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* TEST OF CPANKING PLUS RPA ON AN EXACTLY SOLUBLE BACKBENDING MODEL 

t * * s. Bose , J. Krumlinde , and E. R. Marshalek 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

July 1974 

Self-consistent cranking with additional RPA correlations is tested on 

the exactly soluble R(S) model of Krumlinde and Szymanski. Excellent agreement 

between approximate and exact solutions is obtained excepting a couple of points 

very near the critical spin. 

Much attention has recently been focused on the behavior of the nuclear 

moment of inertia at high spin [1]. The sudden increase in the moment of inertia 

and t:he occurrence of "backbending" has been qualitatively accounted for in a 

nice way through self-consistent Hartree-Bogoliubov cranking calculations [2]. 

In this connection, .it is natural to wonder whether the self-consistent crank-

ing (SCC) model is apriori a sufficiently accurate calculational tool, especially 

in the critical region. The correspondence with experiment achieved thus. 

far could conceivably be fortuitous since t.he effective interactions were 

somewhat crude. Previous theoretical estimates of the accuracy of the sec 

model dep2nd on infinite power-series expansions in the angular momentum, 
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which cannot be expected to converge in the critical region [ 3]. 

Our first aim here is to shed light on this question by applying the 

sec approximation to the R(5) model of Krurnlinde and Szymanski and comparing 

the results with exact solutions [ 4,5]. Our second aim is to test the idea 

of introducing random-phase approximation (RPA) correlations as the next 

improvement to the sec calculation of yrast energies. The importance of 

particle-number and angular-momentum conservation in calculations of yrast 

levels has recently been emphasized [6]. This is usually accomplished by 

generator-coordinate techniques. The RPA automatically takes care of the 

conservation laws within the accuracy of the approximation and in a much more 

simple way. It can also describe the level structure above the yrast line and 

provide a simple way to calculate the yrast cascade. As a bonus, the RPA 

provides a check on the stability of the sec solution, which is of spec'ial 

interest for the backbending parts of the trajectories. 

The R(S) model consists of 2Q identical fermions interacting via a 

pairing force, distributed among two 2Q-fold degenerate single-particle levels 

separated by an amount 2£ and coupled to an external rotor with fixed moment 

f 
. . -1 o ::tnert::ta a • The motion is confined to two dimensions. The Hamiltonian is 

H = 1 2 
- a(I-j ) + H + H 
2 x sp p 

(1) 

where 

n 
L (atb 

\1=1 \) \) 
- at b h ) . -\) -\) + .c. 
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D t t - btb bt b ) H e: L: (a a + a a 
sp v v -\) -\) v v -v -v 

V=l 

n t t + btbt ) 
D 

H = -G I: (a a L ~-vav + b b.). ( 2) 
p v -v v -v -v v . 

V=l V=l 

The total angular momentum of the system is I, the particle angular 

momentum is j , while H is the single-particle Hamiltonian and Hp the pairing 
x sp 

force. The operator a~ creates a fermion in a substate of the upper level and 
' . 

b0 in the lower level, the indices.~ and-~ distinguishing time-reversal conjugate 

states. Since (1) is composed of generators of the group R(S), the exact 

diagonalization is greatly simplified as discussed elsewhere [4,5]. 

The SCC model is obtained by applying Hartree-Bogoliubov factorization 

to (1) leading to the approximate Hamiltonian 

= E + :H - wj 
c sp x 

- 6 

where E is the cranking energy, 
c 

E = ,!a(I-<j > ) 2 + <H > - t}jG 
c 2 x w sp w 

and self-consistency requires that 

and 

w = a(I - <j > ) 
X W 

(3) 

(4) 

(5) 
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Q 
6 = G ""·.(<a a > + <b b > ) 

~ -v v w -v v w . v=l 
(6) 

Here, < > denotes the expectation value with respect to the ground state of (3) w 

and : normal ordering with respect to this vacuum. 

It is worthwhile to note that in the present case, the cranking 

potential - wj · need not be added as a Lagrange multiplier term but arises . X 

automatically since the rotor cranks the system. In more realistic models, 

such a rotor could be added as a useful formal device and its moment of 

inertia equated to zero at the end, or it could replace an inert core to 

improve empirical fits. 

Noting that the chemical potential is always zero in.this mode~, one 

may diagonalize (3) by a Bogoliubov transformation of the form 

= U (W) 

(7) 

where £ is a 4x4 matrix independent of the index ~, so that (3) takes the 

form 

+ (8) 

t t 
in terms of the quasiparticle operators (~,~ ,B,B ). The quasiparticle energies 

are given byE±= Vt:.2 + (Ll ± ~w) 2 · 

The gap equation (6) then takes the form 
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.. (9) 

An equation of this type has been previously derived by Valatin [7] and by 

'..! Krumlinde and Szymanski [ 5]. Solution of (9) for ~(w) determines everything. 

The total angular momentum, for example, is obtained from (5) in the form 

~- (10) 

and the moment of inertia is given by the usual expression 

1 == I/W (11) 

The correlations in (1) not included by the sec model can be systematically 

taken into account by a generalized Holstein-Primakoff boson expansion in powers 

of n-1. This type of expansion for the R(5) algebra has been discussed by 

Evans and Krauss [8]. Within the representation containing the ground state, 

everything can be expressed in terms of four pairs of commuting boson creation and 

annihilation operators, corresponding to quasiparticle pairs. 

Through the RPA (formerly called the "quasiboson approximation") order, 

the Hamiltonian is a quadratic form in these bosons. In diagonalizing it, one 

must distinguish the two cases when the sec solution has ~ =t= 0 or ~ == 0. If 

~* 0, there is a zero-energy mode corresponding to a pairing rotation. Then, 

the Hamiltonian can be written in the diagonal form: 

e (D tD (12a) - - -
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i" t t where C ,D ,D .are independent boson creation operators for the normal 
+ -

modes. The boson operators all commute with N(l), which is the linear boson 

approximation to the particle-number operator, and with a canonically-conjugate 

phase angle 1./J. ~pis the inertial parameter for pairing rotations given by 

The excitation 

e 2 = ± 

rl[ 4 t.? - (E 
+ 

E E {E + E ) 
+ - + 

energies e± are 

1 ± .J(u+ [u + u 2 + 

v = £
2 (a+2G) !Jj ... IE E 

" + -

given by 

- u ) 
2 

+ 4v 
2 ]. 

If ~ = 0, HRPA can be written in the diagonal form 

HRPA = Ec- 2 E + e_(AtA+BtB+l) + 2E(CtC- i>+ e+(D+tD+ + i> 

I 

(13) 

(14) 

(12b) 

t t 
"where the bosons A , B , create particle and hole pairing vibrations, respectively, 

and E = E+ = E = " £2 + w2j4. The pair-vibrational excitation energy e_ 
takes the form 

e_ ( /), = 0) (15) 

The energy of the yrast states, W, is the sum of the cranking energy 

and the zero-point energy, EZP' of the RPA model, w = Ec + Ezp' which can be 

._; 
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read off from Eq. (12). One then obtains a corrected rotational frequency 

w(RPA) from the usual relation w(RPA) = dW/di. Inasmuch as the cranking 

frequency w = dEcfdi, one may write 

W(RPA) = w + OW 

ow dE /di 
zp 

The general relation (11) then implies a corrected moment of inertia 

~(RPA) =: (1-0W/W) ~ 

(16) 

(17) 

We present the results of calculations, both exact and approximate, 

.. 
for the parameters Q = 6, a = .05 on the one hand, and Q = 14, a = .075 on 

the other,. with GQ = .6 and E = .1, .3, and .45 in each case. The degree of 

backbending is mainly determined by the ratio £/(GQ): the smaller the ratio, 

the weaker the band mixing and the greater the tendency to bend back. 
. , 

Figures 1 and 2 summari~e the results as conventional plots of moment 

of inertia and angular momentum, respectively, vs. th.e square of the angular 

velocity. The physical points on the continuous trajectpries correspond, of 

course, to even integral values of I. The trajectories have two segments, one 

with !:J. :f 0, which may or may not backbend, along which !:J. decreases continuously 

until the intersection with the 6.= 0 segment at some w=w* corresponding to 

the cusp. For w<w*, the !:J. = 0 solution is unstable. At W=w*, the RPA energy 

, e: = 0, signaling the transition from a pair-rotational to a pair-vibrational 

scheme. At this point, a€'_/d I becomes infinite (Fig. 3) and so does ow. Hence, 

the RPA corrections breakdown as this point is approached, accounting for the 

break in the RPA curves. 
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In the present model, the ~ :t 0 solution can be unstable only along a 

backbending portion, but this depends on the value of a. For a sufficiently 

iarge (small rotor), the backbending region is always stable, as is true in 

the cases with $G = 14, a = .075. For sufficiently small values of ~ (large 

rotor), g 2 
can go through zero and turn negative at any point along the 

backbending arc. *" It must return to zero again at w=w . This is illustrated 
. 

by the cases with $G = 6, a = .05, E = .1 and .3. In the unstable regions, I 

decreases with decreasing w2 as shown in Fig. 2. There is a competition 

between the particles, which favor increasing I with decreasing w2 in this 

region, and the rotor, which favors decreasing I with decreasing w2, and the 

latter wins out if sufficiently massive. We conclude that, in practice, 

st~bility can always be insured by keeping the rotor small enough. This provides 

a counter-example to previous claims that backbending per se implies instability 

of the sec model [9}. 

Another interesting situation is illustrated by the cas~ with $G = 6, 

and E = 1, namely, an overlap in I between the lower and upper branches. Thus, 

there are states with I = 12,14 and 16 lying on stable portions of the super-

conducting and normal segments. The cranking energy E. , however, is lower for 
c 

the superconducting points by a small amount, in agreement with exact solutions. 

we see that on the whole, the accuracy of the sec model is very good 

for points corresponding to physical values of the spin, and is further improved 

by the RPA correlations, with the possible exception of a few points in the 

transition region. It can be shown that sec plus RPA is exact in the limit 

E = 0, which explains why the accuracy is greatest for small e; and diminishes 

as E increases. That self-consistent cranking is less accurate with no back-

v 
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bending than with sharp backbending may be a general rule since it is a 

consequence of the enlargement of the transition region in which the two 

bands are strongly mixed and zero-point oscillations become important. In 

general, the RPA then provides a significant improvement, except near the cusp. 

For E = .45, the effects of the cusp shift to low w2 so that the RPA correction 

is in the wrong direction on the lower segment, although it is excellent on 

the upper segment. In realistic situations, the cusp problem should not 

arise since 6 does not immediately vanish on the upper branch because only 
I 

a single pair of nucleons align their spins [2]. 

The plots show quite clearly the asymptotic accuracy of the sec model 

with increasing I, in accordance with its quasiclassical nature. The small 

quantum fluctuations are nicely taken care of by the RPA. This suggests that 

sec plus RPA should provide a good tool for calculating the yrast cascade. 

In this connection, Fig. 3 shows the energy of the first excited state above 

the yrast state. · The accuracy of the RPA is of the order of 1/n except at 

the cusp, which is what one would expect. The pairing vibrations built on 

the yrast band present a fascinating possibility, but no comparison with exact 

solutions is made since these were. only available for N = 2 n particles. 
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FIGURE CAPTIONS 

Moment of inertia ~ vs. squa~e of angular velocity w2
. 

2 
Angular momentum ! vs. square of angular velocity w . 
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Fig. 3. Energy of first excited state above yrast line 6E plotted as a 

f~nction of angular momentum I. 
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