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Abstract

Techniques from differential geometry and group theory are applied to
two topics from string theory. The first topic studied is quantum groups,
with the example of GL(1|1). The quantum group GLg(1|1) is introduced,
and an exponential description is derived. The algebra and coproduct are

- determined using the invariant differential calculus method introduced by
Woronowicz and generalized by Wess and Zumino. An invariant calculus
is also introduced on the quantum superplane, and a representation of the
algebra of GL,(1|1) in terms of the super-plane coordinates is constructed.

The second topic follows the approach to string theory introduced
by Bowick and Rajeev. Here the ghost contribution to the anomaly of
the energy-momentum tensor is calculated as the Ricci curvature of the
Kihler quotient space Diff(S!)/S!. We discuss general Kihler quotient
spaces and derive an expression for their Ricci curvatures. Application
is made to the string and superstring diffeomorphism groups, considering
all possible choices of subgroup. The formalism is extended to associated
holomorphic vector bundles, where the Ricci curvature corresponds to the
‘anomaly for different ghost sea levels. '

*This work was supported by the Director, Office of Energy Rmearch; Office of High Energy
and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under
Contract DE-AC03-76SF00098.
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Chapter 1
Introduction

In recent years string theory has been dominated by the application of higher
mathematics to theoretical physics. New mathematical structures unfamiliar to
physicists have arisen in many studies. Mathematics well known to phyéicists has
also been applied in new and powerful approaches. In this work we focus on the
application of two branches of mathematics already common in theoretical physics:
differential geometry and group theory. We will use techniques from both of these
fields to study two different topics arising in string theory.

The first .topic we discuss concerns quantum groups. Quantum groups
arise naturally in several aspects of physics and mathematics; namely in the
context of integrable models, quantum inverse scattering methods, the Knizhnik-
Zamolodchikov equation, rational conformal field theory, as well as in the theory of
Hopf algebras, solution of Yang-Baxter equations and theory of braids [1, 2, 3, 4].
For our purposes quantum groups can be thought of as one-parameter deforma-
tions of classical groups. We will concentrate on matrix groups. In this case the
elements of a quantum matrix do not behave like ordinary c-numbers, but obey
modified commutation rules imposed by the quantization procedure. Given these
rules, the problem is to derive the algebra of the generators of the quantum group.
For matrix groups one may also consider the vector space acted on by the matrices.
The components of these vectors also obey modified commutation relations. This

approach to quantum groups has been developed by Manin [3].



In this work we quantize the group GL(1|1). This is the group of nonsingular
matrices acting on the superplane, a vector space with one commuting and one
Grassmann coordinate. We quantize using the R-matrix procedure outlined in [6,
7). Using the relations on matrix elements imposed by quantization, we determine
the algebra of the generators.‘ We follow the invariant differential calculus method
introduced by Woronowicz [8] and generalized by Wess and Zumino [9]. This
calculus is based on an exterior derivative which is nilpotent and obeys the Leibniz
rule. The method also yields the coproduct, which describes how the generators
act on a tensor product of spaces. Finally we construct an invariant differential
calculus on the superplane. We also construct a representation of the quantum

group generators based on the superplane coordinates.

The second main topic of this work concerns an approach to string theory
initiated by Bowick and Rajeev [10]. They formulated open string theory in terms
of holomorphic line bundles over the manifold Diff(S!)/S!. This was motivated
by the fact that the quantization procedure is not invariant under reparameteri-
- zations of the string coordinate. The open string may be described as a loop in
phase si:»ace, and reparameterizations form the group of diffeomorphisms of the
circle Diff(S?). The action of Diff(S!) mixes creation and annihilation operators,
changing the definition of the vacuum state. The subgroup of Diff(S!) consisting
of the rigid rotations of the circle (= U(1) = S!) does not mix the operators. Thus,
the inequivalent vacua may be identified with the quotient space M = Diff(S?)/St.
M is an infinite dimensional Kahler manifold. Each fiber of the string vacuum
bundle over M consists of the open string Fock space with the usual inner product.
The curvature of this bundle is the anomaly in the Virasoro algebra. Geometrically,
non-vanishing curvature means that a covariantly constant section of the bundle
does not exist; one cannot define a reparameterization invariant vacuum. In refer-
ence [10] ghosts and their associated vacuum bundle are included, cancelling the
anomaly in the critical dimension. The authors also noted that the curvature of
the ghost vacuum bundle is equal to the curvature of the canonical line bundle over
M, which for a Kihler manifold is given by the Ricci form. This motivates our
interest in the geometry of Diff(S!)/S! and related manifolds. Subsequent work
has further clarified the Riemannian geometry of Diff(S!)/S? [11] and extended the
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calculation to the supersymmetric case super-Diff(S!)/S? [12, 13, 14, 15, 16] .

In this work we discuss the calculation of the curvature of the canonical line
bundle of a quotient space and extend the formalism to include other levels of the
ghost vacuum. The discussion uses the language of differential geometry familiar to
physicists. We begin by reviewing the construction of a quotient space M = G /H
for a group G with subgroup H. The Riemannian geometry of such a space for
G-invariant metrics is discussed. Next the conditions for M to be a complex
manifold are outlined. If M admits a Kahler metric the associated Ricci curvature
has a simple form independent of the metric. These results are then applied to
the groups relevant to the string and superstring, which are special cases of graded
a.l'.gebras. Here it is seen that the use of the Kahler metric regulates otherwise
divergent quantities. Finally, the calculation of the Ricci curvature is extended
from the tangent bundle of Riemann and Kahler geometry to more general vector
bundles based on these spaces. This result corresponds to different filling levels of
the ghost sea. -



Chapter 2

The Quantum Group GLy(1]1)

In this chapter we discuss the quantum group GLq(1|1). The classical matrix
group is quantized using the R-matrix procedure, following closely the discussion
in {7]. This determines the bilinear quantum relations on the matrix elements.
Covariance of these relations is demonstrated. The quantum determinant iz zlso

introduces. Finally, an exponential description of the quanturn group is developed.

2.1 R-matrix Quantization of Groups

The method of group quantization most commonly encountered for matrix groups,
involves the R-matrix. The R-matrix is in the tensor product of two matrix spaces.
It describes how to reverse the ordering of the same matrix in two different tenscr
spaces. Explicitly, if the same matrix A is written as A; = A® 1 when in the first

space and A; = 1 ® A in the second, then the R-matrix-equation is

RA1A2 = AQAlR. (21) w
This equation defines bilinear relations on the elements of A. We will refer to such
relations defined by quantization as g-relations.

If one considers the triple tensor product of matrices, consistency determines
a constraint in the R-matrix. Let R act on the 1 and 2 matrix spaces, R3)

on the 1 and 3 spaces, and R|33 on the 2 and 3 spaces. The R-matrix commutes
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with matrices not in the space it acts on. Then using the above R-matrix equation

repeatedly to switch matrices shows
R23)R(13) R(12) A1A2A43 = R(23)R(13)A24A143R12)
= R(23)A2A3A;R(13)R(12)
= A3A2A1R(23)R13)R(12)

and we see that R(s3)R(13)R(12) reverse the order of A;A;As to A3A24,. However,

the order in which we swapped matrices can be changed. The other way is
‘R12)R13)R23)A1A24A3 = R12)R13)A14A3A2 (23
= R12)A3A1A2R(13)R 23
= A3A2A1R(12)R(13)R(23)-

Here we see that R(12)R(13)R(23) switches the ordering as before. Thus these two

triple products of R-matrices are equal:
Rz RugRes) = RasRasyRaz)- (2.2)

This is the Yang-Bazter equation. No further constraints arise from' considering

higher tensor products.

2.2 R-matrix and g-relations for GL4(1]1)

The classical group GL(1]1) is the group of 2 x 2 non-sigular super-matrices which
act on a 2-dimensional vector space with one commuting and one anticommuting

coordinate. Such a matrix A € GL(1|1) can be written

(39”5 .
A—(7 d) | (23)

where the matrix elements @ and d are commuting and 3 and v are anticommuting.

The (anti-)commutation rules will be modified by quantization.

The R-matrix for GLq(1]1) is in the tensor product of 2 x 2 super-matrices,

so it is'a 4 x 4 matrix. As discussed in the appendix, it is convenient to choose

b)



an index ordering convention which allows simple matrix multiplcation with no
additional grading signs. We choose the indices ordered as R'*2 ;; , where the
subscripts on the indices indicate which vector space in the tensor product the

index belongs to. The the R-matrix for GLg(1]1) is

(2.4)

o O O

0
0
1
0

o O o 0N
D M - O

q—l

. where A = ¢ — ¢~!. This R-matrix has been used extensively in the work of Les

and Couture [17].

It can be verified that this R-matrix satisfies the Yang-Baxter equation
(2.2). For this the R-matrix is written as an 8 x 8 matrix in the tensor product of
3 2 x 2 super-matrices. Again it is convenient to choose index ordering for simple

matrix multiplication. In terms of the above index ordering for R, we havz

B33 sanis = B 55,6% 5
R{E3® sy = (—1)0etRI RS 62
RIS o = (= 1)alatistiati) R# 50
Here the Z; grading signs are (—1)* = +1 for index i corresponding to the first

row or column of a 2 X 2 matrix space, and (—1)! = —1 for i corresponding to the

second row or column.

Having verified that the R-matrix satisfies the Yang-Baxter equation. we
can now use it in (2.1) to determine g-relations on the elementé of a matrix A as
in (2.3). In writing the 4 x 4 matrices corresponding to A;A; and A;A; we once
again choose index ordering for simple matrix multiplication. Then the grading

signs are given by
(A1)"2 oy = (A® 1)V 5, = (—1)E B 40 52,

(A2)" 5jy = (1@ A)12 5, = (—1)lati) gl i



so the 4 x 4 matrices are

a 0 80 a 8 0

0 0 d 0 O
A1= N ﬂ A2=7

~ 0d 0 00 a -8

0 v 0 d 00 — d

Using these matrices and the R-matrix (2.4) in equation (2.1) gives bilinear z-

relations for the elements of A. The independent g-relations are’
af=gqfa =0
aey=qya ¥ =0
df=gBfd  By=-v8
dy = gyd ad —da = =-)\(3y
where A = ¢ — ¢~!. Note that the first three relations in the right column ars

the same as in the classical (g = 1) case. The other relations are modified by

quantization.

The determinant of the quantum matrix A may be defined in the same
way as for a classical matrix. Begin by decomposing the matrix into a product of

a lower triangular matrix, a diagonal matrix, and an upper triangular matrix as

A_aﬂ_ 1 0 a 0 1 a1
- ~ d B ~a~! 1 0 d—~va~1p3 0 1 .

The determinant of A is the product of the determinants of each of these three

follows:

matrices.  The determinants of the triangular matrices are one. The determinant
of a diagonal super-matrix is the product of the diagonal elements in bosonic rows
divided by the diagonal elements in fermionic rows. This is a résult of the fact
that the super-trace of a super-matrix is the sum of the bosonic diagonai elements
minus the fermionic elements. The determinant of A is then the exponential of
the super-trace of In A. (Later we will demonstrate that this is also true for these

quantum matrices.)

Using the above decomposition and rule for determinant of diagonal super-
matrix gives

det(A) = a(d —ya~'5)"L.

7



The term in parentheses is easy to invert since the Grassmann elements are nilpo-
tent. Then using the g-relations to rearrange the group parameters (note that no
net factors of g appear) we find

det(A) = ad™! — Bd~1vyd™!

: (2.6) v
=d 'a-d™'Bd .

This can be shown to obey the usual properties of the determinant, for example -
det(A) det(B) = det(AB). More importantly, the determinant is central, i.e. it

commutes-with all of the matrix elements:
det(A)A = Adet(A).

Later we will also consider the group SLq(1|1), the group of 2 x 2 super-matrices

with determinant one.

One interesting property of the quantum groups is covariance of the q-
relations (2.5). This means that the product of two different quantum matrices
with elements satisfying the q-relations (2.5) produces a new quantum matrix with-

elements satisfying the same relations. Explicitly, consider two matrices A and A’

A___(a.ﬂ) A':(a, ﬁ')
vy d Y &

The elements of each matrix satisfy the g-relations (2.5), e.g. a8 = qBa, d’/f’ =

with elements

gB'a’, etc. The elemenmts of A (anti-)commute with those of A’. The product
matrix A” is defined by

Y/4 174
A”=AA’=(a” 'j,).
7 /f

It is straightforward to check that the elements of A” given by
all=aal+ﬁ7l ,B”=aﬂ,+ﬂd, . N
7/I=7a/+d7l d”=7,8’+dd/

also satisfy the g-relations, e.g. a”B” = ¢f”a”. It is in this sense that one says
that the quantum group GLq(1/1) is closed under multiplication. The product of
two different elements of GLq(1]1) produces another element of GLq(1[1).

8



2.3 The Exponential Description

Another interesting property of the quantum group GLq4(1[1) is found when con-

sidering powers of an element of the group. Consider the matrix 42:
A=AA= ( a2 P )
Y2 ds
with elements .
m=a’+By B=af+pd
r2=va+dy d=v8+d.
It is straightforward to verify that the elements of A? satisfy the g-relations (2.5)
with g replaced by ¢2, or explicitly
azB; = q2ﬂ2a2 53 =0
a272 = ¢* 1202 %5 =0
d2B2 = q*Pady Bav2 = =122
day2 = ¢*72d; azdy — d2a; = —(q* - ") B272-

This means that if A € GLq(1]1), then A2 € GLg2(1]1). This suggests that similar
relations will hold for any power of A. This has been verified through detailed
calculations as discussed in [18]. Here we will demonstrate this through a differen:
approach.

Because the group GLq(1|1) is relatively simple, it is possible to explicitly
check many of its properties. Here we will consider an exponential description of
group elements. Write an element A of GLq(1]|1) as the exponential of another

matrix M times a parameter ~ defined by
A=eM  g=¢r | (2.7)
The elements of A and M are
(e = (20)

Like the elements of A, the elements of M will not obey ordinary graded commu-

tation rules. The correct relations can be determined by writing the elements of

9



A to order h? and plugging into the g-relations (2.5). One finds that the elements
of M must obey

ro—or=o ™ = ur
uc—ocu=~o oT = ~T0
(2.8)
rT—Tr=r7 o’=0
— 2
Ur —TU=T T4 = 0.

The relations in the right column are the usual graded commutation relations; the
left column is modified. Note that g (or k) does not appear in these relations. Also

note that the super-trace of M, (r — u), commutes with all of the elements.

Using these relations, a.n.explicit form of the exponential can be written.
This is easy to do because of the nilpotency of o and 7 in (2.8). Write M as a sum
of two matrices as follows:

0 0
M=M+M, M=|" My = 7.
_ ~ 0 u r 0

Because of nilpotency, M>? vanishes. Then any power of M greater than or equal

to two may be written

n—1 n—2 n—m-<2

M2 M+ Z MIMOMGT™ 4+ 30 S MM MMy M2,

m=0 [=0
Using the relations (2.8), the terms in the summations can be written in a simple

form. The needed expressions are
"0
0 u"

' 0 m,l \.
JV[(;"MlMé=( o(r+1)"u )

r(u+ 1)"‘r‘ 0

m l .
Mg My MM M) = ( or(r+ 2" (u+ 1) 0 )

0 ~or(u+2)™(r + 1)lu*

Using these expressions in the expansion of M™, the summations can be performed

M"=<r" "")
Tn Un

10
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where

(r+2)" rn _ (u+1)" )
2l +r—u) 2(1—-r+u) 1—(r—u)?

_ (r+1)*=u"

n=a l+r—u

(u+1)"‘-—-r

l=-r+u

(u+2)" u® __(r+1) )
21—r+u) 2(l+r—u) 1—(r—u)?/’

r,,=r"+a7'<

ﬂv—

Uy =u" —0oT <
Finally, the exponential sum

S
hM _
| e —Zon'M"

may be performed, yielding the elements of the matrix A. One finds

a= _eh"' + I__—___(:_"_-T)_z_ ( (1 —r+ u)eh(‘r+2) + 1(1 + r— )ehr - eh(u+1))
( h(r+1) _ ) _
1+r—u 29
( h(u+1) )
1—r+u
d= ehu — — (i'r— u)2 (%(1 e — u)eh(u+2) + %(1 —r+ u)ehu _ eh(r+1)) .

Note that these expressions have been written with no explicit appearance of gq.
All dependence on ¢ is carried by A.

It is straightforward to verify, using (2.8), that the above expressions for

h

the elements of A satisfy the g-relations (2.5), with ¢ = e*. Now consider AP,

where p is any c-number. From (2.7) we see that this may be written

AP = (e ) = ePhM,

Ap=(aP ﬂP)
Y dp

are obtained from (2.9) with the substitution » — ph, with the elements of M
(r, o, 7, and u) still satisfying (2.8). The g-relations for the elements of AP are

. Then the elements of A?:

11



- satisfied with the same substitution, with ¢ — ¢”. Exblicitly,
apBp = q"Bpay doBp = ¢"Bpdy BoYe = —YpBp
apYp = € Vpp dpYe = ¢"Ypdy apdp — dpa, = — (" — ¢77) By

and S, and <, are nilpotent as usual. This verifies the property of GLq(1]1) sug-
gested by A? mentioned earlier. If A € GL4(1{1), then AP € GLg(1]1).

Another interesting property of GLq4(1|1) is seen by writing the determinans
(2.6) using the exponential representation. Since the variables ¢ and T are nilpotent

it is straightforward to show that the inverse of d is given by

oT

d—l_____ =hu v
e+ 1= (r—u)?

(%(1 —r 4 u)eh¥) | 1+r- u')e-hu _ eh(r—2u—1)) _
Using this expression and (2.9) in the definition of the determinant (2.6), one finds
det(A) = (@ — Bd~1y)d™! = v,

The exponent (r — u) is the super-trace of M, which is central. Thus we have the

general relation
Indet(A) = s — trin(A).

This coincides with the relation for classical matrices.

12
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Chapter 3

The Quantum Algebra GLqg(1]1)

In this chapter we determine the algebra of GLy(1|1). We use the method of Wess
and Zumino [9] based on an invariant differential calculus. This is a generaliza-
tion of the work of Woronowicz [8]. Fundamental to this method is an exterior
derivative which is nilpotent and ‘obeys the Leibniz rule. Input to the method
are the q—reiations defined by the R-matrix in (2.1). The elements of a matrix in
the group are the group parameters. The method derives the algebra of genera-
tors of infinitessimal deformations of the group parameters. It also determines the

coproduct of the generators.

Here we apply this method to GLq(1|1), starting with the g-relations (2.5).
We find the algebra of GLq4(1]1) and its subalgebra SLq4(1]1), and the coproduct
of the generators. Qur results are also shown to be consistent with the method of
Faddeev, Reshetikhin, and Takhtajan [6, 7].

3.1 Exterior Derivative and Cartan-Maurer Forms

We begin by defining the exterior derivative §. We require é to be nilpotent and
to obey the (graded) Leibniz rule: ‘

=0
(3.1)

§(FG) = (6F)G + (-1)F F(6G).

13



Here (—1)F = +1(-1) if F is commuting (anticommuting). This grading is re-

quired since § is anticommuting.

Next define right-invariant Cartan-Maurer 1-forms in the usual way. For a
group element A define:

-1 _ wl. v+
Q = (54)A _(v_ . ) (3.2) .

Here the 1-forms w; and w, are anticommuting while v, and v_ are commuting.

Under right multiplication by a constant group element Ay obeying §Aq =0,
A = AAo
= BANA) = (6A)A1=Q

and we see that the Cartan-Maurer forms are right-invariant.

By manipulating the definition of 2 one can determine the action of the
exterior derivative on the group parameters and on the Cartan-Maurer forms.

Rearranging (3.2) gives §A = A or for each group parameter
ba =wra +vpy 68 = w8+ vyd
Sy =wyy+v_a 8d = wad + v_B.

Acting on (3.2) with § and using (3.1) we have

< ~ -V
5 = 00 a=( “ . (3.2)
-V_. w
The signs in {2 are determined by the grading in the Leibniz rule (3.1). Then we
find for each 1-form
Sy = w? —vyvo SV = WUy — Vpws
(3.5) : .
SU_ = wot_ — v_wy Swy = wi —v_v,.
These are the usual (graded) Cartan-Maurer equations. Note that they are written
with the ordering defined by (3.4). This is because we do not yet know how to
commute l-forms; they may obey g-relations which differ from classical (anti-

)commutators.

14



The exterior derivative may be expanded as a sum of the 1-forms multiply-

ing the generators of the algebra:
6= w1T1 + WQTg + ‘U+V+ -+ v_V_. (36)

The generators 77 and T are commuting and V. and V_ are a.nticommuting so
that overall § is anticommuting. From (3.3) one can read off the action of the
generators on the group parameters (e.g. Tia = a and V.a = v, etc.) The algebra
of the generators may be determined using the nilpotecy and Leibniz rule (3.1)
obeyed by the exterior derivative. Applying § to the above expansion (3.6) gives
(sum i=1,2)
8 =wiTi+ vV
82 =(6w,')T,- + (5vi).Vi —widT; + v+6V 4
=(wf - ‘U+‘U..)T1 - wl(UJiT'i + viVi)
+ (W2 = v_v) T = wo(wi T +v: V) (3.7
+ (w14 — vawn)vy + v (Wi T + v Va)

+ (wave — vowy v + v (WiTi + v Vi)

= 0.
If we knew how to commute 1-forms, we could rearrange this expansion, with the
coeflicients of the 1-forms yielding the algebra of generators. Therefore we must
determine g-relations between the Cartan-Maurer forms. With this information

we can return to this expansion and derive the algebra.

3.2 Additional g-relations

First we wish to extend the g-relations between group parameters (2.5) to include
q—relatiéns between Cartan-Maurer forms and group parameters. Recall that the
Cartan-Maurer forms are right invariant. We shall require the new g-relations to
also be right invariant. (This is already true for the relations (2.5)). Under right
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multiplication A’ = AAg the group parameters transform to

a’ = aao + B B’ = aBo + Bdo
= vao + d¥o d = 0o + ddo.

Under this transformation, a and 8 mix together, and d and 4 mix. Thus, in order
to be right invariant, @ and B should have the same g-relations with the 1-forms,
and d and v should have the same g-relations (up to Z» grading signs.) We shzl!

consider the following ansatz:
a(s'w; + oFvy) = (tw; + 7¥vs)a d(s w; + 0Fug) = (tw; + vy )d

B(s'wi + oFvg) = —(t'w; + 75v1)B A(s"w; + oFvs) = —(tw; + TFvi)y.
(3.8)

where s' etc. define the form mixing. Next, recall that the determinant D = det A
defined in (2.6) is central, i.e. it commutes with all of the group parameters. We
wish to extend this to the algebra with Cartan-Maurer forms:

Duwyz=uw2D
Dvi=vy D.

Since D = ad™! — d~'vd"!, @ and d~! must have inverse mixing in (3.8), or a
and d must have the same mixing, with primed coefficients equal to unprimed
ones. Then all group parameters have the same g-relations with the 1-forms (up

to grading signs). For a general group parameter A, € {a,8,v,d} we write
A (s'wi + 0Fvg) = (1) (Hw; + 75) A, (3.9)

Here (—1)#" = +1 for A, =aor d and (—1)# =—1 for A, = B or 4.

We now attempt to determme these relations by applying § to the T
relations (2.5). Beginning with the simplest relation 3% = 0 we find

B? = (68)8 - B(8B)
=w1BB +v4dB — funf — Puid
= (qu4B — Puy)d

= 0.
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The first and third terms in the second line vanish since they are proportional to
(2. The third line is obtained from the second using dB = ¢A3d. Since this must
vanish for all values of the group parameters, the coefficient of d in the third line

must vanish, yielding Bv; = qu3. Following the same procedure on 42 = 0 gives
6v* = (qu-y — yv-)a = 0.

Recalling that all group parameters have the same g-relations with the Cartan-

Maurer forms, we summarize

Arvy = qui A, (3.10)
We see that the l-forms vy obey simple q-relations with the group parameters,
with no mixing between 1-forms.

Acting on the relation By = —~8 with é gives

§(By +vB) = (w1 —w2)By + Blwr —w2)y =0
which is solved By (w1 —wq)B = —B(wy — w2) or in general
A,(wl d wg) = (—l)A'(wl —WQ)A,-

Here we see that the linear combination (w; — w2) is an eigenvector under com-
mutation with eigenvalue 1. Suppose there is another linear combination with
eigenvalue f. Define the 1-forms

wy = (w1 —wy)
(3.11)
wx =11+ g)ur + (1 — p)wn)

which obey the q-relations

Ay = (=1)*wy A,
(3.12)

Awy = (=1)* fux A,.

Further application of § to the remaining g-relations in (2.5) yields no new infor-

mation. We are left with two undetermined parameters, f and ¢, both related to

wx.
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Next we wish to determine g-relations between the Cartan-Maurer forms
themselves. Again we apply §, this time to the relations (3.10,3.12). Starting with
the g-relations between v, and @ and d gives

5(avy — quia) =q((fux + (1 = By )vs = va(fux + (1 = $Jwy))a =0
8(dvy — quid) =q((fwx = (1 + $Juv)vs = v4(fuox = (1 + S)wy))d
+ q(v_vy —vav)B=0.

The coefficients of group parameters must vanish, giving relations between wxy
and v, and between v; and v_. Repeating the procedure starting with the g-
relations between v_ and a and d, we arrive at the general relations
Wiy = V1W; 1=1,2,X,Y
(3.13)
ViV = UV
Note that these relations are independent of ¢ and equivalent to the classical case

g=1

The procedure may now be repeated with the relations between wy and a

and d. Applying § gives

0

é(awy — wya) = (f(wxwy +wywx) +2(1 = ¢)w§)a
§(dwy — wyd) = (flwxwy +wywx) - 2(1 + ¢)wi )d = 0.
Vanishing requires

wy =0
(3.14)

wxwy +wywx = 0.
Again we find relations independent of ¢ and equivalent to the classical case.

There is one more set of relations, involving wx. Applying & to the relations

betx;veen a and wy gives
Sawx = fwxa) = (f(f + 1wk + (f — @vav) =0.
This yields the relation

(3.15)



Notice that this relation is not equivalent to the classical case where w% = 0. It
involves both the quantum deformation parameter ¢ and the undetermined pa-
rameter f. There is a final consistency check which will determine f. Using the

g-relations between between group parameters and Cartan-Maurer forms, we find
A(wd = wvpvl) = (fuk - P ruavl) A,
= (f* = )rvsv_A,

_F-Ae-N,
f(f+1)

+U-Ar

= 0.
There are three solutions for f:

I) f=¢ k=0
g

-1
- =37
III) f=-q & 1

The first solution is the éimpl&st, with « = 0 and (3.15) equivalent to the classical
case. The third solution has the wrong limit of (3.12) for ¢ = 1 and we will
disregard this solution.

With the g-relations just derived we may rewrite the Cartan-Maurer equa-

tions in a simplified form. They are

bwy =0
Sdwx = (K — 1)vypvo | (3.17)
bve = 22wy vy,

For solution I we see once again that the equations agree with the classical case.

This is not true for dwx for solution II.

3.3 The Algebra

The relations between Cartan-Maurer forms provide enough information to deter-

mine the algebra of the quantum group. Using these relations to rearrange the
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expansion of §2 (3.7) we get
62 =v2Vi+v2 V2 +wxwy (XY - YX)
+ Vowy(YV4L —-VLY + 2V4) + Vewy(YV_ - V.Y +2V.)
+ v4wx(XV4 = Vi X) +v_wx(XV_ - V_X)
+ 40 (VoV_+ V.V, + (k= 1)X — s X?).
Nilpotency of § requires the coefficients of the Cartan-Maurer forms to vanish:
XY -YX=0
V.Y - YV, =22V,
Vi=0 _ (3.18)
VX -XVye=0
ViV_+V_V,=(1=-r)X+cX>
This is the algebra of the generators of GLq(1/1).

There are several features to note about the algebra derived above. First,
note that the generator X commutes with all other generators. Thus it may be
redefined by any function X’ = F(X). Specifically it is desirable to simplify the
algebra by setting the anticommutator {V,,V_}4 equal to the redefined generator

X'
X solution I

q—-?-_TX” + %%%X}, solution II .

For solution I no redefintion is necessary. For solution II the above redefinition

X, = V+V_ + V_V+ = {

gives X in terms of X;. Later we will see that this redefinition is consistent with

the coproduct.

With this redefinition, or always for solution I, we see that the algebra is
independent of ¢. In fact the algebra coincides with the classical algebra. Shortly
we will see that this is not true for the coproduct, which does depend on ¢ and is

not equivalent to the classical coproduct.

Finally, we note that the generators V, and X form a closed subalgebra,
given by the last three lines of (3.18). Recall the quantum determinant defined in

20



(2.6)
D =(a—pd"ty)d".

Using (3.3) for the action of the exterior derivative on the group parameters and
(3.10,3.12) to commute forms, one finds

6D = 2wy D.
From the expansion of § (3.6), this shows that
XD=0 VD =0.

Thus we see that the generators in the subalgebra leave the determinant invari-
ant. Then this subalgebra is SLq(1|1), the algebra of linear transformation with

determinant one.

3.4 The Coproduct

Now we will consider the action of the generators on functions of the group param-
eters and on products of functions. This can be done using the previously derived
g-relations between Cartan-Maurer forms and group parameters. This study yields

the coproduct of the quantum algebra.

First recall the action of the exterior derivative on a product of group pa-

rameters A,, A, € {a,3,7,d}:
§(ArA,) = (A0)A, + (—1)* A, (84,).

Using the relations (3.10,3.12), one can commute the Cartan-Maurer forms in the
second term to the left of A.. Equating coefficients of the 1-forms on both sides of

the equation gives
X(AA,) = (XA)A, + fA(XA,)
Y(A-A) = (YA)A, + A (YA,)
Vi(A-A) = (VA Al + (-4 gA (V4 A,)

where for now we will consider both solutions f = g, q?. Repeating this procedure

for higher power monomials of the group parameters will determine the action
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on arbitrary functions. It is convenient to simplify this notation by dropping the
second term in the product (A, here) and writing the action of the the generators

on A, times an arbitrary function (-) to follow:
XA, =(XA,) +fAX-
YA, = (YA) +4,Y-

"ViAp = (ViA,-) . +(-1)A'qA,Vi <.

We consider in detail first the generator X. Consider a monomial of group
parameters a™d"3'y? where m,n > 0 and 1,7 = 0,1. From above we see that a
power of f appears each time we commute X through a group parameter. Repeat-

ing the procedure gives

X(a™d"By) = (1+ f+ 7 +... 4 frHHH) @ d By)

fM+n+i+j -1 . -
= @ " B
It is convenent to define a number operator N for the group parameters as follows:
(NA,) = A.

NA, = (NA,)-+A/N-
(Na™d*B'y’) = (m +n+i+j)(a"d"8Y).
Then the generator X and [V are related by

-1
f-1

MN=1+(f-1)X

X=

Now any funtion F of the group parameters can be written as a sum of monomials.
By repeating the above procedures on a product of monomials, we find the action
of X on products of functions to be

XF-=(XF)-+(f"F)X-

(3.19)
=(XF) - +(1+(f-1DX)F)X - .

The result for the generators V. is obtained in a similar manner. Here

instead of ‘a factor of f (which is equal to ¢ or ¢?) there is always a factor of ¢
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when corrﬁnuting through a group parameter. On a product of functions
ViF = (VF) +(=1)F("F) Vs -. (3.20)
Finally for the generator Y we obtain the simple result
YF.-=(YF)-+FY -. (3.21)

In this final case note that there are no factors of q. In fact the action of Y is

equivalent to the classical case.

These results lead to the coproduct of the quantum algebra. If A is the
universal enveloping algebra, then the coproduct A is a map to the tensor product
of A:

AA— AR A
F— A(F) Fe A
The map must be a homomorphism of the algebra:

A(FG)=A(F)A(G)  FGeA

It is straightforward to read off the coproduct from the results in equaticns (3.16-

3.21). For both solutions we have
A(V)=V:®@1+¢" @ Vs

AY)=Y®1+1Q0Y
(3.22)
AX)=X1®1+¢V @ X;

AX)=Xu®l+d"eX
where in terms of X

1
¢ = { (1+(¢*-1)X1)2 solution I
1+ (¢q—-1)Xis solution IT .
Finally, we note that the redefinition of X for the two solutions for f:

2 qg—1
X X?
g+ Tyt

X =
' is consistent with the coproduct:

__2 9-1 2
A(X;) =7+ lA(Xu) + et 1A(Xn) .
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This shows that both solutions for X are in the same universal enveloping alge-
bra, and are in fact reparameterizations of each other. For the remainder of the
discussion we will take solution I with f = ¢ and set X = X].

3.5 Method of Faddeev, Reshetikhin, and Takhtajan

It is instructive to compare the results based on the differential calculus to these
of Faddeev, Reshetikhin, and Takhtajan [6, 7]. Their method is based on the =-
matrix (2.4) used earlier in' defining the quantum group. Define the matrix &’
by |

R =PRP =

o O W0
o = O

0
A
1
0 0 0 g7

Here P is the permutation matrix acting on the tensor product of vector spaces
V ®V according to P(u® v) =v ®u for u,v € V, or:

o = O ©
- O O O

0
1
0
0

Recall also that A = ¢ - g~!. Next define the upper- and lower-triangular 2 x 2

matrices
L + =' U+ AX.’. I- = U.- G
0 W, -Ax- W.
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Finally define the 4 x 4 matrices Ly, which act on V® V by L¥ = L*® 1 and

L =1 ® L*%. These matrices are

(U, 0 AMxs O U. 0 0 o0
oo | O U 00 e Lr— 0 U. 0 0
! 0 0 W, 0 “dx- 0 W. 0
\ 0 0 0 W \ 0 =M\~ 0 W.
(U, Ax, 0 0 ([ U. 0 o0 o
0 W, 0 0 “dx- W. 0 0
L; = + L; = X
0 0 U+ -Ax-i- 0 0 U. 0
\ 0 0 0 W \ 0 0 Ax- W-

Here we have used ‘index ordering to allow simple matrix multiplication (see ap-
pendix).
The method of Faddeev, Reshetikhin, and Takhtajan uses these matrices

to determine the quantum algebra and coproduct. The equations

RL¥L* = LFI*R

RLYL; = L;LTR
yield relations on Uz, Wy, and xz. These relations lead to the quantum algebra.
One finds that Uy and Wy all commute with each other, and also that the combina-

tions U,U. and W, W_ commute with x1. Then we may take these combinations

to be proportional to the identity and define

Uy =U. U.=U"!
Wo=W W.=Ww-1,
Then the remaining relations are
xzU = ¢*'Uxs
xzW = q*'Wxs | (3.23)

X+X- + X=X+ = AT UTW —UW™),

These relations determine the quantum algebra.
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The coproduct is determined by
A(LE) = [*QL*

where ® denotes tensor product combined with usual matrix multiplication. Using

the matrices L* defined above one gets
A =UQU AW)=WeW
Alx+) =x+@W+U®x+ _ (3.24)

Alx-)=x-9U '+ Wl®x-
where we have used the above definitions of U and W.

These results may now be compared to the algebra and coproduct derived
earlier using the differential calculus. We can do this by writing one set of genera-
tors as functions of the other set. Because of the rather simple form of the algebra,
there are many such reparameterizations which yield the same form of the algebra.
However, the coproduct will give a unique relation between the two formulations.

Consider the combinations W~tx., and Ux-. Using the coproducts (3.24) we find
AW xy) =W, @1+ UW1 @ W™'xy
AUx) =Ux-®1+UW-l@Ux.-.

Comparison with the coproducts (3.22) indicates that W=y, « V, and Ux.- «
V_. Including normalization factors to get the same algebra, we find that the first

set of generators can be written in terms of the new ones as

w=2 -
Ve=gqgWilyx, X= _U_“f_2__T_1
-, - (3.25)
V-=q"Ux- N =Uuw, |

For the inverse relations, note that
_lY ;1 _lY
q 2 Ve=q"Viq 2

where we have used the commutation relations for Y in (3.18). Then it is easy to
see that
iyl “lyiln
X+=qq 2 2"V, U=q2""2
(3.26)
1 i, 1
X- = qq%Y—ng_ W = q-ZY-ZN
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are the correct reparameterizations. Substitution of these relations into one form
of the algebra leads to the other form. Thus both methods yield the same quantum

mﬁvérsa.l enveloping algebra.
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Chapter 4
The Quantum Super-Plane

In this chapter we discuss the quantum super-plane. This follows an approach to
quantum groups first suggested by Y. Kobyzev and developed by Manin [5]. By
defining coordinates and differentials which obey q-relations (i.e. they do not obey
classical commutations rules), and demanding covariance, one obtains the previous
q-relations> on the elements of matrices which act on the plane coordinates. The
converse is also true: the g-relations on the matrix elements imply the g-relations

on coordinates and differentials.

We will follow this approach for the quantum group GL4(1|1). First we
will show the equivalence of group g-relations and super-plane g-relations. Then
we will develop a covariant differential calculus on the super-plane. Finally, we
obtain a representation of the genefators of GL4(1]1) in terms of the super-plane

coordinates.

4.1 Coordinate and Differential g-relations

We begin by defining the super-plane coordinate vector V and differential vector
z
V=( ) U=("). (4.1)
3 Y
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The corresponding components of V and U have opposite Grassmann parity. Fol-

lowing Manin we impose the g-relations

el =qfz £=0
(4.2)
yn = qny 2=0. _
(The nilpotency conditions on € and 7 are the same as in the classical case.) These

vectors are acted on by matrices A with elements

a=(27)

where we do not yet know the commutation relations between a, B, v, and d.
The matrix elements all commute or anticommute with the vector components,
depending on Grassmann parity. The vectors transform under left-multiplication
by A:

V= AV U' = AU (4.3)

with new components

' = az + B¢ n’=an+ﬂy
(4.4)

| {=yz+df Yy =mm+dy.
We now impose the condition that the gq-relations (4.2) are covariant, i.e. that the
transformed components satisfy the same g-relations. This leads to the familiar

q-relations on the matrix elements. For example, the products
z'¢’ = avz® + (ad - ¢7' By)zé
£’z = vaz® + (v8 — ¢ da)z¢
can be plugged into z'¢’ = ¢¢'z’. Equating coefficients of z2 and z¢ gives
ay=gqya ad—g 'v8 =qyB+da.

Summarizing, the super-plane relations and the matrix element relations they im- -

ply are

¢ =qfr’ = ay=qy@a ad—g 'fy=da+qVB

yn'=qy = d6 = qfd ad+ gy =da—q7'p s
=0 = dy=qyd =0
n? =0 = |

aB=qBa B =0.
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Finally, the last equations in the first two lines imply

ad—da=—(q—q")By Br=-1B8.

and we see that we have reproduced the g-relations between group parameters

(2.5) as defined by the R-matrix method.

The converse of these arguments is also true. Given the g-relations between
group parameters, one can find bilinear g-relations on the super-plane coordiantes
and differentials which are preserved by a group rotation. This means that if the

bilinear relations are given by
Fi(z,§,n,y) =0,
then the transformed relations also vanish:
F(,¢,n',y") =0,

where the primed components are given by (4.4). In .fa.ct it will be seen that this

final function is a linear combination of the previous ones:
R(x’i EI7 77” yl)'= Z rij(a, ,Bv Y d)E,(Z, 6’ N y)'
_ 3
Such a set of preserved relations is said to be covariant under the quantum group
action.

It is easy to check these relations for the quantum super-plane, since we
already know what they should be. However it is instructive to examine at least
one case in detail since these techniques will be used later. Let us consider bilinears
in the coordinates z and {. Using the primed components (4.4) and the g-relations

on group parameters to rearrange terms we get for z and ¢
2'¢’ = yaqz?® + adz€ — Bryéz + FdE?
£z’ = vaz® + adéz + By(Mez — €) — BdgeE?

£? = vd(z€ — gbz) + &¢?

. and it is easily seen that covariant combinations are
2'¢ — g€’z = (ad — ) (€ — g€z) + Bd(1 + ¢*)¢?

€7 = yd(z€ — g€z) + d*E2.
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Proceeding similarly with the differentials shows that

y'n' —qn'y’ = (ad — ¢ B7)(yn — qny) + va(1 + ¢*)n?

1? = a’n* + Ba(yn — qny)

are covariant. Summarizing, we may write these covariant combinations as
Fi=zf{—-gz=0 F=£=0

| (4.6)
Fs=yn—qmy=0  Fyi=n’>=0.

We have recovered the relations with which we began this discussion, and we see

that the arrows in (4.5) run in both directions.

Finally, we note that the g-relations on coordinates and differentials can be
derived from the R-matrix. Define two column vectors in the tensor product of

the vector space acted on by the quantum matrices:

.’82 772
Vievy=| = GeU)=| ™

z { yn

1% —y?

(The signs in (U7 ® U2) are needed for covariance, as discussed for the vector U
in the next section.) Then using R from (2.4) and P from the previous chapter
define the matrix R:

O O O 0
O = > O
OO = O

where A = ¢ — ¢~'. The the equations
(B-q)ieW)=0 (R+q")(UhoU)=0

determine the coordinate and differential q-relations (4.2).

4.2 Super-Plane Exterior Derivative

Next we wish to formulate a covariant differential calculus on the quantum super-

plane, involving the derivatives of the coordinates and their differentials.” As with
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the quantum algebra, we begin by defining an exterior derivative § which is nilpo-
tent and obeys the graded Leibniz rule (3.1). Expand é in products of differentials

- with derivatives:

§ = 620, + 6£0;.

Here 6z and O¢ are Grassmann odd and 6 and 8, are Grassmann even so that
overall § is odd. Comparing to the differential vector U in (4.1), one might expect
to identify 6z = n and 8§ = y. However, this is not quite correct. We wish a
calculus which is covariant under the group action defined in (4.3). Applying § to

the transformed components of V' gives
6z’ = abz — B6¢
68 = —~6z + db€.

Now if we define .
n=6z y=-&

as the components of U, we find that this differential is also covariant under the
group action (4.3).

The exterior derivative is now written
§ =10z — yOs.

As with the algebra, the general properties of § allow one to determine some

information on the algebra of the derivatives. Checking nilpotency gives
&8 = ~n(n0: — y8)8: — y(nd: — yO¢)0e
= ny(0¢0: — q0:9¢) + y*6;
=0
where we have used (4.2). The coefficients of the forms must vanish, leaving
90z = q0:9; 8% =0. (4.7)

as the basic algebra of the derivatives.
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4.3 '~ Additional g-relations

We wish to extend the derivative algebra to include the coordinates z and £. As
with the group algebra, we will use § and the Leibniz rule to determine this.
This will require that we know how to commute differentials with coordinates.

Some information can be obtained from the basic coordinate g-relations in (4.6).
Applying § gives
6(z§ —gbz) =nf —zy +quz + ¢fn =0
8§(6%) = -y + &y =0.

The second relation tells us how to commute y and {. However, the first relation

(4.8)

does not provide all the information needed for the rest of the components. More

assumptions will be needed for these relations.

- The first line of (4.8) indicates that there may be some mixing between the

coordinate-differential bilinears. Suppose that one relation takes the form
zy = ryz + r'né.

One of the parameters may be eliminated by requiring that é applied to this relation
be consistent with yn = ¢ny. This fixes 7 = 1 — ¢r. Finally, adding a multiple of

6 F) gives a similar relation for ¢ and 7, leaving
gy =ryz+(1—qr)né

&n=—-mé+(¢7'r = 1)yz.
The parameter r may be determined by a consistency check. Using the second

relation twice to commute n through ¢? and recalling that £2 = 0 gives
En=(1-q7'r)(gr - )yéz =0
which is solved by r = ¢*!. Plugging into the above relations we have for r = ¢
zy = qyz + (1 - ¢°)né

€n = —qné
and for r = ¢~}
zy =q lyz

&n=—-qg""é+(q"% - Lye.
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The relations between these bilinears have been completely determined.

Relations between z and 7 are still needed. To determine these recall the
covariance of Fj_4 in (4.6) under the group action as discussed earlier. Requiring
covariance for the new relations will give the missing relations. First, for r = ¢

consider
&'+ qn'¢’ = ad(én + qné) + Bdg(yé — &y)
+48(zy — qyz + (@ = n€) +7a(en — 1)
= 0.
This vanishes if the new relations are valid and if zn = ¢%nz. For r = ¢~! take
z'y — q7'y'z’ = ad(zy — ¢ 'yz) + Bd(Ey — y€)
+vB(én + g€ + (1 — ¢™%)yz) + va(gan — ¢~ tnz)
=0

which will vanish if zn = q~?nz. All of the needed relations have been determined.

Summarizing, we have for r = ¢:

zy=qyz+(1—-¢ €  zn=g'nz
(4.9)
§n = —qné §y=y¢

and for r = ¢~1:

gy =q 'yz In=q"nz
| (4.10)
én=—q¢""n +(¢g7% - 1)yz Ey = y€.

Finally, although we have only shown covariance for some of the relations, it can

be shown that for each case r = ¢*! all of the relations listed here are covariant.

4.4 Derivative g-relations

Now we can determine the operator relations between derivatives and coordinates.

We will use our previous notation for operator equations where arbitrary functions

34



to the right are indicated by (:). Applying § to z- gives
bz = 10,z - —yOez-

= (6z) - +z6-

=7 - +2n0; - —zyd;-
where the second line is a result of the Leibniz rule for . Using the g-relations
(4.9,4.10) we can commute the differentials to the left in the third line. Comparing
to the first line gives the desired derivative operator relations. Similarly, for £- we
have
6§ =n0:E - —yOek-
= (6¢)- ~¢6

= —y-—€nd - +y0% -
Now using the q-relations for r = q we find

Bez- =1-+4¢°28; - +(¢* = 1)60e- = 8t = q€Os
(4.11)
Bef- =1 €0 Oz = qz0¢:

and for r = ¢~}

azx' 3 1 . +q—2zaz. 615. -— q—léax.
(4.12)
Ol =1-—0 -+(q7* = 1)28r  Gez- = ¢z - .

These two sets of relations are the desired derivative operator equations.
There are also similar operator relations between the derivatives and the

differentials. They are obtained by acting with the derivatives on the q-relations‘

between differentials and coordinates. For example, for » = ¢q one finds

O:(nz) =q7*n  B(nz)=0

0z(n€) =0 Oe(n€) = —q7'n
(yz)=q7'y  G(yz)=(¢"*-1)
0z(y€) =0 Oc(y€) = .

Then these imply the operator relations

On =q 0 G = —q 10
| (4.13)
8y =q"'y0  Gey-=yd-+(¢ = 1)nd: -
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Repeating the procedure for r» = ¢~! gives

8o = ¢ 0z — (¢* = )y  Oen- = —qnd;-
(4.14)

Oy = qy0: | Oy =y -
At this point we have determined all possible operator relations between the coor-

dinates, differentials, and derivatives.

4.5 Representation of Derivatives

Next the derivative-coordinate operator relations (4.11,4.12) can be used repeat-
edly to find similar relations between the derivatives and monomials in the cood-
inates. Then an arbitrary function can be written as a power series in the mono-'

mials. In fact, since €2 = 0, the most general function in z and £ can be written
F(z,8) = Fo(z) + £Fi() (4.15)
and if F(z,€) has definite Grassmann parity then (—1)F = (—1)% = —(—=1)F.

We take first the solution r = ¢. Using the operator relations (4.11) on'a

power of r gives

n-l '

Bz =3 g¥z™? (1 + (q2 - 1)585) - +¢*"z" ;-
=0
i d2n -1
-1
Then for an arbitrary function of z we have

~1Fo(¢’z) — Fo(z)
z :
q2 -1

It is easy to extend this to a function multiplying é:
0:{Fi(z) = ¢§8:Fi(z)-

Fi(¢°z) — Fi(z)
¢ -1

z" (1 + (q‘-2 - 1)565) - +¢"z"0; - .

a;-Fo(.‘L')' =

(1+ (¢* - 1)¢8%) - +Fo(g’z)0; -

= z71¢% (1+ (¢ = 1)€8) - +€Fi(¢*x) -

Comparing the results for these two cases shows that for an arbitrary function
F(z,§)

_F(2s2€)—F72§
0.F(z,§) == LRI = (z,0%¢)

(1+(q* = 1)€8) -+ F(g°, 46)0; - - (4.16)
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The results for 0; are somewhat simple’r. Repeating the above arguments we find
ez = q"z" ;-
8 Fo(z) = (—1)™ Fo(qz) 0
8Fi(2)- = Fi(z) — (=1)P€F1(qz)8 - -
Then for a general function as in (4.15) |
8F(z.€)- = Fy(z) - +(=1)"F(gz,£)0 - (4.17)
is the operator equation for &. |

If there are no functions to the right of F in the operator equations (4.16)
and (4.17), these equations give the action of  on F. We find for F' = Fp + {Fy

as above A

B,F(a: E) = -} F(qzxv q2£) - F(xaqu)

¢ -1 (4.18)

6§F($,€) = Fl(z)'
The operator equations may be rewritten in terms of these actions as

0:F(z,€)- = (8:F(2,€)) (1 + (¢* — 1)8) - +F(¢’z, q€): - .
0 F(z,€)- = (0cF(2,8)) - +(=1)F F(qz,£)5; - .

This form of the equations is suggestive of a coproduct, for it gives the action of
the derivative on a product of functions. We will dicuss this shortly.

(4.19)

The entire procedure may be repeated for the solution » = ¢g~!. The action
of the derivatives is
1 F(g7%2,8) — F(z,6)
g1 (4.20)
8¢F(z,€) = Fi(q™x)

0:F(z,8) =<z

and the operator equations are
0.F(z,6)- = (8.F(z,€)) - +F(q™%z,47*6)0.-
0 F(z,6) = (3F(z,6)) (1 + (g7 = 1)z8:) - +(=1)F F(q7'z,£) - .

We see that the mixing of derivatives is reversed between the two solutions, and ¢

(4.21)

is replaced by ¢~!.
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It is useful to introduce number operators for the coordinates z and £. They
will allow the derivatives to be written in an illuminating operator form. Shortly
they will also be used to write a representation of the algebra GLq(1|1). Define

the number operators action on coordinates as
N =2 nez =0
n,é’ =0 n€§ = f
and assume that they obey the usual Leibniz rule, e.g.
nF- = (niF) - +Fn;.
Then on a monomial
nE'z™ = méz™
nel'z™ = ifiz™

Scaling operators can be constructed by exponentiating the number operators. For

(i=0,1).

»

example
gHE™ = ¢z = (¢)'z™
and for an arbitrary function

¢ F(z,§) = F(qz,§)
¢ F(z,{) = F(z,4§).

By analogy with the z derivatives, it is convenient to introduce the formal inverse
of £ which should only be used with the number operator for £. For consistency

with the g-relations it must obey
1z = qz€7t.
Then on a.‘general function

£ ne(Fo(z) + ERi(z)) = EFi(z)

Now it is straightforward to read off the appropriate representation of the deriva-

tives from their action on functions in (4.18,4.20). For the solution r = ¢

-1 27!( qzn: - 1 .
2
¢ =1 (4.22)



and for r = ¢}
-1 q-2n, -1

¢t -1 (4.23)
O = £ neg™ ™.

o=z

Note that in the limit ¢ — 1 both solutions approach the usual derivatives.

Before writing the coproduct form of the operator equations, we first note
that since a monomial can have only zero or one power of £, the number operator
ne can be written for arbitrary s as '

g7 -1
-1

ne =
For the solution r = ¢ this allows us to rewrite the term in (4.19) as
1+ (¢° — 1)€0 = ™.
Also, for r = ¢~1, in (4.21) |
14+ (q7% = 1)20,. = ¢~ 2.

- These relations allow a simpler form for the operator equations.

As mentioned earlier, the operator equations (4.19,4.21) tell how the deriva-
tives act on a pair of functions. If we regard each of the functions as lying in a
vector space, then the operator equations are similar to the coproduct discussed for
the algebra. We can read the coproduct from (4.19,4.21), using the above relations
for simplification. For the solution r = q we find
AB:) =0:0¢™ + "™t ®0;

| (4.24)
AG) =01 +q¢" ® 0

and for r = ¢!

AB:) =8:®1+¢" ™4,
| (4.25)
A(%)=08:R¢ ™ +q™ Q0.

. These coproducts are consistent with the derivative algebra (4.7).



4.6 Representation of the Algebra

The quantum super-plane coordinates were introduced as a vector acted on by the
qtia.ntum group GLq(1]1). This description also leads to the action of the quantum
algebra on the super-plane. Using the number operators, we will be able to write

a representation of the generators similar to the representations of the derivatives.

Begin by writing the coordinate vector V as a variable quantum matrix A

acting on a constant vector V5:

V = AV,. (4.26)
Now apply the exterior derivative to V. Since Vj is constant, §V = 0 and we have
SV = QA =QV (4.27)
where we have used § A = QA from (3.3). This relation is mva.na.nt under a rotation
of V5 by a constant matrix A;:
V = AV = (AoAT") (A1 Vo)
SV=QV=QV

where we have used the fact that the Cartan-Maurer forms are invariant under
right-multiplication by a constant matrix. Thus this description is independent of
the particular choice of V5.

The matrix equation (4.27) allows us to read off the action of é on the
coordinates. We find

bz = (wx +(1- ¢)wy)x +v.é

8¢ = (wx = (1 + QJwy )E +v_z

where ¢ is the arbitrary mixing parameter introduced in (3.11). Using the expan-

sion of § in (3.6), the action of the generators is seen to be

Xz=z Xe=¢
Yz=(1-¢)z  Ye=—(1+)
Viz=¢ Vif =0
V.z=0 V. =z
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Note that the generator X acts much like the identity. This will not be true on an

arbitrary monomial.

Next we wish to obtain the action of the generators on products of coor-
dinates. This can be expressed in the form of operator equations similar to those
obtained for the derivatives. Again we start with the exterior derivative and its
Leibniz rule. Applying it to a product of coodinates, we can then commute the
Cartan-Maurer forms to the left and read off the action of the generators. (This
follows exactly the procedure used for the algebra in chapter 3.) So we must know
how to commute Cartan-Maurer forms through coordinates. From (4.26) we see

that the coordinates may be written
z = azo + P& ‘

§ = vz0 + déo.

Here the group parameters correspond to the matrix A used to define the Cartan-
Maurer forms by = §4 A~!. We know how to commute the 1-forms through these
group parameters from chapter 3. On the other hand, the constant coordinates
To and & are not related to A, so the l-forms will obey the classical (graded)
commutation rules with them. So we see that the Cartan-Maurer forms commute
with the coordinates the same as with group parameters. These relations are
the same for all group parameters, and are given in (3.10,3.12). Then for the

coordinates we write

Tt = qUiT §ve = quil
Twx = fwxz wx = — fwxé
Twy =wyzT fwy = ~wyl.

Here we consider both solutions, f = q or q2.

Now applying é to a coordinate, using the Leibniz rule, and commuting

the 1-forms to the left we find the 6perator equation for the generators acting on
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coordinates. Again using (-) to indicate arbitrary functions to the right, we find

Xz =z +fzX- XE =€ +fEX

Yz = (1= @)z +zY- Y =—(1+¢)¢- Y-
Viz- =& +qzVy- V& = —¢fVy-
V.z-=¢qzV_- V.- =z -—¢gtV._.

Note that Y does not have any factors of ¢ in its equation. It obeys an operator

‘equation similar to the classical case, and we will not consider it further.

Finally, we may iterate the above equations to determine the operator re-
" lations for the generators on an arbitrary monomial in z and £. Then any func-
tion can be written as a sum of monomials. Writing an arbitrary function as

F(z,8) = Fy(z) + EF1(z) like before, we find
= F(fx’ff) —F(.’E,f)

XF(J"’E) f—1 +F(fx’f€)x
V+F(:L‘,§)' = 52—1 F(q2xvq€2):lF(1',§) . +(.—1)FF(q:z:,q£)V+- (4.28)

V_.F(z,£): = zFy(z) - +(~1)" F(qz,4€) V- -

As we did for the derivatives, taking the above equations with no function to the
right of F gives the action of the generators on F alone. Then we can use the
number operators to write a representation of the quantum generators.' The result

is

z+ne _
x={ ot
f-=1
2ns __
V.=t D 11 (4.29)
q ———
Vi=zT'ne

where f = ¢ or ¢°. Note the similar form to the derivative representation in
equations (4.22,4.23). Finally, we could use the operator equations to determine
the coproduct. This would give the same result as before. This is because both
derivations use the same g-relations between 1-forms and coordinates or group pa-
rameters. In fact, we could have started with the previously determined coproduct

and applied it to monomials to determine the action of the generators.
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Chapter 5
Quotient Space Geometry

In this chapter we develop the geometry of a quotient space. Cartan-Maurer
forms are constructed in the usual way. Although they are not invariant, invariant
bilinear forms can be constructed on the manifold. A symmetric bilinear provides -
a Riemannian metric, for which we discuss the Riemannian geometry. An invariant
almost complex structure is constructed, and extended to a complex structure. If
the complex manifold admits a closed hermitian 2-form, it is Kahler. In this case
we find a simple form for the Ricci curvature. Details of the mathematics may be

found in [19] volume 2.

5.1 Quotient Space G/H

We begin by reviewing the Riemannian geometry of a quotient space [20]. Consider
a real group G with subgroup H. For a fixed m € G, the set of g € G of the form
g = mh as h € H runs through all of H defines the left coset ¢ = mH represented "
by m. The épace of all such cosets is the quotient space M = G/H. G may be
regarded as a fiber bundle over G/H with fibers H. Decompose the algebra of
GbyG=MoH, MNH =0. We will use indices r,s,t,... for generators
L. €@, a,b,ec,. .. for L, € M, and t,j,... for L; € H. The generators of G obey
(Lr,L,) = L:C*,, , and for a closed subalgebra H C G, C%;; = 0 . Define the
exponentials g(y7) = exp(L,y") , m(z°) = exp(L.z°) , and h(t)) = exp(Lit') .
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Then any element g(y") may be uniquely written as
g(y") = m(z*)h(t). (5.1)

The parameters z° are coordinates for the element of M represented by m(z®),
which defines a local section of the bundle by m(z) : G/H — G. The left action
of G on M is defined by left multiplication of m(z®) by an element of G and

refactoring the product as in (5.1):

gom(z®) = g(y™) = m(z")h(t’)

‘ (5.2)
go : m(z®) = m(z"®) = gom(z*)h 7 (t').
The Cartan-Maurer l-fonné on M are defined by
m-ldm=1L.¢". (5.3)

In components e"(z) = e ,(z)dz®, where the upper index (r) is a label taking
values in G, and the lower index (a) is a coordinate index taking values in M. The

forms obey the Cartan-Maurer equations
de’ = —1C pe’e. (5.4)

The e® (L, € M) at each point z € M span the cotangent space TM?3. For these
forms define inverse vector fields E,(z) = E®,(z) 8, which span the tangent space
TM, and obey '

e(Epy) =€ E°y =48%. (5.5)

Under the left G-action defined in (5.2), the Cartan-Maurer forms transform

(m)"ldm' = h(m™1dm)h™! + hdh™!
(5.6)
L.em=hL,h" e’ +hdh™!.

The forms transform by an adjoint H rotation. The transformed e' associated
with generators in H also have an inhomogeneous piece from the last term in
(5.6). For the e® associated with generators in M, the infinitessimal form of (5.6)
is e’ = e® + t' §7, e* where |
6. e ==C% eb

(5.7)
61, Ea=EC4 .
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where the second equation is obtained using (5.5).

Although the Cartan-Maurer forms are not left G-invariant, invariant bi-

linear forms may be constructed. Consider

N = N, e?e
- (5.8)
N(U, V)= Ny 2 (U)ed(V) U VeTM.

N is left G-invariant if the coefficients N, are constant on M and if for L, defined
in (5.7) 8¢, N =0 for all L, € H. This is true if

OalNpe =0
(5.9)
Naeceib + Ncbceia =0 for all Li Eﬂ
N is a 2-form if Ny = —Npa. If Ny = Npoy, N is an inner product of vectors on
M.
5.2 Riemannian Geometry of G/H
For a nondegenerate tensor Ny, = Ny, obeying (5.9), we take gop = Nge®,e?,
to be the Riemannian metric on M with line element
ds® = g, dz® dz®
(5.10)
= Nge,edydz®ds® .
The Cartan-Maurer forms may be regarded as vielbein for this metric.
A covariant derivative acts on vectors V = V%FE, as
VV = (dV* +w*,V)E, . (5.11)

The connection form w®; is uniquely determined by the requirements of vanishing
torsion:
T° = de® + w®yeb = 0 (5.12)

and metric consistency:
Vs =0 = Npew'y + Npew®, = 0. (5.13)
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For convenience define the constants

D%, = NeeC/f o\ (5.14)
Then the connection w?®; = w® ., " has components
W =3(C"s~D% — D%)
) (5.15)
W =C%.
Finally, the curvature 2-form is defined by VVV = R* »VPE, with
Ry =duw®y +w? W%y
(5.16)

= 1R.%, eet.

The form of the Riemann tensor R.4%, for w®; in (5.15) is complicated and we
will not write it. However, as noted in the second line of (5.16) all dependence on

the inhomogeneously transforming e vanishes.

5.3 Almost Complex Structure on G/H

An almost complez structure on a real manifold M is a tensor field J which at each
point £ € M is an automorphism of the tangent space TM, obeying J? = —1:

J:V = J(V) for VeTM
(5.17)

JA(V)=-V.

Now consider the complexified tangent space TM¢ = TM ® C. Construct the

projection operators
P=11-iJ) P=1(1+iJ) (5.18)

which obey
JP =P JP=—iP. (5.19)
Thus P and P project onto subspaces of TMc¢ with eigenvalues under J of +:

and —i, respectively. Split TM¢ into subspaces TM¢ = TM10) @ TA((OD) by
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the mappings P : TM — TM@9 and P : TM — TM©), The complex vectors

obey _
JV(I'O) - ,’:V(I.O) V(I,O) € TM(]"O) :

- (5.20)
Jv@l) - jy@l) v e TMOD |

For components, the real indices a, b, ¢, ... will be replaced by the complex indices
l,m,n,...for (1,0) vectors and I, ®,7,... for (0,1) vectors. For example, a vector
V = V49, is complexified and split into V() = V™3, and VO = VR4, with
V(10 = V@1, All of these constructions with J on the tangent space TM carry
over naturally to the cotangent space TM*. Also, we may choose a complex basis
for the antihermitian generators L, such that L} = —L;. This implies e™ = ™
and E, = En.

For a quotient space M = G/H, J can be expanded in the vectors and

forms.constructed on M as

J= EGJ"' beb
(5.21)
J2=-1 = Ja¢.]cb=—5°b.
In complex coordinates, (5.19) shows that
J =", Jha=-—i",. (5.22)
J will be left G-invariant if the tensor J*, obeys
Baf?c=0
_ (5.23)
Cudp=J%Cp=0
or in complex components
C™"a=0 C?in=0. (5.24)

J is invariant if generators in [ do not mix barred and unbarred generators.

5.4 Complex Structure on G/H

As described so far, the almost complex structure J is a way of splitting the real

valued tangent vectors into conjugate pairs of complex.valued vectors. J is said
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to be integrable if it can be derived from holomorphic coordinates on a complex
manifold. (On such a manifold, the transition functions between different coordi-
nate patches are holomorphic, or complex analytic, functions of the coordinates.
The manifold is said to have a complex structure.) There are several equivalent
conditions for integrability of J [19] . Recall that J was used to define the (1,0) and
(0,1) spaces of vectors and forms with unbarred and barred components, repec-
tively. Generalizing, define A®% to be the spa.ée of p+q forms with p (1,0) indices
and ¢ (0,1) indices. With this separation, J is integrable if
da € A% @ A for ae A0O '
| (5.25)
da € A% 0 A for ac A®Y,
Using the Ca.rta.n-Maﬁrer equations (5.4) this is equivalent to the the conditions

on the structure constants of G
Clan=0 Claa=0. - (5.26)

Then a quotient space M = G/H with structure constants for G satisfying (5.24)

and (5.26) is a complex manifold.

5.5 Kaihlerian Geometry of G/H

A bilinear form is said to be hermitian if
N(JU,JV) = NU,V) . (5.27)

Hermitian inner products N (obeying N(U,V) = N(V,U)) and 2-forms K (obeying
KU, V)= —-K(V,U)) can be related by -

NU,V)=K(U,JV). (5.28)

A nondegenerate hermitian closed 2-form K (dK = 0) on a complex manifold is
called a Kahler form, and the manifold is a Kahler manifold [19] . Equation (5.28)
defines the Kahler metric ds? = N(dz,dz).



For complex M = G/H expand an invariant hermitian 2-form X (obeying

(5.9)) as :
K= %Kabe“eb
(5.29)
= mﬁemeﬁ
where in the second line Ky = 0 = Kaa by (5.27). Using the Cartan-Maurer
equations (5.4), d =0 if |

KeeCPihe + KoeC°ca + KeC®0p = 0. (5.30)

The Kahler metric is

Ngy = Kach b
(5.31)

Nmﬂ‘ = —1Kma Nan = iKﬁm

and (5.30) relates the components Npa = Nam. In terms of the constants defined

in (5.14) we find

C™"n + D"ty = D™ py =0
(5.32)
C™m + D™ + D™ = 0

Since the structure constants for a complex quotient space obey (5.24) and (5.26),

the connection components (5.15) take the simple form

wkml'=°kal wkml=ckﬁu wka=0ka

£ .
Far==DFpr  Fag=Ctg  SFy=CFy (5.33)
wkrr=0 wkrl=0-

Note that the connection matrix does not mix (1,0) and (0,1) components. In_
what follows we will consider only the (1,0) subspace, with (0,1) components given
by complex conjugation. Also, we note that these components are equal to the

components of the difference operator ¢ = £—V discussed in previous work [10, 11]

We now proceed to the curvature. From the definition (5.16), we find
Rna*1=- CkmpCP;u -CFniCi
v (5.34)
— D* umC*  + C* a0 D¥ i + C*¥ maD* o .
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Note that the Riemann curvature is a (1,1) form. In fact, given a connection pre-
serving a hermitian metric, if the coordinates are holomorphic then the curvature
is purely a (1,1) form [21] . This is equivalent to the conditions (5.24) and (5.26)

for a complex structure.

For an N dimensional Kahler manifold the totally antisymmetric product

det(e) = Aem=e'Ae?A...A€eY
m (5.35)
= det(e™ ;) dz' dz*... dz

spans the 1 complex dimensional space of (N,0) forms. This is known as the
canonical or determinant line bundle of the manifold. The covariant derivative
and curvature of this form are ‘
V det(e) = w™ m det(e)
(5.36)
VV det(e) = R™ » det(e) .
The 2-form R is the Ricci curvature of the manifold and is the trace of the Riemann

curvature. Taking the trace of (5.34) and using (5.32) we have

Rmﬂszitll

‘ . ‘ ' . z ; (5.37)
= -C mEC a—=C niC'a—-C mﬁ(c w+C kT) :

It can be shown that this Ricci form is closed and G-invariant. Note that all
dependence on the metric N.y = K,J®» has vanished from the Ricci cuvature.

This type of metric gives a unique result for the curvature.

5.6 Discussion

It is clear how to apply these results to a group G with subgroup H. Decomposing
the algebra as G = M ® H, M. N H = 0, choose an almost complex structure J
on M. The choice of J may be based on the generators in M, e.g. LI,‘ = —=La.
For the (1,0) and (0,1) decomposition based on J, the structure constants of G
must obey (5.24) for G-invariance of J and (5.26) for M = G/H to be complex.
A 2-form K is G-invariant. if it obeys (5.9) and closed if it obeys (5.30). If K is
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hermitian, M is Kahler and equations (5.33-37) apply yielding the connection and

curvatures.

These results are easily extended to Z; graded super-algebras. We have
chosen index ordering so that most of the results presented need no extra grading
signs. The main result, the Ricci tensor, does need to 'be modified. The correct
grading for the trace of the Riemann tensor is

Ras = (-1)°Ras 0.

Note also that the purely fermionic components of symmetric tensors become an-

tisymmetric, and vice versa. See the appendix for details.

For finite dimensional groups, the results are directly valid. If G is infinite
dimensional, contraction of indices may involve infinite sums. These sums must
converge for the results to be valid. For the examples from string theory, we will
see that the trace of the connection diverges but the trace of the Riemann tensor

converges.
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Chapter 6
String Diffeomorphism Groups

In this chapter we apply the results of the previous chapter to the diffeomorphism
groups of string theory. The main goal is to calculate the Ricci curvature of
quotient spaces formed from these groups. As discussed in the introduction, this
corresponds to the ghost contribution to the anomaly of the energy-momentum .
tensor. For the bosonic string, the group is Diff(S!). There are two choices of
subgroup which admit a Kahler form. For the superstring the group is super-
Diff(S!). In the Neveu-Schwarz sector their are two choices of subgroup which are
Kahler. In the Ramond sector their is only one Kahler quotient space. Here we
will calculate the Ricci curvature of these Kahler manifolds. Implications for string
theory will be discussed in the next chapter. '

6.1 Quotient Spaces for the String

First we apply the results of the last chapter to the symmetry groups of 'string‘
theory. As discussed in [10], the open bosonic string in' D spacetime dimensions
has as its phase space thé space of loops in RP. The reparameterizations of the
circle S! form the group G = Diff(S'). The algebra G = Diff(S?) is based on the
relation

(@&, 9)&] = (g -9/ & - (6.1)
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Fourier expanding gives the generators L, = e~ 5%— which obey

[LryLy)=i(r—5)Lyys T,s€Z

(6.2)
Ll=-L_,
so the structure constants of Diff(S') are
Clrs=1i(r—35)8rps rs,tEL. (6.3)

The subalgebras.of G = Diff(S?) are H, generated by {Lo} and H,, generated by
{Lo,L4n,L-n}. The subgroups are Hy-= U(1) = S! and H, = SL(2,R).

Consider first Diff(S!)/S? with subalgebra H,. Theindices r € Z in (6.2,6.3)
take values a # 0 for M and i = 0 for H,. The choice of J suggested by (6.2) is

Jmn=i6mn m,n>0
(6.4)
Jﬁﬁ=.—i5mn m=-m<0

so indices take values m > 0 and m = —m < 0. The structure constants (6.3) obey
(5.24) (J is G-invariant) and (5.26) (J is integrable), so M = G/H is complex.

From (5.9) the 2-form K = K,;e%e® is G-invariant if (a + b)K,s = 0. Then
K has components

Ku=f@ers  f(=a) = —f(a) (65)
and K is hermitian if f(m) is real. Closure of K requires
(a+2b)f(a) = (b+2a)f(}) = (a=b)f(a+b) =0 (6.6)
which is solved by
f(a)=Aa®*+Ba A,BeR. (6.7)

Thus there is a 2-parameter class of Diff(S!)-invariant Kahler forms on Diff(S')/S!.
K is nondegenerate if A = 0,B # 0 or if B/A # —n? for all nonzero integers n.
Note that the term proprotional to B is exact, since de® = —i 3,5 ae’e™. The

term proportional to A is nontrivial.

Since M = Diff(S!)/S! is complex and admits a Kahler form, the results
of the previous section may apply. Care must be exercised since M is infinite

dimensional. We will discuss this case in some detail to exhibit the convergence
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which is provided by the choice of metric. The delta function form of the structure
constants gives the connection and Riemann curvature without infinite sums. From

(5.33) the connection is

W™ = i((m -2n)0(1 +n—m) - (2m —n) }f(( ))G(m ))6’,"_,_" (6.8)

The trace Rma'i yielding the Ricci curvature is now an infinite sum which may
diverge. From (5.34)
Bon't =3 (=1 +m)(I —2m)8(m -1 +1)

>0

—(+m)2— )’;f("l;)o(z m)+(1 + 2m) (2 + m)m(:)—))
(6.9)
The form of the metric in (6.7) with A # 0 shows that the sum of the last two terms
in (6.9) converges. Furthermore, each of these terms is logarithmically divergent.
Then we may shift summation indices, and find that the sum of the last two terms

vanishes. Then we are left with the final result

m

" Run = Z(l -+ m)(l —2m) émn
I=1 (6.10)

= (—2m® + Im)bmn .
The Ricci form is closed and invariant as in (6.5,6.7).

Now consider the subgroups H,, = SL(2,R) generated by {Lo, L, L.} [22].
Indices take values a # 0,+n for M and i = 0,+£n for H. It is straightforward to
show that G-invariant closed 2-forms on M = G/H,, take the form of (6.5) with

f(a) = A(a® - nla) A€ER (6.11)

i.e. they are of the form (6.7) with B/A = —n?. However, for n # 1, the generators
Li, mix barred and unbarred modes. Thus J is not G-invariant according to
(5.24). For H, generated by {Lo,L:,L-1} J is G-invariant. Also M = G/H, is
complex since (5.26) is obeyed. Then for n = 1 K in (6.11) is Kahler and the
results of chapter 5 apply. The form of the metric again ensures convergence, and
for M = Diff(S')/SL(2,R) the Ricci curvature is

Ra = —=2(m® = m)émn . (6.12)
Again the Ricci form is G-invariant and closed.
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6.2 Quotient Spaces for the Superstring

The symmetry group of the superstring, G = super-Diff(S!), consists of the repa-
rameterizations of the commuting coordinate on S! and a single Grassmann co-
ordinate in superspace. The algebra is obtained by adding to Diff(S?) a set of
Grassmann-odd generators F, which obey F} = —F.,. We will use Greek letters
for fermionic indices, which are integer valued in the Ramond sector and half-
integers in the Neveu-Schwarz sector. The algebra is extended from (6.2) to

[Lr, La] = i(T‘ - S)Lr+’

[Lr, Fa] = i(%r - U)Frw (6.,13)

{Fm Fo}+ = 2in+c

with structure constants '

Ct rs = i(r - S)&t Petos

Cro= i(%r—a)yrw (614)

C’t po = 2i6t m .
The subalgebras and generators are listed below.

Subalgebra Sector Generators
Hy NS,R Lo
H. NS,R Lo,Ln,L-n
H, NS Lo,Ln,L_.,F,,F_,
H; R Lo, Fo
The subgroups are Hy = U(1) = S, H, = SL(2,R), and H, = OSp(1|2). The

group Hj is sometimes referred to as s — S.

In the NS sector G-invariant 2-forms on G/H, are
K = 1Kaue®e® + 1K, ge%e?
with components

Ko = f(a)ba+b f(a) = Aa® + Ba
A,BER. (6.15)
Kag = g(a)bass  g(@) =440’ +B
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Again the term proportional to B is exact, and X is nondegenerate on G/Hj if
A=0,B #0orif B/A# —n? for all nonzero integers n. For G/H,, B/A = —n?,
and for G/H,, B/A = —412. In the R sector we have G-invariant 2-forms on G/ Hj

K= %K@e“eb + -;-Kage"e‘a -+ %Kage“eﬁ.

The components K, and K,s have the same form as in (6.15) with B =0, and
the mixed term is _

Kag = h(a)5a+g h(a) =Ta. (616)
The term proportional to the Grassmann constant I' is exact, since the exterior

derivative of e® is de® = —3i La=ago e,

For a complex quotient space G/H, the subalgebra H must contain all
the real generators. In the Ramond sector this means the only possible choice is
H = Hj generated by Lo and Fy. Again the property F} = —F_, suggests taking
positive modes for the (1,0) subspace and negative modes for (0,1). Then the only
quotient spaces with invariant J have subgroups Hp and H) in the NS séctor and
Hj in the R sector. Again the algebra ensures that J is integl?a.ble, so these quotient
space are Kahler. Following the procedure for the bosonic case, we see that the
form of f(a) and g(«) in (6.15) leads to a convergent trace of the Riemann tensor
for A # 0. Note that the super-trace of a matrix Ris R*, — R*, [16, 23]. Then

the Ricci curvatures are

NS sector, H =8! : Rma = (—3m®+ im)fnn
Rm? = ("5/;‘2 + i)‘su,v
NS sector, H = 0Sp(1|2) : Rma = (—5m>+3im)émn
Ry = (—5u%+2)5,,
R sector, H=3=S': Rma = (-2m3émn

R“a = (—5#2)6,‘,,, .

(6.17

6.3 Graded Algebras

The algebras for string diffeomorphisms are examples of Z-graded algebras. A
graded algebra G may be split into submodules G, of finite dimension obeying

G..G]CGrvs TsEL. (6.18)

56



(The grading includes half-integers in the NS sector.) G is a closed subalgebra
so we may consider the quotient space G/Go. The relation G = G_, suggests
an almost complex structure separating positive and negative graded submodules.
The form of the structure constants C" »  §},, obeys the conditions (5.24) and
(5.26) so G/Go is complex. If a G-invariant Kahler form can be constructed, the
expressions for the connection (5.33) and Riemann tensor (5.34) are valid and
w®p o 82,.e" and R*, o 8,,,_.e™e". But the Ricci tensor requires an infinite
trace which may be convergent for some class of Kahler metrics. If the trace
converges the Ricci form is given by

B = -(lfj CloiemC ™ o o . © (6.19)

=1

(The last term in (5.37) never contributes for M = G/Go.) Here an index  takes
all values of the generators spanning G,. The NS sector is simply an extension of
the bosonic case with half-integer gré.’ded submodules. But in the R sector there

is a bosonic and fermionic component of each integer graded submodule.
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Chapter 7

Associated Vector Bundles

In this section we extend the results for Kahler quotient spaces to more general
vector bundles over these manifolds. The new vector bundles are extensions or
restrictions of the tangent space of the manifold. Requiring the bundle to be
~ holomorphic constrains the choice of vector space for the fiber. There is a natural
choice of fiber for quotient spaces based on a graded algebra. These results are
applied to the string and superstring. Implications for the string vacuum state are
discussed. '

7.1 Holomorphic Vector Bundles

In the preceeding sections we have considered the Riemannian and Kahlerian ge-
ometry of the quotient space M = G/H. These are special cases of vector bun-
dles over M. In the Riemannian case the fiber at = is the tangent space TM...
For' M Kahler the fiber is the (1,0) subspace of the complexified tangent space
TME = TMPO @ TMOY, The Kahler metric is a hermitian inner product on
TM19, and the connection acts within the (1,0) subspace. In the case the vec-
tor bundle is holomorphic, i.e. the fiber transition functions between coordinate

patches are holomorphic functions of the coordiantes.

For graded a.lgebras we can consider related vector bul}dla over M = G/G.
The fibers are spanned by subsets of vector fields E, or the Cartan-Maurer forms
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e”. Define the vector space TH, spanned by E;(z) for generators L; € Gy = H.
Decompose the total space as 'V, @ VX = TMS & TH, and assign indices

En(z) € TMO En(z) € TMOY Ei(z) € TH,

Eq(z) €V Eu(z) € V& (7.1)

where unprimed indices @ are in V' and primed indices o are in V*. As before G-
invariance requires adjoint G, invariance. Then this decomposition is G-invariant
if modes in V and V1 are not mixed by G,. For a graded algebra this requires
that each submodule G, is entirely in either V or V. |

In the Kihler case V; = TMI? and V;} = TMOD @ TH,. We will
treat the general case as a finite extension or restriction of the Kahler case. A
hermitian inner product on TME is defined by the Kahler metric. If T, C V,
the inner product must be extended by including a nbndegenefate N;; obeying
NyC'xj + N;jC' i (where all indices ¢,j,k,! are in G,.) Also set N;, = 0 and

N;7 = 0. Then thg hermitian inner product on V'
N(Ea7) = N (72)
is preserved by the connection
WPy = =D pe™ + C° mpe™ + C° et (7.3)

where D, = No¢CF meN7,. This is just an extension or restriction of the Kahler

connection that operates within the space V spanned by the vector fields E,.

The curvature of the vector bundle is defined by R?y = dw?® y +w? . w®;. For
a holomorphic vector bundle with connection preserving a hermitian innér product,
the curvature of the connection must be a (1,1) form on the base manifold. The
converse is also true [21]. Thus, if we choose a bundle and connection such that
the curvature is a (1,1) form, the bundle is holomorphic. For the connection (7.3)
the curvature is a (1,1) form on G/Hp if

/

C* mp=0 Clay =0. (7.4)
Using the form of the structure constants for a graded algebra, this is true if we
decompose v
Ea eV a>r .
o (1.5)
Ea‘ € VJ' a’ <rg.
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The Kahler caseis rp = 0 with V = TMIO) Values of ro > 0 are finite restrictions

and ro < 0 are finite extentions of this case.

The Ricci form R = R?, is the curvature of the determinant line bundie
constructed as the exterior product of all forms spanning V*, the dual space of V.
For the graded case this is the semiinfinite form

det(e) = N e =ett At A, (7.6)

a>ro

including- all e* at levels higher than rg. The cohomology of such forms has been
studied in reference [24]. Again the form of the metric can ensure convergence of
the trace. For a finite change in connection Aw?, from the Kahler connection, the
Ricci form is ' ' '

R = Ry + dAwW®, (7.7)
where Rk is the Ricci form of Kahler geometry. For a graded algebra each vector
E, in V contributes the exact term —C* ,3C®;,e™e™ to the Ricci form. Adding or
subtracting these terms from the Kahlerian Ricci form (5.37), the Ricci curvature

for any ro is

Roa = —C°®myC” 2a a>rg, ¥ <ro
ro+m (7.8)
= - E c* m,o—mcm—m.—m,a .
a=ro<+1

For G = Diff(S?), H = S?, the line bundle det,,(e) of forms e?, a > ro has curvature
Ron = (-..lgm3 + (ro(ro + 1)+ é)m)«sm,n : (7.9)

For the superstring case with H = Gy, the determinant must include fermionic
modes e*, @ > po, where po = 1o + 360, 6o = £1(0) in the NS(R) sector. The
curvature in the NS sector is
" Rpa = (-—-%m3 + (50(7‘0 + %) - -})m)&m,n
(7.10)
Ry = (-5#2 + (Solro+3) - %))5“,, .
The curvature in the Ramond sector does not change from the Kahler case, since

the bosonic and fermionic contributions at each integer level cancel.
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7.2 Implications for String Theory

It is known from the study of gauge theories that the ghosts may be identified with
the Cartan-Maurer forms of the gauge group. The ghost vacuum of string theory
filled to level ro + 1 is the semiinfinite product
[0)ro = J] ¢ = coFicet2co+s .
a>ro | (7.11)
0, =0 a>mro

Identifying the ghost modes with the Cartan-Maurer forms, we see that this is the
‘semiinfinite form (7.6). The ghost contribution to the energy-momentum tensor
anomaly in these vacuua has been calculated [25] and agrees with our results

(7.9,7.10) and with reference {12] and standard results in string theory [26].

The total string vacuum is the product of matter fields X“(o) vacuua and
ghost vacuum: [0) = |0)x ® |0)~,- The contribution of the X* vacuua to the
anomaly has been calculated as the curvature of a holomorphic line bundle over
(super-)Diff(S!)/S! (10, 12]. For the bosonic string in D spacetime dimensions this
curvature is

Fra = (&(m® — m) = 2a0m)6m.n (7.12)
where ag is a normal ordering constant for Lg, the generator of rigid S? rotations.
The total curvature of the vacuum bundle is the sum of the string and ghost contri-
butions. Reparameterization invariance of the vacum requires that the curvature

vanish. Rewrite (7.9) in the suggestive form
Rma = (=8(m® = m) + (ro + 2)(r0 = 1)m) 8 . (7.13)

The nontrivial terms in the curvatures fix D = 26. The exact terms fix the normal
ordering constant to |

ao = (ro +2)(ro — 1). (7.14)

= —1 for ro = 0, the vacuum corresponding to the canonical line bundle of

Diff(S')/S*. ao vanishes for ro = —2,1. This corresponds to the vacuua which just

include or exclude modes for the generators of SL(2,R). These are the SL(2,R)

invariant vacuua. Note that in these cases the curvature agrees with the Ricci
. curvature of Diff(S?)/SL(2,R) from (6.12).
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In the Neveu-Schwarz sector of the superstring the curvature of the matter

vacuum bundle is
Fon = (% (m3 ~m)— 2aom) Smn

(7.15)
Fio=(2(u*-1) - 2a5)6,,.
Rewrite (7.10) in the similar form
Bn = (=5(m = m) + (bo(ro +}) = §)m)
' (7.16)
Rus = (_5(,,2 — 1+ (Solro+ 1) - g))au,, .
The notrivial terms fix D = 10. The exact terms fix
a0 =3(bo(ro+3) - 2). (7.17)
ao = —1 for 1o = 0 and & = +1, which corresponds to the canonical line bundle

of super-Diff(S!)/S'. aq vanishes for rg = 1, §g = +1 and for ro = =2, § = —1.
This corresponds to the vacuua which just include or exclude the modes for the

generators of OSp(1 | 2). Here the curvature also agrees with the Ricci curvature
of super-Diff(S')/OSp(1 | 2) from (6.17).

Finally, in the Ramond sector the curvature of the matter vacuum bundle
is
Fon= (%m3 - 2aom)5m,n
(7.18)
Fuo = (24® - 2a0)6,.,.

The curvature of the ghost vacuum bundle is always
Rmﬂ = (—gms)(sm,n
Ry = (=54%)6,,

with no dependence on the sea level. Thus ag = 0 for all vacuua in the Ramond

sector.
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Appendix A
Super-Tensor Index Conventions

In this appendix we discuss Z, grading sign conventions for super-tensors. Super-

space is based on a Grassmann algebra. A set of Grassmann generators ¢ obey .
¢ =-g¢ (€7 =0. (A1)

For most applications in physics the number of Grassmann generators is infinite.
By extending the usual properties of tensors to functions including the Grassmann
generators one define tensors on superspace. Due to the sign in (1.1) signs ap-
pear in many tensor relations. Here we will derive appropriate ‘conventions to
determine the signs. Our results are similar to those of {23]. When referring to
c-number quantities, we use the terms commuting, Grassmann even, and bosonic
interchangeably. For quantities obeying (1.1) we use the terms anticommuting,

Grassmann odd, and fermionic interchangeably.

Al Super-Functidns and Derivatives

The Z, grading for vectors can be inferred from the properties of functions of
Grassmann variables and their derivatives. Consider functions of two variables, =
and ¢, which are commuting and anticommuting, respectively. Since Grassmann
variables are nilpotent, an expansion of such a function in powers of ¢ will have

only two terms:

F(z,£) = Fo(z) + {Fi(2).
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Take first a function » f which is overall commuting. Then the expansion is
f(z,€) = a(z) + {B(z) = a(z) — B(z)¢

where the coefficient function a(z) is commuting and B(z) is anticommuting. Now

consider the left and right derivatives of f with respect to z and £. They are
3 f(.6) =d(2) +66(@)  f(2,8) % = d(z) +£F(2)

— -
8 f(z,€) = B(z) f(z,§) 8 = —B(=)
We see that left and right = derivatives are equal, but the left and right ¢ deriva-

(A.2)

tives have opposite sign. Next consider a Grassmann valued function ¢(z,§) with
expansion

é(z,€) = ofz) + £b(z) = a(z) + b(z).
Here a(z) is anticommuting and 4(z) is commuting. Then the left and right deriva-

tives are ‘
By 4(z,6) = /() +EV(5)  #(z,€) B, = o/(z) + £/(2)

3 #(z,€) = b(z) 8(2,€) % = b(z)

In this case we see that left and right derivatives are equal for both z and ¢.

(A:3)

A.2 Super-Ve;:tors

These results can be used to define index grading for super-vectors with upper or
lower indices. As is conventional, we will take derivatives to have lower indices.
Then the derivative of a function is a vector with a lower index, e.g. Us. Since -
coordinates have upper indices and are functions on the vector space, we will’
take coordinates to be upper index vectors, e.g. V4. Next we recall a result. of
DeWitt which states that any super-vector sbace may be chosen to have a pure
basts, tHat is, one in which the basis vectors are either purely commuting or purely
anticommuting. Then the Grassmann parity of a vector component is determined
by its index. For Z, grading signs, we use the common notation based on the

vector index A: ‘
(=1)* = {+1 A bosonic index

-1 A fermionic index .
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This notation means that in the exponent of (—1), replace the index by 0 if the
index is bosonic and 1 if the index is fermionic. When considering more than one
vector, grading signs depending on several indices may occur. Using 0 or 1 for

indices in exponents of (—1), we have for example

( 1)‘43 _ {-1 A and B both fermionic

Finally, an object may have an intrinsic Grassmann parity in addition to any index

+1 otherwise .

grading. For example, the above functions f and ¢ are bosonic and fermionic,

respectively. Then the grading notation is the same as for indices, writing the

name of the object instead of the index in the exponent of (-1). The name is then
replaced by 0 or 1 if the object is bosonic or fermionic, respectively. For example,

for a function F':
+1 F bosonic

17 ={ i
-1 F fermionic . _
Most of the super-tensors we will consider are extensions of the purely bosonic case,

and as such have even intrinsic Grassmann parity. For the rest of this discussion

‘we will assume that tensors have even intrinsic parity unless indicated otherwise.

The results above indicate that left and right derivatives may have different
signs. Thus, we will have to distinguish between vectors with left and right indices.
The index location indicates how a vector transforms under a change of basis. Left
index vectors are multiplied by a rotation matrix on the left, and sinﬁila.rly for
right indices. Covariance under such rotations will determine Z, grading signs

associated with a particular quantity.

First .consider lower index vectors, which can be related to the derivative
of a bosonic valued function. (The derivative of a Grassmann valued function will

yield a vector with odd intrinsic parity.) For a function f of coordinates z# define

a vector U by .
A 0
F I

Then from (1.1) we see that
Ua = (=1)4 4U.

For fermionic components of lower-index vectors, the left- and right-index compo-

nents have oppposite sign.
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To proceed, we will have to consider the transformation properties of vec-
tors. Suppose we change coordinates by z# — z'4(z3). Define left and right

transformation matrices by the derivatives

3 . 3
aL? = Fyy Z,_B BR, = :I:’Ba? (A.4)
For example, these relate the derivatives
— —_ — —
o _ 59 2 _ 9 sp,
o4 oz'B dz4 — 9’8

From the above results for derivatives of functions (1.2,1.3), we see that the left

and right matrices are related by
ARB = (_I)B(A-I'-l) BLA.

For the rest of this discussion, different index orderings of a given tensor will be
referred to by the same name. Thus, R and L are both the same rotation matrix
M, and

AMp = (-1)74+) g4 - (AS)

is the grading for different index orderings. Also, note from the definition (1.4)
that the Grassmann parity of AMp is (—1)4+5.

Now we can determine all grading conventions for vectors. For a rotation
matrix M, we will also need the inverse rotation /N which obeys .

0 otherwise .

The different index orderings for IV are related the same as M. Define left- and

right- , upper- and lower-index vectors to have transformation rules

VIA=VBBMA A=’UBBNA
. (A.6)
AV = AMpBV LU = 4NBRU
Then using (1.5) to rearrange indices on M and using the Grassmann parity of the
vectors and M, one can relate the left- and right-index vectors. For upper-index
V: o
AV = AMp BV

= (_I)B(A+l) BMA BV

= BV g MA.
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Comparing with the defined transformation properties (1.6) we see that 4V and
V4 transform the same way Thus they are equal up to a multiplicative constant.-

Choosing the constant to be one we may identify
AV = VA | (4.7)

For lower-index U:
UA = U B BN A

= (~1)AB+ g  NB
| = (=1)4*B JN® Uz
(=1)AU, = 4NB (-1)B Us.
Thus we see that (—1)# U, transforms like 4U and we identify
aU = (=1)* Ua. | | (A.8)

Again we have set an arbitrary constant to one. This agrees with our earlier

_conclusion for lower-index vectors defined by derivatives.

A.3 Super-Tensors

Tensors are constructed simply as the product of vectors. As an example, consider
the case of a tensor with one upper and two lower indices constructed from an

upper-index vector V' and lower-index vectors U and W. Then define the tensor
T by
T4 go = VAUBWE. (A.9)

Different index orderings are obtained by permuting the .deﬁning vectors and in-

cluding appropriate. grading signs. For example, some permutations of T" are
TA go = (~1)*2 Tp4 ¢
__; (—1)AB+C) T, 4
_ (_I)sc TA op.

Note that the tensor in the last line is different from the initial one, and is defined
by T « VWU, with thg vectors ordered differently from the first case. Finally,
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indices may be changed between left and right using (1.7) for upper indices and

(1.8) for lower indices.

The transformation rules for tensors are easily obtained from those for the
“defining vectors in (1.6). For the above example, with rotation matrix M and

inverse N,
T'A gc = VAUWS
= VP pMA Ug ENg Wr F NG
= (—1)BA+DI+F(4+B+D+E) DY 17 MAE N F N,
- (_I)E(A+D)+F(A+B+D+E) TA po pMAENS F NG

In general, a tensor transforms by the product of the transformation matrices for
each of its indices, with grading signs included for permuting saturated indices
until they are adjacent.

Consider now a tensor with one upper- and one lower-index defined by
TAg = VAUg.

We wish to construct a scalar S by saturating the indices. Grading signs will be
needed to insure that the scalar is invariant, i.e. S’ = S. From the defintion of the

roatation matrix M and inverse N, we see that the quantity V4 4U is invariant:
VAU = VO cMA 4NP pU = VO 6P pU = VO cU.
But from (1.8) AU = (—=1)4 Uy, so the scalar quantity is
S=(=1)AVAU, = (—1)4T4 4.

This determines the appropriate grading for saturating indices on a tensor T4 g. It
agrees with the well known form of the super-trace. Saturation of indices with other
orderings, or left- or right-indices, is determined using the appropriate grading for

permuting the indices. For example
S=(-1"T",=Ty*
= (-1)*Ty = (-1)* 4T4 (A.10)
=4 ,T=(=1)24T
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are the ways to saturate all possible index arrangements of the tensor T considered
above. Finally, pairs of indices on higher rank tensors may be saturated to create
a tensor with rank two lower. Grading signs are inserted to permute the indices
until the saturated indices are adjacent. Then the above rules are used to sature

the pair. For example,

Spe = (=1)AC+B+O) TA g0

is the correct way to form a tensor Spc by saturating the first and last indices of

a tensor T4 gep.

Finally, we note that tensors may be multiplied by saturating indices, form-
ing a new tensor with the remaining indices. The grading rules are easily deter-
mined using the definition of a tensor (1.9) and the grading rules (1.10). The
simplest case is saturating the last index of the first tensor with the first index of
the last. For example

RA B= S4 Fol Tc B
forms a new rank-2 tensor R from rank-2 tensors S and 7. When transformed,
the rotation matrices for the saturated indices cancel, as in the case for the scalar
quantity (1.10). Other index orderings are obtained by including grading signs to

permute indices until the saturated indices are adjacent. For example,
RAB = (_I)AC SCA TCB
forms R from S and T, with S now having index ordering S, 5.

The tensor multiplication rules are particularly useful when considering the
tensor product of matrices. The tensor product of two matrices R and S can be

written as a rank-4 tensor with index ordering given by
(R® $)* 5, "5, = R* 5, 5 p,.

The index subscripts indicate which vector space in the tensor product the index
belongs to. Then multiplication of two such matrices will require grading signs
from permuting the saturated indices until they are adjacent. As seen above, no
grading signs are needed in the multiplication if the indices are already adjacent.

- Thus, when dealing with large matrices, it is convenient to arrange the indices in
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the tensor product so that this is the case. For a tensor product, this means that
the first and last indices should belong to the same vector space, the second and
second to last indices belong to the same vector space, and so forth for higher

tensor products. For the above example, this appropriate arrangement is
(R ® S)Auﬁg BBy = (_1)51(A2+32)RA1 By SA2 By

Then two such matrices may be multiplied using normal matrix multiplication

with no grading. For example
(R® S)*4 p,p, = (R ® §)"1* 0,0, (R’ ® §")% g3,

Essentially this convention moves the grading signs to the definition of the matrix
tensor product. This convention is most convenient when dealing with the tensor
product of two or more matrices. For example, the triple tensor product of two
2 x 2 matrices is an 8 X 8 matrix. Including the signs when writing these large
matrices allows normal matrix multiplication, avoiding sign errors in the tedious

manipulations.

70



Bibliography

[1] V.G. Drinfeld, “Quantum Groups”, Proc. Inf.ernat. Congr. Math., vol. 1, 798-
820, Berkeley (1986).

[2] M. Jimbo, Lett. Math. Phys. 11 247 (1986).

[3] L.D. Faddeev, “Integrable Models in (1+1)-dimensional Quantum Field The-
ory”, (Les Houches, 1982), Elsevier Science Publishers, Amsterdam, 1984.

[4] L. Alvarez-Gaumé, C. Gomez and G. Sierra, “Duality and Quantum Groups”,
CERN-TH.5369/89, UVGA-DPT-3/605/89, as well as earlier CERN and
UVGA preprints. '

(5] Yu.l Manin, “Quantum Groups and Non-Commutative Geometry”, Montréal
University preprint, CRM-1561 (1988).

(6] L.D. Faddeev, N. Reshetikhin and L.A. Takhtajan, “Quantization of Lie
Groups and Lie Algebras”, LOMI E-14-87 (1987), to appear in M. Sato’s
60th birthday volume.

(7] L.A. Takhtajan, “Quantum Groups and Integrable Models”, Advanced Stud-
ies in Pure Mathematics 19, 1989.

(8] S.L. Woronowicz, “Twisted SU(2) Group. An Example of Non-Commutative
Differential Calculus”, Publ. RIMS-Kyoto 23 117 (1987). '

(9] J. Wess and B. Zumino, “A Right-Invariant Calculus for GL,(2,C)”, to ap-

pear.

(10] M.J. Bowick and S.G. Rajeev, Phys. Rev. Lett. 58, 535 (1987); Nucl. Phys.
B293, 348 (1987); The Complex Geometry of String Theory and Loop Space,

71



Invited talks at the Eleventh Johns Hopkins Workshop on Current Problems
in Particle Theory, Lanzhou, People’s Republic of China, June 17-19, 1987.

(11]) B. Zumino, The Geometry of the Virasoro Group for Physicists, Lectures
presented. at the Cargeése 1987 Summer School on Particle Physics, Cargese,
Corsica, August 3-21, 1987. LBL preprint LBL-24319, UCB preprint UCB-
PTH-87/48. ’

[12] K. Pilch and N.P. Warner, Journ. Classical and Quantum Gravity, MIT
preprint, (CTP 1457, Feb. 1987).

[13] D. Harari, D.K. Hong, P. Ramond and V.G.J. Rodgers, Nucl. Phys. B294,
556 (1987).

[14] P. Oh and P. Ramond, Phys. Lett. B 195, 130 (1987).

[15] Z. Zhao, K. Wu and T. Saito, Phys. Lett. B 199, 37 (1987).
[16] W.B. Schmidke and S.P. Vokos, Ann. Phys. 189, 190 (1989).
[17] V. Jones, private communication.

‘[18] J. Schwenk, W.B. Schmidke and S. Vokos, “Properties of 2 X 2 Quantum
Matrices in Z,-graded Spaces”, preprint LBL-27933, UCB-PTH-89/25 (1989).

[19] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, (Inter-
science, New York, 1969), Vol. I, Chapter VI, Sec. 2,3. Vol. II, Chapter IV.
This is a standard textbook on modern differential geometry.

[20] R. Coquereaux and A. Jadczyk, Riemannian Geometry, Fiber Bundles,
Kaluza-Klein Theories and all that .... World Scientific (1988).

[21] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Princeton
University Press (1987).

[22) M.J. Bowick and A. Lahiri, J. Math. Phys. 29, 1979 (1988).

(23] B. DeWitt. Supermanifolds. Cambridge (}niversity Press (1984).

72



[24] 1.B. Frenkel, H. Garland and G.J. Zuckerman Proc. Natl. Acad. Sci. USA 83,
8442 (1986).

(25] D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B198, 93 (1986).

[26] M.B. Green, J.H. Schwarz and E. Witten. Superstring Theory. Cambridge
University Press (1987). This textbook contains numerous references to orig-
inal works.

73



K S -~ o

——

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720



