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The Energy Kernel System (EKS) is a simulation environment for building energy 
analysis under development at Lawrence Berkeley Laboratory. EKS is a very flexible, 
highly modular environment that allows users to create customized models of thermal 
systems by linking together calculation objects - either defined by the user or obtained 
from a library - that describe the individual components of the system. A principal 
departure from other simulation environments is that system models are constructed 
from submodel objects that are defined without prescribed input or output interfaces, 
yielding greater modeling flexibility. Also, graph theoretic techniques are employed to 
determine the solution sequence, including reduction of the iterative problem size at each 
time step. 

To demonstrate the use of EKS for modeling complex physical systems, we present in 
this paper a dynamic EKS simulation of a hybrid liquid desiccant cooling system. VIe 
show (1) how EKS calculation objects are generated automatically using MACS1:1v1A 
(MIT, 1983), given the basic algebraic and differential equations for the system; (2) how 
EKS objects are linked into macro objects that describe system components; and (3) how 
macro objects are linked together tc:i form a mathematical network representing the 
entire system. Finally, vve show graphically the numerical results of running a time­
dependent simulation of the system. 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Technologies, Build­
ing Systems and Materials Division of the U. S. Department of Energy under Contract No. DE-AC03-75SF00098. 
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THE EKS ENVIRONMENT 
The EKS simulation environment is based on the intuition that: 

(a) there should be a single "sub-model" for each particular component, 

(b) the overall system model should be defined once, yet be capable of solving any 
well-posed problem involving the system variables, and 

(c) the environment software should select the appropriate solution sequence, includ­
ing necessary iteration, in a manner transparent to the modeler. 

The underlying principles making this realizable for static (i.e., algebraic) systems 
have been described by Sowell, Buhl, Erdem & Winkelmann (Hl86), implemented by 
Anderson (1986), and extended to handle dynamic (i.e., differential-algebraic) systems 
(Sowell and Buhl 1988). These ideas are described in terms of the object-oriented para­
digm in Sowell, Buhl and Nataf (1989) and Buhl et al (1990). 

Briefly summarized, EKS is a nonlinear equation solver with automatic equation 
system reduction and with an object-oriented interface. EKS manipulates objects that 
are equations and macro objects, which are collections of equations. The task of the user 
is to generate the objects and their related software equivalent, and to link them together 
in the appropriate way to take into account the variables common to different objects. 

In this way, large systems are modeled by a connection of simple component models, 
together with descriptions of how the individual components are related. The promise of 
this approach is that the resulting description of a large system is essentially a schematic 
of the corresponding physical system, and is constructed in a similar manner to the phy­
sical system. 

Step by step, then, the procedure that EKS users follow in setting up and running 
simulation is as follows: 

(1) Draw the system schematic showing the physical components of the system and 
how they are connected. 

(2) Write the mathematical equations, such as energy balances, mass balances, etc., 
that describe the system. These equations are the basic objects that EKS manipulates. 

(3) Run the EKS MACSYMA preprocessor to generate the C code and associated 
functions for the equations (objects) in (2). 

(4) Using the EKS Network Specification Language (NSL), link the objects in (3) 
into macro objects (sets of equations) that describe system components. 

(.5) Using NSL, link the macro objects together into a network describing the entire 
system. 

(6) Specify input variables, starting values, start time, stop time, time step, etc. 

(7) Run the simulation. 

(8) Plot results. 

If macro objects for the system components already exist in the EKS library, then 
only steps (5) through (8) are necessary. In the following sections we illustrate the above 
steps in an EKS solution of a hybrid liquid desiccant cooling system. 

A diagram of the current EKS environment is shown in Fig. 1. The user interacts 
with the system in four basic ways: defining objects (e.g., component models); defining 
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problems by linking objects together; specifying run-time data; and specifying desired 
output. The objects are defined in text files, either as mathematical equations or as com­
ponent models in Neutml Model Format (Sahlin and Sowell, 1989). These files are· pro­
cessed symbolically with programs written in MACSYMA, producing C language func­
tions and objects that are stored in libraries. Problems are defined by interconnecting 
objects using the interactive graphical user interface, producing a problem specification 
file in NSL. The nucleus or kernel is the dynamic Simulation Problem Analysis Kernel 
(SPANK) program system (Sowell and Buhl 1988). It works from the NSL description, 
generating internal data structures based on graphs. Matching and reduction algorithms 
are employed with these graphs to automatically devise an efficient solution algorithm, 
producing an executable program for a particular problem. This program reads constant 
and time-varying data from files, producing the problem solution. The output processor 
reads the result file and generates graphical displays according to interactive user 
requests. 

PROBLEM DESCRIPTION 

We consider the hybrid liquid desiccant system shown schematically in Fig. 2. The 
fluid used is a solution of lithium chloride in water. A complete description of the sys­
tem is given in Sick (1986) and Buschulte (1984). The system provides cool, dry air to a 
space. It contains an interchanger, a heater and a cooler (all modeled with the LMTD 
method), a regenerator and a conditioner (both modeled with a Kathabar equation), and 
two sumps, one of which is massive and, therefore, dynamic. 

Quoting Sick (1986), ''Precooled desiccant solution flows counter-currently to the air 
stream through the conditioner where it absorbs water vapor and cools down the air only 
to the desired set temperature. The water taken from the air goes into the liquid desic­
cant solution. In order to maintain its concentration, the salt solution is pumped to a 
regenerator. The process in the regenerator is reverse to that in the conditioner. Return 
air from the building absorbs water from the preheated solution which becomes more 
concentrated and is pumped back to the conditioner. The conditioner and the regenerator 
are connected by a heat exchanger (interchanger ). The hot solution leaving the regenera­
tor heats up the cooler desiccant coming from the conditioner. Thus, the solution enter­
ing the conditioner cycle is precooled, while the solution flow to the regenerator is 
preheated." 

In this exercise we have not modeled controls (such as turning off the conditioner 
when the regenerator cannot keep up with it). 

1/ SYSTEM EQUATIONS 

The system schematic for this problem is shown in Fig. 2, which also indicates the 
system variables. The equations of the system are given below. Here, as in Fig. 2, 1¥ 
stands for mass flow, x for solution salt concentration, H for humidity ratio, i for specific 
enthalpy, T for temperature, and m for the mass of the solution in the regenerator sump. 
We have only listed the primary equations; the thermodynamic state equations are not 
shown. 



- 4 -

Conditioner water mass balance: 
W4H4+ W6(1-x6)= W4Hs+ W4o(l-x4o) 

Conditioner salt mass balance: 
W6x6= W4oX4o 

Conditioner energy balance: 
W6i6( T 6,x6)+ W4i4( T4,H4)= W4oi4o( T 4o,x4o)+ W4io( T o,Hs) 

Conditioner Kathabar relations: 
H5=H(T5,x6) 
T 0 - To=Kc [i4( T4,H4)-is( T 0,H0)] 

Conditioner sump mass and energy balance: 
Wto+ W4o= W6+ Wg 
W15x3+ W4oX4o=( W6+ Wg)x6 
Wtoi If,( T to,x3)+ W4oi4o( T4o,x4o)=( W6+ Wg)is( T s,x6) 

Solution cooler heat transfer: 
UAc .6. Ttm,c = WJ6Cp,w (T14- T13) 

where .6. T1m,c 
( T s- T 14)-( To-T I3) 

Solution cooler energy balance: 
Wt6[ it3( T t3)-i 14( T H)]= W6[ i6( T 6•x6)-is( Ts,x 6)] 

Regenerator equations: 
W 1H 1+ W3{1-x3)= W 1H 2+ WH{l-x 41 ) 

W3x3= l--V41x41 
W3i3( T3,x3)+ Wiii( TI,Ht)= w41i4I( T41>x4t)+ WI i2{ T2,H2) 
H2=H(T2 ,x3) 
Tz-T3=KR [it(Tt,Ht)-i2(T2,H2)] 

/"\ 

"' ' ' 
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Regenerator sump dynamic equations: 

dm =( W9+ W4J)-( W3+ W1s) 
dt 
d(mi7) 

( i9 W9+i41 W4J)-( W3+ W1s)i7 
dt 

OBJECT GENERATION 
In EKS, the objects corresponding to the above equations are automatically gen­

erated using :MACSYMA, a symbolic language for manipulating equations. We have 
written a program in this language that allows the user to enter equations or systems of 
equations in a natural form. :MACSY:MA then generates all the object files, macro object 
files and C function files required by EKS (Sowell and Nataf, 1 990). 

These files are generated by repeated use of the command makespank(eq,name), 
which creates the object nam,e. obJ and associated functions corresponding to equation eq. 
Equation eq can be either a single relationship covering the full range of its variables, or 
a piecewise-defined relationship consisting of different equations for different ranges of its 
variables. 

The set of makespank commands for the present problem is given in Fig. 3. We 
note for example that the object rc_Jrac_cons22, which is created by the second com­
mand line 

makespank(nwss_in *frac_in=mass_out*frac_out, "rc_jrac_cons22", []}, 

can be used for the salt mass balance equation for both the conditioner ( W 6 x 6= W40x 40 ) 

and the regenei·ator ( W3x3= W41x41 ). 

MACRO OBJECT GENERATION 
We next generate the macro objects, which represent the sets of equations that 

correspond to individual physical components of the system. This is done by using the 
EKS Network Specification Language to link objects (each of which represents a single 
equation) together. An example of this process is given in Fig. 4, which shows how the 
macro object for a heat exchanger is generated by linking the objects x_enth_cons22h 
(enthalpy conservation) and newcross_lmtd (LMTD equation) that were created by 
:MACS\"MA in Fig. 3. Because linking of objects by hand is tedious and error prone, we 
are developing a graphical interface to automate this process. We also note that objects 
and macro objects, once generated, can be stored in a library and reused later, so that 
they do not have to be regenerated each time they are needed. 

SYSTEM NETWORK GENERATION 

The next step is to link the component macro objects together into a network that 
follows the system schematic. Again, the Network Specification Language is used, as 
shown in Fig. 5. 

In NSL, the command declare is used to instantiate (create particular instances of) 
objects. For example, in Fig. 5, the lines 
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declare 
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exchanger cooler; 
exchanger heater; 

indicate that the macro object "exchanger" is used for both the cooler and heater com­
ponents in Fig. 2. 

The NSL command input is used to specify input variables. For example, 

input t1 {regenerator. temp_in1}[Tj 

specifies that the incoming air temperature for the regenerator will be input by the user. 

The link command identifies variables (unknowns) that are shared by two or more 
objects (or macro objects). For example, 

link t3{heat. temp_out1, regenerator. temp_inf!}[tsumpj 

specifies that the temperature heat. temp_out1 of the LiCl solution leaving the "heater" 
component (Fig. 2) is the same as the temperature regenerator. temp_inf! of the solution 
entering the "regenerator" component. The user has chosen to label this temperature "t3". 

The linking process, which has been done by hand in this example, is automated by 
the previously-mentioned graphical interface .. 

THE EKS SIMULATION 
The final step is to supply a file with numerical values of input quantities such as 

weather data, setpoint values, system parameters, starting values, time step, start and 
stop time, etc. At this point the user can run the actual simulation of the system net­
work. 

For the present problem a 9-hour run period was selected, with a time step of 1.5 
minutes. All input variables were chosen to be constants (with values as shown in Fig. 2) 
except for T4, the temperature of the air entering the conditioner. This temperature fol­
lowed a weather profile that increased from 76F to 97F and then fell to 81F. 

RESULTS 
The simulation results are shown in Fig. 6. Some noteworthy trends are evident: 

(1) The humidity, H5, of the conditioned air varies from 0.0062 to 0.0052, and is 
less than the humidity H4 = 0.0093 of the incoming air. This shows that the condi­
tioner is drying the incoming air, as is it supposed to. 

(2) The humidity, H2, of the exhaust air from the regenerator varies from 0.027 to 
0.022, and is greater than the return air humidity H1 = 0.0093. This indicates that the 
regenerator is removing water from the salt solution, as is intended. 

(3) The rapid variation during the first half hour in variables associated with the 
regenerator loop, such as T7 and 1V41, is a system transient due to the startup dynamics 
of the regenerator sump. 

( 4) The cooling power, del, of the conditioner follows the T 4 profile, as expected. 

... 
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(5) The exhaust air humidity of the regenerator, H2, and the conditioner, H5, 
decrease with time. 

(6) The mass, m, of the solution in the regenerator sump decreases, which means 
that the amount of water removed from the solution by the regenerator is greater than 
the amount of water added to the solution by the conditioner. 

(7) The leaving cold water temperature, T14, from the cooler varies inversely with 
T4, whereas the leaving hot water temperature, T12, from the heater is nearly constant. 

(8) The regenerator exhaust air temperature, T2, and the solution temperatures in 
the regenerator loop ( T3, T7, and T 41) increase slowly after an initial sharp drop due to 
the sump startup transient (see (3), above). 

(9) The solution temperatures in the conditioner loop ( T6, T8, and T15) track the 
T 4 variation, whereas the inlet solution temperature is almost constant. 

(10) The cold water flow, W16, in the cooler tracks T4. On the other hand, the con­
ditioner flow, W40, and the regenerator flow, W41, increase steadily in order to compen­
sate for the loss of solution water by the system (see (6), above). 

(11) The net loss of circulating water causes a steady rise in salt concentration (X3, 
X6, X40, X41). 

CONCLUSION 

\Ve have demonstrated that complex EKS objects and macro objects can be created 
automatically with available symbolic manipulation tools, and that the EKS can be 
used to generate a simulation program for modeling a complex real-world problem. 

At this point it is important to stress that the input-output-free nature of EKS 
allows the user to set up and run variants of the problem with little extra effort. For 
example, it is easy to define new problems that involve changing an input variable into 
an unknown and vice-vasa, as long as the problem remains well posed, i.e., as long as 
the number of unknowns equals the number of equations. This is done by interchanging 
input and link commands in Fig. 4. EKS will then automatically generate and solve 
the new simulation problem. Finally, the inherent modularity of EKS makes it possible 
to model part or all of the base problem in greater (or lesser) detail by replacing one or 
more macro objects. For example, in the current problem we used the LMTD method for 
the heat exchanger macro object. This could be replaced by a more detailed macro 
object based on a finite difference approach, for instance, with no change to the rest of 
the problem . 

V FUTURE WORK 

The current EKS program, although already capable of handling a wide range of 
simulation problems in HVAC analysis, should be considered a prototype. Work is 
under way or is being planned to significantly expand the usability and robustness of the 
program. This work includes: 

(1) completion of the interactive graphical editor, based on X-Windows, to facilitate 
retrieval, storage, display, editing, and linking of objects; 
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(2) expansion of the existing object library to encompass a range of commonly-used 
HV AC system components; 

(3) extension and refinement of the Neutral Model Format, which is particularly 
important as a way of exchanging component models between EKS and other simulation 
environments; 

(4) replacement of the present Network Specification Language with a new "Com-
ponent Description Language" that will permit object-oriented specification of integration r 
methods and variable time stepping (Moshier and Sowell, 1990); 

(.5) incorporation of methods to automatically partition a network into smaller sub- , 
problems in order to improve convergence and reduce execution time; 

(6) development of an interactive data manager to facilitate qata input and results 
display. 

(7) in a parallel effort to EKS development, incorporation of EKS object-oriented 
techniques into DOE-2 to produce component-based SYSTEMS and PLANT subpro­
grams; the resulting new program, DOE-3, will allow users to easily model new HV AC 
technologies while retaining the powerful DOE-2 LOADS calculation. 
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U.S. ENERGY KERNEL SYSTEM 

AND LINKS 
OBJECTS 

USER INPUTS 
RUN-TIME DATA 

USER SELECTS 
DISPLAY 

OBJECTS LINKED 
ON COMPUTER 
SCREEN 

j SPANK 
j kernel 

GRAPHICAL DISPLAY 
OF RESULTS 

1 Create 
1 simulation 
1 program 

1Run 
1 simulation 
:program 

Configuration of the Energy Kernel System (EKS). Shaded boxes are pro­
grams; unshaded boxes are files. Ovals show user actions. From objects 
representing the mathematical equations of a physical system, EKS creates 
an executable program that can be run to determine the dynamic behavior 
of the system. 
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W6(64921 lb/hr), T6,x6 
Concentrated LiCl/Water Solution 

Conditioner 

Conditioned Air 

T5(66.7 degF) 
HS 

W40,T40,x40 

Wl5(4365 lb/hr), T15 Massless Sum 
TS 

Interchanger 

b/hr) 
T1(76.8 d gF) 
Hl(O. 093) 

Return A. 

W9,T9 

W3 (65874 lb/hr) ,T3,x3 

Dilute LiCl/W ater Solution 

T2,H2 

Regenerator 
Exhaust Air 

W4l,T41,x41 

Tl3(55.04 degF) 

Cold water from 
auxilliary chiller 

..---+---J--. (not shown) 

Cooler 

W16,Tl4 

T11(140 degF) 

Hot water from boiler 
(not shown) 

Heater 

T12 

W12(34127 lb/hr) 

Figure 2. Schematic of a hybrid liquid desiccant cooling system. Unknown variables 
are shown in boldface. User-specified input variables are shown in lighter 
type, with values in parentheses. 
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/**************************************************/ 
/*MACSYMA FUNCTION CALLS TO GENERATE SPANK OBJECTS*/ 
I************************************************** I 

makespank(mass_l*frac_inl+mass_in2*(1.-frac_in2) 
=mass_l*frac_outl+mass_out2*(1.-frac_out2) 
,"rc_mass_cons22", [])$ 

makespank(mass_in*frac_in=mass_out*frac_out 
,"rc_frac_cons22", [])$ 

makespank(mass_l*enth_inl+mass_in2*enth_in2 
=mass_l*enth_outl+mass_out2*enth_out2, 
"rc_enth_cons22h", [])$ 

makespank(temp_outl-temp_in2=f*(enth_inl-enth_outl), 
"kath2h", [])$ 

makespank(mass_inl+mass_in2=mass_outl+mass_out2, 
"s_mass_cons22", [])$ 

makespank(mass_inl+mass_in2=mass_outl+mass_out2+mdot, 
"ds_mass_cons22", [])$ 

makespank(mass_inl*frac_inl+mass_in2*frac_in2 
=(mass_outl+mass_out2)*frac_out, 
"s_frac_cons22", [])$ 

makespank(mass_inl*enth_inl+mass_in2*enth_in2 
=(mass_outl+mass_out2)*enth_out, 
"s_enth_cons22h", [])$ 

makespank(mass_inl*enth_inl+mass_in2*enth_in2 
=(mass_outl+mass_out2)*enth_out+menthoutdot, 
"ds_enth_cons22h", [])$ 

makespank(m*enth_outdot 
=mass_inl*enth_inl+mass_in2*enth_in2-(mass_inl+mass_in2)*enth_out, 
"ds2_enth_cons22h", [])$ 

makespank(mass_2*(enth_in2-enth_out2) 
=mass~l*(enth_outl-enth_inl), 
"x_enth_cons22h", [])$ 

makespank (h=cp*t, "hcpt", []) $ 

makespank(ua*((temp_inl-temp_out2)-(temp_outl-temp_in2))/ 
log((temp_inl-temp_out2)/(temp_outl-temp_in2)) 
=mass_in2*cp2*(temp_out2-temp_in2), 
"newcross_lmtd", [])$ 

makespank(del=w*(i_in-i_out),"coolpower", [w,i_in,i_out])$ 

Figure 3. MACSYMA function calls that generate the EKS objects for the desiccant 
cooling system problem. 
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/*******************************************/ 
/*SPANK FILE FOR THE EXCHANGER MACRO OBJECT*/ 
/*******************************************/ 

/* Spank macro object file exchanger.obj */ 
/* This file contains an .obj file needed to model 

* the hybrid liquid dessicant cooling system described 
* by the M.S. thesis of Friedrich Sick (University of Wisconsin 
* -Madison) */ 

/* It makes use of the files contained in dessic.c */ 
/* Can be used for a heater or a cooler*/ 

/* 
* exchanger object 
*I 

/* LMTD formula (Logarithmic Mean Temperature Difference) 
* Energy balance 
*I 

macro 

Figure 4. 

declare newcross_lmtd 
declare x_enth_cons22 

1• , 
e· , 

link 
link 

link 
link 
link 
link 
link 
link 
link 
link 
link 
link 
link 

ua (l.ua) 
cp (l.cp2, e .cp) 

mass_l ( e . mass_l) 
mass_2(e.mass_2,l.mass_in2) 
temp_inl(e.temp_inl,l.temp_inl) 
temp_outl(e.temp_outl,l.temp_outl) 
temp_in2(e.temp_in2,l.temp_in2) 
temp_out2(e.temp_out2,l.temp_out2) 
frac_l(e.frac_l) [xS] 
enth_inl(e.enth_inl) 
enth_in2(e.enth_in2) 
enth_outl(e.enth_outl) 
enth_out2(e.enth_out2) 

The EKS file in which objects are linked together to form the macro object 
representing a heat exchanger. 
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/*****************************************************/ 
/*SPANK SIMULATION FILE FOR DESICCANT COOLING PROBLEM*/ 
/*****************************************************/ 

/* Spank simulation file dyn_desiccl.ps */ 

/* This file contains the links and inputs necessary 
* for the matching of the various local variables in 
* the hybrid liquid desiccant cooling system problem. 
*I 

/*Buschulte's Problem+Sick's Thesis, Wisconsin Madison*/ 

declare regcond 
declare regcond 
declare iexchanger 
declare exchanger 
declare exchanger 
declare sump22 
declare part_dyn_sump22 
declare prod 
declare cpbctf 
declare coolpower 

/*Inputs*/ 

conditioner; 
regenerator; 
interchanger; 
cooler; 
heater; 
condsump; 
regsump; 
mx3p; 
cpbctfi; 
cool; 

input kc(conditioner.f) [kathabar] /*Kathabar constant for conditioner* 
input kr(regenerator.f) [kathabar] /*Kathabar constant for regenerator* 
input uai(interchanger.ua) [UA] /*UA value of interchanger*/ 
link cpi(interchanger.cp,cpbctfi.cpbc) [hw] /*Specific heat of 

input 
input 
input 
input 
input 

uac(cooler.ua) [UA] 
cpc (cooler. cp) [hw] 
uae(heater.ua) [UA] 
cp2 (heater. cp) [hw] 
tl(regenerator.temp_inl) 

LiCl-water mixture in interchanger*/ 
/*UA value of cooler*/ 
/*Specific heat of cold water in cooler*/ 
/*UA value of heater*/ 
/*Specific heat of warm water in heater*/ 

[T] /*Temperature of incoming air 

input t4(conditioner.temp_inl) [T] 
in regenerator*/ 
/*Temperature of incoming air 
in conditioner*/ 

input t5(conditioner.temp_outl) [T] /*Temperature of cool dry air 
coming out of conditioner into 

input tll(heater.temp_in2) [T] 

input tl3(cooler.temp_in2) [T] 

the conditioned space*/ 
/*Temperature of incoming warm water 
in heater*/ 
/*Temperature of incoming cold water 
in cooler*/ 

input hl(regenerator.frac_inl) [w] /*Humidity of incoming air in 

input h4(conditioner.frac_inl) [w] 

input wl(regenerator.mass_l) [bigmw] 

regenerator*/ 
/*Humidity of incoming air in 
conditioner*/ 
/*Mass flow of air 
through regenerator*/ 

input w3(heater.mass_l,regenerator.mass_in2,regsump.mass_out2) [bigmw] 
/*Mass flow of LiCl-water diluted mixture 
through heater into regenerator*/ 

input w4(conditioner.mass_l,cool.w) [bigmw] /*Mass flow of 

Figure 5. 

incoming air through conditioner*/ 

The EKS file that generates the desiccant cooling system network. The 
network is formed by linking together the macro objects that represent 
individual system components (conditioner, interchanger, regenerator, etc.) 
and by assigning input variables. 
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input w6(cooler.mass_l,conditioner.mass_in2,condsump.mass_out2) [bigmw] 
/*Mass flow of LiCl-water concentrated solution 
through cooler into conditioner*/ 

input w12(heater.mass_2) [bigmw] /*Mass flow of warm water through heater*/ 
input w15(condsump.mass_in2,interchanger.mass_2,regsump.mass_outl) [bigmw] 

/*Mass flow of LiCl-water mixture out of 
regenerator sump into conditioner 
sump through interchanger*/ 

/*Regenerator Sump exit conditions*/ 
link t7(heater.temp_inl,interchanger.temp_in2, regsump.temp_out) [tsump] 
link x3(heater.frac_l,regenerator.frac_in2,interchanger.frac_2, 

condsump.frac_in2,regsump.frac_out,mx3p.in2) [xS] 

/*Unknowns*/ . 
link t3(heater.temp_outl,regenerator.temp_in2) [tsump] 
link t12(heater.temp_out2) [t12] 
link h2(regenerator.frac_outl) [w] 
link t2(regenerator.temp_outl) [tsump] 
link w41(regenerator.mass_out2,regsump.mass_inl) [bigmw] 
link x41(regenerator.frac_out2,regsump.frac_inl) [xS] 
link t41(regenerator.temp_out2,regsump.temp_inl) [tsump] 
link w40(conditioner.mass_out2,condsump.mass_inl) [bigmw] 
link x6(cooler.frac_l,conditioner.frac_in2,condsump.frac_out, 

interchanger.frac_l, regsump.frac_in2,cpbctfi.f) [xS] 
link hS(conditioner.frac_outl) [w] 
link x40(condsump.frac_inl,conditioner.frac_out2) [x5] 
link w9(interchanger.mass_l,condsump.mass_outl,regsump.mass_in2) [bigmw] 
link t6(cooler.temp_outl,conditioner.temp_in2) [tsump] 
link t40(conditioner.temp_out2,condsump.temp_inl) [tsump] 
link t15(interchanger.temp_out2,condsump.temp_in2) [tsump] 
link t9(interchanger.temp_outl,regsump.temp_in2) [tsump] 
link t8(condsump.temp_out,cooler.temp_inl,interchanger.temp_inl,cpbctfi.t) 

[tsump] 
link w16(cooler.mass_2) [bigmw] 
link tl4 (cooler. temp_out2) [t14] 

/*Enthalpies. Careful, since fraction and temperature transmitted 
*---> enthalpy transmitted too. So beware of linking enthalpies together 
*if temps and fracs already linked*/ 

/*Essentially we here just give names ... */ 
link il (regenerator. enth_inl) [h] 
link i2 (regenerator .enth_outl) [h] 
link i3(/*regenerator.enth_in2,*jheater.enth_outl) [hw] 
link i4(conditioner.enth_inl,cool.i_in) [h] 
link iS(conditioner.enth_outl,cool.i_out) [h] 
link i6(cooler.enth_outl/*,conditioner.enth_in2*/) [hw] 
link i7(/*interchanger.enth_in2,heater.enth_inl,*/regsump.enth_out) [hw] 
link i8(condsump.enth_outj*,cooler.enth_inl,interchanger.enth_inl*/) [hw] 
link i9(interchanger.enth_outl/*,regsump.enth_in2*/) [hw] 
link ill(heater.enth_in2) [hw] 
link i12{heater.enth_out2) [hw] 
link i13(cooler.enth_in2) [hw] 
link i14(cooler.enth_out2) [hw] 
link i15(interchanger.enth_out2/*,condsump.enth_in2*/) [hw] 

Figure 5 (cont.) 
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link i40(conditioner.enth_out2/*,condsump.enth_inl*/) [hw] 
link i41(regenerator.enth_out2/*,regsump.enth_inl*/) [hw] 

link del(cool.del) [qq] 

link m(regsump.m,mx3p.inl) [desiccm] 
link mdot(regsump.mdot) 

link mi7(regsump.menthout) [mi7] 
link mi7dot(regsump.menthoutdot) 

input mx3(mx3p.product) [desiccm] 

history m_hist(regsump.m_hist) 
history mi7_hist(regsump.menthout_hist) 

input dt(regsump.dt) [TIME] 

Figure 5 (end) 
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Figure 6. EKS simulation results for the dynamic behavior of the desiccant cooling 
system shown in Fig. 2. A 9-hour run period was modeled with a time step 
of 1.5 minutes. Key: w = mass flow, x = salt concentration, h = humi­
dity ratio, i = specific enthalpy, t = temperature, m = mass of sump, del 
= cooling power of conditioner. 
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