
LBL-29610
UC-350

ITl1l Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA

i APPLIED SCIENCE
t,~ 1 DIVISION

Dynamic Simulation of a Liquid Dessicant Cooling System
Using the Energy Kernel System

J.-M. N ataf and F. Winkelmann

February 1991

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

ta
.....
c.

tO .
(J1
s
r r

IX1 r t:rn I
'i 0 1\.)
lll'l:l c.D
'i'< IJ)
"< ,_ . "-' tSI

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain cmTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

i!

LBL-29610

DYNAMIC SIMULATION

OF A LIQUID DESICCANT COOLING SYSTEM

USING THE ENERGY KERNEL SYSTEM

INTRODUCTION

Jean-Michel Nataf and Frederick Winkelmann
Simulation Research Group

Applied Science Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

February 19!H

The Energy Kernel System (EKS) is a simulation environment for building energy
analysis under development at Lawrence Berkeley Laboratory. EKS is a very flexible,
highly modular environment that allows users to create customized models of thermal
systems by linking together calculation objects - either defined by the user or obtained
from a library - that describe the individual components of the system. A principal
departure from other simulation environments is that system models are constructed
from submodel objects that are defined without prescribed input or output interfaces,
yielding greater modeling flexibility. Also, graph theoretic techniques are employed to
determine the solution sequence, including reduction of the iterative problem size at each
time step.

To demonstrate the use of EKS for modeling complex physical systems, we present in
this paper a dynamic EKS simulation of a hybrid liquid desiccant cooling system. VIe
show (1) how EKS calculation objects are generated automatically using MACS1:1v1A
(MIT, 1983), given the basic algebraic and differential equations for the system; (2) how
EKS objects are linked into macro objects that describe system components; and (3) how
macro objects are linked together tc:i form a mathematical network representing the
entire system. Finally, vve show graphically the numerical results of running a time­
dependent simulation of the system.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Technologies, Build­
ing Systems and Materials Division of the U. S. Department of Energy under Contract No. DE-AC03-75SF00098.

- 2-

THE EKS ENVIRONMENT
The EKS simulation environment is based on the intuition that:

(a) there should be a single "sub-model" for each particular component,

(b) the overall system model should be defined once, yet be capable of solving any
well-posed problem involving the system variables, and

(c) the environment software should select the appropriate solution sequence, includ­
ing necessary iteration, in a manner transparent to the modeler.

The underlying principles making this realizable for static (i.e., algebraic) systems
have been described by Sowell, Buhl, Erdem & Winkelmann (Hl86), implemented by
Anderson (1986), and extended to handle dynamic (i.e., differential-algebraic) systems
(Sowell and Buhl 1988). These ideas are described in terms of the object-oriented para­
digm in Sowell, Buhl and Nataf (1989) and Buhl et al (1990).

Briefly summarized, EKS is a nonlinear equation solver with automatic equation
system reduction and with an object-oriented interface. EKS manipulates objects that
are equations and macro objects, which are collections of equations. The task of the user
is to generate the objects and their related software equivalent, and to link them together
in the appropriate way to take into account the variables common to different objects.

In this way, large systems are modeled by a connection of simple component models,
together with descriptions of how the individual components are related. The promise of
this approach is that the resulting description of a large system is essentially a schematic
of the corresponding physical system, and is constructed in a similar manner to the phy­
sical system.

Step by step, then, the procedure that EKS users follow in setting up and running
simulation is as follows:

(1) Draw the system schematic showing the physical components of the system and
how they are connected.

(2) Write the mathematical equations, such as energy balances, mass balances, etc.,
that describe the system. These equations are the basic objects that EKS manipulates.

(3) Run the EKS MACSYMA preprocessor to generate the C code and associated
functions for the equations (objects) in (2).

(4) Using the EKS Network Specification Language (NSL), link the objects in (3)
into macro objects (sets of equations) that describe system components.

(.5) Using NSL, link the macro objects together into a network describing the entire
system.

(6) Specify input variables, starting values, start time, stop time, time step, etc.

(7) Run the simulation.

(8) Plot results.

If macro objects for the system components already exist in the EKS library, then
only steps (5) through (8) are necessary. In the following sections we illustrate the above
steps in an EKS solution of a hybrid liquid desiccant cooling system.

A diagram of the current EKS environment is shown in Fig. 1. The user interacts
with the system in four basic ways: defining objects (e.g., component models); defining

- 3 -

problems by linking objects together; specifying run-time data; and specifying desired
output. The objects are defined in text files, either as mathematical equations or as com­
ponent models in Neutml Model Format (Sahlin and Sowell, 1989). These files are· pro­
cessed symbolically with programs written in MACSYMA, producing C language func­
tions and objects that are stored in libraries. Problems are defined by interconnecting
objects using the interactive graphical user interface, producing a problem specification
file in NSL. The nucleus or kernel is the dynamic Simulation Problem Analysis Kernel
(SPANK) program system (Sowell and Buhl 1988). It works from the NSL description,
generating internal data structures based on graphs. Matching and reduction algorithms
are employed with these graphs to automatically devise an efficient solution algorithm,
producing an executable program for a particular problem. This program reads constant
and time-varying data from files, producing the problem solution. The output processor
reads the result file and generates graphical displays according to interactive user
requests.

PROBLEM DESCRIPTION

We consider the hybrid liquid desiccant system shown schematically in Fig. 2. The
fluid used is a solution of lithium chloride in water. A complete description of the sys­
tem is given in Sick (1986) and Buschulte (1984). The system provides cool, dry air to a
space. It contains an interchanger, a heater and a cooler (all modeled with the LMTD
method), a regenerator and a conditioner (both modeled with a Kathabar equation), and
two sumps, one of which is massive and, therefore, dynamic.

Quoting Sick (1986), ''Precooled desiccant solution flows counter-currently to the air
stream through the conditioner where it absorbs water vapor and cools down the air only
to the desired set temperature. The water taken from the air goes into the liquid desic­
cant solution. In order to maintain its concentration, the salt solution is pumped to a
regenerator. The process in the regenerator is reverse to that in the conditioner. Return
air from the building absorbs water from the preheated solution which becomes more
concentrated and is pumped back to the conditioner. The conditioner and the regenerator
are connected by a heat exchanger (interchanger). The hot solution leaving the regenera­
tor heats up the cooler desiccant coming from the conditioner. Thus, the solution enter­
ing the conditioner cycle is precooled, while the solution flow to the regenerator is
preheated."

In this exercise we have not modeled controls (such as turning off the conditioner
when the regenerator cannot keep up with it).

1/ SYSTEM EQUATIONS

The system schematic for this problem is shown in Fig. 2, which also indicates the
system variables. The equations of the system are given below. Here, as in Fig. 2, 1¥
stands for mass flow, x for solution salt concentration, H for humidity ratio, i for specific
enthalpy, T for temperature, and m for the mass of the solution in the regenerator sump.
We have only listed the primary equations; the thermodynamic state equations are not
shown.

- 4 -

Conditioner water mass balance:
W4H4+ W6(1-x6)= W4Hs+ W4o(l-x4o)

Conditioner salt mass balance:
W6x6= W4oX4o

Conditioner energy balance:
W6i6(T 6,x6)+ W4i4(T4,H4)= W4oi4o(T 4o,x4o)+ W4io(T o,Hs)

Conditioner Kathabar relations:
H5=H(T5,x6)
T 0 - To=Kc [i4(T4,H4)-is(T 0,H0)]

Conditioner sump mass and energy balance:
Wto+ W4o= W6+ Wg
W15x3+ W4oX4o=(W6+ Wg)x6
Wtoi If,(T to,x3)+ W4oi4o(T4o,x4o)=(W6+ Wg)is(T s,x6)

Solution cooler heat transfer:
UAc .6. Ttm,c = WJ6Cp,w (T14- T13)

where .6. T1m,c
(T s- T 14)-(To-T I3)

Solution cooler energy balance:
Wt6[it3(T t3)-i 14(T H)]= W6[i6(T 6•x6)-is(Ts,x 6)]

Regenerator equations:
W 1H 1+ W3{1-x3)= W 1H 2+ WH{l-x 41)

W3x3= l--V41x41
W3i3(T3,x3)+ Wiii(TI,Ht)= w41i4I(T41>x4t)+ WI i2{ T2,H2)
H2=H(T2 ,x3)
Tz-T3=KR [it(Tt,Ht)-i2(T2,H2)]

/"\

"' ' '

- 5-

Regenerator sump dynamic equations:

dm =(W9+ W4J)-(W3+ W1s)
dt
d(mi7)

(i9 W9+i41 W4J)-(W3+ W1s)i7
dt

OBJECT GENERATION
In EKS, the objects corresponding to the above equations are automatically gen­

erated using :MACSYMA, a symbolic language for manipulating equations. We have
written a program in this language that allows the user to enter equations or systems of
equations in a natural form. :MACSY:MA then generates all the object files, macro object
files and C function files required by EKS (Sowell and Nataf, 1 990).

These files are generated by repeated use of the command makespank(eq,name),
which creates the object nam,e. obJ and associated functions corresponding to equation eq.
Equation eq can be either a single relationship covering the full range of its variables, or
a piecewise-defined relationship consisting of different equations for different ranges of its
variables.

The set of makespank commands for the present problem is given in Fig. 3. We
note for example that the object rc_Jrac_cons22, which is created by the second com­
mand line

makespank(nwss_in *frac_in=mass_out*frac_out, "rc_jrac_cons22", []},

can be used for the salt mass balance equation for both the conditioner (W 6 x 6= W40x 40)

and the regenei·ator (W3x3= W41x41).

MACRO OBJECT GENERATION
We next generate the macro objects, which represent the sets of equations that

correspond to individual physical components of the system. This is done by using the
EKS Network Specification Language to link objects (each of which represents a single
equation) together. An example of this process is given in Fig. 4, which shows how the
macro object for a heat exchanger is generated by linking the objects x_enth_cons22h
(enthalpy conservation) and newcross_lmtd (LMTD equation) that were created by
:MACS\"MA in Fig. 3. Because linking of objects by hand is tedious and error prone, we
are developing a graphical interface to automate this process. We also note that objects
and macro objects, once generated, can be stored in a library and reused later, so that
they do not have to be regenerated each time they are needed.

SYSTEM NETWORK GENERATION

The next step is to link the component macro objects together into a network that
follows the system schematic. Again, the Network Specification Language is used, as
shown in Fig. 5.

In NSL, the command declare is used to instantiate (create particular instances of)
objects. For example, in Fig. 5, the lines

declare
declare

- 6-

exchanger cooler;
exchanger heater;

indicate that the macro object "exchanger" is used for both the cooler and heater com­
ponents in Fig. 2.

The NSL command input is used to specify input variables. For example,

input t1 {regenerator. temp_in1}[Tj

specifies that the incoming air temperature for the regenerator will be input by the user.

The link command identifies variables (unknowns) that are shared by two or more
objects (or macro objects). For example,

link t3{heat. temp_out1, regenerator. temp_inf!}[tsumpj

specifies that the temperature heat. temp_out1 of the LiCl solution leaving the "heater"
component (Fig. 2) is the same as the temperature regenerator. temp_inf! of the solution
entering the "regenerator" component. The user has chosen to label this temperature "t3".

The linking process, which has been done by hand in this example, is automated by
the previously-mentioned graphical interface ..

THE EKS SIMULATION
The final step is to supply a file with numerical values of input quantities such as

weather data, setpoint values, system parameters, starting values, time step, start and
stop time, etc. At this point the user can run the actual simulation of the system net­
work.

For the present problem a 9-hour run period was selected, with a time step of 1.5
minutes. All input variables were chosen to be constants (with values as shown in Fig. 2)
except for T4, the temperature of the air entering the conditioner. This temperature fol­
lowed a weather profile that increased from 76F to 97F and then fell to 81F.

RESULTS
The simulation results are shown in Fig. 6. Some noteworthy trends are evident:

(1) The humidity, H5, of the conditioned air varies from 0.0062 to 0.0052, and is
less than the humidity H4 = 0.0093 of the incoming air. This shows that the condi­
tioner is drying the incoming air, as is it supposed to.

(2) The humidity, H2, of the exhaust air from the regenerator varies from 0.027 to
0.022, and is greater than the return air humidity H1 = 0.0093. This indicates that the
regenerator is removing water from the salt solution, as is intended.

(3) The rapid variation during the first half hour in variables associated with the
regenerator loop, such as T7 and 1V41, is a system transient due to the startup dynamics
of the regenerator sump.

(4) The cooling power, del, of the conditioner follows the T 4 profile, as expected.

...
1\

r

v

f

..

- 7-

(5) The exhaust air humidity of the regenerator, H2, and the conditioner, H5,
decrease with time.

(6) The mass, m, of the solution in the regenerator sump decreases, which means
that the amount of water removed from the solution by the regenerator is greater than
the amount of water added to the solution by the conditioner.

(7) The leaving cold water temperature, T14, from the cooler varies inversely with
T4, whereas the leaving hot water temperature, T12, from the heater is nearly constant.

(8) The regenerator exhaust air temperature, T2, and the solution temperatures in
the regenerator loop (T3, T7, and T 41) increase slowly after an initial sharp drop due to
the sump startup transient (see (3), above).

(9) The solution temperatures in the conditioner loop (T6, T8, and T15) track the
T 4 variation, whereas the inlet solution temperature is almost constant.

(10) The cold water flow, W16, in the cooler tracks T4. On the other hand, the con­
ditioner flow, W40, and the regenerator flow, W41, increase steadily in order to compen­
sate for the loss of solution water by the system (see (6), above).

(11) The net loss of circulating water causes a steady rise in salt concentration (X3,
X6, X40, X41).

CONCLUSION

\Ve have demonstrated that complex EKS objects and macro objects can be created
automatically with available symbolic manipulation tools, and that the EKS can be
used to generate a simulation program for modeling a complex real-world problem.

At this point it is important to stress that the input-output-free nature of EKS
allows the user to set up and run variants of the problem with little extra effort. For
example, it is easy to define new problems that involve changing an input variable into
an unknown and vice-vasa, as long as the problem remains well posed, i.e., as long as
the number of unknowns equals the number of equations. This is done by interchanging
input and link commands in Fig. 4. EKS will then automatically generate and solve
the new simulation problem. Finally, the inherent modularity of EKS makes it possible
to model part or all of the base problem in greater (or lesser) detail by replacing one or
more macro objects. For example, in the current problem we used the LMTD method for
the heat exchanger macro object. This could be replaced by a more detailed macro
object based on a finite difference approach, for instance, with no change to the rest of
the problem .

V FUTURE WORK

The current EKS program, although already capable of handling a wide range of
simulation problems in HVAC analysis, should be considered a prototype. Work is
under way or is being planned to significantly expand the usability and robustness of the
program. This work includes:

(1) completion of the interactive graphical editor, based on X-Windows, to facilitate
retrieval, storage, display, editing, and linking of objects;

- 8-

(2) expansion of the existing object library to encompass a range of commonly-used
HV AC system components;

(3) extension and refinement of the Neutral Model Format, which is particularly
important as a way of exchanging component models between EKS and other simulation
environments;

(4) replacement of the present Network Specification Language with a new "Com-
ponent Description Language" that will permit object-oriented specification of integration r
methods and variable time stepping (Moshier and Sowell, 1990);

(.5) incorporation of methods to automatically partition a network into smaller sub- ,
problems in order to improve convergence and reduce execution time;

(6) development of an interactive data manager to facilitate qata input and results
display.

(7) in a parallel effort to EKS development, incorporation of EKS object-oriented
techniques into DOE-2 to produce component-based SYSTEMS and PLANT subpro­
grams; the resulting new program, DOE-3, will allow users to easily model new HV AC
technologies while retaining the powerful DOE-2 LOADS calculation.

REFERENCES

Anderson, J. L. 1986. "A Network Definition and Solution of Simulation Problems," LBL
Report No. LBL-21522.

Buhl, W.F. et al. 1990. "The U.S. EKS: Advances in the SPANK-based Energy Kernel
System," Proceedings of the Third International Conference on System Simulation in
Buildings, Liege, Belgium, and LBL Report No. LBL-29419.

Buschulte, K.T. 1984. "Analysis of Hybrid Liquid Desiccant Systems", M.S Thesis,
Department of Chemical Engineering, University of Wisconsin Madison.

MIT 1983 . .NIACSYA1A Reference Afanual, version 10, Mathlab Group, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

Sahlin, P. and Sowell, E.F. 1989. "Neutral Format and Automatic Translation for Build­
ing Simulation Submodels." Proceedings of Building Simulation '89, Vancouver, and LBL
Report No. LBL-28274.

Sick, F. 1986. "Analysis of the Seasonal Performance of Hybrid Liquid Desiccant Cooling r
Systems", M.S. Thesis, Department of Chemical Engineering, University of Wisconsin
Madison. Y

Sowell, E.F., \V.F. Buhl, A.E. Erdem, and F.C. Winkelmann 1986. "A Prototype
Object-based System for HV AC Simulation." Proceedings of the Second International
Conference on System Simulatz'on in Buildings, Liege, Belgium, and LBL Report No.
LBL-22106.

Sowell, E.F. and W.F. Buhl 1988. ''Dynamic Extension of the Simulation Problem

-.
I I

"'

- 9 -

Analysis Kernel (SPANI<)." Proceedings of the USER-1 Conference, Ostend, Belgium,
and LBL Report No. LBL-26262.

Sowell, E.F., W.F. Buhl and J.M. Nataf 1989. "Object-oriented Programming, Equation­
based Submodels, and System Reduction in SPANIC" Proceedings of Building Simulation
'89, Vancouver, British Columbia, and LBL Report No. LBL-28272.

Sowell, E.F. and Moshier, M.A. 1990. "Specifying Dynamic Models in the Simulation
Problem Analysis Kernel." Proceedings of the Society for Computer Simulation vVestern
A1ulticonference, San Diego, and LBL Report No. LBL-28275.

Sowell, E.F. and Nataf, J.M. 1990. "Radiant Transfer due to Lighting: an Example of
Symbolic Model Generation for SPAN!(." Proceedings of the Society for Computer Simu­
lation Western A1ulticonference, San Diego, and LBL Report No. LBL-28273.

Figure 1.

- 10-

U.S. ENERGY KERNEL SYSTEM

AND LINKS
OBJECTS

USER INPUTS
RUN-TIME DATA

USER SELECTS
DISPLAY

OBJECTS LINKED
ON COMPUTER
SCREEN

j SPANK
j kernel

GRAPHICAL DISPLAY
OF RESULTS

1 Create
1 simulation
1 program

1Run
1 simulation
:program

Configuration of the Energy Kernel System (EKS). Shaded boxes are pro­
grams; unshaded boxes are files. Ovals show user actions. From objects
representing the mathematical equations of a physical system, EKS creates
an executable program that can be run to determine the dynamic behavior
of the system.

~!

, ...
l

0 9

W4(53175 lb/hr)
T4(76-96 degF)

H4(0.0093)

Outside Air

-11-

W6(64921 lb/hr), T6,x6
Concentrated LiCl/Water Solution

Conditioner

Conditioned Air

T5(66.7 degF)
HS

W40,T40,x40

Wl5(4365 lb/hr), T15 Massless Sum
TS

Interchanger

b/hr)
T1(76.8 d gF)
Hl(O. 093)

Return A.

W9,T9

W3 (65874 lb/hr) ,T3,x3

Dilute LiCl/W ater Solution

T2,H2

Regenerator
Exhaust Air

W4l,T41,x41

Tl3(55.04 degF)

Cold water from
auxilliary chiller

..---+---J--. (not shown)

Cooler

W16,Tl4

T11(140 degF)

Hot water from boiler
(not shown)

Heater

T12

W12(34127 lb/hr)

Figure 2. Schematic of a hybrid liquid desiccant cooling system. Unknown variables
are shown in boldface. User-specified input variables are shown in lighter
type, with values in parentheses.

-12-

/**/
/*MACSYMA FUNCTION CALLS TO GENERATE SPANK OBJECTS*/
I** I

makespank(mass_l*frac_inl+mass_in2*(1.-frac_in2)
=mass_l*frac_outl+mass_out2*(1.-frac_out2)
,"rc_mass_cons22", [])$

makespank(mass_in*frac_in=mass_out*frac_out
,"rc_frac_cons22", [])$

makespank(mass_l*enth_inl+mass_in2*enth_in2
=mass_l*enth_outl+mass_out2*enth_out2,
"rc_enth_cons22h", [])$

makespank(temp_outl-temp_in2=f*(enth_inl-enth_outl),
"kath2h", [])$

makespank(mass_inl+mass_in2=mass_outl+mass_out2,
"s_mass_cons22", [])$

makespank(mass_inl+mass_in2=mass_outl+mass_out2+mdot,
"ds_mass_cons22", [])$

makespank(mass_inl*frac_inl+mass_in2*frac_in2
=(mass_outl+mass_out2)*frac_out,
"s_frac_cons22", [])$

makespank(mass_inl*enth_inl+mass_in2*enth_in2
=(mass_outl+mass_out2)*enth_out,
"s_enth_cons22h", [])$

makespank(mass_inl*enth_inl+mass_in2*enth_in2
=(mass_outl+mass_out2)*enth_out+menthoutdot,
"ds_enth_cons22h", [])$

makespank(m*enth_outdot
=mass_inl*enth_inl+mass_in2*enth_in2-(mass_inl+mass_in2)*enth_out,
"ds2_enth_cons22h", [])$

makespank(mass_2*(enth_in2-enth_out2)
=mass~l*(enth_outl-enth_inl),
"x_enth_cons22h", [])$

makespank (h=cp*t, "hcpt", []) $

makespank(ua*((temp_inl-temp_out2)-(temp_outl-temp_in2))/
log((temp_inl-temp_out2)/(temp_outl-temp_in2))
=mass_in2*cp2*(temp_out2-temp_in2),
"newcross_lmtd", [])$

makespank(del=w*(i_in-i_out),"coolpower", [w,i_in,i_out])$

Figure 3. MACSYMA function calls that generate the EKS objects for the desiccant
cooling system problem.

I h

-13-

/***/
/*SPANK FILE FOR THE EXCHANGER MACRO OBJECT*/
/***/

/* Spank macro object file exchanger.obj */
/* This file contains an .obj file needed to model

* the hybrid liquid dessicant cooling system described
* by the M.S. thesis of Friedrich Sick (University of Wisconsin
* -Madison) */

/* It makes use of the files contained in dessic.c */
/* Can be used for a heater or a cooler*/

/*
* exchanger object
*I

/* LMTD formula (Logarithmic Mean Temperature Difference)
* Energy balance
*I

macro

Figure 4.

declare newcross_lmtd
declare x_enth_cons22

1• ,
e· ,

link
link

link
link
link
link
link
link
link
link
link
link
link

ua (l.ua)
cp (l.cp2, e .cp)

mass_l (e . mass_l)
mass_2(e.mass_2,l.mass_in2)
temp_inl(e.temp_inl,l.temp_inl)
temp_outl(e.temp_outl,l.temp_outl)
temp_in2(e.temp_in2,l.temp_in2)
temp_out2(e.temp_out2,l.temp_out2)
frac_l(e.frac_l) [xS]
enth_inl(e.enth_inl)
enth_in2(e.enth_in2)
enth_outl(e.enth_outl)
enth_out2(e.enth_out2)

The EKS file in which objects are linked together to form the macro object
representing a heat exchanger.

-14-

/***/
/*SPANK SIMULATION FILE FOR DESICCANT COOLING PROBLEM*/
/***/

/* Spank simulation file dyn_desiccl.ps */

/* This file contains the links and inputs necessary
* for the matching of the various local variables in
* the hybrid liquid desiccant cooling system problem.
*I

/*Buschulte's Problem+Sick's Thesis, Wisconsin Madison*/

declare regcond
declare regcond
declare iexchanger
declare exchanger
declare exchanger
declare sump22
declare part_dyn_sump22
declare prod
declare cpbctf
declare coolpower

/*Inputs*/

conditioner;
regenerator;
interchanger;
cooler;
heater;
condsump;
regsump;
mx3p;
cpbctfi;
cool;

input kc(conditioner.f) [kathabar] /*Kathabar constant for conditioner*
input kr(regenerator.f) [kathabar] /*Kathabar constant for regenerator*
input uai(interchanger.ua) [UA] /*UA value of interchanger*/
link cpi(interchanger.cp,cpbctfi.cpbc) [hw] /*Specific heat of

input
input
input
input
input

uac(cooler.ua) [UA]
cpc (cooler. cp) [hw]
uae(heater.ua) [UA]
cp2 (heater. cp) [hw]
tl(regenerator.temp_inl)

LiCl-water mixture in interchanger*/
/*UA value of cooler*/
/*Specific heat of cold water in cooler*/
/*UA value of heater*/
/*Specific heat of warm water in heater*/

[T] /*Temperature of incoming air

input t4(conditioner.temp_inl) [T]
in regenerator*/
/*Temperature of incoming air
in conditioner*/

input t5(conditioner.temp_outl) [T] /*Temperature of cool dry air
coming out of conditioner into

input tll(heater.temp_in2) [T]

input tl3(cooler.temp_in2) [T]

the conditioned space*/
/*Temperature of incoming warm water
in heater*/
/*Temperature of incoming cold water
in cooler*/

input hl(regenerator.frac_inl) [w] /*Humidity of incoming air in

input h4(conditioner.frac_inl) [w]

input wl(regenerator.mass_l) [bigmw]

regenerator*/
/*Humidity of incoming air in
conditioner*/
/*Mass flow of air
through regenerator*/

input w3(heater.mass_l,regenerator.mass_in2,regsump.mass_out2) [bigmw]
/*Mass flow of LiCl-water diluted mixture
through heater into regenerator*/

input w4(conditioner.mass_l,cool.w) [bigmw] /*Mass flow of

Figure 5.

incoming air through conditioner*/

The EKS file that generates the desiccant cooling system network. The
network is formed by linking together the macro objects that represent
individual system components (conditioner, interchanger, regenerator, etc.)
and by assigning input variables.

'·' "'

~

I

-15-

input w6(cooler.mass_l,conditioner.mass_in2,condsump.mass_out2) [bigmw]
/*Mass flow of LiCl-water concentrated solution
through cooler into conditioner*/

input w12(heater.mass_2) [bigmw] /*Mass flow of warm water through heater*/
input w15(condsump.mass_in2,interchanger.mass_2,regsump.mass_outl) [bigmw]

/*Mass flow of LiCl-water mixture out of
regenerator sump into conditioner
sump through interchanger*/

/*Regenerator Sump exit conditions*/
link t7(heater.temp_inl,interchanger.temp_in2, regsump.temp_out) [tsump]
link x3(heater.frac_l,regenerator.frac_in2,interchanger.frac_2,

condsump.frac_in2,regsump.frac_out,mx3p.in2) [xS]

/*Unknowns*/ .
link t3(heater.temp_outl,regenerator.temp_in2) [tsump]
link t12(heater.temp_out2) [t12]
link h2(regenerator.frac_outl) [w]
link t2(regenerator.temp_outl) [tsump]
link w41(regenerator.mass_out2,regsump.mass_inl) [bigmw]
link x41(regenerator.frac_out2,regsump.frac_inl) [xS]
link t41(regenerator.temp_out2,regsump.temp_inl) [tsump]
link w40(conditioner.mass_out2,condsump.mass_inl) [bigmw]
link x6(cooler.frac_l,conditioner.frac_in2,condsump.frac_out,

interchanger.frac_l, regsump.frac_in2,cpbctfi.f) [xS]
link hS(conditioner.frac_outl) [w]
link x40(condsump.frac_inl,conditioner.frac_out2) [x5]
link w9(interchanger.mass_l,condsump.mass_outl,regsump.mass_in2) [bigmw]
link t6(cooler.temp_outl,conditioner.temp_in2) [tsump]
link t40(conditioner.temp_out2,condsump.temp_inl) [tsump]
link t15(interchanger.temp_out2,condsump.temp_in2) [tsump]
link t9(interchanger.temp_outl,regsump.temp_in2) [tsump]
link t8(condsump.temp_out,cooler.temp_inl,interchanger.temp_inl,cpbctfi.t)

[tsump]
link w16(cooler.mass_2) [bigmw]
link tl4 (cooler. temp_out2) [t14]

/*Enthalpies. Careful, since fraction and temperature transmitted
*---> enthalpy transmitted too. So beware of linking enthalpies together
if temps and fracs already linked/

/*Essentially we here just give names ... */
link il (regenerator. enth_inl) [h]
link i2 (regenerator .enth_outl) [h]
link i3(/*regenerator.enth_in2,*jheater.enth_outl) [hw]
link i4(conditioner.enth_inl,cool.i_in) [h]
link iS(conditioner.enth_outl,cool.i_out) [h]
link i6(cooler.enth_outl/*,conditioner.enth_in2*/) [hw]
link i7(/*interchanger.enth_in2,heater.enth_inl,*/regsump.enth_out) [hw]
link i8(condsump.enth_outj*,cooler.enth_inl,interchanger.enth_inl*/) [hw]
link i9(interchanger.enth_outl/*,regsump.enth_in2*/) [hw]
link ill(heater.enth_in2) [hw]
link i12{heater.enth_out2) [hw]
link i13(cooler.enth_in2) [hw]
link i14(cooler.enth_out2) [hw]
link i15(interchanger.enth_out2/*,condsump.enth_in2*/) [hw]

Figure 5 (cont.)

-16-

link i40(conditioner.enth_out2/*,condsump.enth_inl*/) [hw]
link i41(regenerator.enth_out2/*,regsump.enth_inl*/) [hw]

link del(cool.del) [qq]

link m(regsump.m,mx3p.inl) [desiccm]
link mdot(regsump.mdot)

link mi7(regsump.menthout) [mi7]
link mi7dot(regsump.menthoutdot)

input mx3(mx3p.product) [desiccm]

history m_hist(regsump.m_hist)
history mi7_hist(regsump.menthout_hist)

input dt(regsump.dt) [TIME]

Figure 5 (end)

,

Q '.

' '' Y,

6500004----~L-----'----~L------L.---~

600000

550000

500000

....
..c
~50000

..0

400000

Q)

"0

350000

del

300000~---~r-----r----~.-----.----~
0 2 4 6 8 10

time

112.5+-----1'------'-------1'-------l...----r

u...
0'>

112.0

111.5

Q) 111.0
"0

110.5

t3

4 6 8 10

time

66 . 7 392 +-------''-------'--------''------'----+

66.7390

66.7388

....§._6. 7386

u...
0'>
Q)

"0
'-66.7384

<.D

66.7382

t6

66.7 380 ;------,.------.------,.------.----~
4 6 8 10

time

-17-
112.5 +----1'-----'-----IL-----L.---4-

u...
0'>

112.0

111.5

Q) 111.0
"0

N

0

t2

2 4 6 8 10

time

100,_ __ --IL----'---~L----L----+-

u...
0'>
Q)

t4
95

90

85

80

75;-----,----.-----~r------r---~
4 6 8 10

time

100.5;------''-----'------IL-----L---~

100.0 t7
99.5

99.0

98.5

"'0 98.0

97.5

97.0

96.5;-----,.-----.---..----.--~
4 6 8 10

time

Figure 6. EKS simulation results for the dynamic behavior of the desiccant cooling
system shown in Fig. 2. A 9-hour run period was modeled with a time step
of 1.5 minutes. Key: w = mass flow, x = salt concentration, h = humi­
dity ratio, i = specific enthalpy, t = temperature, m = mass of sump, del
= cooling power of conditioner.

-18-
82 90

81

t8 t9
89

80

79
88

78

u... u...
0> 0>

"' "' 87
r\ -o 77 -o

00 en
76

86
,,

75

74 85

2 4 6 8 10 2 4 8 10

time time

124.0 71

70

t 1 4 123.8 t 1 2
69

123.6
68

123.4 67

u... u...
~123.2

0> 66

"' -o -o
65

N 123.0 ""'"
64

122.8
63

122.6 62

0 4 6 8 10 2 4 6 8 10

time time

91 81

t 1 5
80 t40

90

79

89
78

88 77
u... u...
0> 0>

"' "' _!"\ -o -o 76
87

L{") 0

""'" 75 k
86

74

85 73

2 4 6 8 10 4 8 10

time time

Figure 6 (cont.)

-19-
101.0 0.028

100.5
t 41 0. 027 h2

100.0

-~ 0.026
0

I
99.5 >-.

'010.025

'-'- en
cr> 99.0 ..0

\'\.J,
Q.)

-o
~ 0. 024

98.5 0 ~
I

en
..D 0.023

98.0

N
.<::

97.5 0.022

2 4 6 8 10 4 6 8 10

time time

1 0.0062

h4 0. 0060 h5

-~0. 0058

0 0

I I
>-. >-.

'0 'Op. 0056
I

en en
..0 ..0

.........

"'
~0. 0054

0 0

~ ~

I I
en en

..0 ..oO. 0052

..... >f)

.<:: .<::
0 0. 0050

4 6 8 10 0 4 6 8 10

time time

4590
90000

w9 80000 w16 4580

70000

4570

60000

4560
.._

..c
I~ .<: 50000

......... ..0

..0

4550

\ ~'!':
lD 40000

0'>
3: ~

4540 30000

4530
20000

4 6 8 10 4 6 8 10

time time

Figure 6 (cont.)

-20-
65150

65600

65140 w40 65580 w41

65130 65560

65120 65540

.J::_
.J::_

-65110 -65520

.n .n ,.;

0 65100 65500
..,. ..,.
3: 3: ~

65090 65480

65u8o 65460

0 2 4 6 8 10 4 6 8 10

time time

0.330 0.315

0.325 x3 0.310 x6
0.320

0.305

0.315
0.300

-::-- 0. 310
~

....
0 0

0.295
0

0.305
0

u u
til til

o. 290
....., 0.300 l.O

X

0.285
0.295

0.290 0.280

0 2 4 6 8 10 0 4 6 8 10

time time

0.310 0.330

x40
0. 325 x41 0.305

0. 320

0.300
0.315

0.295 0. 310
0 0

0 0 r~
u u 0.305
~ 0.290

til

0 ·~ ..,. ..,. 0. 300

0.285
0.295

0.280 0.290

4 6 8 10 2 4 6 8 10

time time

Figure G (cont.)

'

""'
\,1

...

-21-
10400

10200 m

10000

9800

..0

9600

E

9400

0 4 6 8 10

time

3035-r------~--------~-------L------~L-------~

..0

...,
><
E

3034

-265000

-270000

-275000

........::...260000

'-'-
"" (1)

~285000
::::>

..0
'-'290000

r-

E
-295000

0

mx3

4 6 8 10

time

m1 7

2 4 6 8 10

time

Figure 6 (end)

-- ~ ---
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

BERKELEY, CALIFORNIA 94720

~~: .. -.:.

