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ABSTRACT 

We discuss .. a coupled-channel formulation for single-charge exchange 

reactions in pion-nucleus scattering. Within an "adiabatic approximation" 

and the framework of the isobar-doorway model, we obtain an algebraic 

solution for the scattering amplitudes. We'also introduce, as our second 

approximation, a separable expansion for the partial-wave form factors and 

obtain a set of linear equations for quantities which appear in the T-matrice 

for elastic and charge exchange interactions. 

NUCLEAR REACTIONS: Pion-Nucleus Scattering, 

(3,3) Resonance Charge Exchanges, Coupled-

Channel Calculations 
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.. 
I. INTRODUCTION 

In this report, we shall discuss a coupled-channel approach to pion-

nucleus charge-exchange reactions near the (3,3) resonance region. These 

processes are of particular interest because they are dominated by the 6(1231) 

isobar formation in the nucleus. In the distorted wave Born approximation 

(DWBA), the effects of the (3,3) resonance on the single and double charge 

exchange reactions have been studied in detail. 1 Within similar approximations, 

we shall show that the channel coupling effects may also be treated without much 

complication. The simplfying hypotheses are quite similar to these used in 

. 2 
the isobar-doorway model, which was used in the DWBA calculation of Ref. 1. 

In Section II, we shall discuss a coupled-channel formalism using the concept 

of isobar-doorway states in the elastic and charge exchange channels. We use 

an adiabatic approximation to simplify our coupled equations, and obtain a 

formal expression of the T-matrix in terms of a resonant and a nonresonant 

contributions. We then explicitly introduce the approximations of the isobar-

doorway model in 'section III, where we obtain solutions of the coupled-channel 

equations algebraically in a closed form~ The resonant couplings may be treated 

exactly by anN-point integratio~or approximately by introducing a separable 

expansion of the particle wave nuclear form factors. The separable approxima-

tion is discussed in the appendices. We draw some formal conclusions and 

remarks on the formalism in Section IV. 
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II. COUPLED-CHANNEL FORMALISM 

Our formulation with the doorway concept is best carried out by 

using the projection-operator techniques of Feshbach;
3 

this has been 

discussed in detail in Ref. 1. We shall recall some important definitions 

here. Let us define (1) P1-space as the incident channel and P2-space the 

exit (charge exchanged) channel, with the respective nuclei at their ground 

states, (2) the Q-space as the isobar compound state where a nucleon is changed 

into a stable ~(1231) isobar, and (3) the q-space as to include the complementary 

spage; i.e. q=l-Q-P
1
-P

2
• Thus the q-space contains all the reaction channels 

except the elastic (P
1

) and the charge exchange (P
2

) channels. These spaces 

are coupled to one another, except by the doorway-state hypothesis there is no 

direct coupling between the P (P=P
1

+P
2

) and the q-spaces. The nonresonant TI

nucleon charge ex~hange interactions couple P1 and P2 directly, but only the 

resonant TI-nucleon interaction can create an isobar in the nucleus, which 

may decay into q, P
1 

or P
2 

spaces. 

With the above separation of spaces, we obtain the following coupled 

equations 

(1) 

and 

(2) 

where E and ~ are the energy and the total wave function of the system. The 

projected wave function in the i space is P ~ 
i 

The effective Hamiltonians 

in Eqs. (1) and (2) are defined as K 
ij 

= P.J!P. where 
1. J 

(3) 
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which is modified due to coupling to the Q-space. The q-space has been 

suppressed through the use of II 

. -1 
H = H + Hq(E-H ) qH 

qq 
(4) 

where H 
qq = qHq and HQQ = QHQ. The total Hamiltonian H may be written as 

H=H +T+V 
A 

(5) 

where HA is the baryon Hamiltonian (i.e. the nuclear Hamiltonian including 

a possible isobar), Tis the kinetic energy operator of the pion. The TI-

nucleus interaction V may be separated into a nonresonant and a resonant 

parts, vNR and vR respectively, and the Coulomb interaction. 

In order to reduce the many-body equations, Eqs. (1) and (2), to 

two-body coupled equations, we introduce the product wave function: 

p. 'l' = 'l'. <P. 
l. l. l. 

(6) 

where 'l'. describes the pion state and <P. the nuclear state in channel i. 
l. l. 

"'+ "'+ By multiplying on the left of Eqs. (1) and (2) by ~1 and ~2 respectively 

and integrating over nuclear co-ordinates, we obtain 

(7) 

where Ei is the nuclear ground state energy in channel i, i.e. 
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The diagonal v .. and coupling V .. interactions. are given as 
11 1] 

where 

v .. = v~~ 
1] 1] 

c + V .. O .. 
11 1] 

-1 
v~. = < 4>.IHQ(E-H'QQ> QHI4>.> 

1] 1 J 

(9) 

(10) 

(11) 

(12) 

and v.~ is the Coulomb interaction. 
11 

Eqs. (10) and (11) show that we are interested 

only in the single-charge exchange (SCX) reactions, which may go through one 

intermediate ~(1231) resonance. Eqs. (6) and (7) are the desired coupled 

equations for our discussion. 

To simplify the coupled equations further, let us now introduce 

an "adiabatic approximation" for sex reactions. For the nuclei near the 

44 doubly closed shells, e.g. Ca, the final nucleus will differ from the 

initial nucleus only by the Coulomb energy. This difference is partly 

compensated by the change of the charge state of the pion. For this reason, 

we may assume 

(13) 

or we may take E. + V~. = 0 (the reference energy). The nonresonant n-nucleus 
1 11 

interactions are rather small compared to the pion kinetic energy and will 
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depend little on the isospin of the target, so we may assume 

vNR = vNR 
11 22 

(14) 

The most importa~t difference between the left-hand sides of Eqs. (7) and 

(8) is perhaps in the resonant diagonal interaction v~ .. From Eq. (12) and 
].]. 

the approximation used in the isobar-doorway model [1,2], we have 

R ~ ~ l(ij 
V, • (k I ,k) = ' 
l.] 27T 

(15) 

where jt
33 

(k) I is the modified TI-nucleon (3,3) resonance amplitude in the 

~ ~ 

medium, and F .. (k'-k) is the nuclear form factor. 
l.J The factor 7( . . depends 

l.J 

on the charge state of the pion. For the reactions and nuclei under 

consideration, we expect lt33 (E) I and Fii (k'-k) to be independent of i. 

So the major difference in the optical potentials in the two channels is 

due to the factor n . .. For a target nucleus A with neutron number Nand I(].]. 

proton number Z, we have 

+ 
Ilii 

N 
for 7T = z +-

3 

for 
0 

'lii 
2 (Z + N) 7T = 
3 

and for 7T n.ii = ~+ N 
3 

(16) 

(17) 

(18) 

For sex reaction on A, we expect a change in the resonant optical potential as 

= 
T 

0 

A 
(19) 
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where T
0 

is the isospin projection of the target, T
0 

~ ~ (N- Z). From. 

this estimate, we know that even the resonant optical potentials in both 

channels are not too different if T <<A. 
0 

With the above considerations, we may now assume the charge exchange 

reaction to be adiabatic and write the coupled equations as 

or as a matrix equation 

{(E- H )I}~= V ~ 
0 ~ ::::::-

with 

H = T + VNR + VR 
0 0 0 

NR 
= [v21 

In Eq. ( 2~ I is a 2 x 2 unit matrix, ~ are two component vectors 
~ 

The interaction matrix v is defined as 

V = VNR + yR 
12 12 

where the nonresonant interaction matrix 

NR 
v12 0 

yNR = 12 
~ 

NR 
v21 0 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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and 

We therefore may treat Eq. (22) as a standard two potential scattering 

problem for VNR 
~2 

R 
and ~12 • 

T
R (-) t 

't'= +Q 
~ ~ ~ R 

The complete T-matrix may be written as4 

(27) 

(28) 

where ~R is the solutions of Eq. (22) without ~~- This is our resonant 

interaction T-matrix, TR, is a 2x2 matrix describing the elastic and the 

charge exchange scattering processes. (±) 
The wave matrices ~ for the resonant 

intera'ction _are defined as 

1 
E - H + 1.n o-

Formally, we may write the solutions of TR and TNR as given by 

TR = R R + 1.n )-1 TR 
~2 + ~2 (E - H o ~ 

and 

NR NR 
= ~2 + ~2 

(29) 

(30) 

(31) 

Equation (30) is the formal coupled-channel equation for the resonant charge 

exchange interactions, but with full resonant and nonresonant.distortions in 

both channels. However, Eq. (31) also contain resonant charge exchange inter-

action ~~· besides the nonresonant charge exchange interactions. 
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III. ISOBAR-DOORWAY APPROXIMATIONS 

Next we will simplify the above formal solutions in the isobar-door-

was models. The approximation we have introduced so far is essentially the 

adiabatic approximation, i.e. we assume the diagonal optical potentials in 

both channels to be the same. This approximation makes it possible to solve 

the coupled equations, Eqs. (7) and (8), in a simple way, if.v
12 

and v2
1 

also have proper symmetry. Clearly, this approximation was not introduced 
' ~ 

in case of the DWBA calculation in Ref. 1, but, to include the coupled-

channel effects in a. simple way, it is well justified to use the adiabatic 

approximation in our present formulation. The complete coupled-channel 

calculation using Eqs. (20) and (21) is still complicated. Nevertheless we 

R 
shall attempt to solve only the coupling due to the resonant,interaction v12 ex-

actly in the isobar-doorway model. The nonresonant coupling interaction may be 

solved by using a DWBA, as described in Ref. 1, or by a full coupled-channel calcula-

tion using the usual optical model. We also discuss the nonresonant inter-

action for completeness, since it is also affected by the resonant interactions. 

The resonant coupled-equations are given as 

NR 
[ E - T -V 

0 

[ E - T - VNR 
0 

VR) '¥R = 
0 1 

'i'R 
1 

(32) 

(33) 

where we have the superscript R to denote the effects of the resonant charge 

exchange coupling. Since v~2 = v~1 , these equations may be solved by 

. h h . f d h " . . " 5 
us~ng t e tee n~ques re erre to as t e exact resonance approx~mat~on. 

Equations (32) and (33) may be combined to give the following form 



( E - K - VNR 
0 

where we have defined 
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(34) 

(35) 

We now instead solve for~± from Eq. (34). The proper boundary conditions 

for Eqs. (32) and (33) should also be incorporated _in the solutions for 

~±. Only ~~ has both incoming and outgoing waves; the charge-exchange ~~ 

channel has purely outgoing waves_. Let us first define the nonresonant wave 

functions in ~R 
1 

( E - T 

as 

0 
(36) 

which includes a plane wave solution plus a spherical outgoing wave due the 

nonresonant potential VNR 
0 

S
. NR 
J.nce V 

0 
is small, ~ may be taken to be plane 

waves, (see also Ref. 1). The complete solution of Eq. (34) in the momentum 

representation may be written as 

+ 
~... (k) 
k (±) 

-+ 1 
= ~; (k) + -E--__...;E=..k_+_i_n_ J R -+ -+ (-+I ) ± V (k k I ) ] ~-+ k 

12 , k +) 
0 (-

0 0 

where k denotes the incident momentum, Ek is the energy associated with 

diagonal matrix element VR {R,R1
) has been given by Eq. (15), 

0 

0 

-+ 
momentum k. The 

with i = j. The off~diagonal matrix element as given by Eq. (15) involves 

-+-+ 
F

12
Ck,k 1 ), the transition nuclear form factor from the initial state 1 to 

the final state 2, and the coefficient ~ 12 depending on the charge states of 

the pions and the isospin of the target. In Eq. (37), we have taken the non-

(37) 

NR -1 resonant propagator (E- T-V ) · of Eq. (36) to be a plane wave propagator, i.e., 
0 

neglecting the effects of the nonresonant potential on the resonant interactions. 

This approximation is reasonable near the resonance, and greatly simplifies 

the solution. 
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To obtain a partial-wave expansion of Eq. (37), we introduce the 

following expressions: (1) For the wave functions, we have 

L: * 
A 

+ 'l'k (±) (k) = 41T YLM (k)YLM(k
0

)FL(±) (k,k
0

) 

0 LM 
(38) 

+ L: * (~)YLM(~o) ~L(k,ko) and <jl+ (k) = 41T YLM k LM 0 

(39) 

(2) For the nuclear form factors 

(40) 

and (41) 

The L-th partial-wave component of the complete solution, Eq. (37), 

becomes 

(42) 

where the round bracket denotes a Wigner 3-j symbol. This is an integral 

equation for F +(k,k ), which can be solved by the following two methods. 
L- o 

By using N-point integration technique, we may write Eq. (42) as 
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N 

L W(kn) ku 2 KL (±) (k,kn) FL(±) (kn,ko) 

n=l 

(43) 

where W(k ) are the weight factors for the N-point integration. The kernel 
n 

K (±) (k k') is defined as 
L ' 

1 (2R.+l) (: : :) 
(44) 

If we take k = k in Eq. (43), we have the following matrix equation: 
m 

N 

L: [omn 
n=l 

- W (k ) k 2 K (±) (k , k ~ 
n n L m nj 

which gives 

where the inverse matrix is defined as 

, k ) 
0 

(46) 

(45) 
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0 
mn 

W (k ) k 2 K (±) (k k ) 
n n -L m' n (47) 

The above method is exact. The second approach begins with a separable expansion 

for the density in Eq. (42). We have, for the i-th components (see Appendix I) 

co 

pi (k,k') = E U (m) (k) U (m) (k' ) 
i i (48) 

m=o 

and 

co 

pi (k,k') = V (m) (k) V (m) (k') 
i i (49) 

m=o 

where Ui (m) (k) and Vi (m) (k) are orthogonal functions. We may now rewrite 

Eq. (42) as 

1 
2 1;33 '(k) I E (2i+l) 

E - ~ + i7l V f7TN(k) im 

where 

and 
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(2 (m) (k) =fk 12dk 1 Vo (m) (k 1) ... (r (k 1) F (k 1 k) (52) 
lL(±) o ;v 'I '!TN L(±} ' o 

If we multiply both sides of Eq. (SO} by k 2
U0 (m) (k} ...Jr (k) a~d k

2 vo (m) (k) ..Jr (k) 
· ;v '!TN ;v '!TN 

respectively and integrate over k, we obtain the following set of linear 

(m) (m) 
equations for ~5/,L(~) (k) and (25/,L(±) (k): 

and 

= w (m) (k ) 
tL . o 

= A (m) (k ) 
tL o 

where we have defined 

I 

= 2(25/, +1) 

mml 

N$1,$1,• = 2(25/, 1 +1) 

mml] 
-7l11M.H 

1

' 

2 

c 1 

:) 0 

(53) 

(54) 

lt33 (k) I ml /00 k
2

dk vt I 
(k) 

E-E + 11( k 
0 

(56) 

(55) 

m 
u$1, (k) , 
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mm' 
P =2(2R.'+l) u,• 1

- I m' t
33 

(k) V I (k) 

i~ Jl, 

m 
VJI, (k) , (57) 

(58) 

and 

A. (m) (k ) 
JI.L .o 

(59) 

We may substitute the solutions of Eqs. (53) and (54) into Eq. (SO) and obtain 

the amplitude, FL(±) (k,k
0
). 

To obtain the T-matrix elements from the channel wave functions, we 

need to consider ~l and ~2 individually. Let us expand the channel wave functions 

in momentum space representation as 

~. -+k 
~. 

0 

-+ 
(k) = 47T 

LM 

where the partial waves Xi,L(k,k
0

) are related to the amplitudes FL(±) as 

and 

1 
=-

2 

(60) 

(61) 

(62) 
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From the asymptotic behavior of Xl,L and x2 ,L , we may obtain the elastic 

scattering and charge exchange amplitudes respectively. First, we may 

R 
introduce the elastic scattering T-matrix Tel and the sex T-matrix Tsex· 

These T-matrices may be expanded as 

( k 1 ITellk > = 2: (2L+l) Tel (L) PL(cos8), 
0 0 L 

(63) 

, 

A A 

and case = k I .k 1 and 
0 0 

< k I ITR lk: ) 2: (2L+l) 
R 

(L) PL(cos8) = Tsex o sex o 
L 

(64) 

where Tel (L) and T~ex(L) are the L-th partial wave amplitudes. The superscript 

R denotes the sex reactions through the resonant interaction. The forms of these 

T-matrix amplitudes depend on the methods we use to solve Eq. (42). With the 

N-point integration technique, we obtain numerical solutions for FL(±) (k,k
0

), 

so the elastic and sex amplitudes are given as 

(65) 

T~ex (L) = F (k 1 k )-K (-) (k ,k1 ) F (k 1 k )] dk 1 

L(+) ' o L o L(-) ' o 

(66) 

\ 
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where the integration may be carried out with the same N-point integration. 

With the method of separable expansion, these amplitudes are given as 

Tel (L) = 

and 

~~33(ko) I 
"r (k > 'ITN o 

(2i+l) 

R.m 

(67) 

lt33 (ko) I L R 
Tscx<L> = 

X-m 

~ r'ITN (ko) 
c 1 

(2i+l) 
0 :j {

7J u (m) (k ) ~ (m) (k ) - A (m) (k ~ 
'(11 i o riL(+) o iL(-) oj 

Finally, we may write the total sex T-matrix as 

where the nonresonant p&rt is, explicitly, 

( '¥ -+ /TNR ''¥ -+) = [( d-+q d-+q''¥2,-+k,(~')(~•lTNSRCXl~) '¥1,-+k(~) 
2,k' - sex l,k J J 

(68) 

(70) 



-17- LBL-2958 

with ( ~·ITNR ~~) determined from solving Eq. (31) either in a DWBA or a 
sex 

coupled channel calculation. 

In this section we have solved the coupled-channel equation in the 

isobar-doorway model. We have shown that the couplings through the isobar 

compound states may be treated to all orders. The essential approximations 

are the adiabatic approximation discussed in the previous section and the 

isobar-doorway model. Under these approximations, we obtain the integral 

equation, Eq. (42), for the scattering amplitudes FL(±) (k',k
0
), which may be 

solved exactly by using anN-point integration method as shown by Eq. (46). We 

also introduce separable expansions for the nuclear form factors and obtain an 

explicit solution for FL(±) (k',k
0
). Since the first approach is exact, the 

validity of the second approach may be directly checked by comparing their 

results. (Some qualitative argument for using the separable expansion is given 

in Appendix I). 

As we have d{scussed in the appendix, the simple separable form of 

density, Eq. (48) may not be sufficient. An exact separable expansion is 

introduced in Eq. (I.S), by which our results in Eq. (54) will be modified to 

a more complicated form. This point will be discussed in a further investigation. 
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IV. CONCLUDING REMARKS 

we have discussed a simple model for pion-nucleus single change exchange 

reactions, where the main couplings between the elastic and the sex channel 

are treated in a closed form. These coulped-channel effects may be important 

due to the (3,3) resonance in the continuum. Our observation begins with the 

"exact resonance" approximations since the optical potentials felt by the 

incident and the outgoing pions are quite similar. This is particularly true 

for nuclei with jN-zj~A. We then make the usual isobar-doorway assumptions 

for the resonant elastic and charge exchange interactions, and finally reduce 

the coupled-channel equations to a pair of integral equations which may be 

solved exactly. These integral equations may also be solved by using separable 

expansions of the nuclear form factors. 

It is of interest to study the effects of the channel couplings 

on the elastic and charge exchange scattering by comparing the result of 

the present formulation with the DWBA as proposed in Ref. (1). We should note, 

however, that the coupled-channel formalism here depends on the "exact resonance" 

approximation. otherwise, the two formalisms are identical. we may diminish 

the uncertainty due to the exact resonance approximation by applying the theory 

to larger nuclei, and study the true channel-coupling effects. 

We have also proposed the separable expansions for the nuclear form 

factors. The separable representation shall also be of interest in various 

particle-nucleus scattering formulations, where a separable particle-particle 

T-matrix is used to construct a particle-nucleus optical model potential 

(first-order optical potentials). If the density is separable, the particle

nucleus optical potential is also separable. The formulation may be greatly 

simplified. 
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Appendix I. Separable Expansion of p~(k,k') 

we first discuss the expansion of diagonal partial wave form factor 

p~ (k,k') of Eq. ( 48 ) , which is defined as 

(I.l) 

where j 0 (kr) are the spherical Bessel functions and p .(r) is the (spherical) 
:N 00 

ground state particle density distribution. Usually p (r) is large only in the 
00 

region of the size of the nucleus, hence one needs an adequate representation of 

of j~(kr) only for the range 0 ~ r ~ R, where Risto be considered as an 

equivalent radius of a spherical density function. Within the range R, we may 

use a Fourier-Bessel expansion for j~(kr) 

j ~(h-) = 'E A~~) (k) j ~(a~~) r) 
n 

where a(~) are the roots of the following equation 
n 

(!.2) 

The functions j~(a~~)r) form a complete orthnormal set in the region 0 ~ r ~ R. 

The coefficients A(~) (k) may therefore be obtained as 
n 

A(~) (k) = 2 
(I.4) 

n 

0 
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where j R.' (X) stands for the derivative ~X [ j R. (X}] • We may then rewrite 

Eq. (I.l} as 

where 

PR. (k,k') = 47T 

n,m 

Inm(a~~) ,a~~))= ~oo r 2dr j~(a!~)r) j~(a~~)r) p
00

(r) 

0 

(1.5) 

(I .6) 

Since the integral is an oscillatory function of r, if m * n, we expect the 

off-diagonal (n * m) elements of I to be small. 
nm 

If we assume p (r) to be constant (= p } for r ~ R and zero outside, 
00 0 

we have 

where 

I (Cl (R.) 
nn n ' 

Cl(R.}} = P R3 jj 
1 

(Cl(R.)R) 12 
n o R. n 

2 

and 

A (R,} (k) A (R.) (k') 
n n 

n 

The coefficients A(R.) (k) are given as 
n 

A(R,)(k) = 
n 

2a (R.) · (kR} 
n JR. 

(I. 7) 

(1.8) 

(I. 9) 

(!.10) 
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One should note that there is no singularity at k = ex (R.), since 
n 

j n (kR) 
tim }(, 

(R.) (ex R. - k) 
k-+ex n 

n 

::;:-j ' (ex (R.) R) 
.R. n 

We have shown that for a uniform density distribution the partial wave 

(I.ll) 

form factor pR.(k,k') is exactly separable. For a more general density, we 

would expect some corrections, or we have the following separable form 

where 

PR.(k,k') = ~ uin) (k) uin) (k') +corrections 

n 

A (R.) (k) 
n 

We now turn to the transition form factors. We may follow the 
t 

(!.12) 

(I .13) 

above argument to obtain a separable representation. The approximation will 

be good when we consider charge exchange transition to the analogue state of 

the target. In this case, the transition density will be products of two 

single particle wave functions of the outmost shell~model levels. This 

density will be peaked near the nuclear surface. If we take 

-p(r) = p o (r-R) 
0 

(I. 14) 

then, from Eq. (I.l), the partial wave density will be separable. 

We therefore have shown that in two limits of the density distributions, 

the partial wave density exactly factorized. In a more general distribution, 



-23- LBL-2958 

we have to use the exact separable form of Eq. (!.5)1 with double summation. 

We have numerically tested our discussions here by performing the calculations 

for a Woods-Saxon density with a half-radius 4 fm and a diffuseness a = 0.6 fm. 

-1 -1 
For typical pion momenta near the resonance: k = 1.5 fm and k' = 2.0 fm , 

we find it necessary to use Eq. (!.5). An accuracy to within a few percent 

may be obtained by keeping n L 5 terms in Eq. (!.2). A complete investigation 

of this method will be reported elsewhere. 
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Appendix II. A simple separable approximation 

In this appendix, we show our calculation in its crudest form. We 

assume that numerically the nuclear form factors may be represented by 

and 

P (k,k I) = p(o) (k) R(k 1 ) 

R, (II.l) 

Pt (k,k 1
) = pio) (k) R(k 1

) (II.2) 

where the function R(k 1 
). is independent of R.. Then the L-th partial-wave 

component of Eq. (42) becomes 

M (+) (k)A (+) (k), (II.3) L - L - o 

where 

~(±) (k) = L (21+1)(

1 

R, 0 0 

t Lo)2[ 7} llp(o) (k) + 7} -(o) (k)] 
I ( t - I ( 12 Pt I (II.4) 

and 

AL(±) (k
0

) = Joo .JrrrN{k) FL{±) (k,k
0

) R(k) k
2 

dk (II.S) 

0 

Multiplying on the left of Eq. (I.3) by rTIN(k) R(k)k
2 , and integrating over k, 

we obtain the desired solution for AL(±)' 



where we have 

and 

A. (k ) 
L o 

= ~n f 
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The partial wave T-matrix elements are given as 

Tel (L) = 

and 

where 

and 

N (k ) 
L o 

2 

L (2R.+l) 
R, c 

(>i+l) c 

2 

R. L) P Co) Ck) 
0 0 . R, 

R, L )2 
p-<o) (k) 

0 0 R, 
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(II. G) 

(II. 7) 

(II.8) 

(II. 9) 

(II.lO) 

(II.ll) 

(1!.12) 
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