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Spin Alignment Quantization, Berry's Phase Quantization, 

Stationary Condition And Twinned Superdeformed Bands 

Shun-Jin Wang 

Center of Theoretical Physics, CCAST( World Lab.} Beijing and 

Department of Modern Physics, Lanzhou University, Lanzhou 730001, PR China 
and 

Nuclear Science Division, Lawrence Berkeley Laboratory, 

University of California, Berkeley, CA 94720, USA 

Striking regularities of the twinned superdeformed bands is discussed in terms 

of non-adiabatic Berry's phase quantization and stationary condition within the 

framework of cranking shell model. It is shown that the rotating deformed mean 

field will generate a Berry's phase for nucleons subjected to this potential.The 

non-adiabatic Berry's phase is related to spin alignment. The stationary condi-

tion of the rotational states requires Berry's phase quantization and in turn 

leads to spin alignment quantization. For nucleons which are weakly coupled t.o 

the deformed field, spin alignment quantization will take place as the rotation-

al frequency reaches a critical value. Those nucleons whose spin alignment is 

quantized and keeps constant do not contribute to the rotational energy and the 

moment of inertia. For nuclei at extreme conditions of large elongation and high 

spins, the normal parity states possess pseudo-SU(3}- pseudo-SU(2} dynamical 

symmetry which provides a weak pseudo spin-orbit coupling scheme. If the 

pseudo-angular momentum is stuck to the large deformation, the critical frequen-

cy for spin alignment quantization can be calculated to yield reasonable values. 

the main aspects of the regularities of the twinned superdeformed bands can thus 

be understood. 

This work was supported in part by the Director, Office of EnSrgy Research, 
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of 
the U.S. Department of Energy under Contract No.DE-AC03-76SF00098 and by the 
Natural Science Foundation of China. 
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Striking regularities in the rotational bands were observed recently in 

superdeformed nuclei in both the mass-150 and mass-190 regions ~~ The surprising 

feature of the phenomenon is that rotational bands in different superdeformed 

nuclei have been found to have equivalent transition energies within 1 or 2 kev, 

which implies an identical moment of inertia for these different superdeformed 

nuclei. Another unexpected aspect of the rotational superdeformed bands is 

';; ;-, ' 

that the spin alignment is quantized in units of 1/2 or 1 t and the spin quan- • 

tization begins at a critical rotational frequency. Since a cohsiderable 

number of nuclei exhibite such a puzzling behaviour, it is probably not 

accidental, but rather a generic property of superdeformed nuclei. A general 

underlying principle may govern this phenomenon. In this note, we make an 

effort to understand the above generic phenomenon in terms of Berry's phase 

quantization which is required by the stationary condition of the populated 

rotational high spin states. 

Berry's phase5 is a generic property of a quantum system subjected to a time

dependent external field. In nuclear physics, a heavy ion colliding off-center 

with a target nucleus will result in a rapidly rotating compound nuclear system. 

Nucleons which are coupled to the deformed mean field will feel a time-dependent 

(rotating) potential and Berry's phase will be induced in their wave functions. 

The non-adiabatic effect on Berry's phase while in this case appears as 

a Coriolis force ) will cause spin alignment for each nucleon driven by the 

rotating potential. As indicated in previous papers~7, for SU(2) dynamical group 

(rotation generators belong to su(2) ), non-adiabatic Berry's phase is related 

to spin alignment and Berry's phase quantization leads to spin alignment quanti

zation. Since stationary states have only dynamical phase, but no non-quantized 

Berry's phase, to populate stationary rotational states requires quantization of 

their Berry's phase, and this in turn leads to spin alignment quantization. For 

the whole deformed nucleus,each nucleon feeling the rotating deformed mean field 

will contribute a certain amount of spin alignment, which may or may not be 

quantized. However to make the rotational high spin state stationary, the 

total Berry's phase (summation of each nucleon's contribution in an independent 

particle model ) must be quantized. If some nucleons are weakly coupled to the .. 
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deformed potential ( through for instance spin-orbit coupling, since the orbit 

is strongly coupled to the deformation ) and the rotational frequency reaches a 

critical value to break the weak coupling, such nucleons will have spin align-

ment quantization.As soon as a nucleon has realized spin alignment quantization, 

it will not contribute to the rotation energy and the related moment of inertia. 

In what follows, we will formulate the above ideas in detail. 

Suppose a nucleus has an axially symmetric deformation, the Hamiltonian 

for a nucleon in the deformed mean field is Ho 1 which has the following eigen-

solutions 

( 1 ) 

Since deformation breaks rotation invariance, a rotational mode is generated to 

restore the rotation symmetry. This rotation-symmetry restoration procedure can 

be carried out by first cranking the system and then quantizing the resulting 

classical rotational Hamiltonian. Let us crank the deformed nucleus through 

a periodic rotation along the z-axis, 

H(t) exp{-ij! .u t} He. exp{ijt~ t} . 

The rotating system obeys the time-dependent Schrodinger equation 

Let 

i ')~tt) = H (t) "f(t) 
~ 

'1f<t) = exp{-ij! wt) YJ (t) 

Equation of motion for ~(t) is 

where 

i o'1(tJ = H <I.<)> Y1 (t) , 
-ut 

H ( w ) = H o - w j~ 

Solutions of eqs. {3) and (5) are 

Y{ (t) exp{-iH(~)t} ,(0) 1 

( 2 ) 

( 3 ) 

( 4 ) 

( 5 ) 

( 6 ) 

( 7 ) 
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tr<t) = U(t) tJI(O} I ( 8 ) 

where evolution operator U(t) is defined as 

U(t) = exp{-ij!wt} exp{-iH(w}t} ( 9 ) 

Consider solutions in one period T ( T 27t/tru), 

U(T) e xp { - i j ~ 21t } e xp { - i H ( .u ) T } . ( 10 ) 

Because of the symmetry 

exp{-ijt21t} H(~) exp{ijt21t} = H(w) , ( 11 ) 

U(T) and H(w) are commuting and have common eigen-states, 

H ( ..0 ) Y!m = E 1>1 t}M , ( 12 ) 

U ( T) Yf rYI = exp {- i <Prv~ } >'{Wl ( 13 ) 

The total phase <Pm will be given later. Consider cyclic or recurrent solutions 

whose initial states are eigen-solutions of H(w}, i.e., 

'\.j),....(O) = ">1m ( 14 ) 

Assume a complete set of bases { 3m}, which are also eigen-states of h , i.e., 

ji 3 ..... = m 1'm ( 15 ) 

The eigen-state Yfm can be expanded in terms of JIVI , 

( 16 ) 

The cyclic solution ~M is 

exp{-ij~27t} exp{-iH(!N)T} YJm = exp{-iE""T} exp{-ij~27t }q..., • 

exp{-iE,., T} L Ctt~'M exp{-i2ln'rl} Jm' 
~I 

= exp{-iEm T -i2m7(} "f~(O) . ( 17 ) 

In the derivation of eq. (17), eqs. (14) and (15) have been used. From eq. (17), 

we obtain the total phase, 
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cf>m = E ,... T + 2m 1t . ( 18 ) 

The expectation value of H(t) is 

( 19 ) 

where the expectation value of spin along the rotating axis is 

'1'1 
Jt-

( 20 ) 

From eq. (19), we can calculate dynamical phase, 

T 

5 Cm(t) dt E m T + 2m 7t , ( 21 ) 
() 

and Berry's phase 

- 2m ~ < 1 - jr /m ) ( 22 ) 

Eq. (22) indicates that Berry's phase is related to expectation value of spiri 

along the rotating axis and gives Berry's phase a physical explanation besides 

its gauge geometric interpretation. The expression (22) provides as 

well an algorithm to calculate non-adiabatic Berry's phase. In the code of 

cranking shell modelS, calculation of the spin alignment jr is a straight-

forward job. 

We proceed to exploit relationship between spin alignment quantization and 

Berry's phase quantization. Spin alignment quantization means that 

integer or half-integer values, 

•M 
J-t 

I m, I 
m = integer or half-integer 

This makes Berry's phase quantized as well, 

,.!.,~ = y 1,, - 27t( m- m') - 2N 7t , N I L ' m - m = :;:;;;. 1.nteger . 

takes 

( 23 ) 

( 24 ) 

Therefore, for SU(2) dynamical group, Berry's phase quantization is related to 

spin alignment quantization. 

Let us consider the machanism which conducts spin ali~nment (or Berry's 



phase ) quantization. Since spin alignment quantization is a dynamical phenome-

non, the specific Hamiltonian is needed. For high spin physics, the most popular 

theory available is the cranking shell modele . For nuclei at extreme conditions 

of large elongations and high spins, the Hamiltonian of normal parity states po

ssesses pseudo-SU(3) ® pseudo-SU(2) dynamical symmetry 1-l1, namely, 

Ho 
~ J1. ( N~ + ,..... - ,._ ,.., IV). n 5/2 ) - C. Q20 - C 1· S + D 1 ( 25 ) 

,.. ,... ,.., 
where { Q1.r 1· A. constitute pseudo-SU(3) algebra and { s~ constitute pseu-

do-SU(2) algebra. Inserting eq. (25) in eqs. (6), (12) and (19), we have 

~(t) Em<w) ( 27 ) 

where 

( 28a ) 

Now we discuss the consequences of nucleonic spin alignment quantization. 

From eqs. (6) and (12), we have 

and 

On the other hand, from eqs. (19) and (30) we have 

and 

c.P 77 ( '1 ... If~ I tl~t~), 
ow 

~omparing eq. (32) with eq. (27), we obtain 

( 2 9 ) 

( 30 ) 

( 31 ) 

32 ) 

( .. · 
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( 33 ) 

If a nucleon's spin alignment is quantized and keeps constant, i.e., m, 

then 

0 ' ( 34 ) 

and 

( 35a ) 

Eqs. (35a,b) imply double meanings: If a nucleon's spin alignment gets quantized, 
~ 

(i) there is a complete cancellation among the deformation effect - 2 Q.l0 , the 
,...., ~ 1\..;1 N tv1 

Coriolis effect - C l·s, and the centrifugal effect D l ; (ii) this nucleon does 

not contribute to the rotational energy and the moment of inertia. The former 

conclusion is obvious from eq. (35b). The latter conclusion can be made clear as 

follows. In fact, for the whole nucleus, the total rotational energy is 

A A 

E( w) = £,E"'<w) = E(O) + f, t1[111 <w) 

E(O) + L.' ~ tm(w) = E(O) + AE(w) 
1'>1 

( 36 ) 

Where A E(w) comes from only those nucleons whose spin alginments are not 

quantized and do not keep constant. Suppose for these nucleons, 

( 3 7 ) 

then 

E ( w) E(O) + 1/2.9110\. 

E(O) + {1/(2,9 )} R
2

, R = 3w , ( 38 ) 

where the total moment of inertia is contributed from the those nucleons whose 

spin alignments are not quantized, 

( 39 ) 
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Thus those nucleons whose spin alignments are quantized and keep constant do 

not contribute to the rotational energy and the moment of inertia. 

Now we apply the above results to understand the superdeformed bands of 
~ ~ 

112 Hg(1), 11'itg(2) and '1~Hg(3) For 112 Hg(1), since the total pseudo-spin S = 0, 

the total angular momentum I is equal to the pseudo-angular momentum of the top, 

R, and the rotational energy is ( assume R = I = even, since its signature is 

even), 

;,1.. I (I+1) 
2 '+-(!) 

( 4 0 ) 

The U4 Hg(2) has two extra neutrons and its core (~2Hg(1)) has an even signature. 

Suppose the extra two neutrons get their pseudo spin alignment quantized and 
,.., 

together contribute S = 1, which is maximum, and can not be increased any more, 
,..., 

therefore keeps constant. The pseudo-angular momentum of the core, R, takes the 

values of even integers because of its even signature. According to pseudo-spin 

and pseudo-angular momentum coupling scheme,the total angular momentum of 1~Hg(2) 

is ~+~=I+ 1 (we assume~= I for comparison with ~2 Hg(1)). From the above 

results, the extra two neutrons do not contribute to the rotational energy 

and the momemt of inertia, and the rotational energy of 1'4 Hg(2) is thus 

\1) 

EHI ;1. I(I+1) 
2 +(l) 

( 41 ) 

Now consider iq+Hg(3). Its core ( 1~2 Hg ) has negative signature and the pseudo-
,.. 

angular momentum of the core takes the values of odd integers, namely R = I-1 . 

The extra two neutrons also got their pseudo-spin alignments quantized and con-

tribute [ = 1 . The total angular momentum of H4 Hg(3) is ""' r-J R + S = I. The rota-

tional energy of~'4 Hg(3) is thus contributed only from its core according to 

the above results, namely, 

;'\. I (I-1) 
2 _(1-1) 

( 42 ) 

Where .Jt and :J_ denote the moments of inertia for 1j
1 Hg with positive and nega-

tive signatures respectively. Since from numerical calculations and theoretical 

considerations of the cranking shell mode18•9, 

and 

o(mv:f Jj~lmf)(~± > 
oco 

() < w, oi =- i I i~ I t1tt ot-= --f. > 
'G>&.e 

( 43 ) 

•• 

~ 
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( 44 ) 

it follows that 

3 ( o( =+1/2) - j ( ()( =-1/2)' ( 4 5 ) 

or 

( 4 6 ) 

From the energy spetra (40)-(41), we obtain the corresponding gamma energies as 

follows, 

tiJ 
E~ (I) 

~~ ~ I 
-ll-(2I-1) + n 12 [ ~ .9(J.) ..9LJ..J 9

__!_] (I-2) (I-1), 
(I-V 

( 47a ) 

f14-Hg(2): E'
11 (I+1) = 1;1. (2I-1) + tl.l/2 I _L ] (I-2) (I-1), [--
t JrlJ JCl-J..) 

( 47b ) 
,fjtl) 

114-rlg(3): E;l( I ) 
1i~ 

+ t=/· /2 [_L _L ] (I-2) (I-3), = -(2I-3) -
.9cz-9 !}Cl-1) jt:I.-3) 

( 47c ) 

which can reproduce the observed gamma spectra 4 . 

Finally, let us calculate the critical frequency of the nucleonic spin align-

9-11 
ment quantization. As pointed out by A.Bohr et al. , at extreme conditions of 

large elongations and high spins, the Hamiltonian of normal parity states posse-

sses pseudo-SU(3)-SU(2) dynamical symmetry, and the pseudo-orbital angular mo-

menta are strongly coupled to the large deformation.In the Hamiltonian (25), the 

"'"'~ pseudo spin-orbit coupling - C l·s responsible for spin alignment, is very weak 

and provides a machanism to realize pseudo-spin alignment quantization. If the 
,.., N ,., 

pseudo-orbital angular momenta are stuck to the deformation, the C l·s term is 

like a Hamiltonian which describes a spin-1/2 particle in a magnetic field. The 

deformation carrying the orbits plays the role of a magnetic field whose stren-

gth depends on the value of the orbital angular momentum.As the deformed nucleus 

rotates, the deformed potential acting as a magnetic field rotates as well. The 

corresponding Hamiltonian describes a spin-1/2 particle in a rotating magnetic 

field and will cause spin alignment quantization. Now let us consider the pro-

blem quantatively. The corresponding Hamiltonian responsible for spin alignment 

is the pseudo spin-orbit coupling, namely 

of!. ,..., ,..,,..., I"'V,..., 

Je.c1 = - n Wo v.ts l · s = - B · s , ( 4 8 ) 



to 

where the effective "magnetic field" is 

..... 
B B ( 1 , 0 0 ) , B ( 4 9 ) 

As the deformed nucleus rotates, the cranked Hamiltonian is 

(}€.(t) ( 50 ) 

where the rotating "magnetic field" is 

IV 

B(t) B ( coswt, sin10t , 0 ) ( 51 ) 

The equation of motion for the pseudo-spin in a rotating deformed system is the 

same as the equation of motion for spin-1/2 particle in a rotating magnetic 

field, namely, 

i 11 o t}'ttl = }e. ( t) 'lf ( t) . 
vt 

( 52 ) 

This problem has been solved analytically in ref. 7 . The critical frequency 

for spin-1/2 alignment quantization is 

.12= 
N,.._.. 

Wo 1\ v~s 

For Hg, 82 ~ N ~ 126 , 0 . 0 19 and t wo 

.... 
0.133 1\ Mev, 

which yields 

r133 Mev 

11 We. 
IV 

0.133 /\ Mev 0.266 Mev 

0.399 Mev , 

k 41/ A~Mev 

,.., 
for 1\ 

~ 

for A= 

for /\= 

( 53 ) 

( 54 ) 

7 Mev, 

( 55 ) 

1, 56 a 

2, 56b 

3. 56c 

For 1~ifr!g ( 2) and i71fHg ( 3) , h w<... = 0. 2 Mev. Thus the calculated f1 INc look reasonable. 

Finally we discuss the twinned SD bands of the odd-A nuclei. For the twinned 

bands of -t~r Tb and #-t2 Dy, I>OGd and 151Tb, as pointed out in Refs. 3 and 9, the pseudo 

SU(3) limit yields a decoupling constant near 1, and this in turn leads to the 

rotational energy spectra of the odd-A nuclei identical to those of the corres-
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pending cores if the last odd particle ( hole ) does'nt modify the moment of 

inertia. Since the last odd particle's(hole's) spin alignment takes the value of 

1/2 fi, namely quantized and constant, according to the above discussion, it does 

not contribute the rotational energy and the moment of inertia, namely its 

different polarization effects cancelled each other. 

We conclude with the following remarks. The twinned SD bands can be under

stood in terms of the limit pseudo SU(3)-SU(2) dynamical symmetry and the spin 

.J alignment quantization which is required by the quantum mechanical stationary 

condition. The pesudo SU(3)-SU(2) symmetry is essential for yielding decoupling 

constant near 1 and for providing a weak i·s coupling. The spin alignment quan

tization is crucial for the cancellation of different polarization effects and 

the identical moment of inertia. In our calculation of the critical frequency of 

spin alignment quantization,we have assumed that the pseudo orbits of the extra 

nucleons are strongly coupled to the deformation and do not contribute to their 

spin alignment quantization. Although this assumption is consistent with the 

experimental data which indicate that just the pseudo spin alignment is quan

tized, the effects of the pseudo orbits of the extra nucleons are still a 

challenging problem which is left out in this note and deserves further inves

tigation. 
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