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Elastic Tracking and Neural Network Algorithms 
for Complex Pattern· Recognition* 

Abstract: 

Miklos Gyulassy and Magnus Harlander1 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

Berkeley, CA 94720 USA 

A new Elastic Tracking (ET) algorithm is proposed for finding tracks in 
veryhigh multiplicity and noisy environments. It is based on a dynamical 
reinterpretation and generalization of the Radon transform and is related 
to elastic net algorithms for geometrical optimization. ET performs an 
adaptive nonlinear fit to noisy data with a variable number of tracks and is 
more efficient numerically than the traditional Radon or Hough transform 
method because it avoids binning of phase space and the costly search for 
valid minima. Spurious local minima are avoided in ET by introducing an 
iteration time dependent effective potential. The method is shown to be 
very robust to noise and measurement error and extends tracking capabil
ities to much higher track densities than possible via local road finding or 
even the novel Denby-Peterson (DP) neural network tracking algorithms. 
A possible neural network implementation of ET is also discussed. 

PACS: 6.50.-x, 29.80.-j, 89.90.+c 

1 Introduction 

Detecting curves within a complex pattern of points is a classic problem in pattern 
recognition and computer vision with many important practical applications[!]. In 
the context of high energy and nuclear physics, a common problem is the detec~ 
tion of the ionization paths of many charged particles in a device such as a bubble, 
streamer, or time projection chamber and the determination of particle momenta by 
fitting physical trajectories consistent with known electric and magnetic fields (see 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear 
Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 

1Permanent address: Technische Univ. Miinchen, Physics Department T30, .James Franck Strasse 
1, 8046 Garching, Germany. 
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e.g. [2]). Of course, many local and global methods have been developed to solve 
this problem[!, 3, 4]. Thusfar, most experiments had to cope only with rather low 
multiplicities and track densities, and conventional tracking methods have proven ad
equate. However, there is a need to develop more powerful methods to cope with the 
increasingly complex pattern recognition tasks that future high energy and nuclear 
experiments may face. For example, future heavy ion experiments[5] at RHIC /BNL 
and LHC/CERN could be confronted with trying to track up to 104 charged particles 
per event. High densitytracking in noisy environments could also be of interest for 
identifying close secondary vertices in future B factory and SSC experiments. Clearly 
the design (size, segmentation, and cost) of detectors for tracking is not only limited 
by the available technology but also by the availability of tracking algorithms capa
ble of extracting the desired physics information in the presence of inevitable noise 
and measurement error. Our aim here is to explore theoretical limitations of present 
tracking methods and to propose a new elastic tracking (ET) method that extends 
present tracking capabilities to much higher track densities. By track density, Ptrack, 

we mean here the average ratio of the distance between measured points along a track 
to the distance between points belonging to different tracks or random noise points. 

This work is also motivated by the pioneering work of Denby[6] and Peterson[7] 
on applications of Hopfield type neural networks[S, 9] to tracking and other pattern 
recognition tasks in high energy physics (see also [10]). Neural network methods 
offer the advantage of highly parallel and competitive computational capabilities and 
of potential hardware implementation via analog VLSI technology[ll]. Since the 
performance of such neural network tracking methods has not yet been compared to 
that of more conventional algorithms, one aim of the present work is to carry out such 
a comparison. In particular, we will use as a benchmark the conventional local Road 
Finder (RF) algorithm[4]. For Ptrack ;S 1 both tracking methods are found to perform 
equally well. For 1 ;S Ptrack ;S 4 we show that the DP net performs significantly better 
than the RF method. However, we also show that the DP net performance rapidly 
deteriorates beyond Ptrack ~ 5. Therefore, for tracking problems at higher densities 
even more powerful methods are required. 

The ET method proposed here combines the dynamical approach of elastic net 
algorithms[12] to solve complex geometrical optimization problems with the classic 
global tracking methods based on the Radon or Hough transform[!]. ET is based on 
a reinterpretation and generalization of the Radon transform[!] as an effective inter
action energy of an elastic line of charge with the measured ionization charge density. 
The tracking and fitting are performed simultaneously by solving the equations of 
motion of the analogous dynamical system. It differs from elastic nets[12] in that 
nodes on a track move coherently on a set of trajectories constrained by external 
physical equations of motion and in that ET dynamics involves iteration time depen
dent interactions to avoid problems with local minima. It also eliminates in principle 
the need for extensive preprocessing of the input data as it can deal directly with a 
continuous charge distribution. 

An example of a typical "hard" tracking problem that we consider in this paper 
is shown in Fig. 1. In this example, the problem is to identify the 15 straight-line 
tracks in the upper left panel from the "measured" data points on the right upper 
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panel. The noisy "detector" consists of 16 equidistant rows. Each row introduces an 
equal number of random noise points as there are real track intersection points. The 
points are measured with arms relative error of 3%. The median track density in this 
example is around Ptrack ~ 7. For comparison the typical track density expected in 
the HISS/TPC heavy ion experiment[2] is more than an order of magnitude smaller. 
In the left bottom panel the solution of the DP net algorithm is'shown, while on the 
right the solution of the ET algorithm is shown. In this example the neural net got 
very confused, while ET resolved all the correct tracks. 

The discussion is organized into the following sections: In section 2, we review the 
Radon/Hough transform tracking method. Section 3 introduces the elastic tracking 
method. In section 3.1 the effective track interaction energy and track dynamics are . 
defined. In section 3.2 we compare the adaptive nonlinear fitting performed by ET 
to conventional x2 fitting. In section 3.3, we discuss how ET dynamics avoids getting 
caught in local minima of the interaction energy. Section 3.4 addresses the problem 
of multiple tracking from the point of view of parallel vs sequential algorithms. Sec
tion 3.5 summarizes the advantages and limitations of the ET method. In section 
4 we turn to neural network tracking methods and review the Denby-Peterson net 
in section 4.1. In 4.2 we discuss how the ET algorithm could be implemented in 
principle on a Hopfield type network. In section 5 we review the conventional local 
road finder algorithm used as a benchmark for our numerical simulations. In section 
6.1 we describe our model detector and define several local and global measures of 
performance used in our simulations. In 6.2 the performance of the road finder, DP 
net, and ET algorithms are compared for finding helices in 3D at low track densities 

. (Ptrack ;S ~).. 'J'o compare algorithms at much higher track densities, we turn in section 
6.3 to a comparison of tracking methods for finding many straight lines in 2D. An 
outlook is presented in section 7. Appendix A provides a brief description of the code 
developed to implement the algorithms. 

2 Radon Transform Tracking Method 

The classical Radon transform of a density, p(x), is defined by line integrals over a 
special class of trajectories[!] 

R(x, p) = j dTp(rp(T) + x) , (1) 

where rp( T) is the trajectory specified by parameters p such that rp(O) = 0, and x is 
a point on the track. For tracking problems in a homogeneous magnetic field rp( T) 
describes a simple helix, while in a field free region rp( T) ex: pT would be a straight 
line pointing in the direction of p. Its inverse is easily obtained by a Fourier transform 
in the variable x. For tracking applications the phase space is discretized and the 
Radon transform converts into the Hough transform[!]. If the output of each pixel is 
restricted to binary values, the Hough transform simply counts the number of pixels 
which are on and which intersect the trajectory. 

Curve detection then involves scanning the phase space bins for maxima or ridges. 
By summing over the feature space pixels, Xi, the accumulated sum has isolated 
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maxima in momentum space. This method is thus basically a· template matching 
method. The templates in this case correspond to the family of curves specified by 
rp(r) + x. 

The most obvious disadvantage of this method of track detection is that its nu
merical cost increases very quickly with the desired resolution, (8x, 8p), and the di
mension d of the feature space. Given a range of typical momenta l::l.P and a range of 
coordinates l::l.X in each dimension, ( l::l.X l::l.P / 8x8p )d line integrals must be computed 
followed by a lengthy search for maxima. In addition, care must be taken to avoid 
spurious local maxima associated with accidental alignment of points on different 
tracks. 

For straight line tracking in 2D at low track densities, VLSI hardware devices 
have been developed to implement this method at least on a coarse grid in phase 
space (see review and references in Ref.[l]). However, for higher dimensions, high 
track densities, and nonlinear trajectories this straight forward application of the 
Radon transform is impractical. To overcome the numerical limitation of having to 
bin phase space while retaining the pattern recognition power derived from the global, 
long range information provided by the line integral, we introduce in the next section 
the ET method for tracking. 

3 Elastic Tracking 

3.1 Track Energy and Dynamics 

Our starting point is a reinterpretation and generalization of the Radon transform 
(1) from the point of view of dynamical systems. We interpret R as the interaction 
energy of the external measured (negative) charge density, p(x), with the (positive) 
charge density of a track, T, defined by 

PT(x) = j dr8(x- rpT(r)- XT) , (2) 

By restricting the range of the integral to r ~ 0, XT can be interpreted .as the origin 
of the trajectory of a test particle produced with initial momentum PT· The effective 
potential in the case of the Radon transform is just a zero range delta function. 

Generalizing to a finite range and possibly iteration time dependent potential, 
V(x, t), the track interaction energy is defined by 

Rv(xT, PT, t) = j dxdx' p(x) V(x- x', t)pT(x') . (3) 

In the limit V{x, t) = 8(x), eq.(3) reduces to the ordinary Radon transform. For a 
static square well potential Rv reduces essentially to the Hough transform. As with 
the Radon transform the inverse of Rv is easily computed via a Fourier transform in 
the variable XT. 

By assigning a negative charge to the ionization charge density, p, and a positive 
charge to the track density, PT, we convert the tracking problem into a problem of find
ing minima of the effective track interaction energy. The standard gradient descent 

4 



.. 

method provides a means to find such minima by solving the following dynamical 
equation: 

dpTfdt 

dxT/dt 
-7]\JpTRv(xT, PT, t) 

- -7]\JxTRv(XT,PT,t) (4) 

where 1J is a small rate parameter. Starting from a random (or more educated) initial 
guess for (xT, PT ), the above equations evolve the phase space point specifying the 
trajectory into a local minimum of the interaction energy . 

There is of course considerable freedom in the choice of the effective potential. We 
. adopt for convenience a simple Lorentzian form, 

(5) 

with a time dependent range 

w(t) = b +(a- b) exp( -t/c) (6) 

A slow iteration time dependence of the range is introduced in order to avoid getting 
caught in local spurious minima as explained in section 3.3. The natural scale for the 
asymptotic range is b"' ~x, where ~xis the rms measurement error of the ionization 
coordinates as we shall see in the next section. 

3.2 ETas Adaptive Nonlinear Fitting 

The dynamical equations ( 4) leads to an adaptive nonlinear fit of one track to the data. 
To see the relation between that fit and the conventional x2 fit, consider tracking by a 
detector composed of N detector rows or planes such as in Fig. 1. Let Xij denote the 
centroid of the ionization charge measured in detector i for track j with 1 $ j $ !11. 
HereM is the multiplicity of tracks entering the detector. In addition spurious noise 
points, Xij with M +1 :5 j :5 Mi =!vi +Mi, are introduced by each imperfect detector 
i. The measured (negative) charge density can then be approximated by 

N M; 

p(x) =- L:L:Oijh(x-xii) , (7) 
i=l j=l 

where for j :5 M, Oii = 1 if track j intersects detector i and zero otherwise, and for 
noise points (M < j :5 Mi) Oii = 1. 

Let ri(x, p) denote the intersection point of the trajectory T specified by (x, p) 
with detector i. The (positive) trajectory charge density is then 

PT(x') = L:oiTb(x'- ri(x,p)) , 
i 

(8) 

where BiT = 1 if trajectory T intersects detector i and zero otherwise. In this case, 
the (negative) track interaction energy (3) is simply given by 

N M; w2(t) 
Rv(x, p, t) = - L: L: OiioiT ( .. _ ·( ))2 + 2 (t) 

i=li=l x,3 r, x,p w 
(9) 
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For well separated tracks and noise points, in the sense that (Xim - Xin)2 ~ .6.x2 

for all pairs m =/= n, only one term, say J, in the sum over j will survi\'e in the 
limit that the elastic trajectory is close to track J. In the very idealized case, with 
lxiJ- ri(x, p )I ~ D.x, the track interaction energy reduces to 

N 

Rv(x, p, t) ~I: eijeiT( -1 + (xiJ- ri(x, p )) 2 I D.x2) (10) 
i=l 

when the Lorentzian width is taken to be the rms measurement error .6.x. Eq.(4) 
then insures that the sum of squares of the tracking errors becomes a minimum with 
respect to variations in (x, p ). We see that in this idealized case the ET fit is similar 
to the ordinary x2 fit. However, in the usual case, this limit does not apply and the 
nonlinearity of the Lorentzian cannot be neglected. 

The nonlinearity in eq.(9) is essential and acts as a selective filter that reduces 
greatly the sensitivity of the fit to outlier points, such as those from other tracks and 
noise. Furthermore, unlike conventional x2 fits, the ET fit is adaptive in the sense 
that it does not work with a fixed number of points but rather selects a subset of 
points leading to a good fit. Note also that for a single track with N measured points 
with true Gaussian error, (Rv) ~ -0.758N for a perfect fit with b = D.x, whereas 
the expectation of the right hand side in (10) vanishes. This again emphasizes the 
difference between x2 and the ET fitting method. 

3.3 Local vs Global Minima 

As with any optimization or minimization problem care must be taken to ensure that 
the system does not get caught in a spurious local minimum. One of the classic ways 
to avoid this problem is to couple the system to a heat bath with a temperature large 
enough so that the system can fluctuate out of shallow minima. This is basically the 
strategy used by the neural network algorithm[7] discussed in section 4. For elastic 
tracking, however, there is another natural approach to this problem. 

Note that for w --+ oo, Rv --+ constant independent of (x, p ). Therefore all minima 
are washed out in the long range limit. This suggests that during the initial evolution 
of the trajectory, the range w(O) = a should be taken significantly larger than the 
final range set by b ~ D.x. In addition the range relaxation time, c, in (6), should be 
larger than the mean convergence time of the algorithm so that the system has time 
to pass over the spurious local minima that emerge when w is small. 

This method of finding the true track minima is illustrated in Fig. 2. vVe consider 
here the energy surface for a 2D problem with 5 straight-line tracks. Two of the 
tracks intersect the origin With angles (} = 26.6 and 45 degrees relative to the X 

axis. The other three lines are randomly oriented and do not pass through the origin. 
The interaction energy Rv(O, 0) is plotted as a function of 0 for different ranges 
w = 0.1, 0.01, 0.001. For very small ranges, two deep, narrow minima are seen near the 
correct angles. However, many shallow spurious minima from accidental alignment 
points from different tracks can also be seen. If we start at some random guess for 
e, then there is a high probability that the system evolves into one of the spurious 
m1mma. 
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On the other hand, choosing a much longer range, w = 0.1, washes out the 
spurious minima and only one deep and very broad minimum near 0 ~ 30 remains. 
For this width, any initial guess for () will converge to that global minimum. If after 
convergence within some tolerance, jdpT/dtl~t < 8p, ldxT/dtl~t < 8x, the width is 
slowly decreased to 0.01 the trajectory will begin to slide down on one of the sides 
of the hill that emerges between the true minima as the width gets smaller. As the 
width is decreased even further, the true energy surface becomes better and better 
resolved. By varying the width slowly enough most initial guesses will move in the 
evolving energy surface into one of the valid deep minima. In this way, ET dynamics 
with a time dependent width (6) can often avoid getting trapped by spurious minima. 

As a check on whether the elastic track has converged to a true track, the mag
nitude of the track interaction energy is also monitored. For a valid track, a good fit 
will give a value of Rv close to -0. 75NT for b = ~x and Gaussian errors as noted 
above, where NT = Li ()iT is the expected number intersections of the trajectory 
with the elements of the detector. In our actual numerical simulation, we check that 
the Hough like transform for the trajectory obtained by replacing the Lorentzian by 
V(x) = 0(3~x- x) is close to -NT. For that transform however only one point is 
counted per detector row. Other points within 3~x in the same row are ignored. 

3.4 Multiple Elastic Tracking 

Once convergence is achieved for one track, another one could be looked for by starting 
with a new random initial template. and waiting until a new valid minimum is found. 
However, convergence for new tracks can be speeded up by introducing multiple 
elastic track dynamics. Since two trajectories should not converge to the same track, 
an effective repulsive interaction between trajectories should be introduc:;ed. The 
obvious generalization for the interaction energy between trajectories Ti and Tj is 

Rv(Ii, Tj, t) = j dxdx'pT;(x)V(x- x', t)pTj(x') 

The total interaction energy of the system is then 

E(t) = L Rv(Ti, t) + ~ L Rv(Ti, Tj, t) , 
if:j 

(11) 

(12) 

where the negative interaction energy of a trajectory with the measured ionization 
density is denoted by Rv(Ti, t) = Rv(XT;, PT;, t) given by eq.(3). 

There are at least two ways to implement the multiple track dynamics: in parallel 
or sequentially. The parallel method involves the usual many body dynamics in which 
all trajectories move simultaneously according to the obvious generalization of eq.(4) 

dpT;/dt 
dxTjdt - (13) 

We refer to (13) as competitive elastic dynamics, since H ...... trajectories move not only 
in the field of the external charge density but are repelled by each other as they 
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evolve. One numerical difficulty of this method, however, is that it could be sensitive 
to initial conditions. 

To avoid that problem we chose instead a sequential algorithm that is 'veil suited 
to numerical simulation on sequential digital computers. In this method only one 
trajectory is evolved at a time to convergence. Subsequent trajectories are evolved 
according to the external field screened by the additional (static) charge densities 
of previously found trajectories. In this approach then, the Ph trajectory evolves 
according to the screened interaction energy 

Ej(t) = J dxdx'(p(x) + Pscreen(x))V(x- x', t)pT1(x') , 

where the screening density is given by 

j-1 

Pscreen(x) = LPT;(x) 
i=l 

(14) 

( 1.5) 

Because of screening, it becomes easier for subsequent trajectories to converge to new 
tracks. One advantage of this approach is that many different initial conditions can 
be tried for each new trajectory, thereby reducing the sensitivity to initial conditions. 
Typically we try up to Nstop "' 100 random initial conditions for each new track. If 
no convergence is achieved for Nstop trials, it is assumed that no more tracks can be 
found and the algorithm is terminated. 

We adopted the sequential method in our numerical simulations, and screening 
was implemented by simply removing the external charge point closest to the found 
trajectories within a radius 36-x on each detector. The numerical implementation 
of this ET algorithm could be further improved by making more educated initial 
condition guesses and terminating the search at an earlier stage where the remaining 
charge density is sufficiently low that simpler and cheaper methods, such as the road 
finder discussed in section 5, perform adequately. We will however not consider such 
refinements further here. 

3.5 Remarks 

ET is a dynamical generalization of the Radon transform which solves both the phase 
space discretization problem and track recognition minimization problem. It can deal 
in principle with the continuous ionization charge data, p( x) and performs track fitting 
at the same time. It is important to emphasize again, however, that ET can only 
be applied to tracking problems where trajectories obey known physical equations of 
motion. Therefore either the phase space dependence of the trajectory rpT ( T) + XT 

must be known analytically, as in the case of straight lines or helices, or at least it 
must be computable numerically from known equations of motion. 

This method is therefore less general than for example the local road finding 
· algorithm[4] or the Denby-Peterson (DP) net approach[6, 7] discussed in the two 
next sections, which can find tracks of arbitrary shape at sufficient low track densities. 
However, when the class of allowed trajectories is known, ET is bound to be more 
powerful at high Ptrack because it takes into account that information. 
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4 Neural Network Tracking 

4.1 Denby-Peterson Net 

For general tracking problems, Denby[6] and Peterson[7] proposed a novel application 
of Hopfield neural networks[S]. It assumes that ionization density can be approxi
mated by p(x) = Li 8(x- Xi)· The DP net associates neurons with all possible track 
segments, fii = Xj -Xi, between measured points. The output, Sij, of each neuron 
varies in the range [0, 1]. A valid track segment is signified by a value of Sij close to 
one, whereas a value close to zero signifies that Dj is an unlikely track segment. From 
a random initial configuration for Sij, the network dynamics evolves the neurons to a 
state minimizing the network free energy. 

The energy or cost function for the network is assumed to be of the standard 
Hopfield form[S] 

E = ! I: SijSjk vvijk , 
ijk 

(16) 

where Wijk is the interaction energy or cost associated with connecting segments 
fij and 'Gk· The network dynamics evolves the net to a solution of the mean field 
equations[7] 

1 ( ( 1 oE) s· · = - 1 +tanh --- ) IJ 2 T;:} ' 
USij 

( 17) 

where T is a temperature related formally to the nonlinear sigmoid response (tanh) 
of a neuron. The temperature is a crucial parameter of the algorithm and controls 
the ability of the network to avoid getting caught in local minima of its free energy. 
Choosing it too small leads to "premature crystalization" into local minima. Choosing 
T too high leads to random results since all states are equally likely. The magnitude 
ofT must be adjusted near the mean single particle energy, (oEjosii)· 

The choice of vVijk proposed by Denby and Peterson was a local function of Xi, Xj, 

and Xk that penalizes connections with large angles (kinky tracks) and also those with 
long track segments. The specific parameterization that we adopted for convenience 
was 

(18) 

where we took A = 4, B = 0.5, and n = 16. Here ()ijk is the angle between segments 
Tii and 'Gk· By choosing A~ B, only those connections are favored that correspond 
to small changes in the direction of the track. Kinks are heavily penalized including 
those unnatural connections that look like two segments coming out or flowing into 
the same point. Therefore, the global constraints in refs.[6, 7] need not be explicitly 
added with this choice. The form of our weight function is illustrated in Fig. 3. 

In practice, we solve eq.(17) by iteration with an asynchronous update algorithm. 
An initial random guess for the Sij is made. The right hand side of (17) is computed 
for one of the neurons with Xi furthest from the interaction region (on row N of 
our model detector and Xj on row N - 1 ). Taking into account the new value of 
the output of that neuron, a second neuron with Xi on the furthest row is updated. 
When all neurons beginning on row N are updated, the neurons beginning on rows 
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N -1 are updated and so on until the whole network is swept over. 'What makes this 
algorithm asynchronous of course is that information gained at each single neuron 
update is propagated to the next neuron. In contrast in synchronous dynamics all 
neurons are updated independently at the same time step. The asynchronous method 
here is similar to the sequential ET dynamics discussed in section 3.4. This iterative 
network algorithm is continued until the maximum change of the output signal of all 
neurons is less than 0.01. At that time all neurons with Sij > 0.5 are identified as 
valid track segments and linked to form the identified tracks. The connected lines in 
Fig. 1 show the network solution for our hard (high Ptrack) example. 

As noted before, the real power of this method is its ability to find arbitrary 
curves. Its limitation to moderate track densities only stems from its neglect of 
important information contained in long range correlations in cases where the class 
of allowed trajectories is known a priori. We show in the next section, however, that 
a Hopfield type network could be constructed which makes full use of such additional 
information. 

4.2 ET Net 

The steepest descent dynamics proposed for ET in section 2 is of course only one 
way to perform the minimization task. We now show that it is possible to map the 
ET method itself onto a Hopfield net. An extension of the DP net that incorporates 
the long range correlations of ET can be made simply by amplifying the DP weight, 
Wi~{, in eq.(18) with the value of the line integral eq.(3). This can be achieved for 
example by taking 

(19) 
n 

where Xijk(n) is the point nearest to Xn that lies on a trajectory fitted through the 
sequence of points Xi, Xj and Xk 

The prime on the sum indicates that the sum does not have to be taken over all 
the points in the detector, but rather could be restricted to a finite domain near Xj. 

In effect, this involves evaluating the ET line integral over a finite range whose scale 
could be adjusted to match the complexity of the problem. In the limit that this range 
includes only points i,j, k, W would reduce effectively to the local DP weight. By 
including additional points on rows above Xi and below Xk more information on the 
long range correlations can be incorporated into the net dynamics. The numerical 
cost of this extension increases linearly with the range of the line integral and is 
proportional to N 3 as for the DP net. In contrast, the steepest descent ET method 
involves typically calculating only "' 100 interaction integrals (<X N) for each of the 
M trajectories. 

5 Road Finding 

The simplest and numerically fastest tracking method that provides a fair benchmark 
for comparing tracking algorithms is the local Road Finding (RF) algorithm[4]. RF 
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is basically an intuitive "follow your nose " method. To describe this algorithm, we 
consider as in section 3.2 the problem of tracking in a TPC type detector[2] with N 
rows ordered with increasing distance from the interaction vertex. In each row, i, the 
intersection points, Xij, for tracks, j with 1 :::; j :::; IV!, are measured. In addition, 
we again assume that spurious random noise points, Xij, with M + 1 :::; j :::; Jl1i are 
introduced by each detector. 

The algorithm begins by looking for points on the three furthest detectors, N, N-
1, N- 2, that line up within some small initial tolerance angle 6:.()0 . That line defines 
a candidate track direction. A road or "nose" is defined by a cone of angular width, 
tl,() (the nose thickness), oriented in the direction of the candidate track and with a 

· vertex on the point nearest the target. The road is projected several detectors forward 
to test for the presence of measured points within that cone. If no points are found, 
then the initial guess is rejected and another three points lining up on the furthest 
detectors are taken as an initial guess for a candidate track. 

If one point is found within the projected nose, it is chained up with the first three 
and a new local orientation of the road is defined using this point. The search for 
new points in subsequent rows (within the nose thickness around the locally updated 
nose orientation) is continued until no further points are found. All the points found 
are then linked up and identified with one track. 

New tracks are searched for by repeating this algorithm with new combinations 
of three collinear points. However, in subsequent road searches points already linked 
with previous tracks are ignored. Once all three-point collinear combinations begin
ning in row N have been tried, all three-point collinear combinations beginning on 
row N ~ 1 are tried, and so on. Only tracks with at least four linked points are 
regarded as valid tracks or track segments. 

For sufficiently low track densities, the nose thickness can always be adjusted so 
that all the tracks are correctly found. However, for high densities the accidental 
occurrence of collinear points from different tracks and noise points is certain to 
confuse this algorithm. In fact, an important strategy of this algorithm is to reject 
all points within the search road if there is more than one on a given detector road. 
In that way local crossing points and noisy confusion points are simply skipped over. 
As long as the confusion regions occupy a small region of the feature space, the 
projection of the road can be extended far enough that additional track points can 
be found further on down the road where the track density is low again. 

While the above strategy solves the local confusion problem, it sometimes seg
ments tracks into multiple "tracklets", i.e. tracks that are disconnected segments of 
the same track. The same problem also arises in the DP net tracking method. Thus in 
both those methods post-processing is required to try to link disconnected tracklets. 
Also since both methods only link the coordinate space points, they require an addi
tional post-processing fitting stage, where each tracklet is fit to a trajectory specified 
by parameters p. The necessity of a pre-processing stage to define the location, Xij, 

of the maxima of the measured charge distributions and two post-processing stages 
introduces of course additional sources of tracking errors. 

The simplest reconnection criterion is one linking tracklet i and j with each other 
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if 
IPi- Pil < ~Pioin · (20) 

While this works in many cases of moderate densities, such a relinking criterion cer
tainly will distort for example the physically interesting two track correlation function, 
C(pt, p2 ), on the scale ~Pioin· On the other hand, choosing Pioin too small will lead 
to an overestimate of the track multiplicity distribution. The ET method is immune 
to this segmentation problem because it deals only with complete trajectories. 

Finally, we note that many variants and extensions of the road finder methods 
have been developed (see review in [4]). For example, a x2 fit of the previously linked 
points could serve to predict better the orientation and width of the road ahead. 
In addition, competition between adjacent roads could be implemented. For our 
benchmark studies we use only the simplest version of RF. 

6 Numerical Simulations 

6.1 Performance Measures 

The performance of the tracking methods was tested with simulations of TPC like 
detectors in 2D and 3D. Our idealized rectangular detector covers a region !x! < 
1, lzl < 1 and IYI < 1.5. The "beam" axis is taken as they axis. The detector consists 
of Ny rows or planes spaced at regular intervals (~y = 3/Ny) along they axis. The 
detectors in each row are used to determine the mean ( x, z) location of the ionization 
charge densities with an rms Gaussian error 8x = 0.03~y to simulate detection errors 
similar to those expected in the Hiss/TPC[2] as an example. Random noise was 
introduced on each layer such that the number of noise points in each detector was 
taken to be a fixed fraction f of the number of true track intersections. 

For a local measure of the tracking complexity we use the dimensionless local track 
density 

(21) 

The mean track density, Ptrack, is defined here as the median of this local density. To 
evaluate the performance of the methods, we monitored four quantities: 

1. The distribution of the number of valid track points found by the algorithm as 
a function of the local track density. 

2. The fractional pixel error distribution, measuring the fraction of the identified 
points at a track density Pii which were incorrect either because they actually 
belonged to different tracks or were noise points. 

3. The relative rms error, ~njn, of the track multiplicity found relative to the 
input multiplicity n, after tracklets with similar momenta were linked. 

4. The rms momentum resolution, ~p, of the identified tracks, where all compo
nents of p are normalized between -1 and 1. 
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Note that the first two measures look at detailed local tracking performance, while the 
last two are measures of the final physics output performance. The third is sensitive 
to multiplicity errors, while the fourth is a measure of the overall quality of the fit to 
the points found. 

6.2 3D Low Density Helices 

An example of the tracking problem in a device such as discussed in (2] is shown 
in Fig. 4. The multiplicity, !vi = 15 and the number of rows N = 32 have been 
scaled down for numerical simplification in a way as to preserve approximately the 
distribution of track densities of the full scale problem with !vi = 200 and N = 128. 
The first 8 rows nearest the target were turned off to reduce the number of points at 
high density. A great simplification in this problem is that the interaction origin of 
all helices is assumed to be known and fixed at one point just outside the detector. 
Thus only the momenta and the multiplicity are variables. 

The three momenta for the trajectories were chosen from a Gaussian distribution 
with widths taken to simulate the helix curvatures expected in the HISS/TPC(2]. A 
twenty percent noise fraction f = 0.2 was introduced for these simulated events. 

The distribution of local track densities is shown in Fig. 5. Note that for this 
class of events and detector configuration the distribution of correctly identified points 
peaks below unit density indicating that these events are "easy". Indeed, all three 
methods correctly identify the vast majority of points. In the lower part of Fig. 5, we 
see that in fact the fractional pixel error is zero until densities > 2. Pixel errors begin 
to show up only in the physically insignificant far tails of the distribution beyond 
that density. While the statistics is very low, there appears to be a trend that the 
DP net performs better than the RF and ET methods in those tails. From a global 
perspective however RF is more than adequate for tracking such events. This problem 
is simply t9o easy. 

6.3 2D High Density Lines 

Unfortunately, to study more interesting problems with track densities approaching 
10 requires in 3D an increase of the multiplicity by a factor of 100 or reduction of the 
number of tracking detector by a factor of ten. The first option was computationally 
prohibitive while the second leads to too few measurements per track. Instead, we 
chose the simpler route by reducing the dimension to two a.nd the number of tracking 
detectors by a factor of two. 

Sample events were generated by choosing M random straight lines constrained 
such that they enter the lower half of the detector, exit the upper half (row Ny/2- 1 
or above), and intersect the line y = -1.5 at lxl < 2. Given Ni measured points in 
row i, noise was simulated by adding f x Ni random points with lxl < 1 in each row. 
The noise to signal fraction, j, was varied between 0 a.nd 1. 

An example of a hard problem was already shown in Fig.1 corresponding to 111 = 
15, f = 1.0, Ny = 16, and 8x = 0.03~y. In Fig. 6 examples of tracking problems 
with increasing complexity are shown for f = 0.2, corresponding to only 20% noise. 
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As the multiplicity increases from 3,5,10,15 the median track density increases from 
Ptrack :::::; 0.5, 1, 2, 3. For multiplicity 3, all three methods find the correct tracks. Note, 
however, that the median density is similar in this case to the 3D helix problem shown 
in Figs. 4,5. Doubling the density to Ptrack :::::; 1 for N=5 already leads to difficulties 
for the RF method since one of the real tracks is misidentified as two distinct tracks 
with different slopes. At N =10 and 15, the RF method performs poorly. 

The DP net in these examples is able to resolve tracks correctly up to N=10 and 
only begins to get confused at N = 15. The competitive and reinforcement dynamics 
of the net make it possible for the net to "see" the global picture much better than 
the local RF method. However, as in Fig. 1 the neural net also gets confused when 
the track density gets too high. Recall that the DP net was not constructed to look 
for long range linear correlations among the points. We checked that the performance 
of the net could not be improved by variations of the network parameters (A, B, T). 

The ET method on the other hand with its built in a priori knowledge of straight 
line trajectories has no difficulty finding the tracks in all the examples including the 
hard example in Fig. 1. 

In Fig. 7 we compare more quantitatively the detailed performance of three track
ing methods as a function of the local track density. Identical sets of 100 simulated 
events were used with all three methods to compare the performance at different N 
and f. In Fig. 7 results for N = 10,15 and f = 0.2 are shown. The upper graphs 
show the distribution of points identified with valid tracks as a function of the local 
track density. In the lower graphs the fractional pixel misidentification error is shown. 

The results demonstrate that both the D P net and ET methods perform better 
than RF at these moderately high densities. More points are picked up with fewer 
errors. For N = 10 with Ptrack :::::; 2 there is virtually no difference between the 
DP and ET results. However, Fig. 7 reveals a confusion threshold of the DP net 
for multiplicities between 10 and 15 (Ptrack :::::; 2 - 3). Both the pixel identification 
distribution and the fractional pixel error distribution for the DP net approaches that 
of the RF method at N = 15. At the same time, the performance of ET remains 
virtually unchanged as a function of multiplicity. 

Finally, the global comparison of the methods is shown in Fig. 8. The performance 
is compared for f = 0 and 0.2 as a function of the median track density for N = 
3, 5, 10, 15, 20. The solid points at the highest density in all panels correspond to 
conditions of the hard problem in Fig. 1 with 100% noise. 

Without noise, the momentum resolution of the DP net and ET are similar, up 
to Ptrack :::::; 3 where the segmentation problem causes the DP to overestimate the 
multiplicity more often than does ET. Already with 20% noise, however, both the 
momentum resolution and multiplicity error of DP becomes comparable to that of RF. 
Surprisingly, the multiplicity error of DP even exceeds that of RF at density 4. At the 
highest density studied, the RF method is useless, whereas the ET method still does a 
fair job of extracting the physics. Unfortunately, finite computer resources prevented 
us from accumulating statistics on the DP net under these extreme conditions, but 
examples such as in Fig. 1 together with the results for density Ptrack :::::; 4 point to the 
need to incorporate information on long range correlation in order to avoid confusing 
the neural net. 
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7 Outlook 

In summary, we have shown that the elastic tracking method extends tracking ca
pabilities up to very high track densities. The power of the Radon transform when 
put into a dynamical context is the key to its success. ET is basically an Elastic 
Template method, where the templates have fuzzy edges. The fuzzy edges play a 
very important role in the dynamics by smoothing over local minima. At first those 
edges should be wide and then adiabatically reduced as the template homes in on a 
true minimum. Of course, the method could be generalized to arbitrary dimensions 
with arbitrary templates as long as those templates can be parametrized. Multiple 
Elastic Template dynamics could be defined similar to the multiple tracking dynamics 
introduced in section 3.4. 

The ET method is well suited to complex pattern recognition tasks where a priori 
knowledge constrains strongly the possible class of patterns. Obviously for complex 
problems all the information known a priori must be used to extract the patterns 
from the data. vVe saw that even powerful neural network methods fail already at 
moderate complexity if that information is not utilized. On the other hand, we also 
indicated in section 4.2 how the ET strategy can be implemented in principle on a 
Hopfield type net. In that way ET could take advantage of analog VLSI technology. 
In the future, it would be interesting to study the performance of ET type nets. In 
particular, the optimal range of the fuzzy templates needs to be further investigated. 

On a practical side, elastic template dynamics offers the advantage of being able 
to deal directly with continuous data distributions and of performing automatically 
an adaptive nonlinear fit to that data. There are obviously many possible applica
tions of ET that could be further investigated, e.g., extracting rotation bands of high 
spin nuclei from complex spectra or extracting multiple overlapping circles in noisy 
Ring Imaging Cherenkov Counters, tracking in future ultra-compact high energy and 
nuclear physics detectors, and so on. ET may have useful applications in other areas, 
e.g. signal processing or medical image analysis, as well. 
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Denby, B. Schiirmann, W. Keupper, and K. Frankel are gratefully acknowledged. 
Discussions on tracking methods and TPC detectors with H. Matis, G. Rai, P. Jacobs, 
J. Carroll, H. H. ·wieman, H.G. Ritter, J. Harris, and A. Poskanzer are also gratefully 
acknowledged. 
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A Code Description 

The code used for the simulations is written in C++. It runs on a Sparcstation 1, 
SunOS 4.0.3 and SunOS 4.1. We used the g++ (Version 1.37.0) compiler from the 
GNU Project2 , which is available for no charge via ftp from prep.ai.mit.edu with 
login anonymous. The code uses utility functions from the g++ library which is also 
available from GNU. These could be replaced without much effort if a different C++ 
compiler were to be used. 

The code provides a graphical user interface based on the MIT Xll (Release 4) 
window system and the corresponding library (libXll). However it can be run also 
in batch mode. The program is controlled by a set of flags and parameters, which 
has to be provided in a file which is read at startup time. The control structure of 
the program consists of an outer loop controlling the mouse and keyboard events and 
an inner loop, which allows the accumulation of statistics. 

At first data samples are either generated randomly or can be read from a file. A 
data point is realized by a structure holding the x-y-z coordinate, its distance to its 
next neighbour for calculating the density, a label for the track it is coming form and 
a label to assign a number for the track it is associated with by one of the algorithms. 

A flag selects which algorithm is used for the analysis. Each algorithm fills an array 
of "Chains" being variable sized arrays of pointers pointing to the original addresses 
of the points. For the RF and the DP net, postprocessing is only implemented for 
straight lines. For helices no fit procedure is provided. 

There is a choice of three different outputs: 

• Postscript output of the distribution of the data points in real space. 

• The number of found valid points, the number of found wrong points, the 
fractional error, and the rms error of the multiplicity and the momentum for 
straight lines accumulated over a sample of events. 

• Original versus the fitted momentum distribution and the coordinates of the 
chained up points. 

A copy of the image or the source code can be obtained by sending mail to 
harlan@dsO.cip.physik.tu-muenchen.de or gyulassy@lbl.bitnet. 

2For information write to Free Software Foundation, 675 Mass. Ave, Cambridge, Mass 02139, 
USA 
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Figure Captions 

Fig. 1 A hard problem of tracking 15 lines on the top left given the measured points 
on top right including 100% noise. The confusion of the neural net algorithm[6, 
7] on the bottom left is apparent. The long range correlations are however easily 
identified with the Elastic Tracking method on the bottom right. 

Fig. 2 The energy surface for elastic tracking in a 2D example with 5 straight tracks 
discussed in the text illustrating the problem of local minima at high resolution 
(small w). 

Fig.3 The weight function used for the Denby-Peterson net as a function of the 
relative angle between segments ij and j k. 

Fig. 4 A typical 3D event with helical tracks simulating conditions in the HISS/TPC[2] 
with 20% noise. The solution of the road finding method is shown illustrating 
the problem of track segmentation and unidentified track points. 

Fig. 5 Performance comparison of Road Finder[4], Neural Net[6, 7], and Elastic 
Tracking algorithms for tracking helices as in Fig. 4. The distribution of found 
valid points and the fractional error as a function of the local track density (21) 
shows that all three methods work well for this low track clensi ty (Pii ;S 1). 
While the statistics in the high density tails are very poor there is a tendency 
for the DP net to give the best performance. 

Fig. 6 Examples of straight-line tracking problems in 2D with increasing track multi
plicity. The input configuration for each multiplicity is shov:n in the top panels. 
The data with 20% noise and 3% relative b.x measurement error together with 
the tracks found by the three methods are shown. Note that the Road Finder 
method breaks down between N = 5- 10, the DP net breaks clown between 
N = 10 - 15, while ET finds the correct solution in all cases. 

Fig. 7 Local performance measures for 2D straight-line tracking illustrated in Fig. 6 
for multiplicity N = 10, 15. For this high track density the ET method performs 
the best. Note the rapid increase of the error produced by the Road Finder and 
DP net methods with increasing multiplicity. 

Fig. 8 Global performance measures for the 2D tracking problem in Figs. 6,7 as a 
function of the median track density for N = 3, 5, 10, 15, 20. The left side shows 
the performance with no noise. The right side shows results with 20% noise. 
The solid points in all panel correspond to N = 15 with 100% noise. The upper 
panels show the rms multiplicity error, the lower panels show the momentum 
resolution as defined in the text. 
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