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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ASYMPTOTIC ANALYSIS OF THE· LONGITUDINAL INSTABILITY OF A 

HEAVY ION INDUCTION LINAC* 

Edward P. Lee and Lloyd Smith 
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 

Abstract 

An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to 
exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the 
interaction between the beam and complex impedance of the induction modules. In general, the 
detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse 
length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis 
of the several regimes of interest is presented. 

Linac Model 

We treat a cluster of beams drifting at velocity v, with line charge density A and current 

I= Av. It is assumed here that all the beamlets (N- 16) effectively act in concert so that A and 
I are the total values and v is the common velocity. The continuity equation, written in laboratory 
frame quantities (z,t) is: 

(1) 

A smoothed longitudinal field E, induced by interaction of I with the induction modules, acts 
on v: 

(2) 

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy 
Sciences, Advanced Energy Projects Division, U.S. Dept. of Energy, under Contract No. DE
AC03-76SF00098. 
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In general E is related to I through an impedance 

E(ro) = -Z(ro) I(ro) . (3) 

However in the present study the low frequency interaction is modeled as that of a resistance 
and capacity C in parallel. We may use the circuit representation: 

R 

E dE- I -+----
RC dt C (4) 

Most previous related work(l) has neglected the capacity, but included a direct space-charge 

force proportional to dA/dz The present model appears to be more representative at low frequencies 
for the Heavy Ion Fusion application. In general the capacity reduces growth rates compared with 
the case of pure resistance by lowering the impedance as frequency increases. 

A perturbation analysis is carried out for small variations from constant equilibrium values. 
For: 

the perturbed equations are: 

v = v0 + 8v, 

/.. = A.o + 8/.., 

I= I0 + 8I, 

E=8E, 

8I = A.o8v + v0 8/.., 

(}8/.. + (}8I = O' 

dt dz 

d8v + v d8v = qe 8E 
m ' dt dz 

__ID3_ + (}8E = - 8I . 
RC dt C 

2 

(5) 

(6) 

(7) 

(8) 
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The values of R and C are related to beam parameters by considerations of system 
efficiency. For a good match of source to beam load, R must not be too different from the matched 
value R0 = Gflo, where G is the average accelerating gradient. For the typical parameters G = 106 

volts/m and I0 = 1000 amp, we have R0 = 1000 Q/m. In this case R could be reduced to 300 Q/m 

without serious loss of efficiency. The characteristic time RC = a,-1 should be a small fraction of 
the pulse length to avoid excessive energy flow in charging the accelerating gaps. For the typical 
value C = 3 xlO -10 F-m, we have RC = 90 ns, which is short compared with a typical 500 ns 
pulse length. 

In this simple model, time scales with RC = a.-1, where the "retarded time" variable 

't = t- z/v0 is used. A second scale quantity 

appears in the theory and scales the variable z. That is, <X.'t and Kz appear in a dimensionless 
formulation of Eqs. (5-8). 

Perturbation Analysis 

If we neglect the self-force from space charge, proportional to iJ"AliJz, the coupled equations 

for perturbed field and current are conveniently written using z and the retarded time 't = t- z/v0 as 
independent variables. We have 

(9) 

(10) 

Initial conditions on 8I are specified at z = 0 for 't ~ 0; in this model no disturbance is able to 

propagate backwards into the zones, 't < 0 or z < 0. If the initial perturbation is a time-dependent 
velocity error generated at z = 0, the initial conditions are: 
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ol(o,t) = 0' 

8E(z,o) = 0, 

~ ol(o,t) = f(t) = Ao aov(o,t). 
dZ Vo dt 

The solution is now found with the aid of a Laplace transformation in z: 

(&r.lffi) ~ r dz exp(iQz) (lil,OE) . 

Equations (9) and (10) yield 

with inversion formula 

f
+oo 

(oi, oE) = -oo ~~ exp(-iQz) (81, oE) . 

The inversion contour runs above any singularities in the complex Q plane. 

(11) 

(12) 

(13) 

(14) 

(15) 

It is instructive to examine the case of an impulsive perturbation f(t) resulting from a 
velocity step of amplitude AvoH(t-t0 ); from Eq. (11): 

f(t) = A(t0 )Ao8{t-to) . 

Then Eq. (13) gives 

(16) 
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The inversion may be written 

C8E = AA.JI('t-'t
0

) ciD exp(g) , i
+oo 

-oo 
2

1t n?-K2 (17) 

where we have defined 
2 

((""\ ) . (""\ a.Q ( 't-'to) 
g ~~.-r,z = -~~~z -----

.Q2-Kz 
(18) 

The function [Eq. (17)] has been evaluated analytically for positive (t,z), and may be regarded as 

a Green's function for general f(t0 ). However, its complicated form does not give a qualitative 

description of the pattern of growth with z and 't. The saddle point analysis presented here, while 

inexact, does provide this picture in several regimes of (z,'t). We set 'to= o in the following. 

Note that there are poles in Eq. (17) on the real axis at .Q = ± K. These points are 
intrinsic singularities since the poles also appear in g. These singularities are associated with 
"mountain ranges" containing saddle points as displayed in Figs. 1 and 2. An asymptotic 
evaluation of 8E may be per-formed by the standard path of steepest descent method applied 
around the these points. 

Saddle Point Analysis 

The stationary (saddle) points of g(.Q) are the four solutions (.Qs) of the quartic equation 

o = (:~), = -iz + (~;_::r· . · 
In general, two solutions lie in the lower half-plane and make little contribution to 81. The pair in 

the upper half-plane are found to be pure imaginary for ..1 = at/Kz > 8/(3.V3) and complex for 
..1 < 8/(3.V3) (see Figs. 1 and 2). 

Class 1 

Denoting Os = K('!'+iJ.!), we have the parameterization in terms of J.!: 

..1 > 8/(3..J3), Jl > l/.V3 ' 

..1 = (J.L2+1f/2J.!' 

Inversion contour is horizontal through the upper saddle. 

5 
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Fig 1. Topography of the Q' plane (Q' = nJK) for at/Kz > 8/(3~3). 

lmtn•) 

Fig 2. Topography of the 0' plane for at/Kz < 8/(3~3). 

6 



Class 2 

.1 < 8/(3.Y3), J.1 < l/.Y3 ' 

.1at/2J.1 
Re(gs) = J.1Kz-at + -----

(M2J.Lf +4J.12'1'2 

Inversion contour is oblique through each saddle point. 

The special case of .1 = 8/(3.Y3) has the upper half plane saddles coalesce at J.1 = l/.Y3. 

Case of .1 << 1 

(21) 

Here the saddles lie close to the singularities 0 = ± K. Physically, z is large enough that 

resonant growth can dominate at small t. The quartic for Os is readily solved by iteration from 
these values to obtain 

(22) 

Case of .1 >> 1 

From Eq. (20) we have 

J.1 ,; (2.1) 1/3 ' 

'l 1/3 
gs z 2 (2.1) Kz- at (23) 

The expected result that the RC decay should dominate at large t appears explicitly. 

Maximum Growth with z 

If z is fixed and the real part of gs is maximum in t we find a point of the class 2-type 

.1 = (at/Kz) < 8/(3.Y3): 
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J.! = k = .3535 ' 

'V = ± if = ± .6124 • 

~~ = 4Jz = .5303 ' 

Re (g5) = ~ = .3536 Kz . (24) 

This solution represents the peak of a wave packet moving backward in the pulse (increasing t) 

and forward in z with trajectory at/Kz = .5303. The same result is obtained by perturbing the 

beam sinusoidally at z = 0 for a long duration (t), with frequency ro
0 

= a/..J3. 

Application to Heayy Ion Fusion Priyer 

The maximum growth is calculated here at a medium energy point in a fusion driver, with 
ion parameters (T = 1000 MeV, m = 200 amu, q = 1). We also adopt the previously given 
quantities (C = 3 x 10-10 F-m, R = 300Q/m, 10 = 1Q3 A, tp = 500 ns). Then we have (non
relativistic calculation). 

V0 = .104 C, A0 = 32.2 J.!C/m , 

a-1 = 90.0 ns' K = 7.33 X w-3 m-1 ' 

at= 5.56 t/tp , Kz = 7.33 zkm, 
t/t 

.1 = at/Kz = .758 z~. 

From eqs. (24) we have the maximum growth point for a perturbation initiated at the pulse 
head: 

t/tp = .5303 = 699 
Zkm .758 . ' 

Re (g5 ) = .3536 Kz = 2.59 Zkm . 

It is clear that this asymptotic limit is available within the 500 ns pulse length for z out to -1.4 
km, and several e-fold of growth can occur over this distance. The growth rate is small 
enough that it may be possible to control it with a feed-forward system. Note that this 
maximum growth rate, when associated with a perturbation of constant frequency at z = 0, 
occurs at 

V0 = ~,., = 1.02 MHz , 
27tv ~ 
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which is very low considering the 500 ns pulse length. For the more reasonable v0 = 10 MHz 
we find the very low growth rate with distance of .636 km-1. 
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