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Abstract 

Given a set of points generated by Monte Carlo, the accuracy of a 

Monte Carlo integral of functions /(z) performed using these points 
can be improved if there are "reference functions", i.e., other functions 
that can be integrated both analytically and by Monte Carlo using 

the same points. This statement is shown to be true. Formulae are 

developed to make practical use of it. Guidelines are given as how 

to choose reference functions, recommending that there be a linear 
combination of these functions that approximate the functions /(z) as 

well as possible. Not only statistical errors but some systematic errors 

due to some biases in the Monte Carlo generator are reduced too. 
Monte Carlo integrations using reference functions may be consid

ered as bridging the gap between numerical and usual Monte Carlo 
integrations. 
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1 Introduction 

Monte Carlo techniques are used to estimate quantities that are difficult to 

calculate by analytic means [1,2]. In general, the problem can be formulated 

in terms of evaluating some integrals. Reference functions are functions 

that can be integrated both by Monte Carlo and by analytic means. Such 

functions can be used to reduce the error on Monte Carlo integrals of other 

functions for which there is no such analytic means. 

Reference functions can be useful when Monte Carlo simulations need 

high accuracy. In physics, they are likely to be useful in cases where the 

theoretical probability distribution of a physical quantity, el' has an analytic 

expression but the detector distortions that affect the measured value, 6, of 

6 have to be simulated by Monte Carlo. If the expectation value, 6, of the 

undistorted quantity, 6, can be calculated analytically, then the predicted 

expectation value,{';, of the measured value 6 under these conditions can 

be computed more accurately with proper use of reference functions derived 

from the distribution of {1• An example is given in the next paper [3]. 

1.1 Generalities about Monte Carlo Integrals 

Basically, Monte Carlo simulation is used to evaluate integrals of the form 

F = j f(x)pM0 (x)dx, (1) 

where x is a multidimensional variable of dimension M:c (large), f( x) is 

a function of the variable x that can be expressed in closed form, 1 and 

pM0 (x) is a function of x that can be simulated by a distribution of points 

generated by Monte Carlo. The distribution pM0 (x) may not be expressed 

in closed form but a Monte Carlo algorithm exists that generates points k 
of coordinates ek with a probability pM0(x)dx for each point k to fall in the 

1In this context, "closed form" means the possibility for an expression to be calculated 
to the computer accuracy in a few machine cycles, i.e., in a time negligible with respect 

to the time needed to compute integrals numerically. 
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volume dx around x. By definition, 

j ~0(x)dx = 1. (2) 

Note that limits of integrations have not been spelled out in Eqs. (1) 

and (2). These integrals are to be understood as integrals over the whole 

range of x. This does not restrict the generality of these equations since we 

can always define a function to be integrated over any finite domain as a 

function that is .zero outside of that domain. 

The estimation of the integral of Eq. ( 1) involves the following quantities: 

C()k = f(~k) for each Monte Carlo point k , (3) 

N = number of Monte Carlo points, 

~ = 'EC()k. 
k 

(4) 

(5) 

Let us use the symbol~ above a quantity to designate an estimate of that 

quantity. An estimate of F is 

(6) 

To justify Eq. (6), it is easy to demonstrate that the expectation value 

of F is F. Let us designate the expectation value of a quantity by a bar 

above that quantity. 

-:::::- ~ J F = N = C()k = f(x)~0(x)dx = F (7) 

An idea about the discrepancy 6F between F and F, 

6F= F- F' (8) 

can be given by the expectation value, S 2(F), of the square of 6F. 

S 2(F) = (6F)2 = ~ j [f(x)- F]2 pM0 (x)dx (9) 

= ~ (j j 2(x)pM0 (x)dx- F 2
) (10) 
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The quantity S(F) is the one-standard deviation error on F. For N large 

enough, S2(F) given by Eq. (10) as an integral involving f(x) and f 2(x) 
can be approximated by a quantity §2( F), which depends only on quantities 

computed at the Monte Carlo points. 

We write: 

1 ( ~)2· 
S2(F) = N2 L I(Jic- N 

lc 

S2(F) = S2(F) 

fJ =- I: I(J% ' 
lc 

S2(i') = ~2 (£,- ~) 

(11) 

(12) 

(13) 

(14) 

The quantity S2(F) is the practical way to estimate the square of the error 

on F. That is the kind of estimate we will be mostly using here. 

1.2 A Simple Case of Use of a Reference Function 

Consider another function, t(x), for which the integral 

T = j t(x)pM0 (x)dx, (15) 

unlike the one ofEq. (1), is known in closed form. The function t(x)·~0(x) 

can be integrated by both Monte Carlo and analytic means. Thus a new 

estimate F ofF, different from the one of Eq. (6), can be defined [4]. 

{)lc = t(~k) (16) 

0 = E 1'J~c (17) 
lc 

i' ~-e 1 L (18) = T+ -- = T+- (I(Jic- 1'J~c) 
N N lc 

That estimate can be justified; like the one of Eq. (6), by writing an 

equation similar to Eq. (7). 

-:::::- ~-0 - - ·1 MC F- T = ---w- = I(Jic- 1'J1c = [f(x)- t(x)]p (x)dx = F- T (19) 
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The integration procedure of Eq. {18) amounts to applying Eq. {6) to 

the function f(x)- t(x) and then add the known value T of the integral 

of t( x) · pMC ( x ). The integral T is not affected by statistical fluctuations. 

The absolute error on F using Eq. {18) is the same as the error one would 

have integrating the function [f(x)- t(x )] · ~c(x) using Eq. {6). To get an 

estimate of the square of that error, one has to substitute 'Pk- {)k for 'Pk in 

Eq. {11 ), which then reads 

- ~ 1 ~ ( 9 -9)2 

S2(F) = N 2 LJ 'Pk- {)k- ---p{' · 
k 

{20) 

We write: 

ft = L{)%, {21) 
k 

w = L 'Pk {}" , {22) 
k 

S2(i') = 1 ( (t- 9)
2

) 
N2 £ J - 2'1l1 + ft - N {23) 

Suppose the function t(x) approximates f(x) better than a constant, i.e., 

f( x) - t( x) is smaller in absolute value than /( x) - F in the regions where 

pMC ( x) is substantial, therefore for most of the Monte Carlo points. Then, 

by comparing Eqs. {20) and {11), it can be seen that integrating f(x)·~c(x) 

using Eq. {18) is more accurate than using Eq. (6), as pointed out in Ref. [4]. 

In Eq. {18), the function t(x) is used as a "reference" for the function 

f(x). This is possible because the integral T ofEq. (15) is known. Therefore 

we call any function for which we know the integral of type {15) in closed 

form a "reference function". 

As an example in physics, let us consider the simulation of events, each 

one characterized by a quantity 6, which is then measured. In general, 

the measurement of 6 will yield a value 6 close to but different from 6 
because of detector distortions and measurement errors. Suppose the dis

tribution of the physical quantity 6 and its expectation value 6 can be 

expressed in closed form. Suppose the detector distortions cannot be ex

pressed analytically and will have to be simulated by Monte Carlo. The 

4 

• 

... 



.... 

predicted expectation value, '6, of 6 can be computed by generating Monte 

Carlo events simulating the real events. The probability distribution of the 

quantities 6 and 6 fo'r each event is a function ~c(x~,x2) . 

(24) 

This equation is of the form of Eq. (1). Since the expectation value of 6 is 

known and equal to 

(25) 

Eq. (18) can be used with the function x1 plugged in as the reference function 

t(x) of Eqs. (15) and (16). Since 6 and 6 are always close, the result using 

Eq. (18) should be much more accurate than using Eq. (6). In this particular 

example, the use of a reference function amounts to relying on the Monte 

Carlo only to determine the bias 

(26) 

due to detector distortion. 

A more elaborate example, using several reference functions, is given in 

the next paper (3]. 
Because of Eq. (2), the integral of any constant is known. Therefore any 

constant independent of x is a reference function. Any constant introduced 

as t(x) in Eqs. (15) and (16) makes the estimate F of Eq. (18) identical to 

the one of Eq. (6). It makes also the errors of Eq. (23) equal to expression 

(14). Equations (6), (9), and (14) are just a special case where t(x) has been 

chosen as a constant. 

1.3 Ratio of Integrals 

Reference functions can be introduced in a different context. In Sect. 1.2, 

we focussed on the difference between integrals involving the functions f( x) 
and t(x). Now we consider the ratio between these two integrals. Using T 
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of Eq. (15), 0 of Eq. (17), and ~ of Eq. (5), a new estimate for F can be 

derived. 
~ ~ 
F=.T 

0 
This estimate can be justified because, for N large, 

~ e!! ~ = Nijfk = N J f(x)pM0 (x)dx = N F, 

0 e!! S= ... =NT, 

i' ~ 
e!! Te =F. 

(27) 

(28) 

(29) 

(30) 

The difference, 8F, between F and F is related to the statistical fluctu

ations of~ and 0, 8~ and 80, which are correlated with each other. 

(31) 

Averaging stochastic quantities, one gets 

S2(F)=(8F) 2 = ~2 N j([f(x)-F]-~[t(x)-T])
2

pMc(x)dx 

= ~ j (!(x)- ~t(x))
2 

pM0 (x)dx, (32) 

a quantity which can be approximated using only the quantities 'Pk and t1k 

of Eqs. (3) and (16) computed at the integration points, 

B2(i') = (~)
2

E(!.p"- :11k) 2 

k 

(33) 

= (~)
2 ((J- 2: w + (!)\t) (34) 

where £j, ~'and £t are the quantities defined in Eqs. (13), (5), and (21). 
The error on F of Eq. (27) is very small if the function t(x) represents 

a fair approximation for f( x ). This can be seen from Eqs. (32) and (33) 

if f(x) e!! t(x). Then we have F !:!! T, 'Pk !:!! t1k, and ~ e!! 0. This small 

error is the same property as the one found in Sect. 1.2, for integrations 

using Eq. (18) under the same circumstances. However, here, Eqs. (27), 
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(32), and (33) are invariant with respect to a scaling factor of the function 

t( x ). Therefore, this time, all that is required for the small error, is that the 

shape oft( x) approximates the shape of the function f( x ). The scale oft( x) 
is of no importance as long as any change in the scale of t( x) is also made 

on the integral T of Eq. (15) . 

. If the function t(x) is equal to a constant (which, because of Eqs. (15) 

and (2), must be equal to T), then the ratio e /T becomes equal to the 

N of Eq. (4). Thus F of Eq. (27) reduces to the F of Eq. (6), S 2(F) 
of Eq. (32) to the one of Eq. (9), and S2(F) of Eq. (33) to the one of 

Eq. (11). The procedure of Sect. 1.1 and the estimate given by Eq. (6) are 

just_ a special case of the general procedure of this section characterized by 

Eq. (27). Of course it is not always advantageous to use a constant as the 

referen~e function t(x) of Eq~ (15). If there is a reference function, t(x), 

whose shape approximates the shape of f( x) better than a constant, the 

error using that function t( x) in conjunction with Eq. (27) is smaller than 

the error using a constant referencefunction. 

1.4 Implicit Normalization 

The formalism of Sect. 1.3 allows us to generalize the kind of integrals that 

can be estimated by Monte Carlo. Let a( x) be a function whose shape is 

the same as the expectation value pM0 (x) of the Monte Carlo distribution 

but for which the normalization is not necessarily 1. 

a(x) A pM0 (x) · 

A = j a(x)dx 

(35) 

(36) 

Suppose the normalization factor A is not known in closed form but only 

defined implicitly as the factor that makes the integral of t( x) ·a( x) equal 
to a known value T. 

T= j t(x)a(x)dx (37) 

Any integral of the form 

F = j f(x)a(x)dx (38) 
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can be estimated, using~ of Eq. (5) and 9 of Eq. (17) and introducing them 

in Eq. (27). This estimate is obviously as valid for F of Eq. (38) using T of 

Eq. (37) as it is for F of Eq. (1) using T of Eq. (15). Indeed the integral F 

of Eq. (38) is A times the one of Eq. (1) and the integral T of Eq. (37) is A 

times the one of Eq. (15). As to ~ of Eq. (5) and 9 of Eq. (17), their values 

are not affected by the transformation of ]11° ( x) i~to a( x ), which multiplies 

both hands of Eq. (27) by the factor A. 

Here as before, the functions J( x) and t( x) are functions expressible in 

closed form, at least at each of the Monte Carlo points. Like ~c ( x ), the 

function a(x) which describes the shape of the Monte Carlo distribution may 

not be expressed in closed form. However, here, the normalization factor A 

of a(x) may not be equal to 1, and may not even be known. The only thing 

known about a(x) may be the algorithm that generates the Monte Carlo 

points and the value T of the integral of Eq. (37). 

To estimate integrals of the type of Eq. ( 38) involving distributions a( x) 
not necessarily normalized to 1, we now generalize the definition of "reference 

function" to any function t(x) for which the integral of t(x) · a(x), i.e., T of 

Eq. (37), is known in closed form. 

If the normalization factor A of Eq. (36) is known, the problem can be 

reformulated, changing f(x) into A· f(x), t(x) into A· t(x), and a(x) into 

pMC ( x ), and keeping T the same. Then the formalism of Sect. 1.3 can be 

applied. If A is known, there is no advantage in generalizing the integrals 

of the type of Eq. (1) to integrals of the type of Eq. (38). The advantage 

of the implicit normalization of this section becomes apparent if one has 

to evaluate integrals involving distributions a(x) whose normalizations are 

given only implicitly by an equation of the type of Eq. (37). On the other 

hand, since Eqs. (37) and (38) reduce to Eqs. (1) and (15) for A= 1, there 

is nothing lost in developing our general formulae for integrals of the form 

of Eqs. (37) and (38). 

As a short example in physics leading to implicit normalization, let us 

consider the case where the distribution pMC ( x) of the Monte Carlo points is 

different from the distribution pPhll6 (x) of real events, and where one wants 

8 
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to estimate the expectation values of quantities associated with the physical 

events. These expectation values are given by integrals of the type 

G =· j g(x)P"h118(x)dx, {39) 

where g(x) is the relevant quantity expressed in closed form at the Monte 

Carlo points. A weighting function w(x), known in closed form at least at 

each integration point, may be associated with the Monte Carlo distribu

tion so that w(x) · pM0(x) has the same shape as p"hya(x). However the 

normalization of w( X) • PMC (X) may not be known in closed form. Because 

p"hys(x) is normalized to 1, one has 

(40) 

where, here, A is given by 

A= 1 
j w(x)pM0 (x)dx 

(41) 

A function a(x) can be defined according to Eq. (35). Then, Eq. (40) implies 

j w(x)a(x)dx = 1 . (42) 

Equation (42) is just a special case of Eq. (37). Thus the function w(x) is 

a reference function. The integral of Eq. (39) is of the form Eq. {38) if we 

put f(x) = w(x)g(x). From now on, in this example, use of the implicit

normalization procedure of this section is straightforward.2 

2 Extracting the Maximum Information Out of 

the Reference Functions 

In this part, our goal is to derive expressions to extract all information that 

reference functions can give to minimize errors on integrals. The goal is also 
2It should be emphasized that there are cases where a weighting function w(z) is used 

without rigorously satisfying Eq. ( 40). The weighting function may be just a factor in the 

expression of the ratio of p"h11 '(z) to pMC (x ), but not necessarily equal to a constant times 

this ratio. This circumstance is common if one has to compare the integrals of different 

physical distributions corresponding to different theories. 
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to give these expressions a simple enough form so that they can be used 

automatically. Since integrals of the type of Eqs. (37) and (38) of Sect. 1.4 

allow us to use or not to use implicit normalization, they are more general 

than Eq. (1) and will be the types of integrals for which we derive our general 

formulae. 

2.1 The Poisson Process 

To be as general as possible, one must be able to consider that, if we know 

the integral of the function a(x) (i.e., the quantity of Eq. (36), which we 

call A), a constant could be used as the reference function t(x) of Eq. (27). 

We have seen that this is possible in the final formulae but, as a concept, 

considering a constant as a reference function is extremely counter-intuitive. 

The benefit obtained from a reference function t(x) used in the estimate F 
of Eq. (27) comes from the correlation between the statistical fluctuations 

of E> of Eq. (17) and of c) of Eq. (5). For t(x) = 1, one has f)= N, i.e., a 

predetermined quantity to which we do not attach a statistical fluctuation. 

Therefore, in this approach, if we know the integral of a constant times a( x ), 
that constant has to be given a different treatment throughout the whole 

development than the other reference functions for which the sum (17) is a 

random quantity. Only at the end can it be shown that the constant plays 

exactly the same role in the final formulae as the other reference functions. 

It is possible to take a unified approach and analyze cases where we 

kr.ow the integral A of Eq. (36) with exactly the same concepts as cases 

where we do not know A. For this, we consider that the total number N of 

Monte Carlo points is not predetermined but that it results from a Poisson 

process [5]. Now N is a random number. It has an expectation value Nand 

a standard deviation v'N. In this context, if the integral A of the function 

1 · a( x) is known, 1 is a reference function like the others. It can be shown 

that the final formulae are the same if N is an outcome of a Poisson process 

or if N is predetermined but, with the Poisson process, the development·is 

smoother. 

In the context of a Poisson process of negligible probability for N = 0, 

10 



,;; the expectation value of the estimates F of Eqs. {6), (18), and {27) still verify 

Eqs. (7), (19), and (30). These estimators Fare still consistent estimators 

of F. However, the error S ( t) on t of Eq. ( 5) has a different expression 

than if N is predetermined, because, with the Poisson process, the error on 

N has also to be taken into account. 

(43) 

This square of the error can be approximated by 

82(t) = L<p~ = fJ of Eq. {13} (44) 
k 

Changing <pk and t into iJk and e, one gets the error on e. In the J?oisson 

process, the error on F of Eqs. (6), (18) or (27) is given approximately by 

S2(F) of Eqs. (14), (23), or (34), respectively. This is true because of the 

statistical correlations between t, e, and N. Because of these correlations, 

the Poisson process is led to the same final formulae for the errors on the 

integrals as a predetermined N. 

2.2 The Case of Several Reference Functions 

If there are several reference functions, a rigorous statistical treatment has 

to be given to the problem of using all the available information so that the 

error on the estimate ofF of Eq. (38) be truly minimized. 

Let us consider a set of Mt reference functions tm(x ), i.e., a set of func

tions for which the integral of the type of Eq. (37) is known. Of course any 

linear combination of them is also a function for which the integral is known, 

therefore it is another reference function. However that linear combination 

obviously supplies only redundant additional information. Therefore we do 

not lose any information in restricting our set of reference functions to a set 

of linearly independent functions tm ( x ). 
Let us construct a vector lt(x)l as a vector having the functions tm(x). 

as its components. 

Mt = dimension of vector It( x )I = number of reference functions ( 45) 

11 



The known integrals Tm of these reference functions multiplied by a(x) also 

constitute the components of a vector ITI of dimension Mt. 

ITI = j lt(x)la(x)dx (46) 

Along with 'Pk and~ in Eqs. (3) and (5), one can compute the following 

vectors: 

lt1kl = lt(~k)l' (47) 

101 = :E 111k1 . ( 48) 
k 

One can compare 101 to ITI to get information about the statistical distri

bution of the Monte Carlo points. Let r be the ratio 

(49) 

Starting from Eqs. (35), (38), and (46), one can write equations for the 

Poisson process that resemble Eqs. (28) and (29) for a predetermined N. 

Then we obtain: 

~ = r F, 

f01 = r ITI. 
(50) 

(51) 

The probability distributions of~ and 101 depend of r, F and ITI. After 

computing ~ and 101 by Eqs. (5) and (48), for any set of values r and F, 

we can calculate the likelihood of the outcomes being ~ and 101. The best 

estimate ofF is that value F that maximizes that likelihood. Evaluating F 

is similar to evaluating physical parameters from statistical distributions of 

real events [6]. 

In the Poisson process, for N large, i.e., for N large, the probability 

distributions for ~ and 101 are Gaussian. The likelihood is of the form 

exp( -x2 /2), where x2 is a function of the differences~-~ and 101- 101, 
i.e., ~-r F and 101-r ITI. Let us define the vector l~kl of dimension Mt+l, 

made of 'Pk a.s its first component and dm,k a.s its (m + l)th component, 

(52) 

12 

.. 



;o 

.. 

and 

IAI L:I-X~:I = 
~ 

(53) = 
k 191 

ILl = 11~1 (54) 

llfll = L I .X~: I I .X~: I ' (55) 
k 

where the symbol - above a vector or a matrix indicates the transposed 

quantity. In the context of the Poisson process, the (Mt + 1) X (Mt + 1) 

matrix 11£11 has squares of standard deviations of~ and ofthe quantities em 
on its diagonal and correlations betwe~n them in the off diagonal terms (5]. 

Let us first assume that the function f(x) is not a linear combination of the 

functions tm ( x ). The matrix llfll is not singular. The relevant x2 is 

(56) 

It determines the probability distribution of IAI. At its minimum as a func

tion of r and F, it yields a value F that is the best estimate of F. 

2.3 The Best Estimate of F 

To minimize the x2 of Eq. (56), we first express the (Mt + 1) X (Mt + 1) 

matrices llfll and lkll-1 in a form that shows separately the elements associ

ated with the function /( x) and those associated with the reference functions 

lt(x)l. This can be done using the Mt X Mt matrix llftll and the vector l'llfl 
defined as follows: 

lift II = L: 117~:1117~:1 , (57) 
k 

IWI = I: <p~:l17~:1 ' (58) 
k 

llfll 111~1 jij II (59) = lift II 

13 



Since the functions tm(z) are linearly independent, the Mt X Mt matrix ll£tll 
can be inverted. We define the vector IIII of dimension Mt, 

(60) 

and, using fJ of Eq. {13), 

(61) 

which is > 0 and < oo because f( z) is assumed not to be a linear combination 

of the functions tm(z).3 Then the (Mt + 1) X (Mt + 1) inverse matrix of 11£11 
is 

-1 

III I 
{62) 

This formula is easy to check if one multiplies it with 11£11 of Eq. {59). The 

result will be the identity matrix. The x2 of Eq. {56) can be rewritten, 

taking Eqs. (53), (54), and (62) into account. 

x2 = (181- riTI) ll£tll-1 (181- riTI) + .B ( ~- rF -III I (lei- riTI)) 
2 

{63) 
This x2 is obviously minimum for the following values of r and F: 

r = i0f ll£tii-1 ITI 
ITIII£tii-1ITI ' 

(64) 

F = ~ -IIII (l~l -ITI) = IIIIITI + ~ -I~IISI . {65) 
r r r 

Therefore Eq. {65) gives the best possible estimate F of F. 

At the minimum, the value of the x2 is 

(66) 
3 1t is indeed easy to demonstrate that 

i = £, -IIIII11tl = L ( 'Pk -IIIIIt9"'r > o . 
" 
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This quantity, X~in' allows a test of consistency between the distribution 

of the Monte Carlo points and the integrals of the reference functions. The 

confidence level that one could derive from this test is given by this minimum 

value X~in interpreted as a x2 associated with Mt - 1 degrees of freedom. 

The error on f and F can be obtained from the second derivative matrix 

of x2 of Eq. (63) with respect tor and F, evaluated at the minimum. 

82x2 
2 1TIIIt:tii-1 ITI + 2{3 (i -IIIIITI)

2 
. (67) 

8r2 = 
82x2 

2f3r ( f- III I IT I) (68) 
8r8F = 
82x2 

2{3f2 (69) 
8F2 = 

Inverting that second derivative matrix one gets diagonal elements that are 

approximations S2(r) and B2(F) for the squares of the one-standard devi

't ation errors on f and f. Replacing {3 by its expression {6l) and using the 

definition (60) of IIII, 

1 

These formulae give a practical way to estimate errors.4 

4A veragi.ng over the possible outcomes, one gets the standard deviations for these 

errors. For N large, they are very close to the values obtained if r, F, EJ, ,q,,, and lite II 
are replaced by their expectation values r, F, t 1 , lq,l, and ll£'ill. In particular, 
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Note that, if we have only one reference function, then ll£tll-1 has just 

one element and Eq. (64) reduces to 

r= ~. (73) 

Then, it is easy to verify that Eq. (65) reduces to Eq. (27) and Eq. (72) 

reduces to Eq. (33). The procedure and formulae developed in Sect. 1.3 are 

just a particular case of the generaJ procedure described here. No informa

tion is conveyed by the value of X~in' which then is zero, for Mt- 1 = 0 

degrees of freedom. H the single reference function is a constant and if 

A = 1, the procedure and formulae further reduce to the ones of Sect. 1.1. 

2.4 The Least Square Fitted Reference Function 

To understand the rqle played by the reference functions and to generate 

guidelines as how to choose them, we introduce another function, t<0>(x), de-

fined as that linear combination of reference functions tm ( x) that minimizes ,
the quantity 

H = j [f(x)- t<0>(x)r a(x)dx. (74) 

Defining a vector IPI of dimension Mt having components Pm equal to 
the coefficients of a linear combination of reference functions, we can express 

t<0> ( x) in the form 

t<0>(x) = IPllt(x)l . (75) 

The coefficients IPI of t<0>(x) are those minimizing H of Eq. (74). The 

function t<0>(x) is a least square approximation of the function f(x). 
The integral H of Eq. (74) can be approximated by the sum 

fi = ~ L [iflk - t<0>(~k)] 2 = ~ L (If'~- 21flk1PIIdkl + IPIIdklldkiiPI) 
r k r k 

= ~ (£,- 21PIItil + IPIIktll IPI)., (76) 

using Eqs. (13), (58), and (57). The coefficients IPI are approximately equal 

to the coefficients IPI which make fi minimum, i.e., 

(77) 
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using the definition of Eq. (60) for llll. It follows that the function t<0>(x) 
that minimizes H of Eq. (74) is close to 

i(O>(x) = IHIIt(x)l. (78) 

The quantity fi is a sum of squares of differences between f(x) and i(O)(x ). 
Minimizing ii amounts also to some least square fit ofi(O}(x) to f(x). Like 

t<0>, the function i(O)( x) could be considered as one of the linear combinations 

of reference functions tm(x) that approximates the function f(x) best. 

Using the integral ofi(O}(x) ·.a(x), 

f(O> = llll ITI ' (79) 

and the sum over the events, 

e<o) = I: i(O)(~k) = I: lllllt?kl = lllll01 ' (80) 
k k 

the estimate F of Eq. (65) can be written as the sum of two terms: 

~ -() ~- f)(O) 
F =To + ~ (81) 

r 

At its minimum, fi takes the value obtained if IPI of Eq. (77) is plugged 

instead of IPI into Eq. (76). 

jj = ~ ( f:J- lllllq;l) (82) 

It can be used in an expression of the square of the error on F obtained 

from Eq. (72), 

1 ~. S2(r) (~- e<0>) 2 

= -:::::H+ ~ -r r r 
(83) 

~ H + S2
(r) (F _ f(0>)2 . 

r r 2 (84) 

In Sect. 1.2, we considered integrals of the type of Eqs. (37) and (38) 

where the function a(x) was the same as the Monte Carlo probability distri

bution pMC(x). Thus A of Eq. (36) was equal to 1. When estimates of the 

type described in Sect. 2.3 are made in cases where A = 1, Eq. ( 49) predicts 

r~N. (85) 
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Then Eq. (81) is equivalent to Eq. (18) if we use the least square fitted ref

erence function t<0 )(x) of Eq. (75) as the sole reference function in Eq. (18). 

The procedure leading to the estimate of Eq. (65) in Sect. 2.3 amounts to a 

least square fit of a linear combination of tm(x) to get t<0)(x), followed by 

an estimation ofF according to the procedure of Sect. 1.2 involving only 

the reference function t<0 )(x). However, in Sect. 1.2, the estimated error of 

Eq. (20) is smaller than fi of Eq. (76) divided by N, while, in Sect. 2.3, the 

estimated error is larger than fi jN, as can be seen from Eq. (83). This dis

crepancy is not surprising because of the contribution of the fit to the error 

on F, which was implicitly taken into account in the procedure of Sect. 2.3. 

Note that the discrepancy between the two errors vanishes if, in the set of 

reference functions considered in Sect. 2.3, a constant is one of the reference 

functions used. 5 

In any case, there are two terms in the general expression of the error 

given by Eq. (84). The first term is equal to the integral of Eq. (74) (which 

expresses h()w far /( x) and t(O) ( x) are from each other) divided by the coef

ficient r (which is proportional to N). The second of the two terms results 

from the uncertainty about the scaling factor r. This uncertainty multiplies 

the difference between the two integrals of f(x) and of i(O)(x) times a(x). 
Both terms decrease when there is a possibility to define a function t(O)(x) 

that fit f(x) better. Therefore it is advantageous to use reference functions 

that define a linear combination that, at most of the Monte Carlo points, 

approximate the function f( x) as well as possible. This property provides a 

guideline as how to choose reference functions. Note that reference functions 

5 Let C be a constant used as one of the reference functions. In the matrix llcrll, the 

column and the row corresponding to the constant reference function is a vector equal 

to CISI. Thus the vector llcrll-1 191 has all components zero but the one corresponding 

to the constant reference function. That component is 1/C in the vector llcrll-1 191 and 

c~ in IIlii. It follows that the quantity 9(0) of Eq. {80) is equal to ~. Equation {83) of 

Sect. 2.3 reduces to 

B2(F) = ii /f:'=!! (A/N)2L (cp,- t<o>ce"W . 
" 
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with little correlation to f(x) will not be so useful but, as long as we deal 

with many more Monte Carlo points than reference functions, i.e., as long 

as 

N::>Mt, (86) 

use of irrelevant reference functions will not hurt. 

There is another consequence to the fact that estimates F of Eq. ( 65) 

and its error, Eq. (72), can be expressed as in Eqs. (81) and (83) respec

tively, i.e., as functions of only f(x) and i(O)(x). The function t<0>(x) is 

defined as the linear combination of tm(x) that minimizes H of Eq. (74}, 

i.e., approximately, fl of Eq. (76}. It does not change if a set of functions 

tm(x) is replaced by a set of linear combinations of tm(x). Therefore our 

procedure is invariant with respect to a linear transformation of the set of 

reference functions. In our choice of reference functions, we should be guided 

only by the desire to have a set of functions tm ( x) that could define linear 

combinations that fit f(x) best for most Monte Carlo points. The actual 

representation of the set has no impact on the result or its error. The sim

plest representation will work as well as a complicated one. For instance, 

powers of any relevant variable will have the same effect as Legendre- or 

more sophisticated polynomials. 

3 Generalizations and Practical Formulae 

The formulae of Sect. 2 can be generalized and written in a compact form to 

make handling of the actual computation easier. Spelling out and justifying 

such general and compact formulae are the subjects of this last part of the 

paper. 

3.1 Integrating Linear Combinations of Reference Functions 

Since it is advantageous to have reference functions tm(x) such that a linear 

combination of them fit the function J(x) well, it is important that one 

considers the limit where /( x) actually is a linear combination of tm( x ). 

That case was excluded from our general development because, to establish 
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the general formulae, we considered a x2 as in Eq. (56). This x2 could 

be formulated only if the matrix 11£11 of Eq. (55) could be inverted and 

this was possible only if /( x) was not a linear combination of the functions 

tm ( x ). However, if /( x) is such a linear combination, the final formulae, 

F of Eq. (65) and S2(F) of Eq. (72), can still be computed. The linear 

combination tf<i>(x) that minimizes fi of Eq. (76) is the one that makes fi 
zero, i.e., the one for which 

f(x) = tf<i>(x) . (87) 

Therefore, ~ and e<o) are equal. Thus F gives the exact result: 

(88) 

This fact is confirmed by Eq. (83), which gives 

S2(i') = o. (89) 

If f(x) is a linear combination of the tm(x), the above procedure is 

equivalent to recognizing the coefficients of that linear combination by a 

minimum square fit to the function f(x) at each Monte Carlo point, and 

then to computing the exact integral corresponding to that linear combina

tion. The error is zero. This procedure gives certainly the most accurate 

result. Thus the estimate of F by Eq. (65) and of the error by Eq. {72) 

can be generalized to cases where f(x) is a linear combination of the tm(x). 
There is no reason to limit the search toward getting reference functions 

with a linear combination that fits f(x) best. Hit fits perfectly, the same 

procedure applies and that special circumstance can be recognized because 

the estimated error will turn out to be zero. 

Since the result of integration is exact in the case of linear combinations, 

there is another interesting consequence. In this case, the result does not 

depend on the distribution of integration points in the integration domain. 

All that is required for the procedure to be valid is that the set of points 

generated be adequate for determining the coefficients of the development 

of f(x) in terms of a linear combination of tm(x). That requirement means 

20 
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that the set of points should give linearly independent values 'I'Jm,ln i.e., such 

that the matrix lktll of Eq. (57) be not singular. In this context, at least 

Mt but in general not more than Mt points of integration are needed. If 

lktll is not singular, any set of integration points generated by any mean is 

adequate. Each set of points corresponds to an integration method, which 

giv~s an exact result for linear combinations of reference functions. 

Of course the case of J(x) being a linear combination of the functions 

tm(x) is just an extreme case. There is a continuity in the behavior of the 

properties of integrals evaluated using Eq. (65), as one consider functions 

f(x) that are approximated better and better by a linear combination of 

reference functions. Since the integrals are insensitive to the distribution 

of Monte Carlo points when f(x) is a linear combination of tm(x), they 

will be only slightly sensitive to that distribution if f(x) is almost a lin

ear combination. Increasing the number of reference functions will make it 

possible to approximate f(x) by a linear combination better. It will make 

the result less sensitive to the distribution of Monte Carlo points, thus to 

statistical fluctuations and also to some types of biases in the generation of 

these points. Reference functions may reduce not only the statistical errors 

on the integrals, but also some of the systematic errors due to some of pos

sible flaws in the Monte Carlo generation. That property is illustrated in 

the next paper (3]. 

Note that the property of giving an exact result for some class of inte

grands is also a property of all numerical integrations: polynomials for the 

Gaussian method, trapezoids for the trapezoidal rule, etc. For the procedure 

advocated here, it occurs when f(x) is a linear combination of tm(x). On 

the contrary, ifreference functions have little to do with the shape of J( x ), 

this procedure reduces to the usual Monte Carlo technique. In this sense, 

one can say that reference functions bridge the gap between numerical and 

ordinary Monte Carlo integration techniques. 
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3.2 Mathematics for Computers 

Expressions (65) and (72) of the estimates F ofF and 52( F) of the square 

of its error were convenient for discussing properties of reference functions. 

There are more suitable forms to perform computations in computers [7). 

Assuming one has to evaluate several integrals with the same Monte Carlo 

points, it is advantageous to separate terms that do not depend on the 

function f( x) to be integrated from the terms that do depend on f(x ). The 

former can be computed once for all integrals and not every time, if computer 

time is to be saved. 

One can reformulate Eqs. (65) and (72), replacing the vector 1111 by its 

expression from Eq. (60). After computing 101 by the sum (48), llftll by 

the sum (57), and ITI by the closed form that expresses the integrals of the 

reference functions, we can calculate the following quantities: 

T = l0lllftii-1 ITI , (90) 

1 ITI lift n-1 ITI (91) "' = f= T 

1~1 = lift Il-l ( K.l01 - ITI) (92) 

2 1011~1 (93) X min 

"' 
The terms 101, ll£tll, and ITI can be computed without the knowledge 

of f(x). They could be computed during the generation of Monte Carlo 

points. Then Eqs. (90), (91), (92), and (93), which do not depend on f(x) 
either, can be computed just after the generation is over. They are terms 

that do not have to be computed again every time a new integral involving 

a new function /( x) has to be evaluated. Furthermore the value of X~ in 

provides a test of consistency of the distribution of Monte Carlo points 

and of the integrals involving the reference functions, if interpreted as a x2 

corresponding to Mt - 1 degrees of freedom. That test is best performed 

just after the Monte Carlo generation. 

When the integrals offunctions f(x) have actually to be evaluated, then 

it is time to compute 4> of Eq. (5), I"WI of Eq. (58) and, if an error on 
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the integral is desired, f.J of Eq. {13). The computation of these quantities 

requires one pass over the events. At the end, F ofEq. {65) can be computed. 

Using the quantities defined in this section, Eq. (65) reduces to 

{94) 

If an estimate of the error is also needed, S2(F) can be calculated. Equa

tion (72) reduces to 

S2(F) = K
2 (f.,- Wlll£tll-1lwl) + ~ (~- Wlllf.tll-1101)

2 
(95) 

= K
2 (f., -lwllktii:_1IWI) + ; (i- Wlll£tii-1 ITI)

2 
• (96) 

An interesting case is one where a constant can be and actually .is used 

as one of the reference functions. The general formulae of this section still 

apply but can be simplified.5•6 However the simplification may not warrant 

using a special procedure just for this case. 

3.3 Several Functions to Be Integrated 

A rather common situation is one where integrals of several functions have 

to be computed at the same time. As examples of such circumstances, let 

us mention fits, where integrals of a function and of its derivatives may have 

to be computed at each iteration. One can construct a vector lf(x)l of MJ 

components equal to the functions involved in the integrals in question. One 

defines the M rdimensional vectors 

IFI = j If( x )Ia( x )dx = integrals to be evaluated, 

I'Pkl = l!(~k)l , 

1~1 = L I'Pkl ' 
k 

6 ln that case, Eqs. {94) and {96) reduce to the following expressions: 

F = TXOl = 1WIIIccii-1 ITI , Sl(F) = K.
2 (c1 -1WIIIccii-1 IW1) 

(97) 

(98) 

(99) 

Note that, in that particular case, the best estimate ofF is equal to the integral of the 
least square fitted reference function t<~) without additional terms. 
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and the Mt x M 1 matrix 

11w11 = L: 117~:11<;?~:1 . (100) 
k 

Then one can obtain an estimate IFI of the vector IFI of Eq. {97), using an 

equation similar to Eq. {94), 

(101) 

Alternately, a computer-time saving procedure may be designed to mini

mize the computation to be performed for each function. Instead of comput

ing the sums 1~1 and IIWII, the two sums can be combined to get the result 

IFI directly. After the Monte Carlo points have been generated and the 

vector IAI has been calculated via Eq. (92), a weight fJk, called integration 

weight,7 can be computed for each Monte Carlo point k during the next pass 

over the events. Knowing 117~:1 from Eq. (47), one obtains the integration 

weight 

(102) 

No matter what the functions lf(x)l are, the same estimate IFI as the one 

of Eq. (101) can be obtained from the following equation: 

IFI = L: TJ~: I<;?~: I . (103) 
k 

If several iterations are contemplated with different integrals to be evaluated 

each time, the weight fJk can be stored for future use. An interesting property 

of the sum of the weights fJk is that it satisfies 

L: fJk = K(N- X~in) ~ KN ~A of Eq. (36} 
k 

(104) 

Equation (103) shows the analogy with numerical integrations. The 

weight fJk associated with each point of integration k is independent of the 

functions to be integrated but it depends on the location ofthe other points. 

7These integration weights, fllc, should not be confused with Monte Carlo weights, such 
as those we talk about in Sect. 3.4. 
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It is also interesting to note that Eq. (6) of Sect. 1.1 is of the same form 

as Eq. (103), but where TJk is equal to 1/ N for all points regardless of their 

locations. 

Eventually one may want to estimate an error matrix for the integrals 

I Fl. ·Such an estimate, IIEII, is a MJ X M1 matrix expressing errors and 

correlations between the components of the vector IFI. It can be obtained 

using the Mt X M1 matrix IIWII ofEq. (100), as well as the MJ X MJ matrix 

II£JII = L l<p~cll<p~cl 
k 

which generalizes the quantity fJ of Eq. (13). We write: 

(105) 

1n1 = IFI-1Willl€tii-1 ITI , (106) 

IIEII = K
2 (11£JII--1Willl£tll-1 llwll ) + ; 1n11n1 . (107) 

It is easy to check Eq. (107) by proving that the integral of any linear 

combination j<1>(x) of components of the vector lf(x)l will have the same 

error if computed from Eq. (96) or using the matrix IIEII of Eq. (107). If 
the MJ coefficients of the linear combination f(1)(x) are written in a vector 

IPJI with MJ components, 

f(l)(x) = IPJIIJ(x)l , 

then Eq. (96), applied to the integral of J(ll(x) · a(x), leads to 

Sl(F<i>) = IPJIIIEII IPJI . 

(108) 

(109) 

Therefore the matrix IIEII of Eq. {107) is indeed the error matrix for the set 

of functions constituting the components of the vector lf(x )I. 

3.4 Weighted Distributions - General Formulae 

Consider now the case where the integrals IFI to be evaluated are expressed 

in the form of Eq. (97) with the distribution a(x) represe~ted by a weighted 

Monte Carlo distribution of the type 

a(x) =A w(x) ~c(x). (110) 
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Here, w( x) is a weighting function expressible in closed form at each in te

gration point, ~c(x) is the distribution of the integration points, and A a 

normalization constant which may be defined either explicitly in closed form 

or implicitly by integrals of reference functions. We assume that the known 

integrals ITI of the reference functions lt(x)l are also expressed in the form 

of Eq. (46) with the distribution a(x) of Eq. (110).· 

In Sect. 1.4, Eq. ( 40), we used an example of weighted distribution where, 

for purpose of illustration, it was convenient to incorporate the weighting 

function w( x) into the function /( x) and, implicitly, into the function t( x) 
too. It is often more convenient to incorporate w( x) into the definition of 

a(x) ·instead, as it is done in Eq. (110). 

To adjust our formulae to this case, all that is needed is, at the integra

tion points, to multiply 1/(x)l and lt(x)l by the factor w(x), since it is no 

longer incorporated in the definition of these functions. At each point k, we 

define a quantity Wk, called Monte Carlo weight, 

(111) 

and replace the previous definitions of l<t'kl and lt?kl, i.e., Eqs. (98) and (47), 
by 

l<t'kl = Wk IJ<ek)l , 
lt?kl = Wk lt(ek)l . 

(112) 

(113) 

Then the general procedure of Sect. 3.3 can be used, first computing 

quantities independent of f(x), i.e, 101, ll£tll, T, K, 1~1, and X!in using 

Eq. (48), (57), (90), (91), (92), and (93), respectively. Secondly, one can 

compute either the integration weights fJk from Eq. (102) and the estimate 

IFI of IFI from Eq. (103), or IIWII from Eq. (100) and IFI from Eq. (101). 

For an estimate IIEII of the error matrix 11£11, one needs II£JII of Eq. (105), 

as well as II\ITII of Eq. (100), to introduce in Eq. (107). 

The procedure described here is the most general one. If the Monte 

Carlo distributions are not weighted, all Monte Carlo weights Wk have to be 

set to 1. If there is only one function /( x) to be integrated, or if there is only 
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one reference function t( x ), the relevant vectors reduce to a one-component 

vector. This general procedure is the one in the program described in Ref. [7]. 

As seen in Sect. 3.1, for integrands that are linear combinations of ref

erence functions, the estimates of the integrals come out exact and the esti

mated errors are zero. 

An example of use of reference functions in a Monte Carlo simulation for 

a physics problem is given in the next paper [3]. 
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