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Abstract 

Techniques from differential geometry and group theory are applied to 

two topics from string theory. The first topic studied is quantum groups, 

with the example ofGL(lll). The quantum group GLq(lll) is introduced, 

and an exponential description is derived. The algebra and coproduct are 

determined using the invariant differential calculus method intr~duced by 

Woronowicz and generalized by Wess and Zumino. An invariant calculus 

is also introduced on the quantum superplane, and a representation of the 

algebraofGLq(lll) in terms ofthe super-plane coordinates is constructed. 

The second topic follows the approach to string theory introduced 

by Bowick and Rajeev. Here the ghost contribution to the anomaly of 

the energy-momentum tensor is calculated as the Ricci curvature of the 

Kahler quotient space Diff(S1 )/S1. We discuss general Kahler quotient 

spaces and derive an expression for their Ricci curvatures. Application 

is made to the string and superstring diffeomorphism groups, considering 

all possible choices of suogroup. The formalism is extended to associated 

holomorphic vector bundles, where the Ricci curvature corresponds to the 

anomaly for different ghost sea levels. 

*This work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under 
Contract DE-AC03-76SF00098. 
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I' .. Chapter 1 

Introduction 

In recent years string theory has been dominated by the application of higher 

mathematics to theoretical physics. New mathematical structures unfamiliar to 

physicists have arisen in many studies. Mathematics well known to physicists has 

also been applied in new and powerful approaches. In this work we focus on the 

application of two branches of mathematics already common in theoretical physics: 

differential geometry and group theory. We will use techniques from both of these 

fields to study two different topics arising in string theory. 

The first topic we discuss concerns quantum groups. Quantum groups 

anse naturally in several aspects of physics and mathematics, namely in the 

context of integrable models, quantum inverse scattering methods, the Knizhnik­

Zamolodchikov equation, rational conformal field theory, as well as in the theory of 

Hopf algebras, solution of Yang-Baxter equations and theory of braids [1, 2, 3, 4]. 

For our pu.fposes quantum groups can be thought of as one-parameter deforma­

tions of classical groups. We will concentrate on matrix groups. In this case the 

elements of a quantum matrix do not behave like ordinary c-numbers, but obey 

modified commutation rules imposed by the quantization procedure. Given these 

rules, the problem is to derive the algebra of the generators of the quantum group. 

For matrix groups one may also consider the vector space acted on by the matrices. 

The components of these vectors also obey modified commutation relations. This 

approach to quantum groups has been developed by Manin [5]. 
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In this work we quantize the group GL(111). This is the group ofnonsingular 

matrices acting on the superplane, a vector space with one commuting and one 

Grassmann coordinate. We quantize using the R-matrix procedure outlined in (6, 

7]. Using the relations on matrix elements imposed by quantization, we determine 

the algebra of the generators. We follow the invariant differential calculus method 

introduced by Woronowicz (8] and generalized by Wess and Zumino (9]. This 

calculus is b~ed on an exterior derivative which is nilpotent and obeys the Leibniz 

rule. The method also yields the coproduct, which describes how the generators 

act on a tensor product of spaces. Finally we construct an invariant differential 

calculus on the superplane. We also construct a representation of the quantum 

group generators based on the superplane coordinates. 

The second main topic of this work concerns an approach to string theory 

initiated by Bowick and Rajeev (10]. They formulated open string theory in terms 

of holomorphic line bundles over the manifold Diff(S1 )/S1 • This was motivated 

by the fact that the quantization procedure is not invariant under reparameteri­

zations of the string coordinate. The open string may be described as a loop in 

phase space, and reparameterizations form the group of diffeomorphism.s of the 

circle Diff(S1 ). The action of Diff(S1 ) mixes creation and annihilation operators, 

changing the definition of the vacuum state. The subgroup of Diff(S1) consisting 

of the rigid rotations of the circle (:: U(1) :: S1) does not mix the operators. Thus, 

the inequivalent ·vacua may be identified with the quotient space M = Diff(S1 ) /S1 . 

M is an infinite dimensional Kahler manifold. Each fiber of the string vacuum 

bundle over M consists of the open string Fock space with the usual inner product. 

The curvature of this bundle is the anomaly in the Virasoro algebra. Geometrically, 

non-vanishing curvature means that a covariantiy constant section of the bundle 

does not exist; one cannot define a reparameterization invariant vacuum. In refer­

ence (10] ghosts and their associated vacuum bundle are included, cancelling the 

anomaly in the critical dimension. The authors also noted that the curvature of 

the ghost vacuum bundle is equal to the curvature of the canonical line bundle over 

M, which for a Kahler manifold is given by the Ricci form. This motivates our 

interest in the geometry of Diff(S1 )/S1 and related manifolds. Subsequent work 

has further clarified the Riemannian geometry of Diff(S1 ) /S1 [11] and extended the 

2 



calculation to the supersyrnrnetric case super-Diff(S1 )/S1 (12, 13, 14, 15, 16] . 

In this work we discuss the calculation of the curvature of the canonical line 

bundle of a quotient space and extend the formalism to include other levels of the 

ghost vacuum. The discussion uses the language of differential geometry familiar to 

physicists. We begin by reviewing the construction of a quotient space M = G f H 

for a group G with subgroup H. The Riemannian geometry of such a space for 

G-invariant metrics is discussed. Next the conditions for M to be a complex 

manifold are outlined. If M admits a Kahler metric the associated Ricci curvature 

has a simple form independent of the metric. These results are then applied to 

the groups relevant to the string and superstring, which are special cases of graded 

al"gebras. Here it is seen that the use of the Kahler metric regulates otherwise 

divergent quantities. Finally, the calculation of the Ricci curvature is extended 

from the tangent bundle of Riemann and Kahler geometry to more general vector 

bundles based on these spaces. This result corresponds to different filling levels of 

the ghost sea. 
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Chapter 2 

The Quantun1 Group GLq(lll) 

In this chapter we discuss the quantum group GLq(111). The classical matrix 

group is quantized using the R-matrix procedure, following closely the discussion 

in (7]. This determines the bilinear quantum relations on the matrix elements. 

Covariance of these relations is demonstrated. The quantum detennina.."'2t :s -::lso 

introduces. Finally, an exponential description of the quantum group is developed. 

2.1 R-matrix Quantization of Groups 

The method of group quantization most commonly encountered for matrix groups, 

involves the R-matrix. The R-matrix is in the tensor product of two matrix spaces. 

It describes how to reverse the ordering of the same matrix in two different tensor 

spaces. Explicitly, if the same matrix A is written as A1 = A® 1 when in the first 

space and A2 = 1 ® A in the second, then the R-matrix equation is 

(2.1) 

This equation defines bilinear relations on the elements of A. We will refer to such 

relations defined by quantization as q-relations. 

If one considers the triple tensor product of matrices, co~istency determines 

a constraint in the R-matrix. Let R(l2) act on the 1 ·and 2 matrix spaces, R(13) 

on the 1 and 3 spaces, and R(23) on the 2 and 3 spaces. The R-matrix commutes 
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with matrices not in the space it acts on. Then using the above R-matrix equation 

repeatedly to switch matrices shows 

= R(23)A2A3AtR(t3)R(t2) 

= AJA2AtR(23)R(t3)R(t2) 

and we see that R(23)R(13)R(t2) reverse the order of A1A2A3 to A3A2A1. However, 

the order in which we swapped matrices can be changed. The other way is 

R(t2)R(t3)R(23)AtA2A3 = R(t2)R(t3)AtA3A2R(23) 

= R(t2)J!3AtA2R(t3)R(23) 

= A3A2AtR(t2)R(t3)R(23)· 

Here we see that R(t2)R(13)R(23) switches the ordering as before. Thus these two 

triple products of R-matrices are equal: 

(2.2) 

This is the Yang-Baxter equation. No further constraints arise from considering 

higher tensor products. 

2.2 R-matrix and q-relations for GLq(lll) 

The classical group GL(lll) is the group of 2 x 2 non-sigular super-matrices which 

act on a 2-dimensional vector space with one commuting and one anticommuting 

coordinate. Such a matrix A E GL(lll) can be written 

(2.3) 

where the matrix elements a and d are commuting and {3 and 1 are anticommuting. 

The (anti- )commutation rules will be modified by quantization. 

The R-matrix for GLq(lll) is in the tensor product of 2 x 2 super-matrices, 

so it is· a 4 x 4 matrix. As discussed in the appendix, it is convenient to choose 
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an index ordering convention which allows simple matrix multiplcation with no 

additional grading signs. We choose the indices ordered as R'1i 2 i:zj1 , where the 

subscripts on the indices indicate which vector space in the tensor product the 

index belongs to. The the R-matrix for GLq(111) is 

q 0 0 0 

R= 
0 1 0 0 

(2.4) 
0 ,\ 1 0 

0 0 0 q-1 

. where ,\ = q- q-1• This R-matrix has been used extensively in the work of Lee 

and Couture (17]. 

It can be verified that this R-matrix satisfies the Yang-Baxter equation 

(2.2). For this the R-matrix is written as an 8 x 8 matrix in the tensor product of 

3 2 x 2 super-matrices. Again it is convenient to choose index ordering for simple 

matrix multiplication. In terms of the above index ordering for R, we hav3 

Riti:zi3 0 0 0 - Eti:z 0 0 fl3 0 

(12) J3.12Jl - . J2J1 J3 

Rili:zi3 0 0 0 - (-1)i:z(i3+J3) Eli3 0 • f?:z . 
(13) J3J2J1 - J3J1 J2 

_R!ti:zi3 0 0 0 - (-1)i1(i:z+i3+h+i3) 8:zi3 0 0 fll 0 

(23) J3J2J1 - J3J2 Jl. 

Here the Z2 grading signs are ( -1)i = +1 for index i corresponding to the first 

row or column of a 2 x 2 matrix space, and ( -1)i = -1 fori corresponding to t]::oe 

second row or column. 

Having verified that the R-matrix satisfies the Yang-Baxter equation. we 

can now use it in (2.1) to determine q-relations on the elements of a matrix A a.s 

in (2.3). In writing the 4 x 4 matrices corresponding to A1A2 and A2A1 we once 

again choose index ordering for simple matrix multiplication. Then the grading 

signs are given by 

(A 2)i1i:z 0 0 _ (l ,0\ A)i1i:z 0 • _ (-l)idi:z+i:z> Ai, 0 fll 0 

J2J1 - '01 J2Jl - J2 Jl 

6 
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so the 4 x 4 matrices are 

a 0 {3 0 a {3 0 0 

0 a 0 {3 ' d 0 0 
A1= A2= 

' 0 d 0 0 0 a -{3 

0 ,. 0 d 0 0 _, d 

Using these matrices and the R-matrix (2.4) in equation (2.1) gives bilinear ;::­

relations for the elements of A. The independent q-relations are 

a{3 = q{3a {32 = 0 

a{= q{a '2 = 0 
(2.5) 

d/3 = q{3d /3{ = -{/3 

a,= q,d ad- da = -A/3( 

where ).. = q - q-1 • Note that the first three relations in the right column are 

the same as in the classical ( q = 1) case. The. other relations are modified by 

quantization. 

The determinant· of the quantum matrix A may be defined in the same 

way as for a classical matrix. Begin by decomposing the matrix into a product of 

a lower triangular matrix, a diagonal matrix, and an upper triangular matrix as 

follows: 

A = ( ~ ~ ) = c:-1 ~ ) ( ~ d- ~a-1P )( ~ a-: p ) . 

The determinant of A is the product of the determin~ts of each of these three 

matrices. The determinants of the triangular matrices are one. The determinant 

of a diagonal super-matrix is the product of the diagonal elements in bosonic rows 

divided by the diagonal elements in fermionic rows. This is a result of the fact 

that the super-trace of a super-matrix is the sum of the bosonic diagonal elements 

minus the fermionic elements. The determinant of A is then the exponential of 

the super-trace of In A. (Later we will demonstrate that this is also true for these 

quantum matrices.) 

Using the above decomposition and rule for determinant of diagonal super­

matrix gives 
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The term in parentheses is easy to invert since the Grassmann elements are nilpo­

tent. Then using the q-relations to rearrange the group parameters (note that no 

net factors of q appear) we find 

det(A) = ad-1 
- f3d-1

1a 1 

= a 1a- a 1f3a1
1 . 

(2.6) 

This can be shown to obey the usual properties of the determinant, for example· 

det(A) det(B) = det(AB). More importantly, the determinant is central, i.e. it 

commutes-with all of the matrix elements: 

det(A)A =A det(A). 

Later we will also consider the group SLq(ljl), the group of 2 x 2 super-matrices 

with determinant one. 

One interesting property of the quantum groups is covariance of the q­

relations (2.5). This means that the product of two different quantum matrices 

with elements satisfying the q-relations (2.5) produces a new quantum matrix with 

elements satisfying the same relations. Explicitly, consider two matrices A and A' 

with elements 

, _ ( a' /3' ) A- . 
r' d' 

The elements of each matrix satisfy the q-relations (2.5), e.g. a/3 = q{3a, a'/3' = 
q/3' a', etc. The elemenmts of A (anti-)commute with those of A'. The product 

matrix A" is defined by· 

A"= AA' = . 
( 

a" /3" ) 
r" d" 

It is straightforward to check that the elements of A" given by 

a" = aa' + 13r' /3" = a/3' + {3<f 

/
11 = ra' + dr' d" = r/3' +del 

also satisfy the q-relations, e.g. a"/3" = qf3"a". It is in this sense that one says 

that the quantum group GLq(ljl) is closed under multiplication. The product of 

two different elements of G~q(ljl) produces another element of GLq(ljl). 

8 
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2.3 The Exponential Description 

Another interesting property of the quantum group GLq(lll) is found when con­

sidering powers of an element of the group. Consider the matrix A2 : 

with elements 

12 = ;a+d; 

fh = a/3 +/3d 

d2 = ;/3+~. 
It is straightforward to verify that the elements of A2 satisfy the q-relations (2.5) 

with q replaced by q2 , or explicitly 

/3~ = 0 

This means that if A E GLq(lll), then A2 E GLq2(lll). This suggests that similar 

relations will hold for any power of A. This has been verified through detailed 

calculations as discussed in [18]. Here we will demonstrate this through a different 

approach. 

Because the group GLq ( 111) is relatively simple, it is possible to explicitl;r 

check many of its properties. Here we will consider an exponential description of 

group elements. Write an element A of GLq(lll) as the exponential of another 

matrix M times a parameter h defined by 

A=ehM 

The elements of A and M are 

- h q -e. 

A=(~~) M=(: :)· 

(2.7) 

Like the elements of A, the elements of 1."vl will not obey ordinary graded commu­

tation rules. The correct relations can be determined by writing the elements of 
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A to order h2 and plugging into the q-relations (2.5). One finds that the elements 

of lvf must obey 

rC" - C"r = O" ru=ur 

UC" - C"U = 0" C"T = -TO" 

(2.8) 
rT-Tr=T 

UT-TU = T 

The relations in the right eolumn are the usual graded commutation relations; the 

left column is modified. Note that q (or h) does not appear in these relations. Also 

note that the super-trace of M, (r- u), commutes with all of the elements. 

Using these relations, an explicit form of the exponential can be written. 

This is easy to do because of the nil potency of C" and T in (2.8). Write M as a sum 

of two matrices as follows: 

M=Mo+M1 

Because of nilpotency, M}>2 vanishes. Then any power of lvf greater than or equal 

to two may be written 

n-1 n-2 n-m-2 
A1"~2 = M; + L M;' M1u;-m-1 + L L M;'MtM~M1u;-m-L-2. 

m=O m=O l=O 

Using the relations (2.8), the terms in the swnmations can be written in a simple 

form. The needed expressions are 

M;' M1M6M1M; = ( O"-r(r + 2)mO(u + l)l~ 0 ) 
-C"-r(u + 2)m(r + 1)1uk • 

Using these expressions in the expansion of M", the swnmations can be performed 

leaving 
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where 

rn = r" + O'T + - ---'~-~-=-
· ( (r+2)" r" (u+1)") 

2(1+r-u) 2(1-r+u) 1-(r-u)2 

(r+1)"-u" 
O'n = (J' 

1+r-u 

(u + 1)"- r" 
Tn=T~-~--

1-r+u 

Un = u" _ O'T ( (u + 2)" + u" _ (r + 1)" ) . 
2(1-r+u) 2(1 +r-u) 1- (r-u)2 

Finally, the exponential sum 

may be performed, yielding the elements of the matrix A. One finds 

a= ehr + O'T (1(1- r + u)eh(r+2) + 1(1 + r- u)ehr- eh(u+l)) 
l-(r-u)2 2 2 

{3 = 0' (eh(r+l) _ ehu) 
1+r-u 

I= T (e~(u+l) - ehr) 
1-r+u 

(2.9) 

d = ehu- O'T (1(1 + r- u)eh(u+2) + 1(1- r + u)ehu- eh(r+l)) . 
1- (r- u)l 2 2 

Note that these expressions have been written with no explicit appearance of q. 

All dependence on q is carried by h. 

It is straightforward to verify, using (2.8), that the above expressions for 

the elements of A satisfy the q-relations (2.5), with q = eh. Now consider AP, 

where pis any c-number. From (2.7) we see that this may be written 

Then the elements of AP: 

A'=(:~) 
are obtained from (2.9) with the substitution h ~ ph, with the elements of M 

( r, u, T, and u) still satisfying (2.8). The q-relations for the elements of AP are 
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satisfied with the same substitution, with q -+ qP. Explicitly, 

dp/3p = qP (3pdp 

d.p;p = q'P;pdp 

and (3p and ;p are nilpotent as usual. This verifies the property of GLq(lll) sug­

gested by A2 mentioned earlier. If A E GLq(lll), then APE GLqP(lll). 

Another interesting property of GLq ( 111) is seen by writing the dete.rmina.nt 

(2.6) using the exponential representation. Since the variables (7 and-rare nilpotent 

it is straightforward to show that the inverse of d is given by 

d-1 = e-hu + (71" (l(l _ r + u)e-h(u+2) + l(l + r _ u)e-hu _ eh(r-2u-l)) . 
1--(r-u)2 2 2 

Using this expression and (2.9) in the definition of the determinant (2.6), one finds 

det(A) = (a- (3d- 1;)a1 = eh(r-u). 

The exponent (r- u) is the super-trace of .. M, which is central. Thus we have the 

general relation 

In det(A) = s- tr In( A). 

This coincides with the relation for classical matrices. 

12 
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Chapter 3 

The Quantun1 Algebra GLq(lll) 

In this chapter we determine the algebra of GLq ( 111). We use the method of Wess 

and Zumino [9] based on an invariant differential calculus. This is a generaliza­

tion of the work of Woronowicz [8]. Fundamental to this method is an exterior 

derivative which is nilpotent and obeys the Leibniz rule. Input to the method 

are the q-relations defined by the R-matrix in (2.1). The elements of a matrix in 

the group are the group parameters. The method derives the algebra of genera­

tors of infinitessimal deformations of the group parameters. It also determines th~ 

coproduct of the generators. 

Here we apply this method to GLq(ll1), starting with the q-relations (2.5). 

We find the algebra of GLq(111) and its subalgebra SLq(1ll), and the coproduct 

of the generators. Our results are also shown to be consistent with the method of 

Faddeev, Reshetikhin, and Takhtajan [6, 7]. 

3.1 Exterior Derivative and Cartan-Maurer Forms 

We begin by defining the exterior derivative 8. We require 8 to be nilpotent and 

to obey the (graded) Leibniz rule: 

8(FG) = (8F)G + ( -l)F F(8G). 
(3.1) 
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Here ( -1 )F = + 1 ( -1) if F is commuting (anti commuting). This grading is re­

quired since 8 is anticommuting. 

Next define right-invariant Cartan-Maurer 1-forms in the usual way. For a 

group element A define: 

(3.2) 

Here the 1-form.s w1 and W2 are anticommuting while v+ and v_ are commuting. 

Under right multiplication by a constant group element Ao obeying 8Ao = 0, 

A'= AAo 

!2' = (8A')(A')-1 = (8A)A-1 = S1 

and we see that the Cartan-Maurer forms are right-invariant. 

By manipulating the definition of n one can determine the action of the 

exterior derivative on the group parameters and on the Cartan-Maurer forms. 

Rearranging (3.2) gives 8A = OA or for each group parameter 

(3.2) 
8d = WJ,d + v_{J. 

Acting on (3.2) with 8 and using (3.1) we have 

sn=nn --( Wt -\l+) n- . -\l_ W2 

The signs inn are determined by the grading in the Leibniz rule (3.1). Then we 

find for each 1-form 

(3.5) 

These are the usual (graded) Cartan-Maurer equations. Note that they are written 

with the ordering defined by (3.4). This is because we do not yet know. how to 

commute 1-forms; they may obey q-relations which differ from classical (anti­

)commutators. 
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The exterior derivative may be expanded as a sum of the 1-forms multiply­

ing the generators of the algebra: 

(3.6) 

The generators T1 and T2 are commuting and \1 + and \1_ are anticom.muting so 

that overall 8 is anticommuting. From (3.3) one can read off the action of the 

generators on the group parameters (e.g. T1a =a and V+a =,,.etc.) The algebra 

of the generators may be determined using the nilpotecy and Leibniz rule (3.1) 

obeyed by the exterior derivative. Applying 8 to the above expansion (3.6) gives 

(sum i=1,2) 

=(wi- V+v-)Tt- Wt(WiJi + V± \1 %) 

+ (wi- v_v+)T2- w2(wi1i + V± \1 ±) (3.7) 

=0. 

If we knew how to commute 1-forms, we could rearrange this expansion, with the 

coefficients of the 1-forms yielding the algebra of generators. Therefore we must 

detennine q-relations between the Cartan-Maurer forms. With this information 

we can return to this expansion and derive the algebra. 

3.2 Additional q-relations 

First we wish to extend the q-relations between group parameters (2.5) to include 

q-relations between Cartan-Maurer forms and group parameters. Recall that the 

Cartan-Maurer forms are right invariant. We shall require the new q-relations to 

also be right invariant. (This is already true for the relations (2.5)). Under right 

15 



multiplication A'= AAo the group parameters transform to 

a' = aao + /3;o 

;' = ;ao +d;o 

/3' = af3o + /3do 

d' = ;/3o + ddo. 

Under this transformation, a and /3 mix together, and d and; mix. Thus, in order 

to be right invariant, a and {3 should have the same q-relations with the 1-forms, 

and d and; should have the same q-relations (up to Z2 grading signs.) We sh.zll 

consider the following ansatz: 

d(sliwi +u'=v:) = (t'iwi + -r'=v:)d 

;(sliwi + ui=*=v:) = -(t'iwi + r'=*=v:);. 
(3.8) 

where si etc. define the form mixing. Next, recall that the determinant D = det A 

defined in (2.6) is central, i.e. it commutes with all of the group parameters. We 

wish to extend this to the algebra with Cartan-Maurer forms: 

Dw1,2 = Wt,2 D 

Since D = ad-1 - f3d- 1;d-1 , a and d-1 must have inverse mixing in (3.8), or ~ 

and d must have the same mixing, with primed coefficients equal to unprimed 

ones. Then all group parameters have the same q-relations with the 1-forms (up 

to grading signs). For a general group parameter A,. E {a, /3,;, d} we write 

(3.9) 

Here ( -1)A,. = +1 for A,.= a or d and ( -1)A,. = -1 for A,.= /3 or;. 

We now attempt to determine these relations by applying 5 to the q­

relations (2.5). Beginning with the simplest relation /32 = 0 we find 

8{32 = (5/3)/3- /3(5/3) 

= Wt/3/3 + v+d/3- /3w1/3- f3v+d 

= (qv+/3- /3v+)d 

=0. 
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The first and third terms in the second line vanish since they are proportional to 

j32 • The third line is obtained from the second using dj3 = qj3d. Since this must 

vanish for all values of the group parameters, the coefficient of din the third line 

must vanish, yielding j3v+ = qv+j3. Following the same procedure on r 2 = 0 gives 

C(2 = (qv_,- {v-)a = 0. 

Recalling that all group parameters have the same q-relations with the Cartan­

Maurer forms, we summarize 

(3.10) 

We see that the 1-form.s V:J: obey simple q-relations with the group parameters, 

with no mixing between 1-form.s. 

Acting on the relation f3r = -{/3 with c gives 

which is solved by (w1 - w2)j3 = -f3(w1 - w2) or in general 

Here we see that the linear combination (w1 - w2) is an eigenvector under com­

mutation with eigenvalue 1. Suppose there is another linear combination with 

eigenvalue f. Define the 1-form.s 

Wy = !(w1 -Wl) 

wx = ~((1 + tf>)wl + (1- ¢)w2) 

which obey the q-relations 

A,.Wy = (-1)A"WyA,. 

A,.wx = (-l)A,. fwxA,.. 

(3.11) 

(3.12) 

Further application of 8 to the remaining q-relations in (2.5) yields no new infor­

mation. We are left with two undetermined parameters, f and </>,both related to 

wx. 
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Next we wish to detennine q-relations between the Cartan-Maurer forms 

themselves. Again we apply 8, this time to the relations (3.10,3.12). Starting with 

the q-relations between v+ and a and d gives 

S(av+- qv+a) =q((fwx + (1- <P)Wy)v+- v+(fwx + (1- <P)Wy))a = 0 

S(dv+- qv+d) =q((fwx- (1 + <P)Wy)v+- v+(fwx- (1 + <P)Wy))d 

The coefficients of group parameters must vanish, giving relations between wx,Y 

and v+ and between v+ and v_. Repeating the procedure starting with the q­

relations between v_ and a and d, we arrive at the general relations 

i = 1,2,X, Y 
(3.13) 

Note that these relations are independent of q and equivalent to the classical case 

q = 1. 

The procedure may now be repeated with the relations between Wy and a 

and d. Applying 8 gives 

O(aWy.- Wya) = (f(wxWy + WyWX) + 2(1- cP)w? )a= 0 

S(dwy- Wyd) = (f(wxWy + Wywx)- 2(1 + c/J)w? )d = 0. 

Vanishing requires 

w? =0 

wxWy + Wywx = 0. 
(3.14) 

Again we find relations independent of q and equivalent to the classical case. 

There is one more set of relations, involving wx. Applying 8 to the relations 

between a and wx gives 

This yields the relation 

(3.15) 
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Notice that this relation is not equivalent to the classical case where wi = 0. It 

involves both the quantum deformation parameter q and the undetermined pa­

rameter f. There is a final consistency check which will determine f. Using the 

q-relations between between group parameters and Cartan-Maurer forms, we find 

A,.(w,k- ~tv+v-) = (f2w,k ~ q2~tv+v-)A,. 

= (f2- q2)~tv+v_A,. 

- (fl - q2) ( cT - f) A 
- f(f + 1) V+V- ,. 

=0. 

There are three solutions for f: 

I) f= q2 ~t=O 

II) f=q 
q-1 

~t=--

q+1 

III) f=-q 
q+1 

It---
- q-1· 

(3.16) 

The first solution is the simplest, with ~t = 0 and (3.15) equivalent to the classical 

case. The third solution has the wrong limit of (3.12) for q = 1 and we will 

disregard this solution. 

With the q-relations just derived we may rewrite the Cartan-Maurer equa­

tions in a simplified form. They are 

CWy =0 

(3.17) 

For solution I we see once again that the equations agree with the classical case. 

This is not true for cwx for solution I I. 

3.3 The Algebra 

The relations between Cartan-Maurer forms provide enough information to deter­

mine the algebra of the quantum group. Using these relations to rearrange the 
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expansion of 82 (3.7) we get 

+ V+Wy(YV+- Y'+Y +2Y'+) + V_Wy(YV_- V_Y +2V'_) 

+ v+wx(X\7 +- Y' +X)+ v_wx(XY'-- Y' _X) 

+ v+v-(Y' + Y' _ + Y' _ Y' + + (K -1)X- KX2
). 

Nil potency of 8 requires the coefficients of the Cartan-Maurer forms to vanish: 

XY-YX=O 

Y' ::Y- YY'::: = ±2Y'::: 

(3.18) 

Y' :X - XV: = 0 

Y' +'Y'- + Y'- Y' + = (1 - K )X + KX2
• 

This is the algebra of the generators of GLq(111). 

There are several features to note about the algebra derived above. First, 

note that the generator X commutes with all other generators. Thus it may be 

redefined by any function X' = F(X). Specifically it is desirable to simplify the 

algebra by setting the anticommutator {Y' +' Y' -}+equal to the redefined generator 

X': 

{ 
Xr solution I 

X' = Y' + Y'- + Y'-Y' + = ~ 2 X + .!L=l X2 solution II . 
q +I II q'fl"" II 

For solution I no redefintion is necessary. For solution I I the above redefinition 

gives Xr in terms of Xu. Later we will see that this redefinition is consistent with 

the coproduct. 

With this redefinition, or always for solution I, we see that the algebra is 

independent of q. In fact the algebra coincides with the classical algebra. Shortly 

we will see that this is not true for the coproduct, which does depend on q and is 

not equivalent to the classical coproduct. 

Finally, we note that the generators Y': and X form a closed subalgebra, 

given by the last three lines of (3.18). Recall the quantum determinant defined in 
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(2.6) 

Using (3.3) for the action of the exterior derivative on the group parameters and 

(3.10,3.12) to commute forms, one finds 

From the expansion of 8 (3.6), this shows that 

XD=O "V:D = 0. 

Thus we see that the generators in the subalg~bra leave the determinant invari­

ant. Then this subalgebra is SLq(111), the algebra of linear transformation with 

determinant one. 

3.4 The Coproduct 

Now we will consider the action of the generators on functions of the group param­

eters and on products of functions. This can be done using the previously derived 

q-relations between Cartan-Maurer forms and group parameters. This study yields 

the coproduct of the quantum algebra. 

First recall the action of the exterior derivative on a product of group pa­

rameters A,.,A3 E {a,~,')',d}: 

Using the relations (3.10,3.12), one can commute the Cartan-Maurer forms in the 

second term to the left of A,.. Equating coefficients of the 1-forms on both sides of 

the equation gives 

X(A,.Aa) = (XA,.)Aa + J Ar(XAa) 

Y(ArAs) = (Y Ar)As + A,.(YAa) 

"V:(A,.Aa) = (V':A,.)Aa + (-1)A"qA,.(V':As) 

where for now we will consider both solutions f = q, q2 • Repeating this procedure 

for higher power monomials of the group parameters will determine the action 
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on arbitrary functions. It is convenient to simplify this notation by dropping the 

second term in the product ( A.s here) and writing the action of the the generators 

on Ar times an arbitrary function ( ·) to follow: 

XAr· = (XAr) ·+JArX· 

Y Ar· = (Y Ar) · +ArY· 

. \7 :!:Ar· = (\7 :!:Ar) · +( -1)A"qAr \7:!: · 

We consider in detail first the generator X. Consider a monomial of group 

parameters amd"f3i"'ti where m,n > 0 and i,j = 0, 1. From above we see that a 

power of f appears each time we commute X through a group parameter. Repeat­

ing the procedure gives 

r+n+i+i -1 · .. 
= J- 1 ama"(3'y. 

It is convenent to define a number operator N for the group parameters as follows: 

(NAr) = Ar 

NAr· = (NAr) · +ArN· 

(Nama"/3i~) = (m + n + i + j)(ama"/3i~). 

Then the generator X and N are related by 

jN -1 
X= J~l 

IN= 1 + (!- 1)X. 

Now any funtion F of the group parameters can be written as a sum of monomials. 

By repeating the above procedures on a product of monomials, we find the action 

of X on products of functions to be 

XF· = (XF) · +(JNF)X· 
(3.19) 

= (XF) · +((1 + (J- 1)X)F)X · 

The result for the generators \7:!: is obtained in a similar manner. Here 

instead of ·a factor of f (which is equal to q or q2) there is always a factor of q 
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.. 

when commuting through a. group parameter. On a. product of functions 

(3.20) 

Finally for the generator Y we obtain the simple result 

YF· = (YF) · +FY ·. (3.21) 

In this final ca.se note tha.t there are no factors of q. In fa.ct the action of Y is 

equivalent to the classical ca.se. 

These results lea.d to the coproduct of the quantum algebra.. If A is the 

universal enveloping algebra., then the coproduct .6. is a. ma.p to the tensor product 

of A: 
A:A-+A®A 

F ~--+A( F) Fe A. 

The ma.p must be a. homomorphism of the algebra.: 

.6.(FG) = A(F).6.(G) F,GeA. 

It is straightforward to rea.d off the coproduct from the results in equ;;.tic·::~s (3.19-

3.21). For both solutions we ha.ve 

where in terms of X 

A(V :) = V:: ® 1 + qN ® V:: 

.6.(Y) = Y ® 1 + 1 ® Y 

A(XI) = XI® 1 + q2
N ®XI 

A(Xu) = Xu ® 1 + qN ® X 

qN = { (1 + (q2
- 1)XI)! solution I 

1 + (q-1)Xu solution II. 

Finally, we note tha.t the redefinition of X for the two solutions for f: 
2 q-1 2 

XI = q + 1 Xu + q + 1 Xu 

is consistent with the coproduct: 

2 q -1 2 
A(XI) = -

1
A(Xu) + -A(Xu) . 

' q+ q+1 
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This shows that both solutions for X are in the same universal enveloping alge­

bra, and are in fact reparameterizations of each other. For the remainder of the 

discussion we will take solution I with f = q2 and set X= Xr. 

3.5 Method of Faddeev, Reshetikhin, and Takhtajan 

It is instructive to compare the results based on the differential calculus to these 

of Faddeev, Reshetikhin, and Takhtajan [6, 7]. Their method is based on the R­

matrix (2.4) used earlier in defining the quantum group. Define the matrix R' 

by 

q 0 0 0 

[(=PRP= 
0 1 .X 0 

0 0 1 0 

0 0 0 q-1 

Here P is the permutation matrix acting on the tensor product of vector spaces 

V ® V according·to P(u ® v) = v ® u for u, v E V, or: 

1 0 0 0 

P= 
0 0 1 0 

0 1 0 0 

0 0 0 1 

Recall also that .X = q - q-1• Next define the upper- and lower-triangular 2 x 2 

matrices 

L- = ( u_ o ) . 
-.Xx- w_ 
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Finally define the 4 x 4 matrices L1,2 which act on V ® V by Lr = £±. ® 1 and 

L~ = 1 ® £±.. These matrices are 

L+-
1 -

L+_ 
2-

u+ 
0 

0 

0 

u+ 
0 

0 

0 

0 

u+ 
0 

0 

AX+ 
w+ 
0 

0 

AX+ 0 

0 AX+ 
w+ 0 

0 w+ 

0 0 

0 0 

u+ -AX+ 
0 w+ 

u_ 0 0 0 

Li= 
0 u_ 0 0 

-AX- 0 w_ 0 

0 -AX- 0 w_ 

u_ 0 0 0 

-AX- w_ 0 0 

0 0 u_ 0 
L;, = 

0 0 AX- w_ 

Here we have used index ordering to allow simple matrix multiplication (see ap­

pendix). 

The method of Faddeev, Reshetikhin, and Takhtajan uses these matrices 

to determine the quantum algebra and coproduct. The equations 

ltLrL~ = L~Lrl( 
I( Lt L;, = L;, Lt I( 

yield relations on U:, W±., and X±.· These relations lead to the quantum algebra .. 

One finds that U±. and W±. all commute with each other, and also that the combina­

tions U+U- and W+ W_ commute with X±.· Then we may take these combinations 

to be proportional to the identity and define 

Then the remaining relations are 

x±u = q=1ux± 

x±W = q±.1Wx± 

u_ = u-1 

w_ = w-1 . 

These relations determine the quantum algebra. 
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The coproduct is determined by 

where® denotes tensor product combined with usual matrix multiplication. Using 

the matrices D= defined above one gets 

~(U) = U®U ~(W)=W®W 

~(X+) = X+ ® W + U ®X+ 

~(x-) = x- ® U~1 + w-1 ® x-
where we have used the above definitions of U and W. 

(3.24) 

These results may now be compared to the algebra and coproduct derived 

earlier using the differential calculus. We can do this by writing one set of genera­

tors as functions of the other set. Because of the rather simple form of the algebra, 

there are many such reparameterizations which yield the same form of the algebra. 

However, the coproduct will give a unique relation between the two formulations. 

Consider the combinations w-1X+ and Ux-· Using the coproducts (3.24) we find 

~(W-1x+) = w-1x+ ® 1 + uw-1 ® w-1x+ 

~(Ux-) = Ux- ® 1 + uw-1 ® Ux-· 

Comparison with the coproducts (3.22) indicates that w-tX+ ex: v + and Ux- ex 

\7 -· Including normalization factors to get the same algebra, w~ find that the first 

set of generators can be written in terms of the new ones as 

~ -~u v- = q X-

For the inverse relations, note that 

x = U2w-2 -1 
q2 -1 

.qN = uw-1. 
(3.25) 

where we have used the commutation relations for Yin (3.18). Then it is easy to 

see that 
_!y_!N 

X+= qq 2 2 V+ 

1 1 
X-= qq2Y-2NV-

(3.26) 
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are the correct reparameterizations. Substitution of these relations into one form 

of the algebra leads to the other form. Thus both methods yield the same quantum 

tmiversal enveloping algebra. 
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Chapter 4 

The Qu~nturn Super-Plane 

In this chapter we discuss the quantum super-plane. This follows an approach to 

quantum groups first suggested by Y. Kobyzev and developed by Manin (5]. By 

defining coordinates and differentials which obey q-relations (i.e. they do not obey 

classical commutations rules), and demanding covariance, one obtains the previous 

q-relations on the elements of matrices which act on the plane coordinates. The 

converse is also true: the q-relations on the matrix elements imply the q-relations 

on coordinates and differentials. 

We will follow this approach for the quantum group GLq(lll). First we 

will show the equivalence of group q-relations and super-plane q-relations. Then 

we will develop a covariant differential calculus on the super-plane. Finally, we 
' 

obtain a representation of the generators of GLq(lll) in terms of the super-plane 

coordinates. 

4.1 Coordinate and Differential q-relations 

We begin by defining the super-plane coordinate vector V and differential vector 

U with components 

V=(;) U=(:)· (4.1) 
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The corresponding components of V and U have opposite Grassmann parity. Fol­

lowing Manin we impose the q-relations 

e=o 
(4.2) 

YTJ = q7Jy 7]2 = 0. 

(The nilpotency conditions on e and TJ are the same as in the classical case.) These 

vectors are acted on by matrices A with elements 

A= ( ~ ~) 
where we do not yet know the commutation relations between a, {3, /, and d. 

The matrix elements all commute or anticommute with the vector components, 

depending on Grassmann parity. The vectors transform under left-multiplication 

by A: 

V'=AV 

with new components 

x' =ax+ f3e 

e' = '"'fX +de 

U'=AU 

r/' = a71 + {3y 

y' = 'YTJ + dy. 

(4.3) 

(4.4) 

We now impose the condition that the q-relations ( 4.2) are covariant, i.e. that the 

transformed components satisfy the same q-relations. This leads to the familiar 

q-relations on the matrix elements. For example, the products 

x'e' = a'"'fX2 +(ad- q-1/3'"'/)xe 

e'x' = '"'faX2 + ('"'1{3- q-1da)xe 

can be plugged into x'e' = qe'x'. Equating coefficients of x2 and xe gives 

Summarizing, the super-plane relations and the matrix element relations they im-

ply are 

x'e' = qe'x' ~ a'"'!= q'"'fa ad- q-1 /3'"'! = da + q'"'f/3 

y'TJ' = q7]'y' ~ d/3 = qf3d ad+ q/3'"'1 = da - q-1'"'!/3 
(4.5) 

el2 = o ~ d'"'f = q'"'fd '"'/2 = 0 

7]12 = 0 ~ a/3 = qf3a {32 = 0. 
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Finally, the last equations in the first two lines imply 

and we see that we have reproduced the q-relations between group parameters 

(2.5) as defined ~y the R-matrix method. 

The converse of these arguments is also true. Given the q-relations between 

group parameters, one can find bilinear q-relations on the super-plane coordiantes 

and differentials which are preserved by a group rotation. This means that if the 

bilinear relations are given by 

then the transformed relations also vanish: 

Fi ( x', e', rJ', y') = 0, 

where the primed components are given by ( 4.4). In fact it will be seen that this 

final function is a linear combination of the previous ones: 

Fi(x', e', r/, y') = 2: ri;( a, /3, "Y, d)F;(x, e, 17, y ). 
j 

Such a set of preserved relations is said to be covariant under the quantum group 

action. 

It is easy to check these relations for the quantum super-plane, since we 

already know what they should be. However it is instructive to examine at least 

one case in detail since these techniques will be used later. Let us consider bilinears 

in the coordinates X and e. Using the primed components (4.4) and the q-relations 

on group parameters to rearrange terms we get for X and e 
x'e' = "'faqx2 + adxe - !3"'fex + /3d{2 

e'x' = "'faX2 + adex + f3"'f(Aex- xe)- {3dqe 

e12 = "'fd(xe- qex) + cPe 

. and it is easily seen that covariant combinations are 

x'e'- qe'x' =(ad- /3"'t)(xe- qex) +/3d(!+ q2)e 
. e12 = "'fd(xe- qex) + cPe. 
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Proceeding similarly with the differentials shows that 

y'r{- qr/'y' =(ad- q-1/3"!)(YTf- qT'fy) + 1a(l + q2)Tf2 

.,n = a2Tf2 + j3a(yTf - qTfy) 

are covariant. Summarizing, we may write these covariant combinations as 

(4.6) 
Fa = YTf - qT'fy = 0 

We have recovered the relations with which we began this discussion, and we see 

that the arrows in ( 4.5) run in both directions. 

Finally, we note that the q-relations on coordinates and differentials can be 

derived from the R-matrix. Define two column vectors in the tensor product of 

the vector space acted on by the quantum matrices: 

x2 .,2 

(Vi® V2) = xe 
(Ut ® U2) = -7]y 

ex YTf 

e -y2 

(The signs in (U1 ® U2) are needed for covariance, as discussed for the vector U 

in the next section.) Then using R from (2.4) and P from the previous chapter 

define the matrix R: 
q 0 0 0 

R=PR= 
0 .\ 1 0 

0 1 0 0 

0 0 0 -q-1 

where.\= q- q-1. The the equations 

(R.- ql)(Vi ® V2) = 0 (R+ q-11)(Ut ® U2) = 0 

determine the coordinate and differential q-relations ( 4.2). 

4.2 Super-Plane Exterior Derivative 

Next we wish to formulate a covariant differential calculus on the quantum super­

plane, involving the derivatives of the coordinates and their differentials. As with 
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the quantum algebra, we begin by defining an exterior derivative 8 which is nilpo­

tent and obeys the graded Leibniz.rule (3.1). Expand 8 in products of differentials 

with derivatives: 

Here Sx and 8e a.re Grassmann odd and se and 8:r: a.re Grassmann even so that 

overall 8 is odd. Comparing to the differential vector U in (4.1), one might expect 

to identify Sx = 77 and se = y. However, this is not quite correct. We wish a 

calculus which is covariant under the group action defined in (4.3). Applying 8 to 

the transformed components of V gives 

Sx' = aSx - /3Se 

se' = -;ox + doe. 
Now if we define 

7] =ox 
as the components of U, we find that this differential is also covariant under the 

group action (4.3). 

The exterior derivative is now written 

As with the algebra, the general properties of 8 allow one to determine some 

information on the algebra of. the derivatives. Checking nilpotency gives 

82 = -77( 1JO:r: - y8e)8:r: - y( 1JO:r: - y8e)8e 

= 1JY(8e8:r:- q8:r:8e) + y28l 

=0 

where we have used ( 4.2). The coefficients of the forms must vanish, leaving 

~=0. 

as the basic algebra of the derivatives. 
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4.3 · Addition~ q-relations 

We wish to extend the derivative algebra to include the coordinates x and ~. As 

with the group algebra, we will use 8 and the Leibniz rule to determine this. 

This will require that we know how to commute differentials with coordinates. 

Some information can be obtained from the basic coordinate q-relations in ( 4.6). 

Applying 8 gives 

8(x~- q~x) = 11~- xy + qyx + q~Tf = 0 

8(e) = -y~ + ~y = 0 .. 
(4.8) 

The second relation tells us how to commute y and ~. However, the first relation 

does not provide all the information needed for the rest of the components. More 

assumptions will be needed for these relations. 

The first line of ( 4.8) indicates that there may be some mixing between the 

coordinate-differential bilinears. Suppose that one relation takes the form 

xy = ryx + r'Tf~. 

One of the parameters may be eliminated by requiring that 8 applied to this relation 

be consistent with YTf = q1]y. This fixes r' = '!- qr. Finally, adding a multiple of 

8F1 gives a similar relation for~ and 1], leaving 

xy = ryx + (1- qr)Tf~ 

~Tf = -r1]~ + (q-1r- 1)yx. 

The parameter r may be determined by a consistency check. Using the second 

relation twice to commute 1] through e and recalling that e = 0 gives 

which is solved by r = q:l:1 . Plugging into the above relations we have for r = q 

xy = qyx + (1 - q2)11~ 

e.,= -q.,~ 
and for r = q-1 
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The relations between these bilinears have been completely determined. 

Relations between x and 7J are still needed. To determine these recall the 

covariance of F1_ 4 in (4.6) under the group action as discussed earlier. Requiring 

covariance for the new relations will give the missing relations. First, for r = q 

consider 

e'7J' + q7]'e' = ad(e7J + q7Je) + {3dq(ye- ey) 

+ if3(xy- qyx + (q2
- 1)rye) + 1a(x71- q27Jx) 

=0. 

This vanishes if the new relations are valid and if xry = q27]x. For r = q-1 take 

x'y'- q-1 y'x' = ad(xy- q-1 yx) + {3d(ey- ye) 

+ i!3(e7J + q-17Je + (1- q-2 )yx) + 1a(qx7J- q-1ryx) 

=0 

which will vanish if X1J = q-27]X. All of the needed relations have been determined. 

Summarizing, we have for r = q: 

(4.9) 

(4.10) 

Finally, although we have only shown covariance for some of the relations, it can 

be shown that for each case r = q±1 all of the relations listed here are covariant. 

4.4 Derivative q-relations 

Now we can determine the operator relations between derivatives and coordinates. 

We will use our previous notation for operator equations where arbitrary functions 
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to the right are indicated by ( ·). Applying 8 to x· gives 

8x· = ry8=x · -y8ex· 

= (8x) · +x8· 

= TJ · +xry8= · -xy8e· 

where the second line is a result of the Leibniz rule for 8. Using the q-relations 

(4.9,4.10) we can commute the differentials to the left in the third line. Comparing 

to the first line gives the desired derivative operator relations. Similarly, for e · we 

have 
8e · = .,.,a=e · -yaee · 

= (8e). -e8· 

= -y · -e.,.,a= · +eYae · . 
Now using the q.;.relations for r = q we find 

and for r = q-1 

a=x· = 1. +q2x8=. +(q2
- 1)e8e· 

aee· = 1 . -e8e· 

a=x· = 1 . +q-2x8r· 

aee· = 1. -eae. +(q-2
- 1)x8=· . . 

These two sets of relations are the desired derivative operator equations. 

(4.11) 

( 4.12) 

There are also similar operator relations between the derivatives and the 

differentials. They are obtained by acting with the derivatives on the q-relatior..s 

between differentials and coordinates. For example, for r = q one finds 

Then these imply the operator relations 

8e(TJx) = 0 

ae(TJe) = -q-1
.,., 

8e(yx) = (q-2
- 1)ry 

8dye) = y. 

8eTJ· = -q-try8e· 

8ey· = y8e · +( q-2 
- 1 )TJ8= .. 
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Repeating the procedure for r = q-1 gives 

8eTJ· = -qry8e· 

Bey·= y8e .. 
(4.14) 

At this point we have determined all possible operator relations between the coor­

dinates, differentials, and derivatives. 

4.5 Representation of Derivatives 

Next the derivative-coordinate operator relations (4.11,4.12) can be used repeat­

edly to find similar relations between the derivatives and monomials in the cood­

inates. Then an arbitrary function can be written as a power series in the mono-· 

mials. In fact, since e2 = 0, the most general function in X and e Can be written 

(4.15) 

and if F(x, e) has definite Grassmann parity then ( -1)F = ( -1)Fo = -( -1)F1. 

We take first the solution r = q. Using the operator relations (4.11) on a 

power of x gives 

n-1 
8:xn· = L q2lxn-t ( 1 + (q2- 1)eae) . +q2nxn8:r:· 

l=O 

2n 1 · 
= x-1 ~2 ~ 1 xn(1 + (q-2- 1)eae). +q2nxn8:r: .. 

Then for an arbitrary function of x we have 

_1Fo(q2x)-Fo(x)( 2 ) 2 
8:r:Fo(x)· =X q2- 1 1 + (q - l)eae . +Fo(q x)8: .. 

It is easy to extend this to a function multiplying e: 
a:r:eF1(x)· = qea:r:Ft(x)· 

= x-tq2eF1(q2~ ~ 1Ft(x) (1 + (q2 -1)eae) . +qeFt(q2x)8:r: .. 

Comparing the results for these two cases shows that for an arbitrary function 

F(x, e) 

8:r:F(x, e)· = x-1 F(q
2

x, q
2

~) -
1
F(x, 

92e) (1 +(q2 -1)e8e) · +F(q2x, qe)a:r: ·. (4.16) 
q -
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The results for 8e are somewhat simpler. Repeating the above arguments we find 

a n n na ex . = q x e· 

8eFo(x)· = ( -1)Fo Fo(qx)oe· 

8e~Fl(x)· = F1(x)- (-1l1 ~Fl(qx)8e ·. 

Then for a general function as in (4.15) 

(4.17) 

is the operator equation for Be. 

If there are no functions to the right ofF in the operator equations (4.16) 

and (4.17), these equations give the action of 8 on F. We find for F = Fo + ~F1 

as above 

8eF(x,~) = F1(x). 

The operator equations may be rewritten in terms of these actions as 

BzF(x, ~)· = ( o:z:F(x, e)) ( 1 + (q2
- 1)~8e) · +F(q2x, qe)o:z: · . 

8eF(x, ~)· = ( 8eF(x, e)) · +( -1)F F(qx,~)8e ·. 

( 4.18) 

(4.19) 

This form of the equations is suggestive of a coproduct, for it gives the action of 

the derivative on a product of functions. We will dicuss this shortly. 

The entire procedure may be repeated for the solution r = q-1• The action 

of the derivatives is 

~ F( ~) _ _1 F(q-2x, ~) - F(x, ~) 
U:z: X,~-, -X -'Z 

1 q - (4.20). 

and the operator equations are 

8:z:F(x, ~)· = ( 8:z:F(x, ~)) · +F(q-2x, q-1e)oz· 

8eF(x, ~) = ( 8eF(x, ~)) ( 1 + (q-2
·- 1)x8:z:) · +( -1)F F(q-1x, ~)8e ·. 

(4.21) 

We see that the mixing of derivatives is reversed between the two solutions, and q 

is replaced by q-1 • 
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It is useful to introduce number operators for the coordinates X and e. They 

will allow the derivatives to be written in an illuminating operator form. Shortly 

they will also be used to write a representation of the algebra GLq ( 111). Define 

the number operators action on coordinates as 

and assume that they obey the usual Leibniz rule, e.g. 

n;F· = (n;F) · +Fn;. 

Then on a monomial 

(i=0,1). 
n~e'xm = ie'xm 

Scaling operators can be constructed by exponentiating the number operators. For 

example 
q"se'xm = qme'xm = e'(qx)m 

q"'-e'xm = q'fxm = (qe)'xm 

and for an arbitrary function 

q"• F(x,e) = F(qx,e) 

q"'-F(x,e) = F(x,qe). 

By analogy with the x derivatives, it is convenient to introduce the formal inverse 

of e which should only be used with the number operator for e. For consistency 

with the q-relations it must obey 

. 
Then on a general function 

Now it is straightforward to read off the appropriate representation of the deriva­

tives from their action on functions in (4.18,4.20). For the solution r = q 

~ -1 2n,_ q2"s - 1 
u:r:=X q 

q2-- 1 
(4.22) 
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and for r = q-1 

q-2n21 _ 1 
a -1 

:z: = X ..:..q--""":2 ___ 1_ 
(4.23) 

Be = e-1neq-2n,.. 

Note that in the limit q- 1 both solutions approach the usual derivatives . 

Before writing the coproduct form of the operator equations, we first note 

that since a monomial can have only zero or one power of e' the number operator 

ne can be written for arbitrary s as 

q.m~ - 1 
ne = ~ 1 . q -

For the solution r = q this allows us to rewrite the term in ( 4.19) as 

Also, for r = q-1 , in (4.21) 

These relations allow a simpler form for the operator equations. 

As mentioned earlier, the operator equations (4.19,4.21) tell how the deriva­

tives act on a pair of functions. If we regard each of the functions as lying in a 

vector space, then the operator equations are similar to the coproduct discussed for 

the algebra. We can read the coproduct from (4.19,4.21), using the above relations 

for simplification. For the solution r = q we find 

(4.24) 

and for r = q-1 

(4.25) 
~( oe) = Be ® q-2ns + q-"· ®Be. 

These coproducts are consistent with the derivative algebra (4.7). 
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4.6 Representation of the Algebra 

The quantum super-plane coordinates were introduced as a vector acted on by the 

quantum group GLq(111). This description also leads to the action of the quantum 

algebra on the super-plane. Using the number operators, we will be able to write 

a representation of the generators similar to the representations of the derivatives. 

Begin by writing the coordinate vector V as a variable quantum matrix A 

acting on a constant vector Vo: 

V =AVo. (4.26) 

Now apply the exterior derivative to V. Since Vo is constant, 8Vo = 0 and we have 

(4.27) 

where we have used SA= OA from (3.3). This relation is invariant under a rotation 

of Vo by a constant matrix A1: 

V = ~1{{ = (AoA11)(AtVo) 

8V=f2'V=f2V 

where we have used the fact that the Cartan-Maurer forms are invariant under 

right-multiplication by a constant matrix. Thus this description is independent of 

the particular choice of Vo. 

The matrix equati?n ( 4.27) allows us to read off the action of 8 on the 

coordinates. We find 

8x = (wx + (1- tf>)Wy )x + v+e 
se = (wx- (1 + tf>)Wy )e +v_x 

where¢> is the arbitrary mixing parameter introduced in (3.11). Usingthe expan­

sion of 8 in (3.6), the action of the generators is seen to be 

Xx=x xe=e 
Yx=(l-t/>)x Ye = -c1 +tl>)e 

'V_x = 0 
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Note that the generator X acts much like the identity. This will not be true on an 

arbitrary monomial. 

Next we wish to obtain the action of the generators on products of coor­

dinates. This can be expressed in the form of operator equations similar to those 

obtained for the derivatives. Again we start with the exterior derivative and its 

Leibniz rule. Applying it to a product of coodinates, we can then commute the 

Cartan-Maurer forms to the left and read off the action of the generators. (This 

follows exactly the procedure used for the algebra in chapter 3.) So we must know 

how to commute Cartan-Maurer forms through coordinates. From (4.26) we see 

that the coordinates may be written 

X= axo + f3eo 

e = ;xo +deo. 

Here the group parameters correspond to the matrix A used to define the Cartan­

Maurer forms by n = 8A A-t. vVe know how to commute the 1-fonns through these 

group parameters from chapter 3. On the other hand, the constant coordinates 

Xo and eo are not related to A, so the 1-forms will obey the classical (graded) 

commutation rules with them. So we see that the Cartan-Maurer forms commute 

with the coordinates the same as with group parameters. These relations are 

the same for all group parameters, and are given in (3.10,3.12). Then for the 

coordinates we write 

xv: = qv:x 

xwx = fwxx 

XWy =Wyx 

Here we consider both solutions, f = q or q2• 

Now applying 8 to a coordinate, using the Leibniz rule, and commuting 

the 1-forms to the left we find the operator equation for the generators acting on 
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coordinates. Again using ( ·) to indicate arbitrary functions to the right, we find 

Xx·=x·+fxX· 

Yx· = (1- <,b)x · +xY· 

"\l_x· = qx"\7_. 

xe· = e · +Jex· 

Ye· = -(1 + <P)e. +eY· 

v+e· = -qev+. 

v_e• =X. -qeV ... · 

Note that Y does not have any factors of q in its equation. It obeys an operator 

equation similar to the classical case, and we will not consider it further. 

Finally, we may iterate the above equations to determine the operator re­

. lations for the generators on an arbitrary monomial in X and e. Then any func­

tion can be written as a sum of monomials. Writing an arbitrary function as 

F(x,e) = Fo(x) + eF1(x) like before, we find 

XF(x,e)· = F(Jx,JJ~~ F(x,e) · +F(Jx,Je)X· 

V+F(x,e)· =ex_1 F(q
2

x,~ -;(x,e) ·+(-1)FF(qx,qe)v+. 
q -

V _F(x, e)·= xFt(x) · +( -1)F F(qx, qe)V- ·. 

(4.28) 

As we did. for the derivatives, taking the above equations with no function to the 

right of F gives the action of the generators on F alone. Then we can use the 

number operators to write a representation of the quantum generators. The result 

IS 

q2ns 1 v_ =ex-1 -
. q2 -1 

(4.29) 

v+ = xe-ln~ 

where f = q or q2
• Note the similar form to the derivative representation in 

equations (4.22,4.23). Finally, we could use the operator equations to determine 

the coproduct. This would give the same result as before. This is because both 

derivations. use the same q-relations between 1-forms and coordinates or group pa­

rameters. In fact, we could have started with the previously determined coproduct 

and applied it to monomials to determine the action of the generators. 
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Chapter 5 

Quotient Space Geometry 

In this chapter we develop the geometry of a quotient space. Cartan-Maurer 

forms are constructed in the usual way. Although they are not invariant, invariant 

bilinear forms can be c?nstructed on the manifold. A symmetric bilinear provides · · 

a lliemannian metric, for which we discuss the lliemannian geometry. An invariant 

almost complex structure is constructed, and extended to a complex structure. If 

the complex manifold admits a closed hermitian 2-form, it is Kahler. In this case 

we find a simple form for the llicci curvature. Details of the mathematics may be 

found in (19] volume 2. 

5.1 Quotient Space G/H 

We begin by reviewing the lliemanni~ geometry of a quotient space [20]. Consider 

a real group G with subgroup H. For a fixed mEG, the set of g E G of the form 

g = mh as h E H runs through all of H defines the left coset g = mH represented · 

by m. The space of all such cosets is the quotient space M = Gf H. G may be 

regarded as a fiber bundle over G / H with fibers H. Decompose the algebra of 

G by G. = M e H., M n H. = 0 . We will use indices r, s, t, .. . for generators 

L,. E Q., a, b, c, ... for La. EM, and i,j, ... for Li E H._. The generators of G obey 

[L,., L6] = Lt Ct r6 , and for a closed subalgebra 11 c Q., ca. ii = 0 . D~fine the 

exponentials g(y'") = exp(Lr y'") , m(xa.) = exp(La. xa.) , and h(ti) = exp(Li ti) . 
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Then any element g(yr) may be uniquely written as 

(5.1) 

The parameters xa are coordinates for the element of M represented by m(xa), 

which defines a local section of the bundle by m(x) : G/H-+ G. The left action 

of G on M is defined by left multiplication of m(xa) by an element of G and 

refactoring the product as in (5.1): 

gom(xa) = g(y,.) = m(x'a)h(ti) 
(5.2) 

The Cartan-Maurer !-forms on Mare defined by 

-1 d L r m m = re. (5.3) 

In components er ( x) = er a ( x) dxa, where the upper index ( r) is a label taking 

values in Q.., and the lower index (a) is a coordinate index taking values in M. The 

forms obey the Cartan-Maurer equations 

(5.4) 

The ea (La EM) at each point x EM span the cotangent space TM;. For these 

forms define inverse vector fields Ea ( x) = Eb a ( x) ~ which span the tangent space 

™= and obey 

(5.5) 

Under the left G-action defined in (5.2), the Cartan-Maurer forms transform 

as 

(5.6) 
Lr e,. = hLs h-1 e11 + h dh- 1 • 

The forms transform by an adjoint H rotation. The transformed ei associated 

with generators in ll.. also have an inhomogeneous piece from the last term in 

(5.6). For the ea associated with generators in M, the infinitessimal form of (5.6) 

is e'a = ea + ti 8 L; ea where 

(5.7) 
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where the second equation is obtained using (5.5). 

Although the Cartan-Maurer forms are not left G-invariant, invariant bi­

linear forms may be constructed. Consider 

(5.8) 
U,VeTM. 

N is left G-invariant if the coefficients Nab are constant on M and if for 8 Li defined 

in (5. 7) 8Li N = 0 for all Li E H.. This is true if 

(5.9) 
for all L, E H_. 

N is a 2-form if Na.b = -Nba. If Na.b = Nba, N is an inner product of vectors on 

M. 

5.2 Riemannian Geometry of G/H 

For a nondegenerate tensor Na.b = Nba obeying (5.9), we take 9a.b - Ned ec a. ed b 

to be the Riemannian metric on M with line element 

(5.10) 
N. c d d a.d b = cde a.e b x x • 

The Cartan-Maurer forms may be regarded as vielbein for this metric. 

A covariant derivative acts on vectors V = ya. Ea. as 

(5.11) 

The connection form wa. b is uniquely determined by the requirements of vanishing 

torsion: 

roc - de a. + wa b eb - 0 (5.12) 

and metric consistency: 

V' 9ab - 0 => NaeWe b + Nbewe a - 0 . (5.13) 
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For convenience define the constants 

(5.14) 

Then the connection w 11 b = w 11 rb er has components 

(5.15) 
W CJ - ca ib- ib . 

Finally, the curvature 2-form is defined by VVV = R:'- b Vb Ea with 

(5.16) 
- 1 D _a eced. 
- 2-ll.cd b • 

The form of the Riemann tensor Red a b for W
11 b in (5.15) is complicated and we 

will not write it. However, as noted in the second line of (5.16) all dependence on 

the inhomogeneously transforming ei vanishes. 

5.3 Almost Complex Structure on G/H 

An almost complex structure on a real manifold M is a tensor field J which at each 

point x EM is an automorphism of the tangent· space TMz obeying J 2 = -1: 

J :V ...... J(V) for V E TM 

J 2(V) = -V. 
(5.17) 

Now consider the complexified tangent space T.;\.1c = TM ®C. Construct the 

projection operators 

p = !(1- iJ) p = !(1 + iJ) (5:18) 

which obey 

JP=iP JP= -iP. (5.19) 

Thus P and P project onto subspaces of T.;\.1c with eigenvalues under J.of +i 

and -i, respectively. Split TMc into subspaces TMc = TM<1•0> e TM<0•1> by 
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the mappings P: TM--+- TM(l,o) and P: TM--+- TM(O,l). The complex vectors 

obey 
JV(l,O) = iV(l,O) 

JV(O,l) = iV(O,l) 

y(l,O) E TM(l,O) 

y(O,l) E TM(O,l) . 
(5.20) 

For components, the real indices a, b, c, ... will be replaced by the complex indices 

l, m, n, ... for (1,0) vectors and J, m, fi, ... for (0,1) vectors. For example, a vector 

v = vaaa is complexified and split into V(l,O) = vmam and y(O,l) = vmam, with 

V(l,O) = y(o,I). All of these constructions with J on the tangent space T M carry 

over naturally to the cotangent space TM*. Also, we may choose a complex.basis 

for the antihermitian generators La such that Ltn = -Lm. This implies em =em 

and Em= Em. 

For a quotient space M = G / H, J can be expanded in the vectors and 

forms. constructed on M as 

(5.21) 
J2 = -1 => JaJc _ ca 

c b- -Q b. 

In complex coordinates, (5.19) shows that 

?n = iamn rn = -iamn. (5.22) 

J will be left G-invariant if the tensor Jab obeys 

(5.23) 

or in complex components 

em in= 0 em in= 0. (5.24) 

J is invariant if generators in H. do not mix barred and unbarred generators. 

5.4 Complex Structure on G/H 

As described so far, the almost complex structure J is a way of splitting the real 

valued tangent vectors into conjugate pairs of complex. valued vectors. J is said 
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to be integrable if it can be derived from holomorphic coordinates on a complex 

manifold. (On such a manifold, the transition functions between different coordi­

nate patches are holomorphic, or complex analytic, functions of the coordinates. 

The manifold is said to have a complex structure.) There are several equivalent 

conditions for integrability of J [19] . Recall that J was used to define the (1,0) and 

(0,1) spaces of vectors and forms with unl?arred and barred components, repec­

tively. Generalizing, define A(p,q) to be the space of p+q forms with p (1,0) indices 

and q (0,1) indices. With this separation, J is integrable if 

do: E A <2•
0
> e A <1•

1
> for a: E A <1•

0
> 

do: E A<0•2> e A(t,t) for a: E A(o,t) . 

(5.25) 

Using the Cartan-Maurer equations (5.4) this ·is equivalent to the the conditions 

on the structure constants of G 

crmn = 0 (5.26) 

Then a quotient space M = G/ H with structure constants for G. satisfying (5.24) 

and (5.26) is a complex manifold. 

5.5 Kahlerian Geometry of G/H 

A bilinear form is said to be hermitian if 

N(JU,JV) = N(U, V). (5.27) 

Hermitian inner products N (obeying N(U, V) = N(V, U)) and 2-forms K, (obeying 

K.(U, V) = -K.(V, U)) can be related by 

N(U, V) = K.(U, JV) . (5.28) 

A nondegenerate hermitian closed 2-form X::, (dK. = 0) on a complex manifold is 

called a Kahler form, and the manifold is a Kahler manifold (19] . Equation (5.28) 

defines the Kahler metric d.s2 = N(dx, dx). 
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For complex M = G / H expand an invariant hermitian 2-form JC (obeying 

(5.9)) as 

(5.29) 
-K mn - mne e 

where in the second line Kmn = 0 = K.,n by (5.27). Using the Cartan-Maurer 

equations (5.4), d!C = 0 if 

(5.30) 

The Kahler metric is 

(5.31) 
Nm.n = iKm.n 

and (5.30) relates the components Nmn = Nr.m· In terms of the constants defined 

in (5.14) we find 

em zn + Dm zn - Dm nl = 0 
(5.32) 

em Tn + Dm Tn + Dm nT = 0 . · 

Since the structure constants for a complex quotient space obey (5.24) and (5.26), 

the connection components {5.15) take the simple form 

k _ Dk 
W ml-- ml k - CJc w m.l- ml 

,; - Dk w mr-- 'lfi.T W
k _ ck 

mT- mT (5.33) 

Note that the connection matrix does not mix {1,0) and {0,1) components. In 

what follows we will consider only the (1,0) subspace, with (0,1) components given 

by complex conjugation. Also, we note that these components are equal to the 

components of the difference operator <p = .C-Y' discussed in previous work (10, 11] 

We now proceed to the curvature. From the definition (5.16), we find 

a k ck ckJ ck ci 
J. Lmn l = - mk' nl - mi iil 

(5.34) 
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Note that the Riemann curvature is a (i,l) form. In fact, given a connection pre­

serving a hermitian metric, if the coordinates are holomorphic then the curvature 

is purely a (1,1) form (21] . This is equivalent to the conditions (5.24) and (5.26) 

for a complex structure. 

For an N dimensional Kahler manifold the totally antisymmetric product 

det(e) = 1\ em= e1 A e2 A ... A eN 
m (5.35) 

= det(em z) dz1 dz2 
••• dzN 

spans the 1 complex dimensional space of (N ,o)· forms. This is known as the 

canonical or determinant line bundle of the manifold. The covariant derivative 

and curvature of this form are 

V det(e) = wm m det(e) 
(5.36) 

'\JV det(e) = K" m det(e) . 

The 2-form R is the Ricci curvature of the manifold and is the trace of the' Riemann 

curvature. Taking the trace of (5.34) and using (5.32) we have 

Rmi'l. = Rmi!.ll 

= -Cz mTccTc il.l-- cz miCi il.l- Ck mi!.(Cz kl + cr kT) . 
(5.37) 

It can be shown that this Ricci form is closed and G-invariant. Note that all 

dependence on the metric Nab = KacJc b has vanished from the Ricci cuvature. 

This type of metric gives a unique result for the curvature. 

5.6 Discussion 

It is clear how to apply these results to a group G with subgroup H. Decomposing 

the algebra as G. = M e H., M n H. = 0, choose an ahnost complex structure J 

on M. The choice of J may be based on the generators in M, e.g. LSn = -Lm,. 

For the (1,0) and (0,1) decomposition based on J, the structure constants of Q. 

must obey (5.24) for G-invariance of J and (5.26) for M = G/ H to be complex. 

A 2-form X:. is G-invariant if it obeys (5.9) and closed if it obeys (5.30). If X:. is 
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hermitian, M is Kahler and equations (5.33-37) apply yielding the connection and 

curvatures. 

These results are easily extended to Z2 graded super-algebras. We have 

chosen index ordering so that most of the results presented need no extra grading 

signs. The main result, the Ricci tensor, does need to ·be modified. The correct 

grading for the trace of the Riemann tensor is 

Note also that the·purely fermionic components of symmetric tensors become an­

tisymmetric, and vice versa. See the appendix for details. 

For finite dimensional groups, the results are directly valid. If G is infinite 

dimensional, contraction of indices may involve infinite sums. These sums must 

converge for the results to be valid. For the examples from string theory, we will 

see that the trace of the connection diverges but the trace of the lliemann tensor 

converges . 
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Chapter 6 

String Diffeomorphism Groups 

In this chapter we apply the results of the previous chapter to the diffeomorphism 

groups of string theory. The main goal is to calculate the Ricci curvature of 

quotient spaces formed from these groups. As discussed in the introduction, this 

corresponds to the ghost contribution to the anomaly of the energy-momentum 

tensor. For the bosonic string, the group is Diff(S1 ). There are two choices of 

subgroup which admit a Kahler form. For the superstring the group is super­

Diff(S1 ). In the Neveu-Schwarz sector their are two choices of subgroup which are 

Kahler. In the Ramond sector their is only one Kahler quotient space. Here we 

will calculate the Ricci curvature of these Kahler manifolds. Implications for string 

theory will be discussed in the next chapter. 

6.1 Quotient Spaces for the String 

First we apply the results of the last chapter to the symmetry groups of string 

theory. As discussed in [10], the open bosonic string in D spacetime dimensions 

has as its phase space the space of loops in R0 . The reparameterizations of the 

circle S1 form the group G = Diff(S1 ). The algebra G.= Diff(S1) is based on the 

relation 

[/(<7) ~I g(<7) :CT] = (fg'- gf') ~ • (6.1) 
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Fourier expanding gives the generators L" = e-if'CT :CT which obey 

{6.2) 

so the structure constants of Diff{S1
) are 

ct f'S = i(r- s)at f'+s r,s,t E z. {6.3) 

The subalgebras of Q. = Diff(S1) are 11o generated by {Lo} and H.n generated by 

{Lo,~+n,L-n}· The subgroups are Ho·= U(l) ~ S1 and Hn = SL{2,R). 

Consider first Diff(S1 )/S1 with subalgebra 11o. The indices r E Z in (6.2,6.3) 

take values a =f: 0 forM. and i = 0 for Jk. The choice of J suggested by (6.2) is 

r n =iS"' n . m,n > 0 
'(6.4) 

r " = ~ism " m=-m<O 

so indices take valu~ m > 0 and m = -m < 0. The structure constants (6.3) obey 

(5.24) (J is G-invariant) and (5.26) (J is integrable), so M = G/ His complex. 

From {5.9) the 2-form JC = Kabeaeb is G-invariant if (a+ b)Ka6 = 0. Then 

JC has components 

J( -a) = -f(a) (6.5) 

and JC is hermitian if f(m) is real. Closure of JC requires 

(a+ 2b)f(a)- (b + 2a)f(b)- (a- b)f(a +b) = 0 (6.6) 

which is solved by 

J(a) = Aa3 + Ba A,B E R. (6.7) 

Thus there is a 2-parameter class of Diff(S1 )-invariant K.ihler forms on Diff(S1 )/S1 . 

JC is non degenerate if A = 0, B =f: 0 or if B /A =f: -n2 for all nonzero integers n. 

Note that the term proprotional to B is exact, since de0 = -i Ea;eo aeae-a. The 

term proportional to A is nontrivial. 

Since M = Diff(S1 )/S1 is complex and admits a K.ihler form, the results 

of the previous section may apply. Care must be exercised since M is infinite 

dimensional. We will discuss this case in some detail to exhibit the convergence 
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which is provided by the choice of metric. The delta function form of the structure 

constants gives the connection and Riemann curvature without infinite sums. From 

(5.33) the connection is 

wm"' = i((m- 2n)B(I + n- m)- (2m- n) J(~) B(m- n) )a;.n+n (6.8) 

The trace Rm,, 1 z yielding the Ricci curvature is now an infinite sum which may 

diverge. From (5.34) 

Rm, ll =I:( -(l + m)(Z- 2m)8(m -l + 1) 
l>O 

f(m) f(m) ) 
- (l + m){2l- m) f(l) 8(1- m)+(l + 2m)(2l + m) f(l + m) . 

(6.9) 

The form of the metric in (6.7) with A :f:. 0 shows that the sum of the last two terms 

in (6.9) converges. Furthermore, each of these terms is logarithmically divergent. 

Then we may shift summation indices, and find that the sum of the last two terms 

vanishes; Then we are left with the final result 
m 

Rm,, = L(l + m)(l- 2m) 8m,n 
l=l (6.10) 

- ( 13 3 1 )~ - -6m +sm um,n· 

The Ricci form is closed and invariant as in (6.5,6.7). 

Now consider the subgroups Hn:: SL(2, R) generated by {L0 , Ln, L-n} (22]. 

Indices take values a =F 0, ±n for M and i = 0, ±n for H.. It is straightforward to 

show that G-invariant closed 2-fonns on M = G/Hn take the form of (6.5) with 

AER (6.11) 

i.e. they are of the form (6.7) with B/A = -n2 • However, for n :f:. I, the generators 

L:r.n mix barred and unbarred modes. Thus. J is not G-invariant according to 

(5~24). For H1 generated by {Lo, Lt,L-1} J is G-invariant. Also M = G/ H1 is 

complex since (5.26) is obeyed. Then for n = 1 JC in (6.11) is Kahler and the 

results of chapter 5 apply. The form of the metric again ensures convergence, and 

for M = Diff(S1 )/SL(2, R) the Ricci curvature is 

(6.12) 

Again the Ricci form is G-invariant and closed. 
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6.2 Quotient Spaces for the Superstring 

The symmetry group of the superstring, G = super-Diff(S1 ), consists of the repa­

rameterizations of the commuting coordinate on S1 and a single Grassmann co­

ordinate in superspace. The algebra is obtained by adding to Diff(S1 ) a set of 

Grassmann-odd generators FP which obey F'] = - F -p· We will use Greek letters 

for fermionic indices, which are integer valued in the Ra.mond sector and half­

integers in the Neveu-Schwarz sector. The algebra is extended from (6.2) to 

with structure constants 

[Lr,L,] = i(r- s)Lr+, 

[Lr, Fcr] = i(!r- u)Fr+cr 

{Fp, Fcr }+ = 2iLP+cr 

C" rcr = i{!r- u)S" r+cr 

ct liD = 2i~ p+cr • 

The subalgebras and generators are listed below. 

Subalgebra Sector Generators 

& NS,R Lo 

lL. NS,R Lo,Ln,L-n 

lL NS Lo, Ln, L-n 1 Fv, F-v 

lio R Lo,Fo 

(6.13) 

(6.14) 

The subgroups are Ho :::: U(l) :::: S1 , Hn :::: SL(2, R), and Hv :::: OSp(l I 2). The 

group H0 is sometimes referred to as s - S1 • 

In the NS sector G-invariant 2-forms on G / H0 are 

with components 

f(a) = Aa3 + Ba 

g(a) = 4Aa2 + B 
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Again the term proportional to B is exact, and JC is nondegenerate on G I H0 if 

A= O,B # 0 or if BIA # -n2 for all nonzero integers n. For GIHn, BIA = -n2 , 

and for Gl Hv, BIA = -4v2 • In the Rsector we have G-invariant 2-forms on GIH0 

JC _ lK a b + lK or B + lK a /3 - 2 clbe e 2 a{3e e:- 2 a{3e e . 

The components Kab and Ka/3 have the same form as in (6.15) with B = 0, and 

the mixed term is 

Ka/3 = h( a )8a+t3 h(a) = ra. (6.16) 

The term proportional to the Grassmann constant r is exact, since the exterior 

derivative of e6 is de0 = -3i L:a::or~ eae-a. 

For a complex quotient space G I H, the subalgebra H. must contain all 

the real generators. In the Ramond sector this means the only possible choice is 

H = H0 generated by Lo and Fo. Again the property F: = -F-P suggests taking 

positive modes for the (1,0) subspace and negative modes for (0,1). Then the only 

quotient spaces with invariant J have subgroups Ho and H 1 in the NS sector and 
2 . 

H0 in the R sector. Again the algebra ensures that J is integrable, so these quotient 

space are Ka.bler. Following the procedure for the bosonic case, we see that the 

form of f(a) and g(a) in (6.15) leads to a convergent trace of the Riemann tensor 

for A# 0. Note that the super-trace of a matrix R is J?:l a-~ or (16, 23]. Then 

the Ricci curvatures are 

NS sector, H = S1 

NS sector, H = 0Sp{1 I 2) 

R sector, H = s- S1 

6.3 Graded Algebras 

Rmn = ( -~m3 + !m)8m,n 

R,w = ( -5JJ.2 + !)8~,v 
0 ... = (-~m3 + ~m)8 ""rnn 4 4 m,n 

R,w = ( -5JJ.2 + ~)8~v 
Rmn = {-~m3)8m,n 
R,w = ( -5JJ.2)8~v . 

(6.17) 

The algebras for string diffeomorphisms are examples of Z-graded algebras. A 

graded algebra G. may be split into submodules Q.,. of finite dimension obeying 

r,s e z. (6.18) 
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(The grading in<:ludes half-integers in the NS sector.) G.o is a closed subalgebra 

so we may consider the quotient space G /Go. The relation Q! = Q__r suggests 

an almost complex structure separating positive and negative graded submodules. 

The form of the structure constants cr" oc: 8=+t obeys the conditions (5.24) and 

(5.26) so G/Go is complex. If a G-invariant Ka.hler form can be constructed, the 

expressions for the connection (5.33) and Riemann tensor (5.34) are valid and 

wa. b ex: 8~er and f?:1' b ex: 8~-n em eft. But the Ricci tensor requires an infinite 

trace which may be convergent for some class of Ka.hler metrics. H the trace 

converges the Ricci. form is given by 

m 

Rmn. = -(2: cl m,l-mcl-m -m,l)8m,n. 
l=l 

(6.19) 

(The last term in (5.37) never contributes forM = G/G0 .) Here an index r takes 

all values of ~he generators spanning Q_,.. The NS sector is simply ~ extension of 

the bosonic case with half-integer graded submodules. But in the R sector there 

is a bosonic and fermionic component of each integer graded submodule. 
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Chapter 7 

Associated Vector Bundles 

In this section we extend the results for Kahler quotient spaces to more general 

vector bundles over these manifolds. The new vector bundles are extensions or 

restrictions of the tangent space of the manifold. Requiring the bundle to be 

holomorphic constrains the choice of vector space for the fiber. There is a natural 

choice of fiber for quotient spaces based on a graded algebra. These results are 

applied to the string and superstring. Implications for the string vacuum state are 

discussed. 

7.1 Holomorphic Vector B undies 

In the preceeding sections we have considered the Riemannian and Kahlerian ge­

ometry of the quotient space M = G I H. These are special cases of vector bun­

dles over M. In the Riemannian case the fiber at x is the tangent space ™=·· 
For M Kahler the fiber is the (1,0) subspace of the complexified tangent space 

TM~ = TM11
•0> ~ TM1°·1>. The Kahler metric is a hermitian inner product on 

To~\.111 •0>, and the connection acts within the (1,0) subspace. In the case the vec­

tor bundle is holomorphic, i.e. the fiber transition functions between coordinate 

patches are holomorphic functions of the coordiantes. 

For graded algebras we can consider related vector bundles over M = G I G0 • 

The fibers are spanned by subsets of vector fields E,. or the Cartan-Maurer forms 
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er. Define the vector space T'H:c spanned by Ei ( x) for generators Li E t:;k = H. 

Decompose the total space as V:c $ ~l. = TM~ $ T'H:c and assign indices 

Em(x) E TM~1 •0) E-m(x) E TM~0• 1 ) Ei(x) E T'H:c 

Ea(x) E Vz Ea1 (x) E ~.L 
(7.1) 

where unprimed indices a are in V and primed indices a' are in V l.. As before G­

in variance requires adjoint t:;k invariance. Then this decomposition is G-invariant 

if modes in V and Vl. are not mixed by t:;k. For a graded algebra this requires 

that each submodule G.,. is entirely in either V or Vl.. 

In the Kahler case Vz = TM~1•0) and ~.L = TM(o,l) $ T'H:c. We will 

treat the general case as a ~te extension or restriction of the Kahler case. A 

hermitian ~er product on T Me is defined by the Kahler metric. If T:c C Vz 
the inner product must be extended by including a nondegenerate Ni; obeying · 

NizC1 
Jcj + N;zC1 

lei (where all indices i,j, k, l are in t:;k.) Also set Nim = 0 and 

Nim = 0. Then the hermitian inner product on V 

N(Ea,E,) = Nar, (7.2) 

is preserved by the connection 

a na m+ca "'+Ca. i w b = - mbe mbe ibe (7.3) 

where Da mb = Na!cl m!NJb· This is just an extension or restriction of the Kahler 

connection that operates within the space V spanned by the vector fields Ea. 

The curvature of the vector bundle is defined by ~ b = dwa b +wa c web. For 

a holomorphic vector bundle with connection preserving a hermitian inner product, 

the curvature of the connection must be a (1,1) form on the base manifold. The 

converse is also true [21]. Thus, if we choose a bundle and connection such that 

the curvature is a (1,1) form, the bundle is holomorphic. For the connection (7.3) 

the curvature is a (1,1) form on G/ Ho if 

ca' mb = 0 ca ri\b' = 0. (7.4) 

Using the form of the structure constants for a graded algebra, this is true if we 

decompose 

Ea E V 

Ea' E V.L 
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a> ro 

a'< ro. 
. (7.5) 



The Kahler case is r0 = 0 with V = TM(l,o). Values of r0 > 0 are finite restrictions 

and r0 < 0 are finite extentions of this case. 

The Ricci form R = J1:l a is the curvature of the determinant line bundle 

constructed as the exterior product of all forms spanning v·' the dual space of v. 
For the graded case this is the semiinfinite form 

det( e) = /\ e11 = ero+l 1\ ero+2 1\ ero+3 ••• 
ro a>ro 

(7.6) 

including~ all e11 at levels higher than r0 • The cohomology of such forms has been 

studied in reference [24]. Again the form of the metric can ensure convergence of 

the trace. For· a finite change in connection A.w11 b from the Ka.b.ler connection, the 

Ricci form is 

(7.7) 

where RK is the Ricci form of Ka.b.ler geometry. For a graded algebra each vector 

Ea in V contributes the exact term -Ci mftCa iaemen to the Ricci form. Adding or 

subtracting these terms from the Ka.hlerian Ricci form (5.37), the Ricci curvature 

for any ro is 

a> ro, b' < ro 

ro+m 
~ ca ca-m· = - ~ m,a-m -m,a • 

(7.8) 

a=ro+l 

For G = Diff(S1
), H = S1 , the line bundle detr0 (e) of forms e11

, a > r0 has curvature 

(7.9) 

For the superstring case with H = (k, the determinant must include fermionic 

modes e01
, a > Po, where Po = ro +!So, So = ±1(0) in the NS(R) sector. The 

curvature in the NS sector is 

Rmft = ( -!m3 + (So(ro + !) - !)m)sm,n 

R~ = ( -5JJ2 + (So(ro + !) - ~) )s~v. 
(7.10) 

The curvature in the Ramond sector does not change from the Ka.hler case, since 

the bosonic and fermionic contributions at each integer level cancel. 
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7.2 Implications for String Theory 

It is known from the study of gauge theories that the ghosts may be identified with 

the Cartan-Maurer forms of the gauge group. The ghost vacuum of string theory 

filled to level r0 + 1 is the semiin:finite product 

IO)ro = IT ca. = cro+lcro+2cro+3 ••. 
a>ro 

a> ro 

(7.11) 

Identifying the ghost modes with the Cartan-Maurer forms, we see that this is the 

semiin:finite form (7.6). The ghost contribution to the energy-momentum tensor 

anomaly in these vacuua has been calculated [25] and agrees with our results 

(7.9,7.10) and with reference [12] and standard results in string theory [26]. 

The total string vacuum is the product of matter fields x~(O') vacuua and 

ghost vacuum: IO) = IO)x ® IO)ro· The Contribution of the x~ vacuua to the 

anomaly has been calculated as the curvature of a holomorphic line bundle over 

(super-)Diff(S1 )/S1 [10, 12]. For the bosonic string in D spacetime dimensions this 

curvature is 

(7.12) 

where a0 is a normal ordering constant for L0 , the generator of rigid S1 rotations. 

The total curvature of the vacuum bundle is the sum of the string and ghost contri­

butions. Reparameterization invariance of the vacum requires that the curvature 

vanish. Rewrite (7.9) in the suggestive form 

Rmn = ( - 1i(m3
- m) + (ro + 2)(ro- 1)m )om,n . (7.13) 

The nontrivial terms in the curvatures fix D = 26. The exact terms fix the normal. 

ordering constant to 

ao = !(ro + 2)(ro- 1). (7.14) 

ao = -1 for r 0 = 0, the vacuum corresponding to the canonical line bundle of 

Diff(S1 )/S1
. a0 vanishes for r0 = -2, 1. This corresponds to the vacuua which just 

include or exclude modes for the generators of SL(2, R). These are the SL(2, R) 

invariant vacuua. Note that in these cases the curvature agrees with the Ricci 

curvature of Diff(S1 )/SL(2, R) from (6.12). 
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In the Neveu-Schwarz sector of the superstring the curvature of the matter 

vacuum bundle is 
Fmn = (~(m3 - m)- 2aom)cm,n 

F,w = (~(JJ2 - ~)- 2ao)c~·"" 
Rewrite (7.10) in the similar form 

Rmn = ( -!(m3
- m) + (co(ro + ~)- ~)m )cm,n. 

R,w = ( -5(JJ2
- ~) + (co(ro + ~)- ~) )c~.". 

The notrivial terms fix D = 10. The exact terms fix 

(7.15) 

(7.16) 

(7.17) 

a0 = - ~ for r0 = 0 and c0 = + 1, which corresponds to the canonical line bundle 

of super-Diff(S1 )/S1
• a0. vanishes for r0 = 1, c0 = +1 and for r0 = -2, c0 = -1. 

This corresponds to the vacuua which just include or exclude the modes for the 

generators of 0Sp(1 12). Here the curvature also agrees with the Ricci curvature 

of super-Diff(S1 )/0Sp(1 I 2) from (6.17). 

Finally, in the Ramond sector the curvature of the matter vacuum bundle 

IS 

Fmn = (~m3 - 2aom)cm,n 

F SJi} = ( ~ JJ2 
- 2ao )c~·"· 

The curvature of the ghost vacuum bundle is always 

(7.18) 

with no dependence on the sea level. Thus ao = 0 for all vacuua in the Ramond 

sector. 
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Appendix A 

Super-Tensor Index Conventions 

In this appendix we discuss Z2 grading sign conventions for super-tensors. Super­

space is based on a Grassmann algebra. A set of Grassmann generators ei obey 

(A.i) 

For most applications in physics the number of Grassmann generators is infinite. 

By extending the usual properties of tensors to functions including the Grassmann 

generators one define tensors on superspace. Due to the sign in ( 1.1) signs ap­

pear in many tensor relations. Here we will derive appropriate conventions to 

determine the signs. Our results are similar to those of [23]. When referring to 

c-number quantities, we use the terms commuting, Grassmann even, and bosonic 

interchangeably. For quantities obeying ( 1.1) we use the terms anti commuting, 

Grassmann odd, and fermionic interchangeably. 

A.l Super-Functions and Derivatives 

The Z2 grading for vectors can be inferred from the properties of functions of 

Grassmann variables and their derivatives. Consider functions of two variables, x 

and e, which are commuting and anti commuting, respectively. Since Grassmann 

variables are nilpotent, an expansion of such a function in powers of e will have 

only two terms: 

F(x,e) = Fo(x) + eFt(x). 
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Take first a function f which is overall commuting. Then the expansion is 

f(x, e) = a(x) + (B(x) :::: a(x)- ,B(x)e 

where the coefficient function a(x) is commuting and ,B(x) is anticommuting. Now 

consider the left and right derivatives of f with respect to X and e. They are 

-+ +-
8:r: f(x,e) = a'(x) + e.B'(x) J(x,e) 8:r: = a'(x) + e.B'(x) 

-+ +-
(A.2) 

8~ J(x,e) = .B(x) J(x, e) a~ = -,B(x) 

We see that left and right X derivatives are equal, but the left and right e deriva­

tives have opposite sign. Next consider a Grassmann valued function ¢>(x,e) with 

expansion 

¢(x,e) = a(x) + eb(x) = a(x) + b(x)e. 

Here a(x) is anticommuting and b(x) is commuting. Then the left and.right deriva­

tives ar~ 
-+ +-
8:r: ¢>(x,e) = a'(x) + eb'(x) ¢>(x,e) 8: = a'(x) + eb'(x) 

-+ +-
(A.3) 

8~ ¢(x, eJ = b(x) ¢(x,e) 8e = b(x) 

In this case we see that left and right derivatives are equal for both X and e. 

A.2 Super-Vectors 

These results can be used to define index grading for super-vectors with upper or 

lower indices. As is conventional, we will take derivatives to have lower indices. 

Then the derivative of a• function is a vector with a lower index, e.g. UA. Since 

coordinates have upper indices and are functions on the vector ·space, we will. 

take coordinates to be upper index vectors, e.g. VA. Next we recall a result. of 

DeWitt. which states that any super-vector space may be chosen to have a pure 

basis, that is, one in which the basis vectors are either purely commuting or purely 

anticommuting. Then the Grassmann parity of a vector component is determined 

by its index. For Z2 grading signs, we use the common notation based on the 

vector index A: 

{
+1 

(-1)A = 
. -1 

A bosonic index 

A fermionic index . 
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.v 

f 

This notation means that in the exponent of ( -1), replace the index by 0 if the 

index is bosonic and 1 if the index is fermionic. When considering more than one 

vector, grading signs depending on several indices may occur. Using 0 or 1 for 

indices in exponents of ( -1), we have for example 

A and B both fermionic 
{

-1 
(-1)AB = 

+1 otherwise. 

Finally, an object may have an intrinsic Grassmann parity in addition to any index 

grading. For example, the above functions f and ¢> are bosonic and fermionic, 

respectively. Then the grading notation is the same as for indices, writing the 

name of the object instead of the index in the exponent of ( -1). The name is then 

replaced by 0 or 1 if the object is bosonic or fermionic, respectively. For example, 

for a function F: 
(-1)F = { +1 

-1 

F bosonic 

F fermionic . 
Most of the super-tensors we will consider are extensions of the purely bosonic case, 

and as such have even intrinsic Grassmann parity. For the rest of this discussion 

we will assume that tensors have even intrinsic parity unless indicated otherwise. 

The results above indicate that left and right derivatives may have different 

signs. Thus, we will have to distinguish between vectors with left and right indices. 

The index location indicates how a vector transforms under a change of basis. Left 

index vectors are multiplied by a rotation matrix on the left, and similarly for 

right indices. Covariance under such rotations will determine Z2 grading signs 

associated with a particular quantity. 

First .consider lower index vectors, which can be related to the derivative 

of a bosonic valued function. (The derivative of a Grassmann valued function will 

yield a vector with odd intrinsic parity.) For a function f of coordinates xA define 

a vector U by 
+-
8 

UA = f oxA 

Then from (1.1) we see that 

For fermionic components of lower-index vectors, the left- and right-index compo­

nents have oppposite sign. 
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To proceed, we will have to consider the transformation properties of vec­

tors. Suppose we change coordinates by xA - x'A(x8 ). Define left and right 

transformation matrices by the derivatives -
L B a tB 

A --x -axA (AA) 

For example, these relate the derivatives - -a s a 
a A= AL a ,s X X 

From the above results for derivatives of functions (1.2,1.3), we see that the left 

and right matrices are related by 

ARs = (-l)B(A+t) sLA. 

For the rest of this discussion, different index orderings of a given tensor will be 

referred to by the same name. Thus, Rand L are both the same rotation matrix 

M,and 

(A.5) 

is the grading for different index orderings. Also, note from the definition (1.4) 

that the Grassmann parity of A Ms is ( -1 )A+B. 

Now we can determine all grading conventions for vectors. For a rotation 

matrix M, we will also need the inverse rotation N which obeys 

A Ms s Nc = Asc Asc = { 1 A = C 
0 otherwise . 

The different index orderings for N are related the same as M. Define left- and 

right- , upper- and lower-index vectors to have transformation rules 

U~ =.Us 8 NA 

AU'= AN8 sU 
(A.6) 

Then using (1.5) to rearrange indices on M and using the Grassmann parity of the 

vectors and M, one can relate the left- and right-index vectors. For upper-index 

V: 

= ( -l)B(A+l) sMA BV 

= BVsMA. 
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Comparing with the defined transformation properties (1.6) we see that AV and 

VA transform the same way Thus they are equal up to a multiplicative constant.· 

Choosing the constant to be one we may identify 

(A.7) 

For lower-index U: 
U~ =UssNA 

= ( -l)A(S+t) Us ANs 

= (-l)A+B ANs Us 

( -l)AU~ = ANs ( -l)s Us. 

Thus we see that ( -1 )A U A transforms like AU and we identify 

(A.8) 

Again we have set an arbitrary constant to one. This agrees with our earlier 

. conclusion for lower-index vectors defined by derivatives. 

A.3 Super-Tensors 

Tensors are constructed simply as the product of vectors. As an example, consider 

the case of a tensor with one upper and two lower indices constructed from an 

upper-index vector V and lower-index vectors U and W. Then define the tensor 

Tby 

(A.9) 

Different index orderings are obtained by permuting the defining vectors and in­

cluding appropriate grading signs. For example, some permutations of T are 

TA sc = (-l)ABTsAc 

= ( -1 )A(S+C) Tsc A-

SC -A = (-1) T CS· 

Note that the tensor in the last line is different from the initial one, and is defined 

by T ex VWU, with the vectors ordered differently from the first case. Finally, 
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indices may be changed between left and right using (1.7) for upper indices and 

(1.8) for lower indices. 

The transformation rules for tensors are ea.sily obtained from those for the 

·defining vectors in (1.6). For the above example, with rotation matrix M arid 

inverse 1V, 

T IA _ V'AU' rxr' sc- srrc 

= yD DMA uEENs wFFNc 

= ( -l)E<A+D)+F(A+B+D+E>yDuEwF DMA ENs F Nc 

= (-l)E(A+D)+F(A+B+D+E)TA sc DMA ENs F Nc. 

In general, a tensor transforms by the product of the transformation matrices for 

each of its indices, with grading signs included for permuting saturated indices 

until they are adjacent. 

Consider now a tensor with one upper- and one lower-index defined by 

vVe wish to construct a scalar S by saturating the indices. Grading signs will be 

needed to insure that the scalar is invariant, i.e. S' = S. From the defintion of the 

roatation matrix M and inverse N, we see that the quantity VA AU is invariant: 

But from (1.8) AU= ( -l)A UA, so the scalar quantity is 

This determines the appropriate grading for saturating indices on a tensor TAB· It 

agrees with the well known form of the super-trace. Saturation of indices with other 

orderings, or left- or right-indices, is determined using the appropriate grading for 

permuting the indices. For example 

s = ( -1 )A TA A = TA A 

= (-l)AATA = (-l)A ATA 

=A AT =(-l)A A AT 
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are the ways to saturate all possible index arrangements of the tensor T considered 

above. Finally, pairs of indices on higher rank tensors may be saturated to create 

a tensor with rank two lower. Grading signs are inserted to permute the indices 

until the saturated indices are adjacent. Then the above rules are used to sature 

the pair. For example, 

s BC = ( -1 )A(l+B+C) TA BCA 

is the correct way to form a tensor S sc ?Y saturating the first and last indices of 

a tensor TA BCD· 

Finally, we note that tensors may be multiplied by saturating indices, form­

ing a new tensor with the remaining indices. The grading rules are easily deter­

mined using the definition of a tensor (1.9) and the grading rules (1.10). The 

simplest case is saturating the last index of the first tensor with the first index of 

the last. For example · 

forms a new rank-2 tensor R from rank-2 tensors SandT. When transformed, 

the rotation mat'rices for the saturated indices cancel, as in the case for the scalar 

quantity (1.10). Other index orderings are obtained by including grading signs to 

permute indices until the saturated indices are adjacent. For example, 

forms R from SandT, with Snow having index ordering SA 8 . 

The tensor multiplication rules are particularly useful when considering the 

tensor product of matrices. The tensor product of two matrices R and S can be 

written as a rank-4 tensor with index ordering given by 

The index subscripts indicate which vector space in the tensor product the index 

belongs to. Then multiplication of two such matrices will require grading signs 

from permuting the saturated indices until they are adjacent. As seen above, no 

grading signs are needed in the multiplication if the indices are already adjacent. 

Thus, when dealing with large matrices, it is convenient to arrange the indices in 
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the tensor product so that this is the case. For a tensor product, this means that 

the first and last indices should belong to the same vector space, the second and 

second to last indices belong to the same vector space, and so forth for higher 

tensor products. For the above example, this appropriate arrangement is 

Then two such matrices may be multiplied using normal matrix multiplication 

with no grading. For example 

Essentially this convention moves the grading signs to the definition of the matrix 

tensor product. This convention is most convenient when dealing with the tensor 

product of two or more matrices. For example, the triple tensor product of two 

2 x 2 matrices is an 8 x 8 matrix. Including the signs when writing these large 

matrices allows normal matrix multiplication, avoiding sign errors in the tedious 

manipulations. 

70 



,,,. 

,\.1' 

Bibliography 

[1] V.G. Drinfeld, "Quantum Groups", Proc. Internat. Congr. Math., vol. 1, 798-

820, Berkeley (1986). 

[2] M. Jimbo, Lett. Math. Phys. 11 247 (1986). 

[3] L.D. Faddeev, "Integrable Models in (1+1)-dimensional Quantum Field The­

ozy", (Les Houches, 1982), Elsevier Science Publishers, Amsterdam, 1984. .. . 

[4] L. Alvarez-Gaume, C. Gomez and G. Sierra, "Duality and Quantum Groups", 

CERN-TH.5369/89, UVGA-DPT-3/605/89, as well as earlier CERN and 

UVGA preprints. 

[5] Yu.I. Manin, "Quantum Groups and Non-Commutative Geometzy", Montreal 

University preprint, CRM-1561 (1988). 

[6] L.D. Faddeev, N. Reshetikhin and L.A. Takhtajan, "Quantization of Lie 

Groups and Lie Algebras", LOMI E-14-87 (1987), to appear in M. Sato's 

60th birthday volume. 

[7] L.A. Takhtajan, "Quantum Groups and Integrable Models", Advanced Stud­

ies in Pure Mathematics 19, 1989. 

[8] S.L. Woronowicz, "Twisted SU(2) Group. An Example of Non-Commutative 

Differential Calculus", Publ. RIMS-Kyoto 23 117 (1987). · 

[9] J. Wess and B. Zwnino, "A Right-Invariant Calculus for GLq(2, C)", to ap­

pear. 

[10] M.J. Bowick and S.G. Rajeev, Phys. Rev. Lett. 58, 535 (1987); Nucl. Phys. 

B293, 348 (1987); The Complex Geometry of String Theory and Lqop Space, 

71 



Invited talks at the Eleventh Johns Hopkins Workshop on Current Problems 

in Particle Theory, Lanzhou, People's Republic of China, June 17-19, 1987. 

[11] B. Zurnino, The Geometry of the Virasoro Group for Physicists, Lectures 

presented. at the Cargese 1987 Summer School on Particle Physics, Cargese, 

Corsica, August 3-21, 1987. LBL preprint LBL-24319, UCB preprint UCB­

PTH-87/48. 

[12] K. Pilch and N.P. Warner, Journ. Classical and Quantum Gravity, MIT 

preprint, (CTP 1457, Feb. 1987). 

[13] D. Harari, D.K. Hong, P. Ramond and V.G.J. Rodgers, Nucl. Phys. B294, 

556 (1987). 

[14] P. Oh and P. Ramond, Phys. Lett. B 195, 130 (1987). 

[15] Z. Zhao, K. Wu and T. Saito, Phys. Lett. B 199, 37 (1987). 

[16] W.B. Schmidke and S.P. Vokos, Ann. Phys. 189, 190 (1989). 

[17] V. Jones, private communication. 

[18] J. Schwenk, W.B. Schmidke and S. Vokos, "Properties of 2 x 2 Quantum 

Matrices in Z2-graded Spaces", preprint LBL-27933, UCB-PTH-89/25 (1989). 

[19] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, (Inter­

science, New York, 1969), Vol. I, Chapter VI, Sec. 2,3. Vol. II, Chapter IV. 

This is a standard textbook on modern differential geometry. 

[20] R. Coquereaux and A. Jadczyk, lliemannian Geometry, Fiber Bundles, 

Kaluza-Klein Theories and all that .... World Scientific (1988). 

[21] S. Kobayashi, Differential Geometry of Complex Vector Bundles. Princeton 

University Press (1987). 

[22] M.J. Bowick and A. Lahlri, J. Math. Phys. 29, 1979 (1988). 

-
[23] B. DeWitt. Supermanifolds. Cambridge University Press (1984). 

72 



[24] LB. Frenkel, H. Garland and G.J. Zuckerman Proc. Na.tl. Aca.d. Sci. USA 83, 

8442 (1986). 

[25] D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B198, 93 (1986). 

[26] M.B. Green, J.H. Schwarz and E. Witten. Superstring Theory. Cambridge 

University Press (1987). This textbook contains numerous references to orig­

inal works. 

73 



·-~~-

LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA 

INFORMATION RESOURCES DEPARTMENT 
BERKELEY, CALIFORNIA 94720 

~~ 


