also be recorded if it were desirable. 

If the full printout option is used by setting the flag NPRT = 0, the contribution to the 

cross section for each mass number from each iteration and also the cumulated sum are printed 

on the line printer. The abreviated printout (for NPRT = 1) gives only the final iteration and 

cumulated sum. All output is displayed on the screen for either print option. 

Transmission Factors 

The transfer of nucleons between interacting ions is expected to be strongly influenced 

by the final state energies of the resulting nuclei. These effects can be introduced by multipli

cative transmission functions applied to the geometric cross sections. Currently all transmis

sion functions are set to one so the calculational results are purely geometrical. 

CALCULATIONAL RESULTS 

Output 

The output of this calculation is tabulated as the cross section for the net transfer of (x) 
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nucleons from projectile to target, or vice versa, without regard for whether they are neutrons 

or protons. The same will generally not be true of the experimental results with which the 

calculation is compared. The radiochemical yield experiments measure cross sections for the 

net effective transfer of (x) nucleons, of which a specific number, p, are protons and a specific 

number, n, are neutrons. For the target-like product, x = l±pl + l±nl. The radiochemical data for 

the target-like product yields may be compared with the results of the calculation if provision is 

made for the fact that a specific number of both neutrons and protons must be transferred, 

either to or from the target, not just a total number of nucleons. For a system with equal 

numbers of protons and neutrons, the multiplicity is 4x. In lines 1331 and 1332 of the code, 

provision is made for a correction of 4x for multiplicity. Whether or not this correction is 

implemented is determine by the decision flag, VVV (see Appendix B). It should be empha

sized that this correction is based on the assumption of equal numbers of neutrons and protons 

and that the probability for their transfer is identical. 

COMPARISON WITH DATA 

Multiplicity Corrections 

The measured cross sections for above target actinides from the reactions of 248Cm and 

180 and 160 projectiles are given in Tables I and II and plotted in Figures 1 and 2. These have 

been taken from Lee et al.1
•
2

; cross sections have been included only for those heavy products 

whose excitation energy, E*, calculated as in our earlier paper9, is in the range from about 0 to 

10 MeV. The measured cross section value for a given isotope represents only 1 of 4x ways of 

transferring x nucleons if the probability of transferring a proton, p , equals the probability of 
p 

transferring a neutron, Pn' = 0.5. This correction can be made in the code as discussed earlier. 

However, for different probabilities for the transfer of neutrons and protons, it seemed more 

convenient to correct the experimental data, rather than the calculation, for different values of 

these probabilities based on the fraction of protons in the system of interest. For example, the 
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production of 253Cf involves the net effective transfer of 2 protons and 3 neutrons from the 

projectile to the 248Cm target; therefore, x = 1+21 + 1+31 = 5, and the number of ways to transfer 

5 nucleons is 4x or 20. The experimental cross section for 253Cf must then be multiplied by 20 

before comparison with the calculation which includes all possible ways to transfer 5 nucleons. 

For 247 Cf, 2 protons must be transferred to the target and 3 neutrons to the projectile; again, x = 

1+21 + 1-31 = 5. However, since these systems have more neutrons than protons, it seems rea

sonable that the neutron transfer probability should be larger than that for protons, but it is not 

obvious what the appropriate value should be as it is not clear what the neutron-to-proton ratio 

may be in the overlap volume. Therefore, the limiting cases of the composition of the target 

where p/(p + n) = 0.613 and n/(p + n) = 0.387, and of 160 which has equal numbers of protons 

and neutrons were considered. The probability for transferring a proton (or neutron) was taken 

as equal to its fraction of the total number of nucleons. The probabilities for a given number of 

protons transferred out of a total of x nucleons transferred were then calculated for each heavy 

product using the binomial theorem: P(p) = x![(x-p)!p!r1p P(l-p )x-p. 
p p 

For the totally equilibrated compound system, 248Cm + 160, p = 0.394, obviously very 
p 

close to the target composition. The experimental cross sections, and the values after correc-

tion for multiplicity using p = 0.500 and p = 0.387, are listed in Tables I and II. These data 
p p 

are also plotted, together with solid lines representing the calculated cross sections which give 

the best fit to the experimental data, in Figures 3.(a) and (b) and 4.(a) and (b) as a function of 

x, the total number of nucleons transferred. 

Gaussian Distributions 

The transfer cross sections calculated for 248Cm + 180 at an energy 1.4 MeV above the 

Coulomb barrier for Gaussian distributions with standard deviation, cr, of 1.6, 1.8, and 2.0 are 

plotted in Figure 5 . A similar plot for interactions with 160 is given in Figure 6. The calcula

tion with cr = 1.8 for a projectile energy between 1.4 MeV and 3.3 MeV above the barrier 

seems to give the best fit to the 180 data which has been corrected for multiplicity based on 
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either p = 0.39 (the fraction of protons in 248Cm) or p = 0.5. The calculation with a = 1.6 p p 

appears to be slightly better for the 160 system, although the scatter in the data is so large that it 

is difficult to tell. 

Energy Dependence 

Figures 7 and 8 show the changes in calculated cross sections as a function of projectile 

energy above the Coulomb barrier. As expected, the calculated cross sections increase with 

energy, but the experimental values will, of course, ultimately decrease as the fission barriers 

(around 5.5 MeV) or neutron binding energies are exceeded. This effect has not yet been 

incorporated in the calculations and, therefore, only experimental cross sections with calculated 

excitation energies, E*, which are positive but less than about 10 MeV above the reaction barri

er are used in the comparisons with the calculations. Based on the energy at which the experi

mental cross sections decreased as a function of projectile energy, Lee et al.2 have observed 

that only about 0.6 of the excess projectile energy appears as excitation energy of the target

like product in interactions of 180 with 248Cm. 

DISCUSSION 

After correction of the experimental cross sections for multiplicity, the results of the 

PWAVED5 calculation reproduce the general features of the experimental data rather well. In 

principle, it should be possible to determine from the experimental data whether the value of pP 

for the target or projectile gives a better fit and thus infer whether the composition of the over

lap volume is more representative of the target (or compound system) or of the projectile . 

However, the scatter in the experimental data does not permit this kind of detailed comparison. 

Another question of primary interest is whether the calculation is applicable to other 

systems of this type. In order to check this, as well as its predictive capability, we have done 

similar calculations for 249Cf and 254Es with 160 and 180 and compared them with the experi-
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mental data for these systems. The experimental data for 254Es reactions with 180, corrected for 

multiplicity, are shown in Fig. 9 together with lines representing the cross sections calculated at 

1.4 MeV above the Coulomb barrier for both a= 1.6 and 1.8. The fit appears to be somewhat 

better for 1.6. It should be noted that the calculated cross section for a given number of nucle

ons transferred is about the same for these targets as for 248Cm. Thus, for energetically favora

ble reactions, use of a neutron-rich target enhances the yield of neutron-rich heavy products. In 

addition, due to large differences in the binding energies of the complementary Z=1 to 4 

products from 160 and 180 reactions, use of 180 projectiles gives maxima in the isotopic distri

butions for the products with up to 4 Z greater than the target which are about two mass units 

heavier than for 160 projectiles. 

Currently, the experimental data are not sufficiently accurate nor extensive to permit 

stringent testing of the predictive capability of the model. For example, data for nucleon trans

fers of more than 8 nucleons are nearly non-existent and the point for 11 nucleons transferred 

shown in Fig. 3 is only an estimate. Such information is crucial in determining whether the 

rather rapid decrease in calculation predicted by the calculation is reasonable. If the point at x 

= 11 is considered, the experimental data shown in Fig. 1 would be better fit with a simple 

exponential function. 

The calculated change in geometric cross section for the entire range of actinide targets 

is quite small as expected. However, the geometric cross sections vary considerably for the 

wide wide range of mass and charge of available projectiles. For example, the geometric cross 

sections differ by more than a factor of two for oxygen and calcium projectiles with energies 

near the Coulomb barrier. Nevertheless, the change is difficult to confirm experimentally 

because of the dominant, but inaccurately known, effect of the differing Q-values for the rele

vant reactions. 

Reaction cross sections as a function of projectile energy have been measured for many 

different heavy ion reactions. Again, the interpretation of these data is complicated by incom-
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plete information on the reaction energies. The current calculation predicts a linear increase in 

cross section as the projectile energy is increased over the Coulomb barrier. The increase in 

cross section continues until the critical energy is reached. For projectile energies above the 

critical energy the geometric cross section remains approximately constant. Reaction cross 

sections as a function of projectile energy have been measured for many different heavy ion 

reactions, but interpretation of the data is complicated by the reaction energies of the various 

nucleon transfer reactions. 

Because of the absence of information on the reaction energy available for the different 

nucleon transfer channels and the strong influence of reaction energy on the nucleon transfer 

cross sections, it can only be noted that the available data do not contradict the predicted rela

tionship between geometric cross section and energy in this calculation. Much additional data 

for larger nucleon transfers and for a variety of other systems will be essential in assessing the 

general applicability of the calculation. 
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TABLE I. Experimental Cross Sections for 248cm + 180 and Values 
Corrected for Multiplicity with p = 0.5 and 0.39. 

{Experimental cross sections taken from Refs. 1 and 2.) 

Nuclide x 

Bk-250 2 
Cf-250 2 

Bk-251 3 

Cf-252 4 

Cf-253 5 
Es-253 5 

Cf-254 6 
Es-254 6 
Fm-254 6 

Es-255 7 
Fm-255 7 

Fm-256 8 

Fm-259 11 

aEstimated 

L 
{MeV) 

-2.5 
1.8 

1.2 

6.9 

3.2 
1.0 

3.9 
0.8 
0.4 

3.2 
2.3 

8.2 

-3.7 

Cross Section 
(IJl>) 

1970 
1300 

>420 

337 

49 
29 

3.3 
9.2 
3.1 

0.31 
1.1 

0.33 

-0.01a 

Corrected Cross Sections 
pp = 0.50 pp = 0.39 

15800 16500 
10400 17100 

>4500 >3850 

3590 3960 

310 570 
185 520 

28 41 
59 140 
27 95 

4.6 4.3 
16. 24. 

4.9 5.9 

-0.3 -0.2 

from Hoffman et al., Ref. 11. 
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TABLE II. Experimental Cross Sections for 248Cm + 160 and Values 
Corrected for Multiplicity with p = 0.5 and 0.39. 

(Experimental cross sections takgn from Ref. 1.) 

Nuclide X L Cross Section S:::Q;t:;t:~~t~a S:::;t:Q~H! s~~ti~ma 
(MeV) (~) PP=0.50 Pp=0.39 

Bk-248m 2 -1.1 1600 12800 13450 
Cf-250 2 8.6 1100 8800 14500 

Cf-249 3 3.6 1700 18100 24300 
Es-251 3 2.3 38 610 1270 

Bk-246 4 -4.1 81 1300 920 
Cf-248 4 2.6 500 5300 5880 
Cf-252 4 6.0 4.3 46 51 
Es-252 4 2.4 21 330 580 
Fm-252 4 2.4 3.5 110 310 

Bk-245 5 -3.4 11. 140 160 
Es-253 5 5.0 7.4 47 130 
Fm-251 5 -6.3 4.9 63 275 
Fm-253 5 4.5 3.9 50 220 

Cf-246 6 -5.4 6.2 53 79 
Fm-254 6 10.1 1.3 11 41 

Fm-255 7 8.1 0.3 4.4 6.5 

Fm-256 8 12.5 0.02 0.3 0.35 
Md-256 8 5.6 0.005 0.09 0.17 
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FIGURE CAPTIONS 

Figure 1. Experimental data for 248Cm + 180. 

Figure 2. Experimental data for 248Cm + 160. 

Figure 3. (a) Experimental data for 248Cm + 180 corrected for multiplicity. Solid symbols are 
for p = 0.39 and open symbols are for 0.50. 

(b) ThePsolid line represents the cross sections calculated forB+ 1.4 MeV and <J = 1.8. 

Figure 4. (a) Experimental data for 248Cm + 160 corrected for multiplicity. Solid symbols are 
for p = 0.39 and open symbols are for 0.50. 

(b) Thlsolid line represents the cross sections calculated forB+ 1.4 MeV and <J = 1.6. 

Figure 5. Calculated cross sections for 248Cm + 180 at a projectile energy 1.4 MeV above the 
Coulomb barrier (B + 1.4 MeV) for Gaussian distributions with <J = 1.6, 1.8, and 2.0. 

Figure 6. Calculated cross sections for 248Cm + 160 at B + 1.4 MeV for Gaussian distributions 
with <J = 1.6, 1.8, and 2.0. 

Figure 7. Calculated cross sections for 248Cm + 180 for <J = 1.8 and B + 1.4, 3.3, and 5.2 MeV. 

Figure 8. Calculated cross sections for 248Cm + 160 for <J = 1.6 and B + 1.4, 2.4, 3.0, and 4.9 
MeV. 

Figure 9. Experimental data for 254Es + 180 corrected for multiplicity. Solid symbols are for 
p = 0.39 and open symbols are for 0.50. Calculated cross sections forB+ 1.4 MeV for 
Cfaussian distributions with <J = 1.6 and 1.8 are shown for comparison. 
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APPENDIX A. PRINCIPAL EQUATIONS USED IN PWAVED5 CALCULATION 

This version of the cross section calculation is labeled 
PWAVEDS.BAS. The program first loads constants and parameters, 
then derived variables are calculated. No attempt was made to 
hold to one system of units throughout the problem; whichever 
units were most convenient were used. Most of the equations used 
in the problem are listed below. Some are accompanied by discus
sion or explanation. 

Eq. (1): R=1.41E-13(A) 113 is the expression used for all 
nuclear radii. 

Eq. (2): MU=A(MP) (A1) (A2)/(A1+A2), where MP, the proton 
mass, is used in calculating all reduced-mass values. 

Eq. (3): RR12=R12-FF(R1) defines the critical distance 
between the centers of two nuclei. The sum of the two radii is 
R1+R2=R12 and FF is a number between 0 and 1 which defines the 
nuclear overlap in terms of the projectile radius, R1. RR12 is 
assumed to approximate the saddle point radius for pp = 0.6. 

Eq. (4): LMDA=h/ (2ME) 112 defines the particle wavelength. 

Eq. (5): EBV=Z1*Z2*e2 /(1.6022E-6)*R12 represents the Coulomb 
barrier potential in MeV; e is in esu. 

Eq. (6): L 2 =(sc) 2 (2ME) is the angular momentum squared of 
the projectile-tarqet system. In units of h/2n, the angular 
momentum is SC(2ME) 1 n/HBAR. 

Eq. (7): EPS= (1+(2E(SC) /Z1Z2e2 ) 2 ) 112 is the eccentricity 
term in the orbit equation. 

Eq. (8): KKK=(-m*Z1*Z2*e2 /L2 ) represents the force term in 
the orbit equation. 

Eq. (9): (1/r)=(-m*Z1*Z2*e2 /L2 )*(1+(eps)*cos(theta)). This 
equation for the trajectory of the scattered particle is a spe
cial solution of the general central force problem. Two coordi
nates are sufficient to define the motion about a central force. 
When the force is proportional to (1/r) 2 , the trajectory, given 
by eq. (9), will be one of the conic sections and if the coordi
nate system is correctly chosen, the system will have rotational 
symmetry about the axis through the foci of the conic section. 
For this problem the system energy is always greater than zero, 
so epsilon (Eq.7) is greater than 1 and the trajectories are 
hyperbolic. The coordinate system is selected such that the two 
foci lie on the X axis with the exterior focus at the origin. 
Asymptotes of the hyperbola, given by y=bx/a will intersect on 
the X axis and the angle formed by the asymptotes will be the 
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supplement of the scattering angle. The distance between the 
vertices of the two branches is 2a and b is the latus rectum. 

Equation (9) is the same as Kepler's solution to the differential 
equation of motion except that the negative force term, 
(-mZ1Z2e2 /L2 ), defines a repulsive electrostatic force instead of 
the gravitational force. The value of epsilon, a constant of 
integration, is found by solving the elliptic integral form of 
the motion equation. The elliptic integral equation defines the 
orbit in terms of the system energy and angular momentum but is 
independent of time. 

It is necessary that the coordinate (r) always be positive so 
cos(theta) must be negative and theta must lie between pi/2 and 
3pi/2. In this coordinate system the hyperbolic trajectory 
intersects the X axis at the vertex of that branch of the hyper
bola. In this position the radius vector (R) lies along the X 
axis from the focus of the exterior branch to the vertex of the 
orbit branch. The theta coordinate is measured from the negative 
X axis to the radius vector so theta = pi at this point in the 
orbit. 

The orbit equation is used to calculate the distance of closest 
approach between of the scattered particle and the scattering 
center. This occurs when the cos (theta) =-1 so that 
(1/r)=-KKK*{1-EPS). 

Eq. (10): RMI=1/{KKK*(eps-1)) gives the distance between 
projectile and target at the point of closet approach. The 
trajectory for which RM1 = R1+R2 is the grazing trajectory. This 
trajectory also corresponds to the grazing angle of scattering 
and to LMAX, the maximum angular momentum of the system in which 
nucleons can be exchanged. The critical trajectory corresponds 
to RMI=R1+R2-(FF*R1) and gives the critical scattering angle and 
the critical angular momentum. 

Eq. (11): CD=RR12-RMI. The parameter CD=O for the critical 
trajectory. when CD<O, binary reactions occur. If CD>O the two 
nuclei are assumed to coalesce beyond the saddle point and fusion 
occurs. 

Eq. (12): RD=RR12-RMI. For the grazing trajectory, RD=O. If 
RD<O the nuclei do not make contact. If RD>O the two nuclei come 
into contact and may exchange nucleons. 

Eq. (13): SCF=SCA-SCAP. SCA is the area inside a circle of 
radius SC, the inpact parameter for each iteration, and SCAP is 
the area for the previous iteration. Thus, SCF is the incremen
tal area corresponding to each single iteration and SCFF is the 
sum of SCF for all increments. It represents the geometric cross 
section. 
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Eq. (14): VOL=(PI/3)*(RMI-R2) 2*(3-(RMI-R2)). It lS assumed 
that when the projectile and target nuclei are forced together in 
the scattering process. the smaller, more rigid projectile will 
distort the less rigid target and protrude into the distorted 
nucleus. The distance which the projectile extends into the 
target nucleus, to the first approximation, is (PI/3)h2 (3r-h) 
where h=R1+R2-RMI and r=((R1) 2+(RMI-R2) 2) 112 . The higher order 
terms omitted in this equation account for the change in radius 
of the target nucleus when it is in contact with the projectile. 

Eq. (15): VOLN=VOL*(3A1/4PI(R1) 3 ) represents the overlap 
volume divided by the volume of one nucleon so it gives the over
lap volume in terms of nucleons. A1 is the atomic number and R1 
the radius of the projectile nucleus. 

Eq. (16): PP(q)=(1/SIG*(2PI) 112 )*exp(-1/2)*((q-VOLN)/(SIG) 2). 
This is the equation for the Gaussian distribution about a mean 
value of VOLN. In this calculation this expression is used to 
give the probability of observing (q) nucleons transferred be
tween projectile and target assuming the mean value of (q) is 
VOLN. 

Eq. (17): PPP(q)=PP(q)*SCF multiplies the normalized 
Gaussian probability distribution, PP(q), by the geometric cross 
section, SCF, for each iteration of the problem. The value of 
the Gaussian now corresponds to the geometric cross section and 
PPP(q) to the cross section for q nucleons being transfered. 
PPP(q) is summed over all iterations to give PPS(q), the geomet
ric cross section for the transfer of q nucleons. 

Values for the scattering angles of projectile and target nuclei 
in the center of mass and laboratory systems are based entirely 
on electrostatic scattering forces using equations from Gold
stein10, Chapter 3. 

In the equations above, * signifies multiplication. 
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APPENDIX B. LIST OF VARIABLES AND CONSTANTS 

VARIABLES .u.s.E.Q.lli Il:iE PWAVED2 PROGRAM 

A 1 ,A2,A3,A4 

A 13,A23,A33, A43 
ANG 
AREA 
c 
CANG 
CLAB 
CD 
CNVE 
CNVJ 
DEGG 
OF 
E 
EBV 
ECME 
ECMV 
EDV 
EE 
EV 
EPS 
EPSL 
F 
FF 

H 
HBAR 
KKK 
L 
LH 
LL 
LLL 
LMDA 
LW(I) 
LWH(i) 
Ml,M2,M3,M4 
MP 
MU 
PI 
PP(q) 

PPP(q) 
PPS(q) 
PPD(q) 
PPF(q) 
PW(i) 
RO 
R1 ,R2,R3,R4 

Mass number of projectile, target, projectile-like fragment and target-like 
fragment, respectively 
Cube root of A 1. A2, A3, A4, respectively 
Angle defining the overlap between target and projectile nuclei. 
Area of the overlap region. 
Velocity of light, (2.9979E+ 10 cm/s) 
Critical scattering angle, projectile In CM system 
Critical scattering angle, projectile In laboratory system 
RR12-RMI. difference of critical radius and distance of closest approach 
Ergs per MeV 
Joules per MeV 
180/pl 
Incremental change applied to F 
Electronic charge, (4.8029E-10 esu) 
Electrostatic potential barrier between projectile and target 
Projectile energy in ergs In the center-of-mass system 
Projectile energy In MeV In the center-of-mass system 
Projectile energy above the Coulomb barrier, (ECMV-EBV) 
Projectile energy In ergs In the laboratory system 
Projectile energy In MeV In the laboratory system 
Trajectory parameter=SQR(1 +((2*ECME*SC)/(Z1*Z2*E*E))2

) 

(4tte
0
r 1 (mks system) 

Fraction of R12 equal to the Impact parameter.(SC) 
Grazing radius minus the critical radius as a function of R1. 
(FF*R1 =R12-RR12) 
Planck's constant (6.6262E-27 erg-sec) 
Planck's constant over 2 pl. 1.0546E-27 
(MU*Z1*Z2*E*E/SC*SC*2*M1*EE). a trajectory parameter 
Angular momentum In units of h (erg-sec) 
Angular momentum, cgs units 
Angular momentum squared 
(2*L+ 1) 
Equivalent wavelength of particle (Planck/momentum) 
Angular momentum. from LCRT to LMAX 
Angular momentum .from LCRT to LMAX In cgs units 
A 1*MP. A2*MP. A3*MP, A4*MP, respectively 
Proton mass, (1.67265E-24 g) 
Reduced mass of the projectile-target system 
3.1415926 
Probability for transfer of 'q' nucleons according to a Gaussian 
distribution 
PP(q)*SCF(area)=cross section for the Qth Iteration 
sum over 'q' of PPP(q) 
PPS(q) corrected for the multiplicity factor 
Cross section versus number of nucleons transferred (q) 
Lambda squared over 4 pi multiplied by (2L+ 1) 
1.41E-13 em 
RO multiplied by cube root of A 1, A2, A3, A4, respectively 
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R12 
RR12 

RD 
RMI 

sc 
sec 
SCG 
SCGA 
SCP 
SCA 

SCAP 
SCF 
SANG 
SLAB 
SIGG 
SCLW(I) 

SCLA(i) 

SPW 

TGTS 
TLAB 
TT 
VOL 
VPN 
VOLN 
Z1 ,Z2,Z3,Z4 

NPRT 

vvv 
XX 
XXX 
yy 
zz 

R1+R2, radius of projectile plus radius of target nuclei 
R12-(FF*R1)= critical radius, Inside of which fission occurs, 
minus a fraction (FF) of 
projectile radius 
R12-RMI 
Distance of closest approach for projectile and target for each 
Rutherford trajectory 
Impact parameter, (F*R12) 
Impact parameter for the critical trajectory 
Impact parameter for the grazing trajectory 
Area in the circle with a radius of SCG 
Impact parameter for the previous iteration 
Area inside a circle with radius equal to the Impact parameter, 
pi*SC2 

Area for the previous iteration 
(SCA-SCAP)= area of annulus for one iteration 
Scattering angle of projectile in CM system 
Scattering angle of projectile In the laboratory system 
Sigma used in the Gaussian distribution 
Impact parameter corresponding to an angular momentum of 
LWH(i) 
Cross sectional area corresponding to the Impact parameter 
SCLW(i) 
Partial wave cross section, sum over L of lambda squared divided by 
4 pi multiplied by (2L + 1) 
Scattering angle of target in CM system 
Scattering angle of target in laboratory system 
Transmission factor, TT=1 for geometric cross section 
Volume of projectile-target overlap 
Nuclear volume of one nucleon 
Number of nucleons In the overlap volume 
Atomic number of the projectile, target, projectile-like fragment, 
and target-like fragment, respectively 
Decision flag, if nprt= 1, omit lprint of transfer cross section values 
except for the final iteration 
Decision flag, If VVV= 1, omit the multiplicity factor 
Decision flag, if XX= 1, find the grazing trajectory 
Decision flag, if XXX= 1, omit the line print 
Decision flag, if YY= 1, find the critical trajectory 
Decision flag, if lZ= 1, calculate the partial wave cross section 

'Trajectory' means Rutherford trajectory. All scattering angles are for Rutherford scatter
ing. 

Critical values correspond to the trajectory with a distance of closest approach which simu
lates the fission saddle point. 

If RMI is less than RR12, (R critical), fission is assumed. If RMI is greater than RR12 and less than R12 
nucleon, transfers occur. if RMI is greater than R12 no interaction occurs. 
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~ ~ .fQ[ Physical Constants 

CNV J= 1 .602192E-13 MeV per Joule 
CNVE=l.602192E-6 MeV per erg 
EPSL=8.991809E+9 m per Farad, l/4pl epsilon for MKS system 

Pl=3.14159 
C=2.99793E+ 10 cm/s 
h=6.62617E-27 erg.s 
MP=1.6726E-24 grams 
E=4.8029E-1 0 statcoulmbs/e 
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APPENDIX C. LISTING FOR PWAVED5 PROGRAM. 

10 REM "THIS PROGRAM IS CALLED --PWAVED5. SIGG in line 1310 .. ZZ 
in line 50 .. 

12 REM "This prgm computes the transfer of 1 to 12 nucleons using 
a Gaussian. If NPRT=O all iterations are lprinted, NPRT=1 
lprints only final iteration. 

15 DIM PP(15) ,PPP(15),PPS(15),PPD(15),PPF(15) ,IDV(15) 
20 DIM LW(100),LWH(100),SCLW(100),SCLA(100),PW(100) 
30 SCP=O:SCFF=O 
35 XX=1:XXX=1:YY=1:VVV=1 
50 ZZ=1:NPRT=1 
100 EV=96 
101 SC=1E-16:F=.005:FF=.6:DF=.001 
105 R0=1.41E-13 
110 A1=16:A2=248:A3=16:A4=248 
115 Z1=8:Z2=96:Z3=8:Z4=96 
130 CNVJ=1.602192E-13:CNVE=1.602192E-06:EPSL=8.991809E+09: 

PI=3.14159 
140 C=2.99793E+10:H=6.63E-27:MP=1.6605E-24:E=4.8029E-10 
142 DEGG=180/PI 
144 A13=EXP((1/3)*LOG(A1)) :A23=EXP((1/3)*LOG(A2)): 

A33=EXP((1/3)*LOG(A3)) :A43=EXP((1/3)*LOG(A4)) 
145 M1=A1*MP:M2=A2*MP:M3=A3*MP:M4=A4*MP 
150 EE=EV*CNVE 
155 ECMV=EV*(A2/(A1+A2)) 
158 SCP=SC 
160 ECME=EE*(A2/(A1+A2)) 
161 DF=.01 
162 R1=RO*A13:R2=R0*A23:R12=R1+R2 
163 RR12=R12-(FF*R1) 
164 MU=MP*((A1*A2)/(A1+A2)) 
165 SC=F*R12 
170 LMDA=H/(SQR(2*M1*EE)) 
175 EBV=Z1*Z2*E*E/((R12)*CNVE) 
176 IF EBV>ECMV THEN GOTO 2310 
178 LL=(1E+30)*SC2 *(2*M1*EE) 
180 LH=SQR(LL)/1E+15:L=LH/H:LLL=1+(2*L) 
190 EPS#=SQR(1#+((2*EE*SC)/(Z1*Z2*E*E)) 2 ) 
195 KKK=(1E+30)*(MU*Z1*Z2*E*E)/LL 
200 RMI=1/(KKK*(EPS#-1)) 
201 IF RMI>R12 THEN GOTO 1205 
202 CD=RR12-RMI 
203 RD=R12-RMI 
205 IF XX=1 THEN GOTO 2222 
208 IF YY=1 THEN GOTO 2444 
209 IF ZZ=1 THEN GOTO 1500 
210 SCA=PI*SC2 

220 SCAP=PI*SCP2 

230 SCF=SCA-SCAP 
235 SCFF=SCFF+SCF 
240 SANG=2*ATN((Z1*Z2*E*E)/(2*SC*EE)) 
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245 SLAB=ATN((SIN(SANG))/(COS(SANG)+(M1/M2))) 
247 IF SLAB<O THEN SLAB=SLAB+PI 
250 TGTS=(SANG-PI) 

255 TLAB=ATN((SIN(TGTS)}/(COS(TGTS)+1)) 
256 SANG=DEGG*SANG:SLAB=DEGG*SLAB:TGTS=DEGG*TGTS:TLAB=DEGG*TLAB 
260 IF XXX=1 THEN GOTO 1000 
262 PRINT:PRINT "SANG="SANG,"SLAB="SLAB,"TGTS="TGTS,"TLAB="TLAB 
270 LPRINT:LPRINT "257","SANG="SANG," SLAB="SLAB,"TGTS="TGTS," 

TLAB="TLAB 
282 XXX=1 ~ 

1000 REM "orbit, 1/r=- (m*z*z' *e*e/1*1} (1+eps*cosi), 
eps=sqr(1+(2Es/zz'ee) 2), also, rr(mzz'ee/ll)eps*sini=O for 
closest approach." 

1005 IF RMI<RR12 GOTO 1055 
1015 IF RMI>R12 THEN 1205 ELSE 1100 
1055 F=F+.01 
1060 GOTO 105 
1100 REM "Calculate the projected area of nuclear overlap" 
1110 ANG=ATN((SQR(R2 2-(RMI-R2) 2})/(RMI-R2)) 
1120 AREA=1E+30*((PI*R1 2)*(ANG/2*PI))-(RMI-R2)* 

SQR(R1 2-(RMI-R2) 2) 
1130 VOL=1E+26*(PI/3)*( (1E+10)*(2*R1 3 )+(1E+10)*((RMI-R2) 3 )-

(3E+10)*R12*(RMI-R2)) 
1140 VPN=9.999999E+35*(4*PI*R1 3 )/(3*A1) 
1150 VOLN=VOL/VPN 
1160 IF NPRT=1 THEN 1230 ELSE 1210 
1205 IF NPRT=1 THEN 1210 ELSE 1400 
1210 LPRINT:LPRINT "RR/SC/VOLN/LCT RMI/SA/-/L R12/SF/-/LMX 

GAG/SAG/CAG/TGS GLB/SLB/CLB/TLB" 
1220 LPRINT RR12,RMI,R12,GANG,GLAB,SC,SCA,SCF,SANG,SLAB,VOLN,,, 

CANG,CLAB,LCRT,L,LMAX,TGTS,TLAB 
1225 IF NPRT=1 GOTO 1260 
1230 PRINT:PRINT "RR/SC/VOLN/LCT RMI/SA/-/L R12/SF/-/LMX 

GAG/SAG/CAG/TGS GLB/SLB/CLB/TLB" 
1240 PRINT RR12,RMI,R12,GANG,GLAB,SC,SCA,SCF,SANG,SLAB,VOLN,,, 

CANG,CLAB,LCRT,L,LMAX,TGTS,TLAB 
1245 PRINT "SCF="SCF, "SCFF="SCFF:PRINT 
1250 PRINT "PROB,n=1 to 12 Prob*area(SC) SUM PROB /exit chann 

trnsm" 
1252 PRINT II PP(q) PPP(q) PPS(q) PPD(q) 

PPF(q) II 

1255 IF NPRT=1 GOTO 1305 
1260 LPRINT "SCF="SCF, "SCFF="SCFF:LPRINT:LPRINT "PROB,n=1 to 12 

Prob*area(SC) SUM PROB /exit chann trnsm factor" 
1262 LPRINT" PP(q) PPP(q) PPS(q) PPD(q) 

PPF(q) II 

1265 IF NPRT=1 GOTO 1370 
1305 FOR Q=1 TO 12 
1310 SIGG=1.8 
1315 PP(Q)=(1/(SIGG*SQR(2*PI)))*(EXP((-1/2}*((Q-VOLN)/SIGG) 2)) 
1320 PPP(Q)=PP(Q)*SCF 
1325 PPS(Q)=PPS(Q)+PPP(Q) 
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1330 
1331 
1332 
1335 
1340 
1345 
1350 
1355 
1360 
1365 
1370 
1375 
1377 
1380 
1390 
1395 
1400 

1405 

1410 
1420 
1500 
1510 
1515 

1518 
1519 
1520 

1530 
1535 
1540 
1545 
1550 
1560 
1570 
1575 
1580 
1590 
1595 
2202 
2204 .. 
2205 
2206 

2208 

2209 

PPD(Q)=PPS(Q)*1 
IF VVV=1 THEN 1335 
PPD(Q)=PPS(Q)*(1/(4*Q}) 
TT=1 
PPF(Q)=PPD(Q)*TT 
NEXT Q 
FOR Q=1 TO 12 
PRINT PP(Q),PPP(Q},PPS(Q),PPD(Q),PPF(Q) 
NEXT Q 
IF NPRT=1 GOTO 1390 
FOR Q=1 TO 12 
LPRINT PP(Q),PPP(Q},PPS(Q),PPD(Q) ,PPF(Q) 
NEXT Q 
IF NPRT=1 GOTO 1400 
F=F+.02 
GOTO 105 
PRINT 11 RMI>R12 11

,
11 EV= 11 EV, 11 ECMV= 11 ECMV, 11 EBV= 11 EBV, 11 R0= 11 R0, 

11 SIGG= 11 SIGG 
LPRINT 11 RMI>R12 11

,
11 EV= 11 EV, 11 ECMV= 11 ECMV, 11 EBV= 11 EBV, :LPRINT 

11 R0= 11 R0, 11 SIGG= 11 SIGG 
STOP 
GOTO 101 
REM 11 1500 to 1600 is partial wave surrun .. 
SPW=O 
PRINT:PRINT 11 LMDA= 11 LMDA:PRINT 11 LW 11

1
11 SCLW 11

,
11 PW 11

1
11 

sumPw 11
, 

11 SCLA 11 

LPRINT:LPRINT 11 EV= 11 EV, 11 ECMV= 11 ECMV, 11 EBV= 11 EBV 
LPRINT 11 LMAX= 11 LMAX, 11 LCRT= 11 LCRT, 11 GANG= 11 GANG, 11 CANG= 11 CANG 
LPRINT 11 LMDA= 11 LMDA:LPRINT II LW 11

,
11 SCLW 11

,
11 PW 11

,
11 sumPW 11

,
11 

SCLA 11 

FOR I=INT(LCRT) TO INT(LMAX) 
LW(I)=I:LWH(I)=LW(I}*HBAR 
SCLW(I)=LWH(I}/SQR(2*M1*EE) 
SCLA(I)=SCLW(I)A2*PI 
PW(I) = ( (LMDAA2) I (4*PI)) * ( (2*LW(I)) +1) 
SPW=SPW+PW(I) 
PRINT LW(I) ,SCLW(I) ,PW(I) ,SPW,SCLA(I) 
LPRINT LW(I) I SCLW(I) I PW(I) I SPW, SCLA(I) 
NEXT I 
STOP 
ZZ=O: GOTO 210 
SCG=SC:SCGA=PI*(SCG)A2 
LMAX=(SCG*SQR(2*M1*EE}}/HBAR 
GANG=2*ATN((Z1*Z2*E*E)/(2*SCG*EE)) 
GLAB=ATN((SIN(GANG}}/(COS(GANG)+(M1/M2))) :GANG=DEGG*GANG: 
GLAB=DEGG*GLAB 
PRINT 11 2208 11

,
11 Z1,2,3,4= 11 Z1 Z2 Z3 Z4, 11 A1,2,3,4="A1 A2 A3 A4, 

11 EV="EV, 11 ECMV= 11 ECMV, II EBV= 11 EBV, 11 LMAX= 11 LMAX, II GANG= 11 GANG, II 

SCG= 11 SCG, 11 SCGA= 11 SCGA 
LPRINT:LPRINT 11 2209 11

,
11 Z1,2,3,4= 11 Z1 Z2 Z3 Z4, 11 A1,2,3,4= 11 A1 A2 

A3 A4 I II EV= II EV I II ECMV= II ECMV I II EBV= II EBV I II LMAX= II LMAX I II G~..NG= 

"GANG, II SCG= 11 SCG, "SCGA="SCGA 
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2210 XX=O:GOTO 100 
2212 F=F+DF 
2213 SC=F*R12 
2214 L=(SC*SQR(2*M1*EE}}/H 
2216 EPS#=SQR(1#+((2*EE*SC}/(Z1*Z2*E*E})A2) 
2218 KK=(MU*Z1*Z2*E*E}/(L*H) :KKK=KK/(L*H) 
2219 RMI=1/(KKK*(EPS#-1)) :RD=R12-RMI 
2222 IF ABS(RD)<5E-18 THEN 2202 
2225 IF RD>O THEN 2212 
2230 IF F<.0007 THEN 2300 
2235 F=F-DF DF=DF/10:GOTO 2213 
2300 PRINT NO INTERACTION AT THIS ENERGY! INCREASE EV TO 

RETRY. 
2305 PRINT F="F, "SC="SC,"RMI="RMI,"R12="R12,"RD="RD:GOTO 2320 
2310 PRINT ECMV BELOW COULOMB BARRIER,INCREASE EV" 
2320 PRINT EV="EV, "ECMV="ECMV,"EBV="EBV:STOP:GOTO 100 
2330 PRINT CANNOT REACH CRITICAL RADIUS AT THIS ENERGY!" 
2335 SCC=O:LCRT=O:CANG=O:YY=O 
2340 PRINT "EV="EV,"ECMV="ECMV,"EBV="EBV,"LCRT="LCRT,"CANG="CANG, 

"LMAX="LMAX, "GANG="GANG 
2345 GOTO 100 
2404 SCC=SC:SCCA=PI*(SCC) 2 

2405 SCAA=SCGA-SCCA 
2406 LCRT=(SCC*SQR(2*M1*EE}}/HBAR 
2408 CANG=2*ATN((Z1*Z2*E*E}/(2*SCC*EE)) 
2410 CLAB=ATN((SIN(CANG}}/(COS(CANG)+(M1/M2))) :CANG=DEGG*CANG: 

CLAB=DEGG*CLAB 
2413 YY=O 
2415 PRINT "2415", "EV="EV, "ECMV="ECMV,"EBV="EBV, "LMAX="LMAX, 

"GANG="GANG, "SCG="SCG,"LCRT="LCRT,"CANG="CANG,"SCC="SCC, 
"SCCA="SCCA, "SCGA-SCCA="SCAA 

2417 LPRINT "2415", "EV="EV,"ECMV="ECMV,"EBV="EBV,"LMAX="LMAX, 
"GANG="GANG,"SCG="SCG,"LCRT="LCRT,"CANG="CANG,"SCC="SCC, 
"SCCA="SCCA, "SCGA-SCCA="SCAA 

2420 GOTO 100 
2430 F=F+DF 
2432 SC=-=F*R12 
2434 L=(SC*SQR(2*M1*EE}}/H 
2436 EPS#=SQR(1#+((2*EE*SC)/(Z1*Z2*E*E)) 2 ) 
2438 KK=(MU*Z1*Z2*E*E}/(L*H) :KKK=KK/(L*H} 
2440 RMI=1/(KKK*(EPS#-1)) :CD=RR12-RMI 
2444 IF ABS(CD)<5E-18 THEN 2404 
2450 IF CD>O THEN 2430 
2455 IF F<.0007 THEN 2330 
2460 F=F-DF:DF=DF/10:GOTO 2432 
2546 STOP 
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APPENDIX D. FLOW DIAGRAM FOR PWAVEDS CALCULATION 
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Enter constants, 
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Print problem 
parameters & 
headings 

13SO 
Print transfer 
cross section 

D2 

ale• & print partial! 
ave cross sections 
=1T}\Z.~(2g+1) 
from LCRT to LMAX 

1S90 
STOP, ZZ=O 
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LPRINT headings 
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