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Theory of the Ion-Channel Laser 

by 

David H. Whittum 

Abstract 

A relativistic electron beam propagating through a plasma in the ion

focussed regime exhibits an electromagnetic instability with peak growth rate 

near a resonant frequency m-2i mp, where yis the Lorentz factor and mp is the 

betatron frequency. The physical basis for this instability is that an ensemble 

of relativistic simple harmonic oscillators, weakly driven by an 

electromagnetic wave, will lose energy to the wave through axial bunching. 

This "bunching" corresponds to the development of an rf component in the 

beam current, and a coherent centroid oscillation. The subject of this thesis is 

the theory of a laser capitalizing on this electromagnetic instability. 

In Chapter 1 a historical perspective is offered. In Chapter 2, the basic 

features of relativistic electron beam propagation in the ion-focussed regime 

are reviewed. 

In Chapter 3, the ion-channel laser (ICL) instability is explored 

theoretically through an eikonal formalism, analgous to the "KMR" 

formalism for the free-electron laser (FEL). The dispersion relation is derived, 



and the dependence of growth rate on three key parameters (detuning 8, 

Pierce parameter p, and betatron parameter ap) is explored. Finite temperature 

effects are assessed. 

From this work it is found that the typical gain length for amplification 

is longer than the Rayleigh length and we go on to consider three 

mechanisms which will tend to guide the radiation. First, we consider the 

effect of the ion channel as a dielectric waveguide. We consider next the use 

of a conducting waveguide, appropriate for a microwave amplifier. Finally, 

we examine a form of "optical guiding'' analgous to that found in the FEL. 

In Chapter 4, the eikonal formalism is used to model numerically the 

instability through and beyond saturation. Results are compared with the 

numerical simulation of the full equations of motion, and with the analytic 

seatings. The analytical requirement on detuning spread is confirmed. 

In Chapter 5 results are summarized and prospects for future work are 

considered. 
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Chapter 1: Introduction 

"All things hang like a drop of dew 

Upon a blade of grass. " 

---W.B. Yeats 

A relativistic electron beam propagating through a plasma in the ion

focussed regime exhibits an electromagnetic instability with peak growth rate 

near a resonant frequency co-2y cop, where yis the Lorentz factor and cop is the 

betatron frequency.1,2 The physical basis for this instability is that an ensemble 

of relativistic simple harmonic oscillators, weakly driven by an 

electromagnetic wave, will lose energy to the wave through axial bunching. 

This "bunching" corresponds to the development of an rf component in the 

beam current, and a coherent centroid oscillation. The subject of this thesis is 

the theory of a laser capitalizing on this electromagnetic instability. 

In this introduction we review the historical background and 

motivation for the ion-channel laser, to include a brief history of beam

plasma physics and the subject of coherent radiation from intense relativistic 

electrons beams. In practice, these two fields overlap considerably, in that 

plasmas have been used to enhance efficiency in known radiation devices,3,4,5 
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and have been proposed to provide the coupling for novel radiation 

devices.6,7 In the ion-channel laser (ICL), these two subjects are inseparable. 

A. OVERVIEW OF BEAM-PLASMA PHYSICS 

The essential features of beam propagation in an unmagnetized, 

preionized plasma may be described in terms of charge and current 

neutralization. A relativistic electron beam (REB) injected into a plasma less 

dense than the beam core ("underdense") expels plasma electrons from the 

beam volume, producing a non-neutral "ion-channel." The radial electric 

field due to the ions then focusses the beam ("ion-focussing regime" or IFR). 

A plasma more dense than the beam will neutralize the beam charge, so that 

the REB is focussed by its own magnetic field ("magnetic self-focussing"). A 

still denser plasma will partially neutralize the current, if the plasma skin 

depth is short compared to the beam radial size, and if the magnetic diffusion 

time is long compared to the beam length. 

In the next chapter we will discuss these features in detail, specializing 

to the ion-focussed regime. First, however, we consider the historical context 

for the growing interest in the IFR. 

1. Early work on beam-plasma physics 

The earliest treatment of REB propagation in a plasma was given in 

1934, by Bennett,8 who considered the magnetically self-focussing regime. 

2 
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This paper was followed in 1939 by work of Alfven,9 who showed that, due to 

self-fields, an electron beam could not be propagated in free space at arbitrarily 

high current. The limiting current, or Alfven current, is 1A=Yf3zlo, where I is 

the beam current, Io=mc3fe-17 kA, yis the Lorentz factor for the beam and 

f3z=Vz/c, with Vz the velocity of the beam and c the speed of light. The electron 

mass ism and -e is the electron charge. To exceed this limit some confining or 

focussing forces must be applied, and they may be either electric or magnetic, 

provided externally, or arising collectively from the addition of a plasma. 

A second paper on self-focussing streams was published by Bennett in 

1955.10 In the same year, Budker published his work on propagation of 

partially charge-neutralized beams, motivated by the possiblity of accelerating 

lights ions.ll Further work on ion-acceleration followed in 1957, by 

Veksler.12,13 Eventually, interest in ion-acceleration led to the the Electron 

Ring Accelerator (ERA) concept.14 From the ERA project, and related work on 

the "ASTRON" injector, we may trace the beginnings of work on induction 

linear accelerators for high current electron beams. 

2. Induction linear accelerators and beam-plasma physics 

At Lawrence Livermore National Laboratory (LLNL), this work began 

with the ASTRON I induction accelerator (1963), which was followed by the 

ASTRON II (1968). Under the SEESAW project funded by the Advanced 

Research Projects Agency (ARPA), the ASTRON was used to study 

REBpropagation in the atmosphere, for military applications.lS After the 

3 



Chapterl Introduction 

termination of the ASTRON program (1972), the ASTRON II was used as a 

tool for the study of beam-gas and beam-plasma interactions, and the 

Experimental Test Accelerator (ETA) was constructed on the old ASTRON II 

site (1977). ETA was sponsored by the Navy's Chair Heritage program, again to 

study propagation in the atmosphere. 

Success with ETA lead to the construction of the Advanced Test 

Accelerator (AT A) at Site 300 (the high-explosives test site operated by LLNL 

near Tracy, California) in 1982. Most recently, a fifth induction linac, ETAII 

has been constructed (1987) on the site of the old· ETA, which has been 

decommissioned .16 

This is a rough outline of induction linac work at LLNL, just one lab 

among many. During the same period, induction linac work has been 

performed at the Atomic Weapons Research Establishment in England, 

Physics International, Ion Physics, Maxwell Laboratories, the Naval Research 

Laboratory, the Air Force Weapons Laboratory, the National Bureau of 

Standards, Sandia National Laboratories, and other labs. Induction linac work 

is also proceeding in Japan, notably at the National Laboratory for-High

Energy Physics (KEK), the Institute for Laser Engineering at Osaka University, 

the Institute for Space and Astronautical Science, and the Naka Fusion 

Research Establishment of the Japan Atomic Energy Research Institute. 

Space does not permit a thorough history or complete enumeration of 

induction lina<; work here, but this brief digression and the references will 

give some indication of the explosion of research during this period. Much of 

4 
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this work was concerned directly or indirectly with beam-plasma interactions, 

and the proposals, papers and results which have accumulated could fill a 

small library. 

3. Beam-plasma theory and experiment 

Extensive treatments of the equilibria of a charge neutralized, and 

partially current neutralized, REB propagating in a plasma, were given in 

1968 by Roberts and Bennett,16 in 1970 by Bennett and Cox,17 and Hammer 

and Rostoker,18 and in 1971 by Lee and Sudan.19 In 1976 a Fokker-Planck 

formulation of beam-plasma equilibria and an application of the H-theorem 

to this system were set down by E.P. Lee.20 By the mid-1970's the beam

plasma community had grown quite large, and one finds review papers from 

around the world, for example R. Okamura, et al.,21 and G. Wallis, et al..22 A 

more recent review of REB-plasma physics may be found in P. C. de Jagher, et 

al. 23 

An extensive literature exists on REB-plasma experiments. The first 

experimental work on magnetically self-focussing streams was published in 

1966 by Graybill and Nablo.24 The first observation of the acceleration of light 

ions was reported by Graybill and Uglum,25 in 1970. A discussion of theory 

and results for REB propagation in connection with an REB-pumped N2 laser 

is given by Yu V. Tkach, et al. 26 Some of the first results from experiments 

with REB heating of plasmas are discussed by MacArthur and Poukey, 27 and 

Prono, et aJ.2B These papers are the first of scores of such papers published in 

5 
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each area of application over the period 1960-1980, of which there are far too 

many to review in detail. Perhaps it is enough to note that over the last 

decade, ion-focussing has been successfully and routinely employed in the 

transport of high current beams for accelerator work and radiation 

research.29,30,31,32 From this· one might gather that the essential features of 

REB propagation are well in hand. 

In fact, this is not quite true. At the Advanced Test Accelerator (ATA), 

at Lawrence Livermore National Laboratory (LLNL) extensive, experimental 

tests of beam propagation in the ion-focussed regime have been conducted 

over the last decade.33 One particular application was to use the REB to drive 

an infrared FEL,34 and this application provided a rigorous test of beam 

quality.35 It was found that REB emittance degraded considerably in the ion

channel, much more than could be expected theoretically. As with the early 

experiments on fusion plasmas,36 one might expect that some unknown, 

instability lurked in the data. In fact, the electromagnetic instability we will 

discuss in Chapter 3, coupled to ion-motion, may account for considerable 

emittance growth in a long pulse. 

4. Novel beam-plasma concepts 

We may summarize REB-plasma work during the period 1930-1980 as 

the study and application of the equilibria and instabilities of beams subject to 

various collective focussing forces. Most work involved long pulse lengths, 

in the range 10ns-1Jls, for applications including light-ion acceleration, 
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plasma heating, microwave generation, gas-laser pumping and nuclear effects 

simulations. The applications are quite varied and this reflects the variety of 

regimes available in such a three-component plasma.37 

More recently, interest has been growing in the regime of short pulse, 

low-emittance, high-current, high-energy beams, propagating through 

preionized, unmagnetized plasmas. Among the novel concepts proposed are 

the plasma lens,38,39 the continuous plasma focus,40,41 the plasma wakefield 

accelerator, 42,43,44 the beat wave accelerator,45 a collective electron 

accelerator,46 and the plasma emittance damper.47,48 

Given the abundance of new ideas, it is helpful to remember that all 

have essentially one application: beam-'handling. Typical beam-handling 

problems include transport, focussing, suppression of l?eam-breakup, and 

acceleration. For example, the foremost goal of accelerator physics today, is to 

design a high luminosity TeV-energy electron-positron collider of reasonable 

length.49 To this end, plasmas have been proposed to accelerate beams to TeV 

energies in a few hundred meters, to focus the beams while overcoming 

theoretical limits50 on conventional focussing and to neutralize self-fields at 

the interaction point,Sl thus overcoming certain limitations due to collective 

effects in beam-beam collisions.52,53,54 
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B. OVERVIEW OF FREE-ELECfRON RADIATION DEVICES 

Coherent radiation from relativistic electron beams, usually in 

vacuum, also has been the subject of extensive work, in connection with the 

FEL,55,56 the Cyclotron Auto-Resonant Maser (CARM),57 and other FEL-like 

devices.58,59,60,61 Applications for high power, coherent radiation may be 

found across the spectrum from the microwave to the X-Ray, from particle 

acceleration,62,63 fusion,64,65 communications and weapons,66 to surface 

chemistry, medical and industrial applications.67,68,69 

Probably the earliest work on the FEL is that of Motz,70 and the 

"ubitron" work of Phillips71 in the microwave regime, and Madey,72 who 

proposed and demonstrated experimentally, that the FEL could be operated as 

an amplifier (and, subsequently, an oscillator) at visible wavelengths. The 

CARM concept grew naturally out of work on the gyrotron,73 for which the 

CARM is the relativistic limit. 

The CARM and the FEL are each fast-wave devices, in that the 

coupling of the beam to the fields occurs through a transverse electric field, 

with small electric field parallel to the beam velocity (corresponding to phase 

velocity of order c). This feature is shared with the ICL. 

In. general, fast-wave devices have a resonance relation of the form 

(1.1) 
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near which maximum amplification of an input signal occurs. Here m and kz 

are the angular frequency and axial wavenumber of the signal field to be 

amplified. The beam propagates in the z-direction with velocity Vz-c. At the 

same time, external fields enforce a periodic transverse motion with angular 

frequency ~· 

This resonance condition states that the Doppler shifted frequency of 

the signal field, should be close to the frequency of transverse oscillation of 

the electron. In this way the electron is resonantly driven and suffers a secular 

perturbation in its orbit. Viewed collectively, this secular drift produces a 

bunching of the beam. The system is unstable because the bunching of the 

beam causes the electrons to radiate more nearly in phase producing higher 

power, and thereby, more bunching. 

For the CARM, mo-eBz/m!f:, where Bz is the applied axial magnetic 

field. For the FEL mo-kwvz, where kw=2 rr/Aw, with Aw the spatial period 

("wiggler" period) of the alternating dipole fields. 

In fact, it is not hard to show, using the Maxwell-Vlasov equations, that 

for an ensemble of electrons subject to an arbitrary, periodic zeroth order 

orbit, such a resonant electromagnetic instability may ensue. This feature is 

exploited, for example, in the CARM, and in the quadrupole FEL (QFEL), 

proposed by Levush, et al.74,75. The QFEL makes use of a quadrupole focussing 

winding to capitalize on this instability and amplify microwaves. One 

shortcoming of the QFEL is that magnetic focussing channels tend to be weak 
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compared to FEL wigglers. Consequently, the frequency range, and gain are 

limited. 

An analagous instability obtains for a REB propagating through an 

electrostatic focussing channel in the ion-focussing regme_l,2 In this case the 

resonance relation of Eq. (1.1) applies, with ro0=rop, where rop is just the 

betatron frequency of the ion-focussed beam, 

(1.2) 

The subject of this thesis is, roughly, to explain and expand on Eqs. (1.1) and 

(1.2), and to explore the consequences in detail. 

Interestingly, experimental evidence has already been found, of 
-

coherent radiation from intense electron beams injected into overdense, 

unmagnetized plasmas.76,77 Explanations offered for the high microwave 

power levels observed have included streaming instabilities, strong

turbulence, and virtual cathode oscillations. Kato et aJ.,SB remark on the 

possibility of an FEL analogy based on jitter motion in "large-amplitude 

electrostatic waves generated by instability"; however, to date, no satisfactory 

theory has been set down to explain the measured power levels. We shall see 

that the ion-channel laser. instability is likely an important contributing 

mechanism for the production of such radiation. 

Now, unlike slow-wave devices, (the klystron or the magnetron,78,79 

for example) fast-wave devices require a cold beam, i.e., one with a small 
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spread in axial momenta, and small transverse temperature. This may be 

seen from the resonance relationship and the principle of Landau damping.so 

In general, one must require that the spread in detuning 

(1.3) 

be small compared to the growth rate for the instability. Otherwise electrons 

slip out of phase with respect to the resonant particle (satisfying L1m=O) and, 

collectively, radiate less, so that gain is reduced. As in the FEL and CARM, 

detuning spread will turn out to be an important limitation on ICL 

performance. 

C. SUMMARY 

The diverse regimes of beam-plasma physics have been studied 

extensively over the last fifty years, and the list of novel applications grows 

wih each passing year. Free-electron radiation devices trace their origin to the 

burgeoning microwave work of the post-war era, and have flourished in the 

last decade, appearing in many varieties, with as many applications. Many 

features of each field will appear in our study of the ion-channel laser. 

In the next chapter, we review the basic features of relativistic electron 

beam propagation in the ion-focussed regime. We go on to explore the ICL 

instability theoretically, in Chapter 3, and numerically, in Chapter 4. The 
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result of this work will be a theoretical formulation for the laser, including 

particle dynamics and radiation guiding, which will be summarized in terms 

of scaling laws encompassing laser performance and plasma constraints (ion

motion, etc.), with specific numerical examples for illustration. From this 

work, theory will be advanced to the state where practical experiments can be 

considered. 
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Chapter 2: Short Pulse Propagation 

"One never ought to listen to the flowers. One should 

simply look at them and breathe their fragrance." 

-Antoine de Saint Exupery 

In this chapter, the basic features of REB propagation in the ion

focussed regime (IFR~ are reviewed. In Sec. A, we discuss charge and current 

neutralization, and provide a working definition of the IFR. In Sec. B we 

consider in a more formal manner, equilibrium propagation in the IFR, and 

we apply our results to analyze the continuous plasma focus, recently 

proposed by Chen, et af.l In Sec. C we consider the dominant IFR instabilities: 

"ion-hose" and "electron-hose". In Sec. D, we enumerate certain important, 

but less dominant features, including scattering, beam-ionization, radiation 

and streaming instabilities. 
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Short Pulse Propagation 

FIG. 2.1. A relativistic electron beam propagates through a preionized plasma, more dense than 

the beam core. A small fraction of plasma electrons are expelled (as indicated by the plasma 

electron current density le ) to produce overall quasineutrality, so that the net electric field Enet 

(which is the sum of the fields due to the beam, ions, and plasma electrons, Eb, E;, and Eu 

respectively) vanishes. The net force on the beam, Fnet, is then due to the beam magnetic field 

B(/), i.e., the beam is magnetically self-pinched. 

A. THE ION-FOCUSSED REGIME 

Before embarking on detailed analytic work and to place this work in 

the appropriate context, it is helpful to review the simplest features of REB 

propagation: charge and current neutralization. In the course of this review, 

we will provide a working definition of. the "IFR". We restrict ourselves 

22 



• 

Chapter 2 Short Pulse Propagation 

throughout to the case of a preionized, unmagnetized plasma, and neglect 

plasma electron collisions, recombination and attachment . 

0 ions 
® beame
• plasma e- • 

F net 

E net = Eb + E i *- 0 

• 0 
• le 

• 

• 

• 

:::::::- eE 

• 

. 
l 

FIG. 2.2. A relativistic electron beam propagates through a preionized plasma, less dense than 

the beam core. All plasma electrons are expelled, producing a non-neutral column of ions, or 

"ion-channel." For a sufficiently dense plasma, such that np>>nb/r, the beam is then 

electrostatically focussed by the ion-charge. This is to be compared to Fig. 2.1. 
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Let us place ourselves at a fixed position in the plasma and watch the 

beam "arrive" (Fig. 2.1). We observe a rising current, a rising azimuthal 

magnetic field, a radial electric field and an induced axial electric field. The 

total electric field must, by Lenz's law drive a plasma current, le such as to 

oppose the rising beam current, as indicated in Fig. 2.1. Now, 

characteristically, plasma electrons will respond to imposed fields on the 

time scale of a plasma period, mp-1, where m,,2=4trnpe2fm, the electron charge 

is -e and its mass ism. Thus if the current rises adiabatically on the mp-1 time 

scale, plasma electrons will flow out of the beam volume with only small 

radial plasma oscillations. The local plasma is then in a quasi steady-state. 

(We will take the ions to be fixed for the moment). 

For early times, as the beam "head" is flowing past, there are many 

more plasma electrons than beam electrons, and the beam is charge 

neutralized and magnetically self-focussed, as indicated in Fig. 2.1. As the 

beam current continues to rise, the beam density on axis increases above the 

local ion charge density, and a channel is formed from which all plasma 

electrons have been quasi-statically evacuated. 

Eventually, as the current rises still further, this "ion-channel" extends 

beyond the beam volume, as depicted in Fig. 2.2. In this limit, the transverse 

Lorentz force seen by a beam electron in the channel is 

(2.1) 
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where Eb is the radial electric field due to the beam and Ei is the field due to 

the ion charge, Ei -2trenpr, with r the radial coordinate. The quantity f3...L=v..Jc, 

with V...L<<c the transverse velocity. The speed of light is c and yis the beam 

energy divided by the electron rest energy, mc2. 

FIG. 2.3. The radial electric field of the beam expels plasma electrons from a large cylindrical 

volume, or "ion-channel". The beam head is weakly magnetically self-focussed, while the 

main-body of the beam is electrostatically focussed by the relatively immobile ions. 

Now the primary motivation for sending a beam into a plasma is 

focussing and for focussing to be effective, the restoring force due to the ion 

charge should be much larger than the transverse Lorentz force on the beam 

due its self-fields. This imposes the Budker condition2 on the plasma density, 
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(2.2) 

We shall refer to the regime constrained by these assumptions as the 

ion-focussed regime (IFR). In fact, as we have seen, no beam is ever entirely 

ion-focussed, since the beam head is always weakly magnetically self-focussed 

(Fig. 2.3).3 For propagation over long distances, this distinction is impqrtarit, 

since poor focussing at the beam head may result in significant "erosion". For 

the relatively short propagation lengths of interest here, this will turn out to 

be a minor effect, and we relegate further discussion of it to Sec. D. 

With a definition of the "IFR" in hand, we proceed to a more 

quantitative treament of IFR equilibria. 

B. EQUILIBRIUM PROPAGATION 

In this section, we examine the features of equilibrium propagation in 

the IFR. In Sec. 1, we consider the steady-state plasma-electron flow subject to 

an adiabatically varying, specified beam current, using a cold-fluid model. In 

Sec. 2, we consider the ion-motion using a linearized cold-fluid model. In Sec. 

3, we consider REB propagation through a background of rigid ions, subject to 

the fields determined in Sees. 1 and 2. We reserve to Sec. C discussion of 

dipole perturbations to the beam centroid. 
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1. Steady-state plasma electron flow 

First, we consider the plasma flow subject to specified beam charge and 

current densities, with ions fixed. It will be convenient to change variables 

from z, t to z, s where s=t-zfvb is the displacement along the beam and varies 

from 0 at the beam head to ~(the pulse length) at the beam tail. The beam 

velocity is vb-c. We will take the beam density to be specified in the form 

Pbo ( r ,s) =- en/ s) H (a - r) 
' (2.3) 

where -e is the electron charge, a is the beam radius, and H is the step 

function. The beam density on axis nb varies with s, on the time-scale ~r' the 

current rise time. As noted above, we assume throughout that current 

variation is adiabatic, 

1. (2.4) 

so that plasma oscillations are small in amplitude. 

a. MHD Equations. With these assumptions, we calculate the 

equilibrium fields and plasma electron flow, using a cold fluid model. 

Maxwell's equations in the Lorentz gauge are 
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(2.5) 

where cp is the scalar potential and A is the vector potential. The transverse 

gradient is V.l, and t is time. The beam, electron and ion charge densities are 

Pb, Pet and Pi and the beam and plasma electron current densities are 

(2.6) 

where the plasma electron axial velocity is Vz=f3zc, and the radial velocity is 

Vr=fJ,c. 

In the adiabatic limit, we may simplify Eq. (2.5) with the "frozen-field" 

approximation, replacing the Dl Alembertian operators with V .l2· This 

approximation neglects radiative effects and takes advantage of the slow 

variation of the beam fields in z, at fixed s. We will see that this amounts to 

the approximation b/crry<.<1, which is typically well satisfied. 

It is convenient to define dimensionless variables, 

e A: 
az = --2 ' me 

e A, 
a,=-·-

2 
1 

me 
ecp cp--- m c2 I 
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L1- _ Pe 
- Pi I 

I-- pb 
- Pi I 

in terms of which Eq. (2.5) takes the form 

(; fr r-f )az = k~ (If3b + /3z L1), 

(; J, r ~ - ; 2 ) a, = k; {3, L1 , 

(; J, r ~ }P = k~ ( L1 + I - 1) . 

Short Pulse Propagation 

(2.7) 

Here, kp=mp/c. For reference, we note the expressions for the physical fields, 

E = _ m c 2 
( J¢ + l_ ()a, ) 

r e dr c()s I 

me()( 1) Ez ::a - -e-~ az -A¢ I 

B m c2 (daz _1_ ()a, ) 
8 = - -e - dr" + c f3b d5 ' 

(2.8) 

where the azimuthal angle is e, and Ee=Br=Bz=O. The quantity /3b=Vb/C I 

where Vb is the beam axial velocity. We will take /3b-1 below. 

Ne'xt we set down the cold-fluid equati<;ms for the plasma electrons. In 

the beam frame, our system is translationally invariant, so derivatives in z at 

fixed s are zero. The continuity equation is 
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(2.9) 

and this may also be rewritten 

(2.10) 

where D is the convective derivative along the flow, 

a a 
D = (1- f3z>as + f3,c ar. (2.11) 

The Lorentz force equation is 

(2.12) 

where yis now the Lorentz factor for the plasma electrons. 

Now in principle, to describe the equilibrium, we may set f3r=ar=0 and 

neglect all s-derivatives in Eqs. (2.7) and (2.12). In this case, the fluid 

equations, Eq. (2.12), reduce to a condition for radial force balance, 
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(2.13) 

valid where L1;z!(). Equation (2.7) is unchanged except that we may set ar=D. 

Unfortunately, this steady-state approximation has left us with only 

three equations for the four unknowns f/J, az, f3ZI and L1. In general, to close this 

system of .equations, we must obtain an integral of the full s-depen'dent 

equations. Since these are non-linear partial differential equations, this 

would appear to be a formidable task. However, in the limit, 

/3z > > /3r 
' 

(2.14) 

an integration is straightforward. We proceed to show that Eq. (2.14) is always 

valid for a sufficiently slowly rising current. 

Now, from Lenz's law, we expect plasma electrons to stream backward 

in z, neutralizing the beam magnetic field at large radii, as is the case for 

overdense plasmas.4 This implies that the electron density must vanish for 

r<b, for some channel radius b. Otherwise the electron density extends to r=O, 

where the net Lorentz force on a backward-drifting electron is outward, i.e., 

non-zero, contradicting Eq. (2.13). In this connection it is convenient to define 

a channel parameter, 
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v =k b p 

1. (2.15) 

which characterizes the magnetic shielding provided by the plasma drift in z. 

Small skin-depth corresponds to V>>l, and, as we shall see, a large axial drift, 

while large skin-depth corresponds to V<<l. 5 

Next, we estimate f3z. Qualitatively, we expect good magnetic shielding 

over a radial length c/wp, so long as the time for magnetic diffusion due to 

collisions is long compared to the electron beam pulse length. This magnetic 

diffusion time is of order -co-(kpb)2jv, where vis the plasma electron collision 

rate, and kp-Wp/c. Consistent with our neglect of collisions we will assume 

-c<<-co. In this case, the total plasma current contained within a skin-depth of 

the channel wall should be of order the total beam current. This gives 

f3z-O(V2), for V<<1, and f3z-O(V)for V-1.6 

We may estimate f3r by assuming that any increase in beam charge 

must be balanced by plasma electron charge flowing outward through the 

channel wall. This gives 

Actually this is a bit of an overestimate of f3,, since charge may flow out 

axially. 

With these estimates we have for V <<1 
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(2.16) 

We will assume that Wp'fr>>1/V, so that {3,<<f3z· The result f3r<<f3z for slowly 

rising current is not surprising, since in the limit of constant current, {3,=0, 

while, on the other hand, f3z depends on the integral of Ez and is non-zero so 

long as the current is non-zero. (Indeed were f3z to vanish for non-zero 

current, the magnetic field would extend to larger, despite the presence of an 

intervening collisionless plasma, an unphysical result.) 

Having established Eq. (2.14), we proceed to integrate the fluid 

equations by two methods. First, we will close this system of equations by 

iteration, in the limit V<<l. Next, we will obtain an integral of the motion 

(valid for arbitrary V) from the full s-dependent equations. This second 

method does not provide an explicit solution, but reduces the problem to one 

second-order, nonlinear, ordinary differential equation, which is easily solved 

numerically. 

b. Large skin-depth limit (V<<1). Knowing that the electron density 

must vanish for r<b, we may solve Eq. (2.7) immediately for the potentials in 

that region. Suppressing the s-dependence, we have 

r ~ (ki- k~)r2 

¢ =t - Le r2 + Le a2 ( 1 + 2 4 p 4 b 

+ ¢( 0) 

1 n ( r/ a ) ) + ¢ ( 0 ) 

; r <a 

; .a < r < b 
(2.17) 
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where kb2=47rnbe2fm. The vector potentials are 

r ! k; r2 + az ( 0 ) 

a,=bk:a 2 (1 + 2ln(r/a))+a,(0) 

and 

a,(r)=a,(b)~ 

Boundary values at r=b are, 

; r <a 

;a<r<b 

az( b) = az( 0) + ~ U 2 (1 + 2 In( b/ a)) I 

aaz (b) = u2 ar 2 b I 

¢ ( b ) = ¢ ( 0 ) + ~ ( U2 
- V 2 

) + ~ U2 1 n ( b I a ) I . 

}< b J = /b (U
2 

- V
2 J I 

~, ( b ) = a, ~b ) · 

and we have defined a current parameter 

U = 2(1/10 ) 
1 I 2 

with I0=mc3/e-17 kA. 
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We proceed to linearize Eqs. (2.7) and (2.12), about the V~O solution. In 

the V ~0 limit, we know that f3z-O(V2). Inspection of the vacuum vector 

potential shows that az-O(V2) also. Equation (2.7) then implies ¢-O(V4) and 

can be neglected at lowest order. Equation (2.13) gives V2=U2+0(U4), or 

(
n )112 

b = a n; ( 1 + 0 (V2
)) 

(2.22) 

In this case, .1-1 at lowest order. Inspection of Eq. (2.12) shows that f3r is of 

order 0(V4). This gives f3z-az through O(V2). From Eq. (2.7) it is then 

straightforward to solve for az· In addition, the continuity equation, Eq. (2.10) 

gives L11=f3z1· The O(V2) potentials and other quantities are then, for r>b, 

(2.23) 

and L1o=1. Here Ko and K1 are the modified Bessel functions and the subscript 

n denotes a quantity of order 0(\(2n). The constants in Eq. (14) are given by 

1 2{ Ko (V) 
a z 1 ( 0 ) = - yV V K1 ( V) 

1 
¢I ( 0 ) = - ty2 1 n ( b I a ) . 

+In( b I a ) } , 

We may check the f3z<<1 approximation, from Eq. (2.23), which gives, 
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1.0 r---,..~::::;~~~..---r---, 

0.5 -

FIG. 2.4. The analytic solution in the large skin-depth approximation for U=O.S {1-1 kA). 

(aM=nJnp, the plasma electron density normalized to its initial value (b)/3z=Vz/C, the plasma 

electron axial drift velocity (c)the scalar potential and (d)the axial vector potential, 

normalized by e/mc2• Due to the axial drift depicted in (b), electrons are "held off" the channel 

wall by the vxB force and this is reflected in the droop in the density in (a). This deficit of 

charge at 'the wall produces a small potential trough as depicted in (c), just adequate to balance 

the vxB force for the remaining electrons. 
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R ( b ) = 4-v2 [ Jv /E ) 
JJz1 2 '\ 2 

' 
(2.25) 

where we use the small argument expansions for the modified Bessel 

functions/ 

and n;-0.5772 is Euler's constant. So, for example, /3zz--10-2for V-10-1. 

It remains to determine l/>2, the lowest order nonvanishing correction 

to if>. This is obtained from Eq. (2.13), radial force balance in equilibrium, 

2 

l/>2 ( r) = ~ a;1 ( r) = ~ ( K1~) ) K0 ( kp r i 

.Note that the potential at r=O, is shifted slightly at O(V4), and is given 

by </>(0)- f/>1(0)+</J2(b). The channel radius is then determined by the point where 

the radial Lorentz force vanishes, 

. 2 2 1 3 K 0 ( u ) 2 1 4 u /E 6 v. = U - yU K
1 
(U) = U - ttJ ln(-2 -J + 0 (U ) 

(2.26) 
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1.0 0.0 

0.8 -o.1 

~ 
0.6 

~z -o.2 
0.4 - analytic - analytic 

-o.3 
0.2 numerical numerical 

0.0 -o.4 
0 1 2 3 4 1 2 3 4 

(a) kpi (b) kpi 

0 

0.0 

-1 

<t> 
az 

-1.0 analytic -2 analytic 

numerical numerical 

-2.0 -3 
0 1 2 3 4 0 1 2 3 4 

(c) kpi " (d) kpi 

FIG. 2.5. Solution of Eq. (2.31) for Vf versus r, for U=1 (l-4 kA) compared to the analytic result of 

the V <<1 approximation.(aM=nJnp, the plasma electron density normalized to its initial 

value (b)/3z=vJc, the plasma electron axial drift velocity (c)the scalar potential and (d)the 

axial vector potential, normalized by e/mc2• Evidently at V -1, the small V approximation is 

fair for the potentials, while it errs noticeably for the plasma electron density . 
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More explicitly, in terms of the channel radius, this is 

So, for example, for I-1 kA, b is 5% larger than would be predicted by 

neglecting f3z. 

Physically, Eqs. (2.25) and (2.26) show that the small axial drift <f3z1) of 

the plasma electrons results in a "vxB" force which tends to push electrons 

away from the channel wall. This results in an a depression in the plasma 

electron density (L1 1) and an attractive electrostatic potential (¢2). The 

associated radial electric field just balances the "vxB" force and maintains the 

equilibrium. For illustration, the analytic solutions for ¢, az, f3z and L1 are 

depicted in Fig. 2.4 (a) for U=O.S (1-1 kA). 

c. General solution. In general, neglecting f3r reduces the Lorentz force 

law, Eq. (2.12) to the form 

(2.27) 

We integrate this from s~-oo, to obtain 

VI = az - ¢ = 2 1 + tan ('I 2 ) 
tan('/ 2) 

(2 .. 28) 
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1.2 . I 0.0 

1.0 !'-... 
-o.1 

0.8 
-o.2 

0.6 ~ ~z 
-o.3 

0.4 ~ -
0.2 .0.4 -
0.0 I I I -o.5 

0 1 2 3 4 5 0 1 2' 3 4 5 
(a) kpf (b) kpf 

2 0 

0 -2 

-2 -4 

az 
-4 -6 

-6 -8 

-8 -10 
0 1 2 3 4 5 0 1 2 3 4 5 

(c) kpf (d) kpf 

FIG. 2.6. Solution of Eq. (2.31) for ljlversus r, for U=2 (1-17 kA) compared to the analytic result of 

the V<<1 approximation.(a)L1=nJnP, the plasma electron density normalized to its initial 

value (b)/3z=Vz/c, the plasma electron axial drift velocity (c)the scalar potential and (d)the 

axial vector potential, normalized by efmc2• Note that V -2.4 so that the channel radius 

b-1.2a(nb/np)112 is 20% larger than would be given by charge neutrality at the wall. Thus (c) a 

large, attractive potential well forms corresponding to the deficit of charge in the annulus 

2<kpr<2.4, as seen in (a). This sheath is mildly relativistic, as seen in (b), with energies of 

order 80 keV. 
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where f3z=sin ( '), and we have taken az, ¢ and f3z to vanish at s ~-oo. In terms 

of 1/f, 

vr r = 1 + -,_...:..---.,..-
2(1-11')' 

1/f(2- 1/f) 
A= 2- 21/f+ "'2 (2.29) 

so that the flow is explicitly prescribed by the potentials. In this case, the 

equilibrium equations can be resolved into a single equation for 1/f, 

()21/f = (1 + /3z )l 
12 (dvt J2 2 p f3z 

iJp2 1 - /3z iJp + e 1 + /3z (2.30) 

where p=ln(kpr). All other quantities may be determined from 1/f, 

(2.31) 

(This assumes that E=O at and beyond the channel wall). Equation (2.30) is to 

be solved numerically on the interval (p0,+oo), where p0=ln(V). The initial 

conditions are derived from Eq. (2.17), 
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(2.32) 

and an iteration over V is required to obtain a finite solution at large p. Such 

a numerical iteration is straightforward, given the bounds, U<V <21/2U 

(obtained from Eq. (2.32) using -1<f3lpo)<1). 

1.3 

V/U 1.2 

1.1 

1 10 

u 

FIG. 2.7. The results of several numerical solutions of Eq. (2.30) have been collated to give V/U 

as a function of U=2(lfl0) 112· This result is useful in that it gives the variation of channel radius 

with current as indicated in Eq. (2.33). 
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Regarding the character of the solution, we note that f3z(p0)<0 implies 

Vf(p0)<0. Physically, we expect f3z and therefore VI to be monotone increasing to 

0 at p-+oo. On the other hand, from Eq. (2.32), we see that tp<V(p0)>0, and from 

Eq. (2.31) we see that yl2>(po)>O. Since VI must asymptote to 0 at z-+oo, there will 

be an inflection point where vfil>(po)=O. Thus we expect the solution to appear 

much as that of Eq. (2.23), rather similar to a modified Bessel function. 

2b 

FIG. 2.8. An REB of radius a propagating through an underdense plasma, expels plasma 

electrons from the beam volume and beyond to produce an "ion-channel" of radius b-a(nJn,)112. 
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We have solved Eq. (2.31) numerically and results are displayed in Fig. 

2.5 for U=1, with the results of the small-V approximation overlayed. In Fig. 

2.6 results are displayed for for U =2. In Fig. 2.7, the results of several 

numerical solutions have been collated to give V/U as a function of U. We 

see that V-U for U small, and V-21/2U for U large, as expected. This plot is 

instructive insofar as it provides the channel radius as a function of beam 

current, i.e., 

(
n )112 

b =a n; (0). (2.33) 

So, for example, for J-4 kA, U-1, and we see from Fig. 2.7 that V/U-1.15. Thus 

b is about 15% larger than predicted by the V<<1 result. For large currents we 

have 

(
2n,)I/2 

limb =a-n-
r >>1

0 
P 

From the work of this section, we have a simple picture of the plasma 

electron configuration in the IFR, in steady-state (Fig. 2.8). We know that for 

V <<1 (1<<4 kA) return current is fairly negligible, and the electrons reside at 

r>b, drifting very slowly backward in z. For V> 1, return current effects become 

appreciable. 
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Before leaving this subject it is instructive to consider the single

particle plasma electron motion, as this yields some insight into the integral 

given by Eq. (2.28). The single-particle Hamiltonian is 

H = Jm 2c4 + ( pz + mca~) 2 c 2 + pic 2 + p~c2 
- m c2 ¢ 

' 

where the quantities P:ICI py, and Pz are the canonical momenta in x, y, and z, 

respectively, 

Px = mrvx I 

p y = m yvy , 

Pz = mrvz- mcaz I 

1 % y z 
{ 

v2 +. v2 + v2} 

r = - c2 

-l I 2 

The particle velocity components are Vx, Vy, and Vz· Note that H may be 

written, 

H = mc2 (r- ¢). 

The variations in H and Pz are given by 
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On the other hand, we have already observed that the fields vary adiabatically 

as a function of s=t-zfvb, so that 

a a ---v-at - b{)z 
' 

and Vb-c. In this case, we observe that 

(2.34) 

Equation (2.34) expresses momentum conservation in the translationally 

invariant beam-plasma system. For an initially cold plasma, we integrate this 

to obtain, H-pzc-mc2, so that 

It is not hard to show, for f3,<<f3z, that this is just the integral of Eq. (2.28). 

2. Ion collapse 

Next, we consider the response of the ions to specified plasma electron 

and beam electron charge densities. We will work to linear order, using a cold 

fluid-model. Since ions drift very slowly the problem is essentially 
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electrostatic and can be described in terms of the scalar potential and ion

density, which we decompose as 

qJ=fAJ+cp,_, 

Pi = PiO + Pil · 

Maxwell's equations reduce to the Poisson equation, 

~ (/Jo =- 4 1r ( Pb + Pi o) ' 

\1i (/)1 = - 4 trpi} I 

and the perturbed ion-density is governed by the cold fluid equations, 

(2.35) 

Combining Eqs. (2.35) and (2.34) then gives an equation for the perturbed ion 

density in terms of the beam density, 

(2.36) 

where mio is the ion-plasma frequency at zeroth order, mw2=4trnwe2fmi, with 

mi the ion-mass.B We may integrate Eq. (2.36) immediately to obtain, 
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8 

(2.37) 

Not surprisingly, we see that Pb should vary rapidly on the COi time

scale to avoid collapse of the ion-channel and neutralization of the beam. 

Thus we expect corr<<1 will be required in order to self-consistently neglect 

ion-motion. To obtain a more quantitative estimate of the ion-density 

.variation, we model the beam density with a square profile ins, 

(2.38) 

The integral of Eq. (2.37) then gives, 

(2.39) 

In terms of ion-density this is 

ni = nio + nil 

= nio COS (COi 0 S) + nbH (a.- r) [1 - COS (COi 0 S )] • (2.40) 

(Note that this result is not valid in the limit nb---+0, since we have assumed 

an initially unneutralized ion-channel.) With this result we have an estimate 

for the variation in ion-density over the length of the beam, 
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nii(r,-r) 1(nb ) 2 _...;.;:_ __ =- --H (a - r) - 1 (m. -t) 
nio 2 nio . 10 (2.41) 

and we assume mw-r<<1 as noted above. Within the beam volume, this is 

(2A2) 

Thus for nb>>niO, the time-scale for ion-motion within the beam volume is 

(2.43) 

where mb2=47rnbe2fm. The condition for negligible ion-motion, ni1<<ni0 is 

then a constraint on the pulse length, -r<<'til· Typically, we will consider the 

case where nb is within a factor of a few of ni, so that this costraint reduces 

simply to m;-r<<l. 

There is in addition, a second ion time-scale, the time-scale for ion-

neutralization of the beam. A simple estimate of the neutralization time may 

be made by following the motion of a single ion from initial position r=b, 

through to r=O in specified beam and ion fields. This calculation provides a 

lower bound on the ion-neutralization time-scale, 

1 =--
2m. 

I • (2.44) 
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From the work of this section, we see that to neglect ion-motion we 

must have a fairly short pulse (hence the title for this chapter). Putting this 

together with the adiabaticity assumption of the previous section, we see that 

our analysis applies to a particular range of pulse lengths, 

1. (2.45) 

In fad we shall find that quite a wide variety of beams fit this constraint. 

3. REB Equilibrium 

With a fair understanding of the ion and plasma electron motion, we 

now consider the beam equilibrium as it propagates through the channel. We 

will take the ion and plasma electron densities to be specified as obtained in 

the previous sections, and consider the motion of a single electron. 

a. Single-particle Hamiltonian. From Eq. (2.14), we see that the motion 

of a beam electron is governed by the scalar and vector potentials 

l/J = l/J ( 0 ) + ~ { k~ - k; )r 2 
, 

- (0) l_k2 2 az - az + 4 b r . 
(2.46) 
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and in general, we will consider an axially varying plasma density, kp=kp(z). 

The single-particle Hamiltonian is 

(2.47) 

where the quantities Px' py, and Pz are the canonical momenta in x, y, and z, 

respectively, 

Px= mrvx, 
p y = myvy , 
Pz = mrvz- mcaz I 

{ 1 
vi + v~ + vi } 

r = - c2 

~ !2 

The particle velocity components are Vx, Vy, and Vz· 

(2.48) 

In the limit Pz>>px,py, and neglecting second order terms in az, Eq. (2.47) 

rna y be written 

(2.49) 

or 

m2 cJ pic p~c 
H=pc+ +--+--+U 

z 2 Pz 2 Pz 2 Pz 

(2.50) 
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where, we identify the effective potential 

~----------------------------------------~, 
(2.51) 

and we restore the s-dependence of the constants of integration, for clarity. As 

indicated in Eq. (2.50), the energy is a·sum of the energy of the axial motion 

(H 11 ), and the energy of the transverse motion (H.J. 

b. Longitudinal wake in the IFR. Note that due to the s-dependenc~9 

(2.52) 

His not a constant of the motion, but varies according to, 

(2.53) 

where we take the V <<1 limit. Equation (2.53) reflects the fact that electrons at 

the beam front must do work to induce a plasma return current. The plasma 

electrons deposit this energy in the beam taii.lO In the terminology of 

accelerator physics,ll Eq. (2.53), integrated over z, gives the "longitudinal 
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monopole wake potential" for IFR propagation.12 The effect of this wake will 

be fairly negligible for our purposes, primarily because we will consider 

relatively short propagation lengths.13 

c. Equations of motion. Next, we derive the equations of motion from 

the Hamiltonian of Eq. (2.50). In this connection, it is important to note, that 

by approximating the beam drift velocity by Vz-C, in evaluating the vector 

potential, the contribution to the Hamiltonian due to beam self-fields has 

been neglected, 

1 ' 1 
U = -m c2 k 2 r2 -

b 4 b r . 

This term is negligible in the limit y>> 1, and typically has only a small effect 

on the particle motion. However, for a realistic beam profile (not a step 

profile), self-fields result in non-linear focussing and (as we shall see in 

Chapter 3) may produce damping of the ion-channel laser instability. We will 

neglect this effect for the remainder of this section. 

From Eq. (2.50) the equations of motion are 

dz 
dt 

=C 

dpz au 
dt=-az-

pic 
2 pi 

The equations for the transverse motion are, 
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(2.55) 

where we abbreviate 

r=(x,y), 

P.L = ( Px 1 P y) • 

Equation (2.55) may be rewritten as an equation for the transverse 

displacement alone, 

where mp is the "betatron frequency"14 in the IFR, 

. (me )11 2 
(J)fJ = (J)p -2--

Pz 
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The main attraction of the IFR and the primary motivation for using a 

plasma in beam transport, is that rop, as given by Eq. (2.57), is much larger 

than that achievable with more conventional magnet focussing. 

The transverse equation of motion simplifies when we take account of 

the fact that the axial momentum does not change appreciably. From Eq. 

(2.53), 

Lipz =- _1_a2 LilC 
Pz 4 r P (2.58) 

Since, typically, kpafylt2<<1, we have Lipz/Pz<<1. In this case Eq. (2.56) is well

approximated by that of a 2-D simple harmonic oscillator, 

(2.59) 

The observation that a beam in the IFR may be considered as an ensemble of 

relativistic simple harmonic oscillators is the starting point, more or less for 

the analysis of the next chapter. 

Since the the motion is Hamiltonian, the microscopic emittance is 

conserved, by Liouville's theorem. In addition, however, since focussing is 

linear, the rms normalized emittance 
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(2.60) 

is conserved (neglecting scattering, instabilities, etc.) for an adiabatic variation 

in kp. This implies that an adiabatic increase in plasma density in z may be 

used to continuously focuss the beam to an ever-smaller spot size. 

Quadrupole 
Pair 

Diaphragms 

Laser 

FIG. 2.9. Set-up for a "proof-of-principle" continuous plasma focus experiment, consisting of a 

pair of quadrupole magnets to control the initial beam spot size, a tank of gas with a density 

gradient maintained by differential pumping, and a laser used to form the plasma. 

d. Continuous plasma focus. Chen, et al.l have proposed to take 

advantage of such continuous IFR focussing for application in a TeV linear 

electr<~n-positron collider. In particular, they propose to focus the beam 
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continuously to a spot size smaller than can be achieved through 

conventional magnetic optics)S Such a focus also has application to the ion

channel laser, for, as we shall see in the next chapter, it is sometimes 

advantageous to focus the beam to a very small spot, not achievable with 

conventional magnetic optics. A schematic of a continuous plasma focus is 

depicted in Fig. 2.9. 

Based on our work thus far, it is straightforward to derive some 

simple scalings for the continuous plasma focus. To transport the beam into 

the plasma without excessive emittance growth, kp should vary 

adiabatically. This determines the initial plasma electron density, npi' in 

terms of the initial beam spot size, ai, 

n.=---~ 

p• nr re a~ 
(2.61) 

where re is the classical electron radius. 

As the beam is focussed to an ever smaller spot, the plasma density 

approaches the beam density and the character of the focussing changes. In 

the overdense regime, the ion space-charge is sufficient to neutralize the 

beam charge, so that the beam is focussed by its own magnetic field. This 

transition, from the underdense regime and ion space-charge focussing, to 

the overdense regime and beam self-pinching, occurs for a minimum 1j>eam 

radius, amin, determined by setting np=nb: 
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(2 )
l/2 

- Io 
·=E-a mirt PI r I 

(2.62) 

The density at this transition is 

npt = r(Ilo )2 1 
2 n reeJ , (2.63) 

and the betatron wavenumber at this density is 

In the overdense regime, the effective betatron wavenumber 

provided by the beam magnetic field is 

1 I 2 

k =(h) L f3 ';1 a 
0 , 

where the net current, Inet, is the sum of the beam current and the plasma 

return current within the beam. volume.16 Since InetSI, the maximum 

focussing strength is bounded: kp S kpmax· 

Therefore, once the beam spot size is focussed to amin, the adiabatic 

focussing is complete. This establishes a limit on spot size in the continuous 
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plasma focus. However, for the low emittance, high energy beams of a TeV 

collider, this limit is far smaller than the beam spot size required. Therefore, 

the design final spot size, a1, will usually be larger than the minimum 

possible spot size, amin· In this case, the final density in the focussing section, 

will usually be much less than npt. . 

At the same time, a subject of ongoing interest, in TeV linear 

electron-:positron collider design, is the reduction of coherent beam-beam 

effects: beamstrahlung and disruption.J7,18 One method which has been 

proposed is current neutralization in an overdense plasma at the 

interaction point (IP).4 Beamstrahlung and disruption are suppressed due to 

plasma return currents which reduce the magnetic pinch forces seen by the 

two colliding beams. 

Current neutralization requires a plasma skin depth short compared 

to the beam radial size, and a magnetic diffusion time long compared to the 

beam length. It _is shown in Ref. 4 that the magnetic field reduction 

associated with an REB in a collisionless plasma scales as a function only of 

kpa. Taking a reduction of 70% as a figure of merit, kpar2 is required. To 

obtain partial current neutralization, without an increase in beam spot size, 

the adiabatic focussing cell should then be terminated within a distance AfJf 
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of the IP with a nonadiabatic increase in plasma density to a value, npc1 such 

that, 

The length of this cell should be of order a few bunch lengths, and, to 

avoid defocussing due to plasma return currents, it should be less than the 

final betatron wavelength at the focusser exit. This implies, c-r<Apf- If the 

adiabatic focusser is terminated with npt<npt, the beam may pinch as it 

enters the current neutralization cell. Pinching is negligible if the cell length 

is much less than Apmin; this requires c-r < Apmin· 

C. BEAM BREAK-UP IN THE IFR 

Thus far we have considered only a cylindrically symmetric problem, 

where the beam centroid propagates down the center of the ion-channel. 

However, it is well-known in accelerator physics, that interaction with the 

guiding geometry can frequently result in instabilities coupled to the off-axis 

displacement of the beam centroid. In the IFR there are two such transverse 

"beam break-up" intstabilities: the "electron-hose" and "ion-hose" 

instabilities. In this section, we review the general features of beam break-up 

instabilities. We then go on to consider the particulars as they apply to the 

I FR. 
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1. The beam break-up equation 

A relativistic electron beam injected off-axis into a beamline will have 

an electrostatic dipole moment. The axial current associated with this dipole 

moment will couple to the axial electric fields of the various structures along 

the beamline. The associated transverse Lorentz force will give a kick to beam 

slices to the rear, displacing them farther off-axis. In this way, an instability 

obtains. 

FIG. 2.10. A relativistic electro~ beam propagating in the z-direction (to the right), down the 

beamline. The beam head is at s=O, and the tail is at s=-r. The transverse beam break-up 

instabilities arise from an off axis perturbation ;, which excites electromagnetic modes of the 

structures on the beamline. The Lorentz force associated with the mode fields then "kicks" 

follow-on beam slices, resulting in growth of the displacement ;. 

To make this quantitative, one considers the effect of a perturbation in 

the form of a small displacement,~. of the beam centroid, in the x direction 
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(Fig. 2.10). For definiteness we assume an unperturbed beam charge density of 

the form Pbo=-enbH(a-r), where H is the _step function and r is the radial 

coordinate in the x-y plane. The perturbation to the beam charge density is 

then 

pb1 ( r , z , s ) == - e nb ( s ) 8 (a - r ) ; ( z , s ) cos ( 8) 
' 

where 8 is the azimuthal angle in the x-y plane. The variable s=t-z/vz, 

indexes beam slices, vz-c is the axial beam velocity, and cis the speed of light. 

The beam extends from s=O (the beam head) to s=-r (the beam tail). Beam 

electrons remain approximately at a fixed s, as they advance in z, down the 

beamline. The beam density nb(s) is proportional to the beam current is I(s), 

which here will be assumed constant ins ("d.c. beam"). The perturbed current 

density is h1z -pb1c. 

With these perturbed charge and current sources, one solves Maxwell's 

equations for the perturbed scalar and vector potentials, for the beamline 

geometry of interest.19 This procedure yields the fields as functionals of ~· 

Writing out the Lorentz force equation, then gives a "beam break-up" 

equation for~, so called because of the deleterious effect the fields have on the 

beam. Generically, this equation takes the formll 

( a a 2).t:. . sf (I(s'))w 
azraz +rkpp(z,s)= ds' 10 (s-s'J;(z,s') 

0 ' (2.64) 
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W(s-s'), the wake potential,20 is the Green's function which determines the 

Lorentz force on an electron at s, as it arrives at z, due to the fields generated 

by the beam segment at s'<s. In conventional accelerators, the focussing 

represented by the kp term is provided by magnetic fields. In the IFR it is 

provided by the ion electrostatic field, as given by Eq. (2.57), with kp=mp/c. 

We may solve Eq. (2.64) up to quadrature by Laplace transforming ins, 

solving the simple harmonic oscillator equation in z, and inverting the 

Laplace transform, to find 

~ ( z , s ) = 2 ~ i + rd p t exp ( ps ) cos { z [ k~ -( /1, )w ( p ) 1' 2 

} 

-zoo (2.65) 

where w(p) is the Laplace transform of the wake (the "impedance"20) and the 

initial condition ;(O,s)=H(s) is assumed. Given w(p), it is usually 

straightforward to compute the asymptotic growth of the beam centroid 

oscillations, by applying the method of steepest descents to Eq. (2.65).21 

In general, as discussed at length in Ref. 20, there are many wakes of 

different functional forms. For our purposes, one particular form is adequate 

for our discussion. This is the wake corresponding to a single undamped TM 

mode of a microwave cavity. Such a wake takes the form22 

W ( s ) = W 
0 

sin ( m
0 

s ) 
' (2.66) 

where mo is the resonant angular frequency of the mode, and the amplitude is 
given by 
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(2.67) 

where r is the "shunt impedance per unit length"23 for the mode. The 

solution of Eq. (2.65) for such a wake has been discussed extensively in the 

literature, and the distinction between the "weak" and "strong" focussing 

limits is worth noting.24,25 Focussing is "weak" when Ap>Lg, where Lg is the 

instability growth length, and Ap=2tr/kp is the betatron period. In addition, 

one should distinguish between a pulse length which is short or long 

compared to the mode period. When the pulse length is short, the wake is 

approximately linear in s, giving rise to a "head-tail instability".10 When the 

pulse length is longer the growth law is modified, and this is typically the 

case, for example, in induction linac work.26 

We should add that we have actually written out a somewhat 

simplified form of the beam break-up equation. In general, kp may vary ins, 

in z, and at fixed s, within a slice. This is an important feature in the strong

focussing regime, for it allows the accelerator physicist to attempt to damp 

what might otherwise be an incorrigible instability. 

Such damping mechanisms require a spread or sweep in betatron 

wavenumber of order Akp-1/Lg This includes Landau damping due to a 

spread in energy within a beam slice,23 "BNS damping'' due to a sweep in 

energy from head to -tai1,27 and "phase-mix damping" of BBU growth due to 

nonlinear focussing, arising from a radially non-uniform plasma.28 
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However, when focussing is weak, the condition t1kp-1/Lg requires an 

impractically large spread (t1kp/kp-1/kpLg ~1), and one must instead attempt 

to disrupt the resonances emodied in the impedance, w(p), for example, by 

detuning successive cavities ("stagger tuning"), to produce phase-mixing in 

the driving term on the right side of Eq. (2.64). 

We turn next to apply this formulation to the premier instabilities of 

the IFR, "electron-hose" and "ion-hose". 

2. Electron-hose instability 

Recently it has been shown29 that IFR devices relying on an 

unneutralized ion-channel, surrounded by a quasineutral plasma, suffer from 

a hose instability, similar to the ion-hose instability,30 and other varieties of 

two-species transverse coupling instability,31 except that here the coupling is 

between the beam and the distant plasma electrons at the channel wall. In 

this section, we derive the growth length for this "electron-hose" instability. 

The transverse wakefield corresponding to this "electron-hose" effect is 

calculated in the "frozen-field" approximation, for a low current, cylindrical 

beam. The asymptotic growth of beam centroid oscillations is computed and 

possible damping and saturation mechanisms are discussed. 

As in previous sections, we assume an unperturbed beam charge 

density of the form Pbo=-enbH(a-r), where H is the step function, -e is the 

electron charge, r is the radial coordinate in the x-y plane and a is the beam 

radius (Fig. 2.8). The beam density on axis is nb and is a function of s=t-z/c, 

where tis time, z is axial displacement and cis the speed of light. 
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We will also assume that the collisionless plasma skin-depth, c/mp, is 

much larger than the channel radius. Thus V=kpb=2(Ifl0) 112<<1, where 

10=mc3/e-17 kA, and I is the beam current. We have seen that the axial 

plasma electron current, and drift velocity, are negligible in this limit. In this 

case, the equilibrium plasma electron charge density is Peo=-enpH(r-b). 

FIG. 2.11. A beam slice in the ion-channel is displaced by an amount ; in the x-direction, 

inducing a polarization PcosO on the channel wall. The polarization responds to the beam 

dipole field as a simple harmonic oscillator with characteristic angular frequency m0 • This 

image dipole then deflects follow-on portions of the beam. This is to be compared with the 

equilibrium depicted in Fig. 2.8. 
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We consider next the effect of a perturbation to the beam centroid (Fig. 

2.11) in the form of a small displacement,~, of the 'beam centroid, in the x 

direction. The perturbation to the beam charge density is then Pb1 =-enb~o(a

r)cos9, where (} is the azimuthal angle in the x-y plane. We proceed to 

compute the perturbed scalar and axial vector potentials, l/>1 and Az11 and the 

perturbed plasma electron density Pe1' due to ~· 

Maxwell's equations in the Lorentz gauge are 

{vi + ! 2 - ;2 ; 2 }a1 = 4 trPt1 , 

{vi + !2 - ;2 ;2 }l/>1 =- 4 1r < Pb1 + Ptt) · 
(2.68) 

where a1=Az1-l/>1· The transverse gradient is V.L. We will change variables 

from z, t to z, s and simplify Eq. (2.68) with the "frozen-field" approximation, 

in which the D' Alembertian operators are approximated by V.12 and radiative 

effects are neglected. We shall find that this amounts to a neglect of V/y<<1. 

The perturbed plasma electron charge density is determined from the 

potentials through the electron cold-fluid equations, 

(2.69) 
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Inspection of Eq. (2.69) shows that Pel consists entirely of a surface charge layer 

at r=b. Thus it is convenient to define, 

+ 
b 

P ( z , s ) cos 8 = J d r Pe1 ( r 1 8 1 z 1 s) 
I (2.70) 

the dipole moment density induced on the channel wall by the beam charge. 

In terms of ~and P the potentials from Eq. (2.68) are 

. t/>z = 2 1r cos ( (J ) 

(P - nbe~)r 

nbe~a 2 

Pr- r 

(Pb2 - nbe~a 2 ) 1, 

and 

{

Pr 
a1 = - 2 tr cos ( (} ) p:2 

; r < b 

; b < r 

; r <a 

;a < r < b 

; b < r 

The wall polarization is determined from~. through Eq. (2.69)1 
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where mo=mp/21/2. Thus P responds as a simple harmonic oscillator with 

characteristic angular frequency ~· This frequency differs fr~m mp because the 

surface at r=b is the boundary between a region of electron density np, and a 

region of zero density. 

The Lorentz force law for the displacement of the beam centroid is 

( a a k2) J! e a dZ'r'dZ + r JJ '=' =- --2 7fXa1 me , (2.74) 

where kp-mp/c is the betatron wavenumber. This describes the deflection of 

the beam by the image polarization on the ion-channel wall. 

For an infinite beam and beamline, we may combine Eqs. (2.73) and 

(2.74), taking a perturbation varying as ~ocexp(ikz-it$), to obtain the dispersion 

relation, 

( e-x w) 1 - k~ 1 - m5 = 1 
(2.75) 

Equation (2.75) predicts instability for real oil<(fJ(i or real k2<kj with growth 

rates diverging as m2~mo2, or k2~kp2 from below. As in the "rigid beam" 

model of the resistive-hose instability,27 we expect these singularities to result 

in an instability which is absolute in both the beam and lab frames. 

To obtain a more quantitative result, we solve the initial value 

problem for a semi-infinite beam and beamline. We invert Eq. (2.73) to obtain 

P, and using Eqs. (2.72) and (2.74), we obtain a beam break-up equation for ~' 
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as in Eq. (2.65), where we identify the electron-hose "dipole wakepotential" as 

W(s)=W0sin(mas), with 

• (J) 
0 w =2-

0 b2 (2.76) 

Comparing this result with Eq. (2.67) we see that this wake is formally 

identical to that of an undamped microwave cavity, with a shunt impedance 

per unit length of 2/mob2, and a resonant frequency mo. Inspection of the beam 

break-up equation shows that with the scaling of z by kp, and s by mo, for r, roo 

independent of 5 and z, no free parameters remain. There is only one, 

universal solution for prescribed initial conditions. 

We obtain this solution up to quadrature as in Eq. (2.68), and compute 

the asymptotic solution using the method of steepest descents to find 

i I 2 A1 I 2 
f!(z s) eA 5z·n {m 5-3-11 2A- JL} ':1 I :: 5 I 4 0 12 3 Ji-12 %5 (2.77) 

The term in the exponent is A=(z/Lg)2/3, where the growth length is 

2 3 ( y lo )1 I 2 1 
L g = 39 I 4 -I- -.;w;;---==o=S=-

(2.78) 

or 
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(2.79) 

and mos>>A>> 1 is assumed. Thus when moD> 1 (adiabatic current rise) 

Lg<<A[J and focussing is always weak with respect to electron-hose growth. 

This result is remarkable in that it predicts growth so rapid that ion-focussing 

should be considered ineffective, rendered so by the presence of free plasma 

electrons at the channel wall. 

We turn next to consider mechanisms which will tend to reduce 

growth. We observe from the dispersion relation of Eq. (8), that there are in 

principle two methods of "curing" the electron-hose. We may diminish the 

resonance at w2~wo2, or at k2~kp2. On the other hand, since focussing is 

typically weak, damping mechanisms relying on a spread or sweep in betatron 

wavenumber, LJ.k[J-1/Lg, are ineffective, as. they require an impractically large 

spread, LJ.k[J/k[J-1 /k[JLg> 1. This rules out Landau, BNS and phase-mix 

damping damping. (These conclusions contrast with those for resistive-hose 

growth,32 where focussing is typically strong.) 

Thus, to diminish electron-hose growth, we must look to the resonant 

coupling at ro2~w02, and a number of mitigating factors suggest themselves. 

First, the electron-hose could be eliminated entirely by ionizing a channel of 

radius less than b. In this case, all plasma electrons are ejected to the beam

pipe wall, leaving no free plasma electrons at the channel edge. Alternatively, 

an axial variation in plasma density, as in the continuous plasma focus,1 may 
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produce phase-mix damping. In this case, the plasma density should vary 

appreciably over a length Lg<A.p. 

Growth could also be reduced by varying the resonant frequency of 

plasma oscillations, through the external geometry. For example, if we add a 

conducting pipe of radius R to the problem, we find a resonant frequency 

m0' -m0 (1 +b2f2R2), i.e., the image dipole, P oscillates at a slightly higher 

frequency, dependent on R. Thus a variation of the pipe radius on the scale of 

a growth length could in principle produce the effect of stagger tuning. 

In addition, growth will be mitigated by the plasma return current, 

neglected in the approximation V<<l. In the low current limit we have 

considered, the electron-hose is formally analagous to the image

displacement effect in conventional accelerators.33 Were a conducting 

boundary or a sufficiently dense plasma nearby, it would carry a dipole image 

current, and the combined Lorentz force on the beam due to the image fields 

would be a factor of 1/;2 less than for the electric field term alone. On the 

other hand, to achieve even V -2 requires I -10, a current larger than typically 

envisioned. 

Ultimately, as a result of hosing, plasma electrons will be heated, and 

the instability will saturate. The simplest estimate would give saturation 

when ~-b, corresponding to substantial growth in the beam emittance, and a 

significant electron temperature-mc2(1/I0). In fact, this omits the subtler 

feature that, at lesser temperatures, the channel wall will take on the 

character of a Debye sheath, with a radial variation in the plasma frequency 

and a phase-mix reduction of the wake driving term. A simliar effect may 
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obtain due to beam "halo". In general, issues of saturation are best studied 

numerically, and such work is in progress.34 

Finally, it is interesting to note that for an infinitely ~de planar beam, 

the electron-hose dipole wake vanishes. This is because a one-dimensional 

dipole field vanishes outside the source. However, in this case one can show 

that there is a flute-like analog of the electron-hose, where ripples develop in 

the beam density and provide a coupling of the beam and the channel wall. 

Nevertheless, it may be possible that for ellipsoidal beams, electron-hose 

growth could be reduced with a sufficiently large aspect ratio. 

For present purposes, we conclude from this work that for reliable 

propagation in the IFR, it is likely that a channel of radius less than b should 

be ionized to insure the absence of free plasma electrons at the wall. This is 

typically the case, for laser-ionized channels, for example. 

3. Ion-lrose instability 

The ion-hose instability has been the subject of much work over the 

years, as it represents an important cc,:mstraint on IFR propagation.30 In this 

section, we derive the growth length for a short pulse (UJi't'<<1). 

We linearize the cold fluid equations, with an ion-density Pi=Pio+Pi1' 

and consider a small dipole perturbation to the beam centroid as in the 

previous section. We find, 
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which is more or less Eq. (2.36), now for a different source term. (We neglect 

the monopole perturbation to the ion-charge density, which is small for short 

pulse lengths.) The solution may be written 

where we may interpret 11 as the centroid of the ion-column or ''hose" 

FIG. 2.12. A transverse displacement of beam centroid by an amount ~, perturbs the ion

channel centroid (or "ion-hose"), here displaced by an amount TJ. The ion-hose then deflects 

follow on beam slices. Note that this figure is drawn to an exaggerated scale to illustrate the 

variables 1J and ~·In fact, the beam and the hose are assumed to overlap very closely. 
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overlapping the beam. Following a procedure analagous to that for Eq. (2.72) 

and Eq. (2.74) we may then set down the coupled equations for the beam and 

. hose centroids, 

( ~2 + m1) 1] = ~ ( :: j )~ I 

( -!zr /z + r k~) ~ = r k~ 11 . (2.80) 

Thus displacement of a beam slice off-axis produces a displacement of the ion

hose which then perturbs the motion of follow-on slices to the rear (see Fig. 

2.12). 

Solving for 1] up to a quadrature in ~reduces Eq. (2.80) to the form of 

the beam break-up equation, Eq. (2.65), with 

(0. 

w =2-1 

o a2 

For ion-hose, however, unlike electron-hose, the pulse length is typically 

short compared to the time for ions to oscillate, as discussed in connection 

with Eq. (2.35). In this case, the sinusoidal wake is approximately linear, 

or 
W(s)z2-1 S 

a2 
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We take this into account in applying the method of steepest descents, and 

find that growth of the beam centroid oscillations varies as exp(z/Lg)l/3, with 

growth lel}gth, 

(2.81) 

or, in practical units, 

L ,.. 0.32 It A ( a )z (l...!!E_)2 (1 kA) 
8 fJ 1cm ~ I . 

We will typically accept this result as a constraint on pulse length, 

when we consider numerical examples for the ion-channel laser in the next 

chapter. Hpwever, typically Lg>ltp, so that focussing is strong, and the 

instability is susceptible to BNS damping. In practice this .may ameliorate 

growth considerably. 

D. OTHER PLASMA EFFECTS 

In this section, we enumerate and quantify certain fairly ubiquitous 

plasma effects which will tend to degrade beam quality in transit through the 

plasma. In general, these effects are much less severe than ion-hose and 
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electron-hose. However, they should be taken into account in any practical 

experiment. 

1. Scattering 

First, we consider emittance growth due to scattering. The total cross

section for small angle scattering is35 

2 

(
2 Zre) 

(Js = 1r r 
(2.82) 

For a fully ionized, quasineutral plasma, 8min - !if(A,omcr), where Ao is the 

Debye wavelength. However, for a partially ionized gas from which plasma 

electrons have been ejected, 8min - ti/(bmcy), for scattering from ions, and 

8min - !i/(amcr) for scattering from neutral atoms. The atomic number is Z 

and a-1.4 a8 z-1/3, is the screening radius in the Thomas-Fermi model. The 

constant 1i=h/2tr, h is Planck's constant, and a8 is the Bohr radius, 

a8 =fl2/me2. It will be assumed that the ionization fraction, f, is sufficiently 

low that scattering with neutral atoms dominates. 

The mean-square scattered angle per scattering event is 

( fi ) = 2 e 2. 1 ( emax ) 
min n e . 

man • (2.83) 
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The maximum scattering angle is 8max=lf/(rnmcr) where rn-0.5 reA1/3 is the 

nuclear radius and A is the atomic weight. This gives, 

The rms scattering angle after traversing a length, z, of gas, Brms(z), varies 

according to, 

1 n(8m~x) 
(}man 

' (2.84) 

where no is the density of neutral atoms.36 Emittance growth is then given 

by,37 

(2.85) 

The change in normalized emittance in passing through the cell is then 

(2.86) 

In the overdense regime, (e.g. at the beam head) envelope expansion is 

qualitatively different because the quasistatic beam equilibrium is maintained 
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by the beam magnetic field, rather than the (external) field of the ion charge 

(so that kpoc1/e, in Eq~ [2.85]). As the beam expands, the focussing is reduced, 

with the result that the beam envelope exponentiates, on the scale of the 

Nordsieck "length,38 

L = 1 
N 4 1C n0 d 

(2.87) 

where channel radiation has been neglected. 

2. Radiation 

Radiation in the ion-channel is of interest as a diagnostic, and of 

possible concern for its effect in producing energy spread on the beam. Two 

types of radiation are considered: bremstrahlung and synchrotron radiation 

due to the betatron motion. 

Bremstrahlung may be characterized by the radiation length AR,38 

(2.88) 

where a=e2f1fc is the fine structure constant. The fractional energy loss is then 

L L 

(~) - Jp ~ _1§_ 2 2 (__m_)Jp r - A - 3 a r t z l n 1 I 3 . no d z 
8 O R Z O (2.89) 
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and this is typically very small. 

Radiation due to the betatron motion takes on the character of wiggler 

radiation, for strong focussing <r/3.1~1). The spectrum on axis is peaked at 

frequencies m-2ickp/(1+if3..L2). Integrated over all angles, the spectrum is 

characterized by the critical frequency, mc=3"f3c/p, where p-21/2f(kpla), is the 

effective bending radius. The angular distribution extends to angles of order 

f3..L· Quantum effects are small provided T<0.2, where, T=i~/p, and ~c=1f/mc 

is the Compton wavelength.39 

As in a damping ring, synchrotron radiation can decrease the 

normalized emittance of the beam.40 However, this effect is typically small. 

Fractional energy loss -is, for r small, 

(i) 
s (2.90) 

where ..1yis the change in rand a constant A.p is assumed. 

3. Ionization 

Ionization by the beam is of concern in determining the actual axial 

plasma density profile, and is of interest as a means of augmenting laser 

ionization at high plasma densities. Ionization is produced by the beam 

through electron impact, gas breakdown, and stripping of atoms and ions in 

the strong radial electric field at the beam "edge". 
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To accurately compute the net volume rate of ionization requires 

numerical solution of detailed rate equations, and modelling of the chemistry 

of the particular gas used. To estimate the effect of impact ionization, a 

phenomenological estimate must be made for the effective area into which 

secondary electrons are ejected.41 Here we satisfy ourselves with a few simple 

estimates. 

The time scale for ionization in the overdense regime via impact 

ionization of neutrals by beam electrons is 'tb-1/(noCJbic), wh~re abi is an 

effective ionization cross-section of order 10-18 cm2.42 For example, this 

ionization time is - 1 ps at a neutral density of n0-3x1Q19 cm-3. 

The character of breakdown produced by long pulses is determined by 

the value of E/p, the ratio of radial electric field to pressure.43 For very fine 

beams, E/p will be sufficiently large that secondary electrons are ejected far 

beyond the beam volume before they create additional ionization. 

In addition, for short pulses, a key limitation is the formative time 

required for breakdown. This is roughly the time for one secondary' electron 

accelerated in the beam field, to ionize one neutral, 'te - 1/(noCJeiVe), where CJei 

is the cross-section for ionization by secondaries and Ve is the secondary 

velocity. The quantity CJeiVe peaks at secondary electron energies of order -

100 eV, with ae1Ve- 1Q-7- 1Q-8 cm3 /sec, depending on the gas.44 For example, 

in N2 this time scale isre -1 ps for n0-3x1Q19 cm-3. 

The radial electric field at the beam edge will be adequate to strip an 

atomic electron with ionization potential, Lie, for currents of order 
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(2.91) 

For very fine beams, this mechanism may fully ionize a channel larger than 

the beam, with some multiple ionization. 

When field stripping may be neglected, plasma electrons are also lost 

through recombination on a time scale 'frc-1/( arnp), and through attachment 

on a time scale 'fa-1/( aan 0). Here, ar and aa are the recombination and 

attachment coefficients, respectively.44 Taking recombination in N 2 as an 

example, ar- 2x1Q-7 cm3/sec, at electron energies - 1 eV.45 At a density of 

3x1Q19 cm-3, 'frc- 0.2 ps and this is quite short. However, ar will be lower for 

more energetic electrons. In addition, despite recombination and attachment, 

the beam volume will become depleted of plasma electrons, provided the 

impact ionization time scale is short enough. This occurs because, as elect!ons 

go through successive ionizations and recombinations, they diffuse away 

from the beam center. 

4. Streaming and other instabilities 

A number of streaming instabilities arise in the IFR, and we note their 

growth rates here. Typically, they will have a negligible effect for parameters 

of interest in the ion-channel laser. 

a.Buneman. We have taken plasma electrons to be collisionless. 

However, in the collisionless limit, instabilities may replace collisions in 

dissipating the energy of the secondaries.46 In particular, the two-stream 
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(Buneman) instability will couple the electron motion to the ions on a time 

scale veiTS-1, where 

31 t 2 m 11 3 

vtiTs = i 1 3 mp ( m i ) 
(2.92) 

This instability is mitigated by convection away from the beam, which 

continuously replaces the carriers of the return current with an unperturbed 

flow of plasma electrons. 

b. Beam-plasma electron two-stream. In the magnetically self-focussed ·· 

regime (at the beam head) beam electrons are subject to the longitudinal two

stream instability, due to the relative motion with respect to the plasma 

electron drift. The growth rate is 

(2.93) 

and this is typic~lly small. 

c. Beam-ion two-stream. In addition, the longitudinal two-stream 

instability will develop due to the relative motion of the beam over the ion 

background, on a time scale VbiTS-1, where 

(2.94) 
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where the limit 0Ji2 > OlfJ2f"' is assumed. This time scale is long. 

d. Weibel. In addition, in the overdense regime, when kpa>0(1), (as for 

an eroded beam head) significant return currents flow within the beam 

volume and two adjacent plasma electron return current filaments attract. 

Filaments form and disrupt the intended current neutralization.47 The 

growth rate for the Weibel or filamentation instability is 

( 
n )112 

Vw = (J)P _&_ r np 

·and this is typically small. 

(2.95) 

In addition to instabilities (a)-(d), there are resistive instabilities 

(resistive hose, sausage, hollowing, etc.).28 We neglect these in the 

collisionless limit (v-r < 1). 

5. Channel formation and beam-head erosion 

The analysis of the previous sections considered focussing of a long 

cigar shaped bunch, neglecting the details of channel evolution at the bunch 

head and tail (Fig. 2.3). We do not propose to treat this problem at length, 

merely to outline the issues involved. 

In the discussion of· Sec. A, we noted that the beam head always 

propagates in the weak magnetic-focussing regime. As a result, the beam head 

will expand due to emittance, self-fields, scattering, and decceleration due to 
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the induced axial electric field (longitudinal wake). In this way, the beam head 

gradually erodes. 

These and other issues have. been discussed in connection with erosion 

of long pulses injected into an unionized gas,48 and for long pulses in a 

preionized plasma of radial extent comparable to the beam.30 For this work, 

we will be interested in beams with relatively low emittance, and high 

energies (;;::2 MeV), so that space charge effects are not dominant. Propagation 

lengths will be from centimeters to a few meters. In this limit, we will neglect 

erosion, since the plasma is preionized, the emittance is low, the energy is 

high, and the propagation length is short. 

E. SUMMARY 

In this chapter we have reviewed the basic features of REB propagation 

in unmagnetized, preformed plasma. We provided a working definition of 

the IFR, and delineated the features of the steady-state plasma electron flow, 

ion-collapse, and equilibrium beam propagation. We went on to consider the 

ion and electron hose instabilities and other deleterious plasma effects. The 

result of these considerations is a collection of practical constraints on IFR 

propagation. 

We shall see in Chapters 3 and 4, that these constraints are important 

for a laser relying on IFR propagation. In practice, they force one to sacrifice 

pulse length for beam quality. Fortunately, as we shall see, efficiency and 

many other key figures of merit do not depend on pulse length. 
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There are a number of additional problems raised here that merit 

further work. Radiation from the plasma electrons during channel formation 

has not been addressed, and in light of Fig. 2.6(b), would be quite interesting. 

An analytical treatment of electron-hose in the limit of small skin depth 

(V>>1) remains to be performed. The utility of plasma heating via electron

hose in the IFR has not been assessed, but our simple estimate looks rather 

promising. In any case, it is evident from the work presented here that within 

the ion-focussed regime await many interesting and largely unaddressed 

problems for future work. 
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Chapterc 3: 
Theory of the Ion-Channel Laser 

" ... we are mere white horses of the sea ... " 

---Octavio Paz 

"To disprove anything is very difficult, 

but also to prove it." 

--Hannes Alfven 

In this chapter, we develop the theory of an ion channel "free-electron" 

laser amplifier (ICL),1,2 consisting of a short pulse, low emittance REB 

copropagating in the IFR with an externally supplied electromagnetic wave. 

The ICL makes use of ion-focussing to transport the beam, and a resonance, 

akin to that of the planar wiggler FEL, to produce coherent radiation. Here, 

the wiggler is. provided by the electrostatic field of the ion channel, analagous 

in some respects to the quadrupole FEL proposed by Levush, et a/.3,4,5 

In contrast to other proposed plasma-loaded rf devices,6 no external 

magnets are used, and, in principle, no external structures (waveguides, 
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cavities) are required. However, in the microwave regime, the use of a 

waveguide can enhance the overlap of the beam and the rf signal, making the 

JCL comparable to the FEL as an rf power source. 

In Sec. A, we briefly describe the concept, and the limitations of the 

theoretical model we will use. In Sec. B we develop an eikonal formalism 

rather simliar to that for the FEL. We derive the dispersion relation 

describing amplification in the initial exponential growth regime, and we 

assess the effect of spreads in axial momenta. 

In Sec. C, we derive the dispersion relation by applying the method of 

characteristics to the Maxwell-Vlasov equations. We use this result as a check 

on the work of Sec. B and to assess the effect of detuning spread due to a 

realistic beam profile. From the work of Sec. B and C we will see that the 

Rayleigh length is typically rather short compared to the gain length, and so, 

in Sec. D, we go on to consider mecl1anisms which will guide the radiation. 

In Sec. E, we summarize the scaling laws derived in Sees. B-D, and give 

some numerical examples. As a postscript, in Sec. F, we consider the 

modifications required to the theory of Sec. B, in the overdense regime. We 

also briefly discuss certain experimental evidence which shows some 

agreement with theory. 
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A. CONCEPT 

The ICL consists of a tank of neutral gas, through which a plasma is 

produced, for example, by an ionizing laser pulse.7 Within less than a 

recombination time, and with proper matching, as in a continuous plasma 

focus,9 an REB is injected into the preformed plasma, propagating in the axial 

(+z) direction (Fig. 3.1). Co-propagating with the beam is an externally 

supplied electromagnetic wave. 

We recall, from Chapter 2, that as the beam head propagates through 

the plasma, it expels plasma electrons from the beam volume, leaving fixed 

the relatively immobile ions to provide focussing for the remainder of the 

beam. For definiteness the beam density is assumed to be a step radial profile, 

with radius a. In this case, the unneutralized ions occupy a cylindrical 

volume of radius approximately b-a(nb/np)1/2 and this is the "ion channel", 

as depicted in Fig. 3.1(a). 

As discussed in Ch. 2, it is assumed that the electrostatic pinch force 

due to this ion charge is much larger than the transverse force on the beam 

due to self-fields. This imposes the Budker condition4 on the plasma density, 
, 

nb>np>nb/r, where nb is beam density, np is the plasma density prior to 

channel formation, and r is the beam Lorentz factor. As before, we assume 

adiabatic current rise (Wp't'r>>l), and we neglect ion motion (Wi't'<<l), where mp 

and Wi are the electron and ion plasma frequencies. 
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In Ch. 2, Sec. B.3, we found that the zeroth order transverse motion of a 

beam electron is that of a relativistic, 2-D, simple harmonic oscillator subject 

to the potentials given by Eq. (2.46) 

<P = ¢(o > +; (k;- knr 2 , 

1 2 
az= az(O) +4kbr2 • 

2b 

FIG. 3.1. (a)An REB, propagating through an underdense plasma, expels plasma electrons from 

the beam volume and beyond to produce an "ion-channel", which then focusses the beam, and 

causes it to radiate. 

96 



'" 

Chapter3 Theory of the Ion-Channel Laser 

. . . 
~xB· 

FIG. 3.1. (b)An electromagnetic wave copropagates with a relativistic electron beam in the ion

focussed regime. Beam electrons (indicated by circles in the inset) oscillate transversely 

(focussed by the ion electrostatic field), and are bunched axially by the ponderomotive force, 

much as in an FEL. This is essentially Fig. 2.3, with the addition of an electromagnetic wave. 

The Hamiltonian was found to be (Eq. [2.50]) 

m2 cJ p~c p2yc 
H=pc+ +--+--+U z 2 Pz 2 Pz 2 Pz 

where we identified the effective potential as (Eq. [2.51]) 
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(3.1) 

and we neglect small constants of integration. Inspection of the Lorentz force 

equation revealed that electrons undergo transverse oscillations at the 

"betatron frequency"8 mp-m1/mc/2pz)1/2, where Pz is the axial momentum. 

We tum now to consider the perturbation of the single particle motion 

by a linearly polarized electromagnetic wave. 

B. EIKONAL FORMALISM 

Now in the center of momentum frame, electrons are oscillating with 

upshifted frequency m1-rmp and radiate incoherently. In the lab frame the 

frequency of radiation in the forward (+z) direction is m-2ym1-2"f-mp. 

In this section, we proceed to show that coherent radiation, near the 

frequency m-2"1-mp, may be amplified. The essential feature of amplification is 

that an ensemble of relativistic simple harmonic oscillators, subject to a 

growing transverse electromagnetic wave, will give up energy to the field, 

through "axial bunching," if they are driven "weakly". Providing a definition 

of "weakly" and the sense in which it applies to a realistic beam is more or 

less the purpose of the detailed calculations which follow. "Axial bunching" 

refers to an induced correlation of longitudinal and betatron phase, which 
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corresponds to a coherent oscillation of the beam centroid. This will be 

described in some detail below. 

1. Particle equations 

To tl).e equilibrium described in Sec. A, we introduce an 

electromagnetic wave linearly polarized in the y-direction, copropagating 

with the beam. We write the vector potential in terms of a dimensionless 

eikonal amplitude and phase, A and qJ, 

mc2 • Ay = -e-A szn(C) , 

' = kz z - mt + qJ • 

(3.2) 

(3.3) 

The angular frequency is m and the axial wavenumber is kz. A and qJ are 

assumed to vary slowly in time on the (JJ1 scale, and in z on the kz-1 scale. 

The single-particle Hamiltonian is, in the limit Pz>>px,py, and 

neglecting second order terms in A, 

2 2 m2 cJ pxc pyc py 
H == pzc + 

2 
+-

2
-+-

2
-+ U +e-p Ay 

Pz Pz Pz z 
'-----.----' 

(3.4) 

As indicated, the energy is a sum of the energy of the axial motion (H 1 1 ), the 

eriergy of· the transverse motion (H .L) and a perturbation linear in the field 
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(H1). The quantities Px' py, and Pz are the canonical momenta in x, y, and z, 

respectively, 

Pr = mrvr I 

e py=mrvy--Ay, 
c 

e 
Pz = mrvz- -Az I c 

· { vi + v~ + vl} r = 1 - ---c~2 --

~ /2 

(3.5) 

The particle velocity components are Vx, Vy, and Vz. Note that the correction 

to Pz due to Az is typically small, mcazfPz- vfr, where v=l/Io is Budker's 

parameter. We will neglect it in the following work, to take it up again in Sec. 

B.4 in the discussion of detuning spread. 

The equations of motion derived from the Hamiltonian of Eq. (3.4) 

describe an electron drifting in z, subject to an axial "vxB" force as it oscillates 

in the potential well 

2 2 dz m2 c3 PrC pyc py . · 
(it = c - 2 2 - 22- 22 - m c2 

- 2 A st n (C) , 
Pz Pz Pz Pz 

dpz py 
dt =- kz mcL-p;-A cos (') . 

(3.6) 

They-motion consists of an oscillation in the ion channel potential, subject to 

the Lorentz force due to the signal field, 

100 

.. 



.• 

Ch~pter 3 Theory of the Ion-Channel Laser 

(3.7) 

and coupled to the z motion via Pz and Ay. The x-motion is a free oscillation 

in the potential well, which is however coupled to the axial motion via Pz 

(the relativistic mass effect), 

dx Px 
dt = --,;-;c 
dpx 1 . 
dt=-ym~x. (3.8) 

In Eqs. (3.6)-(3.8), we have neglected derivatives of the slowly varying eikonal 

quantities, and their transverse. gradients. 

To make some progress in describing the particle motion, it is helpful 

to average over the rapid betatron motion. It .is convenient to introduce 

dimensionless variables qz1 qx1 8x1 qy1 and 9y, such that 

Px = mcqx sin(9x) I 

py = mcqy sin(9y) I 

Pz = mcqz . (3.9) 

For A=O, qx and qy are constants and d9x,y/dt=Wf3· With averaging, Eq. (3.6) 

becomes 
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(3.10) 

where the angle brackets indicate the average over the betatron period. 

Noting the identities 

sin(' )sin (9y) ~~(cos ~ey- ')-cos (9y + '>), 
cos (')sin ( 9y) = ~ (sin( 9y + ') ~ sin( 9y - ')) , 

(3.11) 

we see that the averages will depend on the time variations of 9y:±,. In this 

connection we will neglect "jitter" in the axial motion, namely, that in the 

frame of reference co-moving with the beam (the ''beam frame"), electrons 

execute a figure eight motion as they oscillate transversely, alternately 

slowing and speeding up with frequency 2mp, as they "climb" or "descend" the 

ion-channel potential. Specifically, the zeroth-order motion in z is 

z =zi+ Vzt + ~x sin(29x)+~ky sin(29y), 
z z 

zi=z0 -; sin(29x 0 )- ~ky sin(29yo)· 
z z (3.12) 

where z0=z(t=0), and the dimensionless quantities ~x,y are given by 
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The quantity 

·_ { 2 +ql+q~} 
~% = c 1 - 4 2 q% 

= c {1 - 1 + q% h } 
2q ~ 

Theory of the Ion-Channel Laser 

(3.13) 

I (3.14) 

is the drift velocity in z, at zeroth order, averaged over the betatron period, 

and h=H.Jmc2 . 

The effect of this jitter in z is to couple the beam to odd harmonics 

(angular frequencies w' satisfying w'-kzVz=(2n+Vwp, with n a non-zero 

integer). We will consider the limit ;x,y<1, and neglect these higher 

harmonics. From Eq. (3.13) we see that this is roughly the approximation that 

qx,qy<1, corresponding to a transverse motion which is nonrelativistic in the 

beam frame. 

In addition we assume that the phase variable 

lf/ = 8y + ' I (3.15) 

is slowly varying on the time scale wp-1, ie., the "detuning" parameter L1w, 
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L1C:O = kz'ifz - C:O + C:Ofj 

{ 
1+qzh} 

=kzc 1 - lq~ -
COp 

c:o +-== .j2q: 
I (3.16) 

is small compared to c:op. VI represents the phase of the transverse motion 

measured with respect to the phase of the radiation field. For a fast wave, the 

condition, Lic:o<.<c:op corresponds to an angular frequency c:o-2yc:op. Note that 

detuning depends only on qz and h, not qx or qy individually. Thus the 

distribution in detuning may be determined in simple way from the 

Boltzmann distribution function for the beam. For the step radial profile, the 

distribution function is a delta function in h and qz, and there is no spread in 

Lic:o. 

The resonance condition c:o-2 "fc:op states that the Doppler shifted 

frequency of the signal field, in the beam frame should be close to the 

frequency of transverse oscillation of the electrons in that frame. In this way 

the electron is resonantly driven and suffers a secular perturbation in its orbit 

("bunching''). 

With these assumptions, Eq. (3.10) becomes 

(3.17) 

To average Eqs. (3.7) and (3.8) we differentiate, eliminating x andy, 
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(3.18) 

Substituting the dimensionless eikonal variables of Eq. (3.18) then gives 

qMy sin(8y) + 2q.y8~ cos (8y) + 
- l qy8y cos (8y)- qy sin(8y)8y + rffpqy sin(8y) 

=-rffpA sin(') , (3.19) 

and simlilarly for x. Here, the dot denotes the derivative with respect to t. 

Averaging these equations over the betatron period then gives, 

•• 2 ,_..2 
qx- qx8x + wpqx = 0 1 

2q~O~ + qxe: = 0 , 

cfy- q Yo!+ aipq y =w1A cos (1{1) 

2q.y0~ + q yfjy =~~A sin(l{l) . 

At first order in A, these equations reduce to 
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(3.21) 

and we have formally neglected electrons with qy-O(A) or smaller. In Sec. 2.b. 

we will show that Eq. (3.21) is valid even in the limit qy~O. Roughly, this is 

because all terms varying as 1/qy are eventually multiplied by qy, i.e., the 

complex eikonal variable qyexp(i8y), is always well-defined, even if the phase 

is varying rapidly. The apparent divergence at qy~O simply shows that 8y 

adjusts rapidly to a phase determined by the wave, independent of 8y(O) and 

qy(O). 

Combining these results and eliminating z in favor of ljf, the equations 

of motion take a form reminiscent of that found by Kroll et al., for the FEL,9 
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(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

It is evident that V' determines the sign and magnitude of all the 

perturbative effects of the field. In general, Eq. (3.22) shows that evolution of 'I' 

is dominated by variation in Vz and By, (since the first order term in Eq. (3.22) 

is small) which are themselves determined by variation in qz, qx and qy. For a 

fast-wave (m=ckz) Eq. (3.24) describes the slowing of particles with 'lf>O and the 

acceleration of particles with lji<O, due to the z-component of the Lorentz 

force (the ponderornotiye force). It is worth noting that, in general, dvzfdt 

and dqz/dt may have opposite signs depending on the wave phase velocity 

/3(/)=m/ckz. Differentiating Eq. (3.14), and using Eqs. (3.24) and (3.25), we find 

(neglecting qx,y<<l) 
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Thus for f3lf'>vzfc+2/qi, particles may be accelerated in z (due to a loss of 

transverse energy), while losing axial momentum. In fact, as we shall see 

below, dH/dt=mc2f3lf'(dqz/dt), so that in this case the total particle energy is 

decreasing as well. 

The first term on the right in Eq. (3.25), as well as the first-order term in 

Eq. (3.23), are due to they-component of the Lorentz force. These terms arise 

from the resonant perturbation of the transverse motion. In an FEL this effect 

is small; here, it will be non-negligible. The remaining terms in Eqs. (3.25) and 

(3.26) are due to the relativistic mass effect. The amplitude of the transverse 

motion drifts due to variation in rop, which varies with qz. 

2. Particle motion in a prescribed field 

To gain some insight into these equations, we consider the motion of a 

test particle under the influence of a prescribed eikonal. We observe from Eqs. 

(3.22) and (3.23), 

d 1jl - d qJ (J){J 1 q y . 
dt = kzVz - (J) + (J){J + dt- 2 q Y A COS (ljf) + TkzC ql A COS (ljf) 

drp 
= dt + .1m - IIA cos ( 1jl) 

, (3.27) 

where the parameter II is given by 
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' 
(3.28) 

and arises from the 8y variation of Eq. (3.23). This shows that particles with 

small qy can be significantly "detuned" from resonance. This is because the 

phase of a driven harmonic oscillator varies rapidly when its initial 

amplitude is small. 

Examining Eq. (3.27) it is tempting to think of L1m>O as corresponding to 

a particle with energy "above resonance", as in an FEL. However, from Eq. 

(3.16) we see that .1m depends on both Vz, (which increases with qz) and cop, 

which decreases with qz. Thus higher energy particles drift faster in z, but they 

oscillate more slowly. Depending on the wave phase velocity, more energetic 

particles may actually be below resonance, i.e., have .1a><O. 

a. Bounce motion. To make this more precise, we differentiate Eq. (3.27) 

and subsititute from Eqs. (3.23)-(3.26), to obtain, 

d
2

1J1 ·{- dlJf} . dA -- ""- .:::. - II- A szn(lJI) - II- cos (lJI) 
dt 2 dt dt 

. ' (3.29) 

where the ''bunching" parameter E is 
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or 

(3.30) 

This parameter describes the dependence of detuning on energy, including 

the relativistic mass effect, and the effect of they-component of the Lorentz 

force, from Eq. (3.25). Evidently I depends sensitively on kzc. For m=kzc, E 

-m,alqy,while I=O for kzc-mpqi. In terms of the phase velocity the condition 

for I=O rna y be written 

-I 

f3 :::::: Vz (1 -_1 ) (/) c ql , (3.31) 

where we have set L1m=O. Typically, such a phase velocity corresponds to a 

group velocity close to Vz. Thus E varies from a value which (as it will turn 

out) is appreciable, to zero over a very small range of phase velocity 

1 </3q><1 +1/2qz2. 

For A constant, Eq. (3.27) simplifies to 

, (3.32) 
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where I=E-IIL1m. Thus VI oscillates as in a nonlinear pendulum, a behavior 

reminiscent of the FEL or RF linac.40 Equation (32) differs from the usual FEL 

result in an important way, however, in that I may in principle be negative. 

This feature is due to an extra degree of freedom,· the y-motion, which is 

strongly coupled to the axial motion. (In the FEL the y-motion is prescribed to 

a good approximation.) 

Inspecting Eq. (3.32) we note that the stable point for small oscillations 

is either Vf=O or Vf=7t depending on whether I>O or I<O. Considering first the 

fast-wave limit (m-kzc), and using E -mjqy, we have 

(3.33) 

where we define the dimensionless detuning 8=L1m/mp. Thus, in general, the 

beam divides into two ensembles. Particles with 8>2ql have stable point Vt-n, 

while those with 8<2q/ have stable point Vt-0. Furthermore, within each 

ensemble particles have an intrinsic spread in bounce frequency. This is quite 

different from the result for the FEL, where E is replaced by a term 

proportional to the wiggler parameter, which is the same for all particles. 

Note that for a beam with uniform 8<0, all particles have stable point 

Vt-0. Conversely one may show that for a beam with uniform 8>0, and for a 

wave with phase velocity larger than that given by Eq. (3.31), so that E<O, all 

particles have stable point Vt-7t. 
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From this discussion it is evident that, in general, the details of the 

bounce motion depends in detail on the wave phas~ velocity, through the 

bunching parameter. For example, in the slow-wave limit (m>>kzC), Eq. (3.30) 

gives 

(3.34) 

so that 

(3.35) 

Thus I<O, except for particles with 8<.-qlkzcfmpqz2. This result for I is lower 

than the fast-wave result by a factor of order O(ckz/2qimp). 

In general, the period of small oscillations ("bounce period") about 'lf-0 

or :r, is 2:r/ilo where, f1o2= I II A. For I>O, we may describe this motion with a 

bounce Hamiltonian 

H 8 =; p~+.o;(1-cos('lf)) , (3.36) 

where PVI=d 'lffdt and at zeroth order p"'-.1m. (For I<O the same description 

applies, with 'If interpreted as 'lf-TC). Unlike the case for the FEL, such a 
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Hamiltonian does not describe the motion of all particles, merely those with 

the prescribed values of 8 and qy. 

Defining a dimensionless parameter k2=HB /2f1o2, we observe that the 

motion in 1jl is bound for k2<1, and unbound for k2> 1. For bound orbits the 

maximum excursion 1f/m is given by 

I (3.37) 

or sin(1f1m/2)=k. In either case, we may define the invariant action for the 

bounce motion, 

JB = _21 f pl/fd 1j/ 
1C I (3.38) 

where the integral is over a period of the motion. More explicitly, for bound 

orbits, 

3 I 2 VI,. 

JB = 
2 

1C Do f d lji.J COS ( 1jl) - COS ( ljlm) 

0 

tr/ 2 2 

= ~Do J d (} k cos2 ( (}) 

0 J 1 - e sin 2 ( (}) 

= ~ Do { E ( k2 
) - ( 1 - e J K ( k2 

) } , 
(3.39) 
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where sin(8)=sin(llf/2)/sin(11fmf2) and K and E are the complete elliptic 

integrals of the first and second kind.1° For llfm<<1, Ja-Ha/!lo=0.5!2ollfm2. For a 

slowly growing eikonal, !lo increases, and the amplitude of small oscillations 

varies according to, llfmcx:1f.Qo1/2cx:1/A114. Thus particles are adiabatically 

bunched within the ponderomotive well' (or ''bucket'') described by Ha. For 

larger amplitude oscillations, Eq. (3.39) must be inverted to obtain the 

variation in bounce amplitude lflm as a function of flo. 

1.0 

0.8 

Q 0.6 a -= a 0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

'l'm11t 

FIG. 3.2. Variation of bounce frequency with maximum excursion in V'm· 

The angular frequency is 

114 



.. 

Chapter3 Theory of the Ion-Channel Laser 

(3.40) 

and varies from no for 'I'm small, to 0 for a particle with llfm-TC, as depicted in 

Fig. 3.2. In the FEL, a similar bounce motion results in the amplification of 

frequencies in the range w-no to OJ+no ("sideband" instability). In the ICL, due 

to the intrinsic spreaq in no, one may expect a qualitatively different result for 

sideband growth. 

Before leaving this section, we note, from Eq. (3.27), that in order for 

particles to bunch about llf-0 (I>O), we must have dqJ/dt+L1m>O on average. 

For stable point llf-TC (I<O), on the other hand we must have dqJ/dt+L1m<O on 

average. This is because particles are being continually. detuned from 

resonance by the transverse Lorentz force, with a sign depending on the wave 

phase velocity. Further insight into the importance of this detuning can be 

gained by examining the ponderomotive force in detail. 

b. Ponderomotive force In the previous section we took the eikonal to 

be rigorously constant. Inspecting Eq. (3.29), however, we see that even a very 

small growth rate will alter the motion, in l/f, of particles with small qy. This is 

because the phase of their transverse motion is determined for the most part 

by the wave, and not the initial values of qy and Oy. In this section, we 

examine such effects in detail. We take an exponentially growing eikonal 

since, as we shall find in the next section, the self-consistent solution of 
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Maxwell's equations is well-described by a sum of such terms, prior to 

saturation. 

In principle, we can treat this problem most expeditiously through Eqs. 

(3.22)-(3.26). However, it is instructive and useful as a check of the eikonal 

equations, to solve the problem directly, using the full equations of motion. 

We adopt a complex eikonal variable B given by 

B = A eitp 

= B0 exp ( n) 
I (3.41) 

where T=Tr+iT; may be complex. In this case, dAjdt=TrA, and dq>/dt=Tj. We 

assume that I rl <<mp so that growth is adiabatic on the betatron time-scale. 

We proceed to solve for the particle motion directly from the 

Hamilonian of Eq. (3.8). The equations of motion are Eqs. (3.6) and (3.18): 

(3.42) 

We adopt dimensionless complex variables, pj=mclm(Qj) for j=x,y,z. Since m13 

is slowly varying, the solution for the x-motion is just the WKB result, 
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.. 

(3.43) 

and we abbreviate 8xo=8x(O), qxo=qx(O) and mpo=mp(O). To solve for the y

motion, we write decompose it into a sum of a free and a driven oscillation, 

Qy=Qyf+Qyd, with Qyd and dQyd/dt vanishing at t=O. These quantities obey, 

(3.44) 

The solution for the free-oscillation is just 

1/2 ( t ) (J){JO • • 1 1 Q,,=( .,P) q,,exp •8, 0 + •[dtrop(t) 
I (3.45) 

where we abbreviate 8yo=8y(O), and qyo=qy(O). Next we define !2=orkzVz+iT, and 

rewrite the Qyd equation as 

(3.46) 
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The term '1=kzz1, where z1 is the O(A) drift in z. This may be neglected in Eq. 

(3.46) at first order in A. In addition, we neglect the variation in mp, at O(A). 

Then we have 

ai 
Q yd = !i 

13 
ai B0 exp ( i k Z0 )exp (- int) 

- p 
I 

and we neglect terms which are small for times t>1/Tr. Using 

d - m2p = 2 imp (iL1m + r) 
, I 

Eq. (3.47) simplifies to 

(J) 

Q yd =- i 2 (it1mp + r) B0 exp { i k z0 - i!lt) 

(3.47) 

(3.48) 

(3.49) 

Combining Eq. (3.45) and (3.49) we may write out explicitly the solution 

for the eikonal variables By and qy, defined in the previous section. We have 

1/2 ( t ) 
q , ( t ) exp ( i9, ( t ) ) = ('::; ) q , 0 exp iiJ, 0 + i [d t W~ (t '; + --> 

- i 2 (it1:fJ + r) B0 exp(ikz0 - i!lt) 
(3.50) 

118 



.. 

Chapter3 Theory of the Ion-Channel Laser 

It is straightforward to show that this is the same solution one obtains using 

Eqs. (3.23) and (3.25). Thus, Eq. (3.50) confirms the eikonal equations for they

motion, including the limit qy--+0 . 

The- equation for Qz is 

dQ:r. ·t. pyA v --=- t~~g;c- e" 
dt Pz 

=- ::c Z(Qyf + Q~) B0 exp(- i!lt + ikz0 + i'1) 

= -: ~c {Z(Q yf )(1 + i~) + Z(Q yd) }B0 exp (- i!lt + i k: z0 ) 

' 
(3.51) 

and qz=lm(Qz). We have neglected a qz1 term which is small in the limit 

qx,qy<<l. Neglecting jitter in z1, we average this over a betatron period. It is 

useful to write Qz as a sum of a first-order term and a second-order term, Qz 

=Qz1 +Qz2, where 

(3.52) 

and we have defined phase variables 
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'¥0 = 8Y 0 + i rofJ 0 t- int + ik,z0 , 

t 

~ = J d t, { (J)fJ ( t ') - (J)fJ 0} . 
0 (3.53) 

Note that the phases '¥ o and '¥ 1 are slowly varying quantities, since 

d'¥o/dt=t1(J)-ir, and d'¥1/dt=rop-ropo. Using Eq. (3.52) for Qz1 we can solve for '¥1 

and '1 (which replaces the variable z1). For '¥1 we have, differentiating Eq. 

(3.53) twice, 

(3.54) 

The solution is 

(3.55) 

neglecting small terms. 

We obtain an equation for '1 from Eq. (3.42), after differentiating once, 
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(3.56) 

where the brackets indicate an average over the betatron period and we 

neglect the small term proportional to sin( 9 in Eq. (3.42). The ·averages are 

(3.57) 

and we neglect second order terms. The terms in square brackets are small 

and will be neglected below. The derivatives are 

(3.58) 

Substituting this in Eq. (3.56) gives 

(3.59) 
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From Eq. (3.52), using qz=lm(Qz), we have at first order, 

Combining this result with Eq. (3.59) then gives, 

, (3.60) 

where the parameter E' is given by 

2 

_, (kzc) { Wp 2 } 
..::, = 2 q ~ q Y 0 1 - 2 kzc q z 

(3.61) 

and we neglect qx,qy<<l. E' differs from the bunching parameter E of Eq. (3.30) 

because 1jl includes 8y in its definition, while C1 does not (this is subsumed in 

'¥1). Integrating Eq. (3.59) we have 

r _ _ = , ~ (B i~ 1 ) 
1:11 - ....., "' o e 2 

(i.1ro + r) . (3.62) 

Adding this result to that of Eq. (3.55) we have 

(

.jlf' 1 ) C1 + ~ =- E 3 Boe o 2 

. ( i.1ro + r) 
I (3.63) 
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where E is the bunching parameter of Eq. (3.30). 

Next, we substitute this result in Eq. (3.52), for Qz2, to determine the 

axial ponderomotive force on a beam slice. We find 

(dQz2)=~{-/qyo E 2 )+(qyo 2ill )}A(t)2 
dt 4 \qz (-iL1w+r) qz (-iL1w+r) 

(3.64) 

where II=rup/2qy, as defined in Eq. (3.28), and the brackets indicate an average 

over the beam slice. More explicitly, for the cold beam, we have 

dpz 2 ([t = vmcA( t) 
(3.65) 

where 

or 

(3.67) 
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Here we define a betatron parameter, ap, analogous to the wiggler parameter 

in an FEL, 

a j = ( q q = ( q ,h ) I 
(3.68) 

For the round beam with step radial profile, as in Fig. 3.1(a), 

(3.69) 

and is initially the same for each particle. Considering the fast-wave limit, we 

have 

(3.70) 

This result is quite revealing. We note that for a beam with negligible 

transverse energy (a{l--70), v and rr are of the same sign. Suppose that Tr>O, 

corresponding to a growing eikonal. Then both the beam and the eikonal are 

gaining energy. Since energy is conserved, this is a contradiction. On the other 

hand, if v<O and Tr<O conservation of energy would also be violated. Thus in 

the limit a{l--?O,we must have Tr-70. This is just the well-known result that 

an ensemble of cold simple harmonic oscillators is stable against 
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electromagnetic perturbations. (Interestingly, this conclusion is reached 

without reference to the perturbed Maxwell's equations.) 

Physically this is because the driven transverse velocity (oc ~xa) in an 

eikonal of constant amplitude is ninety degrees out of phase with the electric 

·field, as reflected in the factor of i multiplying II in Eq. (3.64). Thus no net 

work is performed on the fields, on average. On the other hand, when the 

eikonal is growing, the driven motion absorbs energy from the wave, while 

the "free" oscillation does work on the fields, through axial (,1) bunching. 

The relativistic mass effect tends to lessen the work done as reflected in the 

subtracted terms in E' of Eq. (3.61). The relativistic mass effect in the phase of 

the transverse motion ('P1) also reduces bunching by the same amount. We 

shall refer to the term II generically as the "cold-beam dielectric term" or the 

"debunching'' term. 

From this we may understand the physical basis for the detuning, 

dVf/dt, of Eq. (3.27). The quantity d<p/dt+t1W, which appears there is just n+t1w. 

From Eq. (3.70) we see that in the fast-wave limit, d<p/dt+t1w>O is required to 

extract energy from the beam, while in the slow-wave limit d<p/dt+t1w<O is 

required. On the other hand, in these limits particles tend to bunch about ljf-0 

or 1r, respectively, corresponding to a detuning IIAcos(r/f) (due to the resonant 

perturbation of the transverse motion) in Eq. (3.27) which approximaterly 

balances the detuning d<p/dt+t1w (due to the resonant perturbation of the axial 

motion). More simply, the bunching wave velocity should always be less than 

the beam velocity. This has an analog in the FEL, where the instability is 
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stabilized for finite positive detuning.n As in the FEL, we shall find that even 

when L1ro is large and negative, L1W+Ti is positive. 

Inspecting the calculation of Eqs. (3.41)-(3.65) we see that amplification 

of the input signal is correlated with bunching in the variable C+'P (identified 

as VI in the eikonal formulation) due to the axial component of the Lorentz 

force, much as in an FEL. We observe that this bunching is reduced due to the 

relativistic mass effect and due to the resonant damping of the transverse 

motion. Indeed, in the slow-wave limit (kzc<<ro), the relativistic mass effect 

and transverse damping dominate bunching, which occurs in the opposite 

sense as for axial bunching. A similar transition in bunching was examined 

by Chu and Hirshfield12 for the cyclotron maser instability. 

In summary, amplification will rely on the circumstance that a strongly 

driven harmonic oscillator absorbs energy in a growing wave, while a weakly 

driven harmonic oscillator, on the other hand, loses energy through axial 

bunching. Here the "strength" is just (L1ro+Ti)/ropar)2, and measures the size of 

the driven amplitude relative to the intial amplitude. 

To make further progress in assessing the relative magnitudes of the 

debunching and bunching terms ((L1co+TJ/ropar)2), we will consult Maxwell's 

equations to determine the dependence of non L1ro and the other parameters 

of the problem. We reserve this work for Sec. 3. We shall find that the cold 

beam dielectric has a significant effect on the conditions for amplification. 
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c. Invariants of the motion. Further insight into Eqs. (3.22)-(3.26) is 

gained by considering the constants of the perturbed motion. First, we note 

that energy varies according to 

(3.71) 

and with an average over the betatron period, this gives, 

dH 1 q Y • ( ) -- =- -mmc 2-A szn VI dt 2 q ... (3.72) 

Comparing this result with Eq. (3.24) shows that 

/ 

(J) 
q,z =H -rPz 

z 

(3.73) 

is a constant of the perturbed motion. This also may be seen from 

translational invariance. Energy L1H deposited in the fields, will correspond. to 

a field momentum L1pz=(kz/m)L1H, and this axial impulse must be taken up by 

the particles, in the absence of external axial forces. This is quite different 

from the FEL, where the wiggler magnetic field can absorb axial momentum . 
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In addition, applying Eqs. (3.24) and (3.26) shows that the action of the 

x-motion 

(3.74) 

is invariant under an adiabatic variation in mp, so that qx4fqz is a constant. 

(Here, the integral is over one betatron period.) 

A similar result obtains for the y-motion. Combining Eqs. (3.23) and 

(3.25) it is straightforward to show that 

(3.75) 

and this may be integrated to give 

(3.76) 

Combining this with Eq. (3.73) shows that 

l!> Y = H - mJ Y 

(3.77) 

is a constant of the perturbed motion, where /y is the action of they-motion, 
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.. 

(3.78) 

This result shows that a loss of particle energy LlH, is accompanied by a 

decrease in the particle action by an amount t1H/ m. In terms of quanta, we 

may say that the emission of a photon of energy hv is accompanied by a loss of 

action by an amount h. This implies that amplification of the eikonal must be 

accompanied by a decrease in the area occupied by the beam in they phase 

plane. In other words, if the phase of the transverse motion is such that the 

particle gives up energy to the field, then the transverse motion in y is 

coherently damped. It is important to point ou.t however, that the motions in 

y and z are strongly coupled. Thus this result is consistent with Liouville's 

theorem, provided the area occupied in the z phase plane increases so as to 

keep the total phase-space volume constant. This result may also be adduced 

to explain the stability of the cold beam. If /y=O initially, then t1/y~O, since /y<O 

is unphysical. Therefore t1H~O and the electromagnetic field energy is non

increasing. 

For a simple estimate of the y-emittance decrease we compute the 

variation in the. rms normalized emittance in they phase plane, 

(3.79) 
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where the brackets indicate an average -over the betatron motion and a beam 

cross-section. This gives 

(3.80) 

where the betatron wavenumber is kp-mp/c. The rms normalized emittance 

(in x or y) is initially 

(3.81) 

Noting that <]y>=mceny and applying Eq. (3.77), it is straightforward to show 

that the change in rms emittance is 

L1t;.y 1 (&l) 
--= 

E..y a~ H (3.82) 

where <L1H> is the average change in energy., and we 'have used ap=23f2en/a. 

This provides a simple estimate of the y-emittance reduction in terms of the 

efficiency, <L1H>/H. This also provides a useful upper bound to the efficiency, 

<L1H>/H<ap2. (Obtained without reference to the perturbed Maxwell's 

equations). 

Finally, we consider axial angular momentum, 

130 



Chapter3 Theor.y of the Ion-Channel Laser 

Lz = xp y - YPx . (3.83) 

Applying Eqs. (3.7) and (3.8) we find that 

dLz 1 qx 
- = -mc 2-A cos (llf + 8 - 8 ) dt 2 qz x Y (3.84) 

In this expression we may set 8x-8y equal to its value at t=O. This shows that in 

general particles will feel a torque due to the perturbation. However, averaged 

over the ensemble, this torque is zero and no net spin is imparted to the 

beam, just as one would expect for interaCtion with a linearly polarized wave. 

Table 3.1. Invariants of the single particle motion 

lbx=~(J)Jx 

tby=H-(J)/y 

tbz=H-( (J)/Ckz)Pz 

x-invariant (action) 

y-invariant (action, modified due to y-z coupling) 

z-invariant (conserved total axial momentum ) 

These invariants have important implications for bunching. In 

particular, a loss of axial momentum is compensated in part (by an amount 

depending on the phase velocity m/ckz) by a loss of transverse energy (due to 

the relativistic mass effect and the resonant damping of the transverse 

motion ). This explains the sensitivity of bunching to phase velocity. At the 

phase velocity given by Eq. (3.31), bunching is stationary with respect to 
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variations in axial momentum, brought about by interaction with the 

eikonal. 

d. 1-Dimensional equations. With three integrals of the motion in 

hand, we may reduce the ''KMR" equations for the ICL to just two equations, 

for qz and llf. The equations for llf and qz are 

dl/f [ 2+qi+q~] dt = kzc 1 - 4 q ~ - (J) ~ 

[ 
1 J 1 qy ~+ (J)fJ 1 - 2q Y A COS (llf) + 2kzc qi A COS (llf) 1 

dqz 1 qy . 
dt =- 2kzc q;-A Stn(llf) . 

To eliminate qx and qy we first define two dimensionless integrals, 

Jx 
l/>x = m m c2 I 

]y 
l/>y = kzC --2 - qz 1 

me 

in terms of which, 

(3.85) 

(3.86) 

(3.87) 

The equations of motion then take a form involving only l/f1 qz and constants, 
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(3.88) 

(3.89) 

It is tempting to try to formulate the problem in terms of a 

Hamiltonian parameterized by fPx and fPy· However, it is evident that ljl and qz 

are not canonical variables. 

To summarize this section, we observe from Eq. (3.89) that to simulate 

the fully 3-D problem including finite "temperature" effects, requires a 

distribution over four variables, corresponding to the intial values of fPx, fPy, qz 

and ljl. Thus the problem has been reduced to a 1/2+3/2 D problem. However, 

the simplest model, corresponding to an intially cold beam (uniform in qz, 

and fPx+</>y) requires a distribution over only two variables, the initial values of 

lj/and qy. This is a 1/2+1/2 D, or in some sense, a 1-D problem. 

3. Maxwell's equations 

Having examined the single-particle motion, we consider next the 

feedback from the particles through the field equations. We will work in the 

Lorentz gauge and neglect the rf scalar potential. Maxwell's equations in 

terms of the vector potential Ay and the current density, ]y, are 
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(3.90) 

We take the radial mode to be specified, corresponding to a transverse 

wavenumber k.1., satisfying k.1.a<<l so that variation across the beam is 

negligible. We define the mode area, I 

1Ay(r=O)I 2 

I~ = ..!.--__:__ ___ ...!,._ 

Jdxdy I Ayl
2 

I (3.91) 

(to be distinguished from the parameter employed in Eq. (3.32), passim) and 

the overlap integral 17=7ra2fi. Without loss of generality, we take co to satisfy 

the dispersion relation, 

(3.92) 

where 

(3.93) 

and the brackets indicate an average over the beam slice. We define 

WbefF17 112wtJ, with Wb the beam-plasma frequency, Wb2=47rnbe2fm. 
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a. Eikonal equations. Expressing Ay i~ terms of the eikonal quantities A 

and qJ, from Eq. (3.2), and neglecting second derivatives, and products of 

derivatives, of A and qJ, we obtain, 

(3.94) 

Here, we have introduced a new phase variable, z=VI-qJ. In this expression, an 

average has been performed over the period 2tc/OJ and over all electrons at z,t, 

as indicated by the brackets. Making a change of coordinates from z,t to s=t

zfvz and t, gives 

slippage (3.95) 

where vfP=OJ/ckz. Following Bonifacio et al.,13 we neglect the slippage term for 

vfP-vz-c (fast-wave limit). This can also be written in terms of real variables as 

aA _ ~Jq y • < )) at- 2 OJ vr:-szn VI I 

aqJ -~Jq y ) 
A dt - 2 OJ vr-:· cos <VI) . 

(3.96) 
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Combining Eq. (3.96) with Eqs. (3.22)-(3.26), we have the basic equations 

describing the ion-channel laser in the fast-wave limit. 

Comparing Eq. (3.72) and (3.96) we see that the quantity 

(3.97) 

is a constant in t. This integral is proportional to the total energy of a beam 

slice and the comoving eikonal wave front. 

b. Dispersion relaion To examine amplification, we adopt the complex 

eikonal B=Aeill', in terms of which Eq. (3.96) is 

()B · ~eft / q Y ( • ) ) dt = 1 2 w \q;-exp - zz . 
(3.98) 

Expanding z=zo+zz and qy=qyo+qyz in zeroth and first order terms, we have 

()B o{e"( . (q yo • q yl )) - = -=.::.u... exp ( - zx ) - ~ + z -at 2w o qz qz . (3.99) 

(In principle, there is also a perturbed qz term, but it contributes at higher 

order in aJl.) The perturbed phase is determined from Eqs. (3.22)-(3.26), or 

equivalently, Eq. (3.29), 
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a
2 
li {- (axo aqJ )} . • aA af2 =- .:. - ll at+ -at A szn( Xo + qJ)- ll-at cos ( z0 + qJ). 

(3.100) 

Writing z1=Im( Xl), we have 

a2v- . a( . ) Af - rx · 'Z - 2- =- .:.Be o - zll at Be o 
at . . 

(This result is roughly equivalent to the work of Eqs. (3.52), (3.54), and (3.61) 

combined.) We look for a solution B(t)oc:exp(Tt), and integrate Eq. (3.101) to 

obtain 

..v { E ill } B iz0 
A-1 =- 2 + e 

· (r + it1m) (r + iLim) (3.101) 

neglectin·g small constants of integration. (Note that this derivation mirrors 

that given in Sec. 2b, except that here we used the eikonal equations (22)-(26), 

to arrive at the same result more quickly.) 

The qy1 term is obtained by perturbing Eq. (3.25), 

which we integrate to find 

137 



Chapter3 Theory of the Ion-Channel Laser 

(3.102) 

neglecting corrections of order a{l-, and small constants of integraton. 

Combining·Eqs. (3.99), (3.101) and (3.102) gives the dispersion relation 

for the growth rate 

=.!!!fL. y z.::, (J) 2 (q { ·- 2 n }) 
r = 4 ro q;- (r + iL1ro i - (r + iL1ro ) 

(3.103) 

This result is fairly general and can be used to assess finite temperature 

effects, due to spreads in Liro, arising from spreads in Vz or rop, themselves due 

to spreads in transverse energy (h) or axial momentum (qz). Before 

considering detuning spread, however, we analyze the case of a cold beam, 

corresponding to a step radial profile. In this case, the detuning Liro is the same 

for each particle, and the resonant denominators may be removed from the 

average. The dispersion relation then takes the form 

r (r + iL1ro / + JJ. 2 (r + iL1ro )ro~ = i (2 pro 13 / 

(3.104) 

where the :'Pierce parameter",14 pis given by 
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(3.105) 

For a fast-wave, this 

p _ ( I Jl/3 
32 q zlo 

(3.106) 

The constant J.L is given by 

J.L2 = W:trr (rr i.L) 
2 COO)~ qz 

IDttff 
::::: 4 {J)(J)f:Jqz 

(3.107) 

and in the fast-wave limit, it is 

(3.108) 
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F 

Fig. 3.3 (a)Variation of ICL Pierce parameter with wave phase velocity and momentum 

(qz=pJmc), on resonance, as given by Eq. (3.110), for 1<./391<1.05 and l<qz<S. 

As for the FEL,lS the solution for the eikonal is then given by a superposition 

of three terms 

+1 

;91 A i91 ""' ( ) A e = 0 e o £... ai ex p Ift 
j =-1 (3.109) 

where the If (j=-1,0,+ 1) are the three roots of the cubic gain equation. Taking 

Aeili'=A0eill'0 at t=O, with vanishing first and second derivatives, the constants 

aj are determined from the roots according to 
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~r; 
a.=~------~~--------
' J'f-ljr,-ri~+r,~ 

' 

with j,l,k any permutation of -1,0,+ 1. 

F 

Fig. 3.3 (b)Variation of ICL Pierce parameter with wave phase velocity and momentum 

(qz=pJmc), on resonance, as given by Eq. (3.110), for 1<,891<1.05 and l<qz<SO. 

Before analyzing the dispersion relation, it is important to note that p 

as given by Eq. (3.105) varies significantly with wave phase velocity. This is 

not surprising given the discussion. of Eq. (3.30). To make this more explicit, 

we define a function F({3rp,qz) such that 
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Making the approximation f3z-1-1/2qi, and using the resonance relation, ro(1-

f3zlf3q)=rop, we find, from Eq. (3.105) 

I (3.110) 

where the real root is understood. This result is depicted in Fig. 3.3(a) and on 

a larger scale, in Fig. 3.3(b) We note that for /3rp=1, F=1, while for (/3~-1)2qz2>> 1, 

F--1//3~<0 and increases slowly to zero, with increasing /3~. Note that this is 

precisely the limit in which the relativistic upshift is negligible, i.e., ro0-rop. 

c. Small J1, 8 limit (u cubic gain regime"). In general the roots are rather 

different from those for the FEL, due to the 11 term. Nevertheless, before 

plunging into a detailed analysis of the cubic, it is instructive to consider the 

limit of negligible ~ (corresponding to apl-p or larger) for the purpose of 

making simple estimates and comparisons with the 8,J1"#0 results. In this case 

the dispersion relation is 

(3.111) 

i.e. 
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r 0 = 2 pmfJ exp ( - i1C/ 2 ) I 

r±1 = ± 2 pmtJ exp ( ± i1C/ 6 ) I 

Theory of the Ion-Channel Laser 

(3.112) 

and the constants aj=1/3. (We will assume p>01 since the details for p<O can be 

straightforwardly worked out, with the replacement Ij*=-r-j.) 

10 10 
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't 

FIG. 3.4 (a)Gain, from Eq. (3.114), versus the normalized time coordinate -r=pro13t, for zero 

detuning. 

The solution is 

A ei'P = ~ {e -2 i1' + 2 e i1' cosh ( -vJ -r)} A
0 
e i'Po 

I (3.113) 

where -r=pmpt. Gain is given by 
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A2 
G(t)=-2 

Ao 

= ~ {3 + 2 cosh ( 2 .J3 -c) + 4 cos ( 3 -c) cosh ( v/3 -c)} 
, 

and is plotted in Fig. 3.4(a).The phase·advance varies according to 

( ) sin(-c )2 cosh (v'J-c)- sin(2-c) 
tan ({J - ({Jo = -co_s_( -c_)_2_c_o-sh-( v'3~3=--c-)-+-co_s_( 2--c-) 

and is plotted in Fig. 3.4(b). 

(3.114) 

(3.115) 

FIG. 3.4 (b)Phase advance, L1({'=qHp0, from Eq. (3.115), versus the normalized time coordinate 

-r=pwrJ, for zero detuning. 
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Growth is cubic for short times, 

(3.116) 

and for longer times is exponential 

. 1 . ~ i~ 
A earp = 3 exp ( v 3 't' + it') A 0 e o 

(3.117) 

As a figure of merit we note the exponential gain length Lg=c/Re(r+), or 

1 I 3 

A,f:l 2 2 1 3 ( ifo ) 
Lg= - -- A. 2 n 31 I 2 p - n 31 I 2 T]l f:l 

(3.118) 

This is typically a few to one hundred betatron wavelengths, depending on TJ, 

I and r. 

With the solution for A in hand it is instructive to substitute this into 

Eq. (3.102) and solve for X1· In the limit 't'>1, this gives 

Note that particles with small qy are perturbed little. Maximum power is 

achieved near the onset of non-linearity and particle trapping, where the rms 

X1 is of order unity. At saturation we then find, 
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(3.119) 

Making use• of Eq. (3.97), this .. gives an estimate for the efficiency e-p, and the 

final output power Pout-ePbeam, where Pbeam-mc2(r-1)I is the initial beam 

power. 

, We observe that the average energy lost by the beam is second order in 

A. Indeed, writing out Eq. (3.72) explicitly gives 

(dd~) =- ~ wmc 2 A\~: sin(ty)) 

=- ~ wmc 2 A\~: sin(qJ + X0 ) +~:cos (qJ + Xo) x1) 
=- ~ wmc 2 A\~: cos (fAJ + Xo +'C) X1) 

it 2 a~ 2 =- --wmc2 A . 24 qz p2 (3.120a) 

This energy loss from vyEy work done by the particles is seen to arise from 

coherent oscillations in z, at angular frequency prop which are synchronous 

with those in the eikonal. In configuration space, this amounts to a slow drift 

in betatron phase, and axial position, which results in coherent beam centroid 

oscillations of ever growing amplitude. 

More quantitatively, calculating the average y-momentum in a beam 

slice we find 
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2 
1 ap . 2n (p )=-me---A szn(k z- ai + rn +-) 

y 24 ~ z ~ 3 (3.120b) 

This result makes use of 8y1--0.Sz1, which follows from differentiation of Eqs . 

(3.22) and (3.23). Equation (3.120~ shows that a coherent oscillation of the beam 

centroid develops, and, near saturation, <py>-mcap/23/2. On the other hand, 

particles bunch in VI as A grows. Thus an rf component develops in the beam 

current, at the same time that the beam centroid oscillations grow in 

amplitude. As we have seen, the result is coherent radiation. 

d. Growth for finite J1,8 ("quadratic gain regime"). We shall find that 

the results of the last section are typically useful for simple estimates of the 

laser performance. However, they represent the optimal performance 

possible. In fact, the approximation J1=0 omits some important features. In 

particular, a beam with a smooth distribution in transverse energy (i.e., a 

typical beam) will have a detuning spread of order wpapl. If Jl is small, this 

detuning spread is large, and gain will be reduced. This circumstance 

motivates the more detailed study of the roots which we now undertake. 

We proceed to solve Eq. (3.122). We define a dimensionless gain 

parameter ,, and detuning 8, 

' = (ir - L1w) I w13 , 

8 = L1 m/ m13 , (3.121) 
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in terms of which the ~ispersion relation takes the form 

,, + 8C' - !l2
' - 8 P3 = 0 1. 

(3.122) 

Note that since Re(T)=mplm( C>, growing roots correspond to Im( C>>O. In 

particular, for amplification C must be complex. In terms of dimensionless 

parameters 

(3.123) 

and a discriminant, 

(3.124) 

the condition for the existence of complex roots, and amplification, is D2>0.16 

Specifically, for D2>0 there is one real root and one conjugate pair of complex 

roots. For D2=0 all roots are real and at least two are equal. For D2<0 all roots 

are real. 

Definining two additional constants 
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I (125) 

the roots of the dispersion relation are given by 

5 
4 

3 
unstable 

2 
1 
0 
-1 

-10 0 

8/J.L 

unstable 

10 

(3.126) 

20 

FIG. 3.5. The P:tOf Eq. 3.(130) are depicted as a function of detuning, 8. For gain, p must satisfy 

p<p_ or p>p., i.e., the region of stability lies between the two curves shown. 

For D2>0, we have one growing root('+) one decaying root('_) and one purely 

real root (,_). Inspecting Eq. (3.122) we observe that the dispersion relation is 

unchanged under the transformation '~-,, 8~-8 and p~-p. This simplifies 
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our analysis somewhat, in that we need consider only the case p>O. 

Conclusions reached there may be extended to the p<O case by changing the 

appropriate signs and noting that when D2>0, '+='-*. 

FIG. 3.6. (a)The normalized growth rate (i=lm((J=Re(D/mr, is plotted versus detuning, 8 and 

the cold beam dielectric parameter J.L Note that the peak value (i=Jl/2 occurs at 8=J.L=0. 

It is als·o helpful, in analyzing the roots to note the standard relations 

between the roots of a cubic, which in this case are 

,++~+,_=-8, 

,+,0 + ,_,+ + ,_,0 : - J.l2 I 

,+,0 ,_ = 8 p3 . 
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We may check Eq. (3.126) against the J.J.=8=0 result, by taking the limit 

J.J.,8<.<p. We find, 

(3.127) 

t.D 

8/p 

FIG. 3.6. (b)The real part of the root (,=Re((.) is plotted versus detuning, o and the cold beam 

dielectric parameter J..L, as in Fig. 3.6(a). Note that Re( ()=-(n+Llm)/m13<0 in regions where 

Im(()ocRe(r)>O (i.e., in regions where amplification occurs) as would be expected from the 

discussion of the ponderomotive force of Eq. (3.70). 

The exponential growth length is Lg-1/kplm( (+),or 
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A. ( L = fJ 1 + 1 
g 2 1r 31/ 2 p 25/ 3 3 ~J 

I (3.128) 

in agreement with the previous result. 

In general, however, for J.l or 8 comparable to p, the condition D 2>0 

yields a constraint on p, p<p_ or p>p+, where 

(3.129) 

This constraint did not appear in the previous treatment because we 

neglected detuning, and the cold beam dielectric effect represented by J.l (i.e., 

we neglected particles with qy<A). The P± are plotted versus 8 in Fig. 3.5. We 

observe that on resonance (8=0) I pI >JJ./22/331/2 is required for gain. For a fast

wave, this condition is ap2>(25/3j3)p-p. On the other hand, inspection of Eq. 

(3.130) reveals that for large negative detuning this constraint is reduced and 

gain is possible with a{il<O(p), i.e., J.llp>2.8. 

To gain more insight into the condition for gain, we plot the growth 

rate, Im(,+) given by Eq. (3.126), versus 8 and J.l in Fig. 3.6(a) and, on a larger 

scale, in Fig. 3.7. Immediately we observe that gain is not an even function of 

detuning. In fact, the instability is stabilized for a finite positive detuning, 

which for J.l=O is 8/p-3.8. As J.llp increases to J.llp-2.8, this upper bound on 8 

decreases to 0. On the other hand, for any finite negative detuning, there is 

some range of J.l which yields growth. Conversely, for any J.l, there is some 
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negative detuning which yields growth. Interestingly, the growth rate is 

appreciable even for 8/p--50. It should be added, however that the cubic is 

strictly valid only for 8<<1 and this constrains the maximum possible 8. 

(Thus for 8/p--50 to make sense we must have p<1 %). 

8/p 

Fig. 3.7. Growth rate as in Fig. 3.6(a), for -100<8/p<SO and 0<J..llp<20. 

We may check this large 8 behavior by solving Eq. (3.122) explicitly, in 

the limit I 81 > > p,p. In this limit, we find 

(3.130) 
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and the threshold for gain in this limit is 8<-J.L4f32p3. Far above threshold, 

lm( '+) decreases slowly, as 1/ I 811/2, as seen in Figs. 3.6-3.8. More 

quantitatively, we may compute the maximum growth rate directly from Eq. 

(3.130). We find 

. p3 
max 5 ( r ) = 8 -·-,.. a~ 

B ~+ J.l2 ,., 
I (3.131) 

occuring at 

~-ilp 

J.Lip 

FIG. 3.8. The maximum growth rate lm( ,.)/p is plotted versus the cold beam dielectric 

parameter. The corresponding detuning is plotted in Fig. 3.9. 
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1 JP p3 
8 =---=-4-

16 p3 a~ 

and corresponding to 

8p3 . 
'= -(- 1 + z) 

J.L2 

Theory of the Ion-Channel Laser 

I (3.132) 

We observe that at this detuning, Re( '+)=-J.L2f2 I 81 =-8 p3JJ.L2--2ap2, 

corresponding to Ii=-L1m+2aplmp. 

or----....... _ 

Blp 

1 2 3 4 5 

FIG. 3.9. The detuning corresponding to the growth rate depicted in Fig. 3.8, plotted versus the 

cold beam dielectric parameter. 
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The "exacf' result computed numerically from Eq. (3.128) is depicted in 

Fig. 3.8, with the corresponding detuning in Fig. 3.9, giving good agreement. 

Practically, it is useful to have an estimate of the reduction in the peak growth 

rate due to the J.l term. This is given numerically in Fig. 3.8. Analytically, in 

the limit aj<<p, this is 

2 
1 afJ =----

31/2 p 
(3.133) 

where we have used the fact that the maximum growth rate for J.L=O is 

Im( C+)=31/2p, and afilfp-8(p/J.L)2 . 

From the analysis of this section we have learned that the cold beam 

dielectric effect represented by the J1 term in Eq. (3.122) tends to reduce growth, 

even eliminating growth for some range of 8 and p. This was anticipated in 

the discussion of the ponderomotive force of Sec. 2.b. We have seen that the 

competition between the bunching (E) and debunching (II) terms depends on 

the ratio p/afil. It also depends on detuning, since the pondermotive force 

may be varied by tuning the beam off-resonance. 

To make this more explicit, and to check the calculation of the 

ponderomotive force of Eq. (3.70), we repeat the calculation of Eq. (3.120), in 

the case where the II (or J.L2) term is not negligible. We have 
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(dH) 1 \q Y • ) -- ::::::- -mmc 2 A - szn(Vf) , dt 2 qz 
1 (q yl • q y ) 

::::::- 2mmc 2 A -q;- szn(qJ + Xo> + q;- cos ( qJ + Xo) M 

1 ( . . [. q yl q y ]) :::::: - 2mmc 2 A 9\ exp ( - lqJ -: ZXo) z -q;- + -q; X1 

We substitute from Eq. (3.101) for X1, and (102) for qy1 to obtain 

I dH ) = Lmmc 2 A 2{/ !l.!_E \s 1 + 2 I :1.!_ II \9\ 1 } 
\dt 4 \qz I (T+i.1m/ \qz I (T+i.1m) . 

Taking the fast wave limit and writing this in terms of ,,=Re( '+) .and 

'i=lm( '+) we have · 

This is just the result one obtains from Eq. (3.70), using dH/dt=( m/ckz)dqz/dt. 

By inspection we see that ,,<0 is required for gain. Since ,,=-(n+L1m)/mf3, this 

just says that n+L1m=dqJ/t+L1m must be positive for gain. In this way the phase 

shift in the transverse motion due to the driving force is partially cancelled 

and particles may remain nearly stationary in Vf, resulting in a secular loss of 

energy. Said differently, detuning has increased the axial bunching with 

respect to the debunching effect represented by the "II" terms of Eq. (3.29). 

(The same discussion applies to the slow-wave case, with the signs reversed) 
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4. Finite temperature effects. 

Thus far we have considered a cold beam, for which all particles had 

identical detuning, Llro. In this approximation, all particles were resonant with 

the wave. Returning to th~ dispersion relation of Eq. (3.103), we see that a 

spread in detuning will alter the dispersion relation, and likely reduce 

growth. In this section, we quantify the effect of a detuning spread arising 

from a spread in axial momentum, qz. We reserve for the next section a 

rigorous calculation of the effect of spread in transverse energy, h. 

We define 8o=<Lla>>/a>p to be the dimensionless average detuning, and 

introduce a new particle variable ~=(Ll(J)-<Lla>>)/rop. Taking C to be defined as 

in Eq. (3.121) with "o' replaced by 80, we rewrite Eq. (3.103) in the form 

We model the effect of momentum spread by taking particles to be uniformly 

distributed in the range -85<81<85 • In 'this case the integrals are straightforward 

and we obtain the modified dispersion relation, (to be compared with Eq. 

'(3.122)), 

(3.134) 
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a. Cubic gain regime. First, we consider the limit of negligible Jl. The 

dispersion relations is then cubic, 

and is identical to Eq. (3.122), provided we make the replacement Jl2~852. 

Thus we may carry over all the conclusions from our analysis of finite Jl 

effects. When 05<p, the effect of the spread is small. When 05>p the coherent 
~ 

oscillations in X1, which in Eq. (3.120) contributed to the ponderomotive force 

are washed out, unless 41 is below the threshold detuning given by Eq. (3.131) 

From Eq. (3.132), peak growth occurs for 

and the growth rate is reduced below the 80=85=0 value by the factor from Eq. 

(3.133), 

(3.135) 
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Thus for 85-3p, the growth rate is reduced by a factor of two. 

We may relate these constraints on 85 to practical constraints on the 

beam through the dependence of detuning on qz and has given by Eq. (3.16). 

In the fast-wave limit this gives 85-1.5q5/qz for a momentum spread of ±q5 • 

Equation (136) then requires q5/qz-O(p) or less. For example, for q5/qz-2p, the 

growth rate is reduced by a factor of two. For low p, as in the FEL, this imposes 

a stringent requirement on beam quality. 

For a spread in transverse energy ±h5, 85-q zh5 • On the other hand, for 

typical beam profiles, h5 -crha{i2/qz, where CJh is a factor of order unity which 

depends on the beam profile. In this case 85-crhaf]2. Peak growth then occurs 

for a detuning 

with a reduction in the growth rate from the ~=8o=J.L=O result of 

2 

~- 8 (_p__J 
- 3112~ a~ 

For example, we take crh-0.5 and consider the case ap'2-10p. We find 80/p--19 

(thus this example only makes sense for p<2% or so), with the growth rate 
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reduced by a factor of five. (This choice of Gh is essentially phenomenological 

and motivates the more precise treatment of Sec. C.) 

b. Quadratic gain regime. Next we consider the limit in which J.l is 

comparable top. We look for a solution with 85<< I'', expanding in 85/,. we 

have 

f.l
2

f 1(&)2

} spJf (&)2

} ,+8o=n1+ 3 -r +T11+y ' . 

We expand the root about the 85=0 solution, ,=,o+,1, and obtain 

As an example, we consider the correction to the root ,+, at the optimal 

detuning given by Eq. (3.132). In this case we have 

8 p3 '0 :::: y<- 1 + i) 1 

1 f.l4 

80 =- 16? I 

so that 
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This gives a growth rate 

(3.136) 

Although the condition for the expansion amounts to 05<<ap'2, this result 

should provide a useful estimate for more appreciable 85 • For example, Eq. 

(3.136) predicts a factor of two reduction in growth rate for 05-31/2a{!-. 

In terms of axial momentum spread, Eq. (3.136) requires q5/qz-O(a{i-) or 

less. For a transverse energy spread h5-ahfl{i-/qz, Eq. (3.136) predicts a reduction 

in the growth rate by a factor iJ-1-ah2f6, which is of order unity. 

We conclude from this that the quadratic gain regime is less sensitive 

to transverse energy spread than the cubic regime. It is slightly more sensitive 

to axial momentum spread, however, since the constraint on q5/qz is lower by 

a factor of order O(a{!-/p). 
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C. MAXWELL-VLASOV DISPERSION RELATION 

In this section, we ·provide an alternate derivation of the dispersion 

relation using the method of characteristics applied to the Maxwell-Vlasov 

equations. This approach is especially useful in assessing the effects of 

detuning spread due to realistic beam profiles. After working out the 

dispersion relation, we will apply it to both the step profile and an arbitrary 

finite profile. 

1. Phase space integrals 

First we digress briefly to note certain helpful integrals. The 

normalization of the equilibrium distribution function fo is 

I 

and the average of some function F over the beam cross section is given by 

(3.137) 

It will be convenient to convert this to an integral over parameters 

characterizing the unperturbed trajectories. We parameterize these 
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trajectories in terms of quantities 8xo1 9yo I qx1 qy1 qz1 and zo defined as follows. 

The betatron angles satisfy 

(}y = (}yO + (J){J~ 1 

9x = (}" 0 + (J){J~ 1 

where 9xo and 9yo are the· values at -r=O. The transverse positions are 

(3.138) 

(3.139) 

and the momenta are just Px=qxsin(9x)l and Py=qysin(9y). The axial velocity is 

given by 

Vz 2 + qi + q ~ - = 1 - ____ ____:._ 
c 4qi 

and the axial position is given by 
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We recall the dimensionless quantities ;x,y 

J! _ L kz ql ,y 

~ ,y - 8 kp q i 
I 

defined in Eq. (3.13).We may rewr!te Eq. (3.133) by making a change of 

variables in the integrand, using 

dy,.dpy = kmqc q ydq yd (}yo , 
fJ z 

dx d Px = km c q x d q xd 8xo . 
pqz 

This gives, 

(3.140) 

We consider the zeroth order distribution function, fo, to be a function of H.1 

and pz, and it will be convenient to refer to the dimensionless transverse 

energy h=H..Jmc2, 

1 (pi + P2
Y) 1 

h = m c 2 Pz + 4 k~( x2 + y2) 

=-1-(q2+q2) 
2 q z % y (3.141) 
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We may then convert <F> to an integral over qy2, qz and h, 

2 "'~· 2 :rr 2 :rr 

(F)= m
2

~
2 

c ( 10 / I) Jdqzd h fo Jdq ~ Jd8yo Jd8xo F 
kp 0 0 0 (3.142) 

When F is a function only of hand qz, this gives, 

(3.143) 

It will also be necessary to compute integrals with derivatives of f0, and 

we note for reference, 

(!h_) = _1 (~) __ 1 (aJo )I {pi+ P~} apz m c aq z m c ah 2 pi I 

P.,P 1 II 11• 

( ~'.) = ,; , (~)I. ( ~:). 
p •, P, • (3.144) 

2. Method of Characteristics 

We proceed to apply the method of characteristics to derive the 

linearized dispersion relation for an electromagnetic wave copropagating 

with the beam through the ion-channel. Writing the perturbed distribution 

function as f=fo+/1, we the Vlasov equations is to linear order 
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df1 _ _ F ato _ F ato 
dt- zldpz yldpy 

I (3.145) 

where d/dt is evaluated along the zeroth order trajectory. Taking a vector 

potential Ay=(mc2je)bexp(i(), gives 

Vy • i{ 
Fzl = e yBx =- l me be kzVy I 

F yl =- e ( Ey + ~z Bx) =- imc be i{ (m- kzvz). (3.146) 

h is then given by 

(3.147) 

or, in terms of the Fourier transform, 

0 

I( ........ ) - (d {k !/_g_ ( k ) ato }<· b i({'-0) h r I p - _J~ 't' z v y dpz + m - zV z dp y l m c e 
(3.148) 

Here, the integrand is evaluated on the parameterized trajectory defined in 

Eqs. (3.138)-(3.140). 

This result for his coupled to Maxwell's equations, 
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(3.149) 

Note that the integral on the right-side is over the momenta at 't'=O. 

We assume b varies negligibly across the beam and define the mode 

area, I. 

I_1 = I b ( r = 0 ) 1
2 

Jdxdy I b 12 

Then the dispersion relation takes the form 

or - c 2 k; - c 2 k ~ = 
4 1C e2 c r 3 q y • 

mi Jd pdxdyq-;szn(9yo)-7 
0 . 

X-~ 'f { kzVy :: + (m- kzvz) zoy }(imcei(''-0) 

(3.150) 

I (3.151) 

where we make use of the parameterized trajectory given above. Defining the 

dielectric constant e 

(3.152) 

and writing e=1 +ez+ey, we have 
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(3.153) 

Next we make use of Eq. (3.144) to obtain 

.4ne2c Jd3 d d qy . (9 ) 
& =- l mi W p X y q-; Sln yO ---+ 

rd k {!b._- ato ( pl + p~ J} i (''-0 
X _J~ 't' zV y aq z ah 2 pl e I 

. 4 1C e2 c rd j d d q y • (9 ) ey =- z m I oi J' p x y q;- szn yo ---+ 

0 

x -~ 't' (m- kzvz)(~) ~: ei <,·-n. 
(3.154) 

Using Eq. (3.140), this may be written in terms of eikonal variables as 

(3.155) 

where, 

0 

1J = ato rd 't' (m- k v) sin (9 )ei (,·-n 
y ah J' z z y 

(3.156) .. 

and 

169 



Chapter3 Theory of the Ion-Channel Laser 

(3.157) 

Several different integrals over -r appear in these expressions. For clarity we 

write them out separately 

0 

~ = Jd-rsin(8y)ei({·-n, 

0 

1?
2 

= Jd-rcos (28x)sin(8y)ei({'-{), 

0 

1?3 =. Jd-r cos (2 8y) sin(8y)ei({'-{), 

0 

~ = Jd-r sin2 (8x)sin (8y)e i({'-{), 

0 

1?5 = fd -r sin2 ( 8y )sin (8y )e i u· -n. 
(3.158) 

In terms of these integrals, 

(3.159) 

(3.160) 

The term in the exponent in Eq. (3.158) is explicitly 
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,,_ '= kiiz"C- car~ 

+ ~" sin(2 ()") + ~Y sin (2 Oy)- ~" sin( 2 0" 0 )- ~Y sin( 2 OY 0 ) .(3.161) 

so that 

eiU'-0 = exp{- i(~ sin(20" 0 ) + ~Y sin(20yo))} ~ 
+-

X L Ji~x)J,,/~y)exp{2 i(n0" 0 + mOyo)}~ 
m ,n=-ao 

x exp{i(2(n + m)mp"C- D)-r} 
I (3.162) 

where 

(3.163) 

Thus in general, the integrals of Eq. (3.158) are a bit complicated, 

involving a sum over odd harmonics, with coefficients given by infinite 

sums of products of Bessel functions. However, in the limit ~x,~y<<1, these 

integrals reduce to a quite manageable form. (This is essentially the same 

approximation made in averaging the terms in Eq. (3.11)). 

We have in this limit 

{ 

i8 -i8 } 
t!=.L ~-e ,o 

z 2 .L1+ z .L1_z 
I (3.164) 
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where we assume Im( fl)<O and we define the detuning from the k-th 

harmonic 

L1n = (J) - kziJz - nwfJ 

1 + qzh 
= (J) - kzc + kzc 

2
· 

2 

The other integrals are 

tJ2 = 0 1 

1 
tJJ =-~I 

1 
1% = 2~ I 

3 
t1s = 4~ 1 

qz 
1 

- n Wp r:;-::- , 
v2qz. (3.165) 

(3.166) 

and we discard terms that will vanish after integration over 9xo· Noting that 

27r 27r 

J d 9 x o J d 9 Yo sin ( 9 Yo ) tJ1 = in2 ( i + l_ ) 
0 0 (3.167) 

we may write 

(3.168) 
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where 

- Ofo ( k - )( 1 ) k Ofo q ~ ( 1 ) 
'lJy = ah (J) - zVz + zC ah 4q ~ - 2 I 

- k Ofo ( ) k <¥o { q l ( 1 ) q ~ ( 3 ) } 
-,Jz = zC aqz 1 - zC ah 2 qi 2 + 2 qi 4 . 

(3.169) 

Recalling Eq. (3.14), 

Vz 2 + q i + q ~ 1 + q z h 
c= 1 - 4qi = 1 - 2q~ 

I (3.170) 

we see that Li± depends on h, but not qx or qy individually. In this case, we may 

change variables to qy and h, and integrate over qy, to obtain. 

(3.171) 

where 

2 q, h 

" rd2 z-
fJy ,z = J' q y q y fJy ,z 

0 (3.172) 
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or 

(3.173) 

Substituting this in Eq. (3.171), we have 

(3.174) 

where 

(3.175) 

We rewrite 1}' as 

, 2 dfo { ( 1 1 )} ~ = 2 h ah 2 + Wp .d+ - LL 
I (3.176) 

and integrate by parts using 
... 
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(3.177) 
.. 

so that 

(3.178) 

and 

" h
2 

( 1 1 ) 5 2 h
3 

( 1 1 ) 19 = 5 kzc[0 q-; T + Ll. - 6(kzc) fo - 2 - 2 + -2 ---+ 
+ q z ..1+ .,1_ 

(3.179) 

From Eq. (3.174) this gives 

~I) e=1-ro2I'\i;"(x) 
(3.180) 

where X is proportional to the dielectric susceptibility, and is given by 

175 



Chapter3 Theory of the Ion-Channel Laser 

5 - h ( 1 1 ) 5 2 h
2 

( 1 1 ) X =- -2 kzc - 2 -::.-- + A + 12 (kzc) - 3 - 2 + - 2 + --+ 
q z L.l+ ~ q z L1+ Lt 

h (J)ft kzc ( 1 1 ) 1 2 h ( 1 1 ) --+- 2 2 -2 --2 + -2 (kzc) -4-( 2 + qzh) -2 + -2 --+ 
q z L1+ L1: q z L1+ L1: 

(3.181) 

Simplifying this somewhat gives 

(3.182) 

In the next two sections we apply Eqs. (3.180) and (3.182) to compute the roots 

m, of the dispersion relation determined by e, for various beam distributions, 

fo, corresponding to step radial, Gaussian, and parabo'lic density profiles. 

It is worth noting the h-+0, or cold-beam limit of Eq. (3.180), 

6i ( -) 2 

1. l -b~ll (J) - kzVz zm e- -~ 
h -4) - w2 ( k - ) 2 ,_,2 

(J) - zVz - WjJ (3.183) 

where we recall the effective beam plasma frequency, from Eq. (3.93), 
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z 4 nxz ( I ) 
~eft = I q zlo • (3.184) 

This reduces to the expected results in the mp--+0 and Vz--+0 limits. as we shall 

see below, the resonant part of this cold beam dielectric corresponds to the II 

term in Eq. (3.103), and the J.l2 term in Eq. (3.104). It is straightforward to show 

that this e gives rise to no instability, as we would expect from the discussion 

of the ponderomotive force of Eq. (3.70). 

3. Step Radial Profile 

To make contact with the results of the eikonal treatment, we consider 

first the case of a beam with uniform transverse energy, 

(3.185) 

corresponding to a step radial variation in beam density, with beam radius, a, 

given by ho=kp2a2f4. The overlap integral is 1]=Jra2ji. We specialize to the case 

of small detuning from the fundamental, so that m=mo+iT, where Re(T) 

corresponds to the growth rate to be calculated, and roo is the resonant 

frequency, satisfying 

(3.186) 
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with .1m<<mp. In addition, we take roo to satisfy the dispersion relation of Eq. 

(3.92), 

(3.187) 

Assuming Re(T)<<mp, we may neglect the .1-1 terms in evaluating X, from Eq. 

(3.182). In this case the dispersion relation takes the form, identical to Eq. 

(3.104), 

r(r + i.1m) 
2 

+ J.L2 
( r + L1m )~ = i ( 2 pm13 )

3 

I (3.188) 

where the Pierce parameter pis given by 

(3.189) 

with a{i=qzoho, as defined in Eq. (3.68). This is just Eq. (3.105) at lowest order in 

ap2, which we obtained by perturbing the electron equations of motion 

directly. 

The dimensionless constant J.l is 

(3.190) 
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which is just Eq. (3.107) at lowest order in apl. For example, for a fast-wave and 

zero detuning, 

(3.191) 

This result also shows that J.l2 vanishes for apl-0.4. 

From the work of this section, we conclude that the Maxwell-Vlasov 

treatment confirms the results of the eikonal model of the previous section. 

We turn to consider the effect of detuning spread. 

4. Arbitrary, finite radial profile 

One shortcoming of the step-profile model is that all particles have the 

same drift velocity in z. In general, we expect a spread in drift velocities, or 

equivalently, detuning, to produce Landau damping and to reduce gain, as 

discussed in Sec. B.3e. In this section, we consider the effect of such detuning 

spread and quantify its effect on gain. 

We will consider an arbitrary finite distribution fo, where by "finite" we 

mean that the first and second moments, <h> and <h2> are finite. This 

assumption (which excludes, for example, the Bennet profile) is necessary as 

we shall have occasion to refer to the fractional rms deviation in h 

179 



Chapter3 Theory of the Ion-Channel Laser 

(3.192) 

a. Modified dispersion relation. We proceed to compute <X>, in order 

to derive the dispersion relation. We specialize as before to the case of small 

detuning from the fundamental, so that L1+ is small compared to wp at zeroth 

order. Now, for uh;t!(), there is an instrinsic spread in detuning. (An exception 

to this is the case of a slow-wave.) Defining 

(3.193) 

and defining a dimensionless rms detuning spread, 

(3.194) 

we see that the spread is of order uha[i2. We will assume uha{l-<<1 so that we 

may neglect the L1_ terms in Eq. (3.182). In this case, 

(3.195) 

To compute <X> we evidently need to compute the integrals, 
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(3.196) 

In terms of these integrals, we have 

(3.197) 

In general, Eq. (3.197) will result in a transcendental dispersion relation, 

analagous to, but more complicated than that of Eq. (3.134). As with Eq. (3.134), 

we may simplify this by assuming a small detuning spread, and expanding 

the dispersion relation to obtain the lowest order correction to the growth 

rate. Recalling Eq. (3.165), 

(3.198) 

it is convenient to write 
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(3.199) 

where -Lim is the average of L1+ at zeroth order, 

(3.200) 

We then write Eq. (3.198) as L1+=Lio+L11, where 

L10 = - Lim + iT , 

L1, = 2kzc { h - (h) ) . 
qz (3.201) 

Defining E=L11/L1o, we assume that I e I <<1, and expand the integrals of Eq. 

(3.195). 

~ = l (1 - e + e2 - & + ... ) , 
0 

~2 = l (h ( 1 - e + e2 - e1 + ... ) ) , 
0 

~3 = ~ ( h ( 1 - 2 e + 3 e2 + .. .) ) , 
L1o 

~ = ~(h2 
( 1 - 2 e + 3 e2 + ... )). 

L1o (3.202) 

To simplify matters, we will neglect the corrections higher order in ari 

represented by ~and ~4· Keeping only terms through 0(1f.1o3), we have 
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(3.203) 

From Eq. (3.197) we write <X>=X1+X2 where 

(3.204) 

The term X 1 corresponds to the cold-beam susceptibility, while X 2 

incorporates finite temperature effects. 

Next we write out the modified dispersion relation. We take m0 to 

satisfy the dispersion relation of Eq. (3.92), and define (=(ir-~m)/mp as in Eq. 

(3.121). The modified dispersion relation is then 

(3.206) 

where Do=~m/mp is the average detuning. Note that the condition for the 

validity of the expansion, I £I < < 1, can be written CJha 132< < I (I . The 

dimensionless parameters J.l and p are defined as before in terms of Wbeff as in 

Eqs. (3.105) and (3.107). The dimensionless parameter vis given by 
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(3.207) 

and for a fast-wave, 

(3.208) 

Now Eq. (3.206) is rather different from the result of Sec B.3.e, where we 

modelled detuning spread with a flat distribution. In that case, we found that 

the 0(1/~) correction to the dispersion relation vanished, and we went on to 

compute the effect of the 0(1/C4J term. Such a distribution of detuning is a fair 

model of the effect of axial momentum spread. However, since the 

distribution of transverse energy is weighted by a factor of h (see Eq. [3.143]) we 

have found that in fact there is a non-vanishing 0(1JC3J term. We will now 

proceed to calculate the correction to the growth rate due to this term. We 

shall show that this effect is small, and in this way verify the simpler 

phenomenological model. 

To compute the correction to the v=O root we expand C=(o+C1 and find, 

(3.209) 

b. Cubic regime. In the limit J.l.<<p, Eq. (3.209) becomes 
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tl ( J..L

2

J Cz = - 24 p3 1 - I" 
I (3.210) 

which in the fast-wave limit is 

(3.211) 

Thus the shifted root is just 

(3.212) 

This implies that the growth rate is increased by a small factor 

(3.213) 

which is typically of order unity. 

c. Quadratic regime. For J..L> p, we consider Co corresponding to the 

optimal detuning given by Eq. (3.132), so that 

Bp3 . Co = -2-(- 1 + t) , 
J..L 

(3.214) 

185 



Chapter3 Theory of the Ion-Channel Laser 

In this case 

'1 =- 1~ ~ (1 - i) 
I 

corresponding to a slight increase in the growth rate by a factor 

1 v4 J12 
~ = 1 + 128 7 

1 
= 1 + Ta; 

where in the last equality we take the fast-wave limit. 

(3.215) 

(3.216) 

We proceed to compute the factors of Eq. (3.213) and (3.216) for two 

typical beam profiles. 

d. Example: parabolic profile. We consider first a uniform distribution 

in transverse energy, 

(3.217) 

'where H is the step function. This corresponds to a parabolic beam density 

profile, 
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(3.218) 

where the beam density on axis, no and the current are related by l=tm2ecno/2 . 

The beam radius, a is related to ho by ho=kp2a2/4. For the parabolic profile Eq . 

(3.143) takes the form 

It 

{F)=~ fd h hF (h) 
ho o 

Thus <h>=(2/3)ho and <h2>=(1/2)ho2, and uh2=1{8. Equation (213) then 

predicts an increase in growth rate of about 4% in the cubic regime, while Eq. 

(3.216) predicts a 7% increase in the quadratic regime. 

e. Example: Gaussian profile. For a second example, we consider a 

Maxwell-Boltzmann distribution in transverse energy, 

This corresponds to a gaussian density profile, 

n ( r) = n0 exp (- ;~ ) 
I (3.219) 
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where the beam density on axis, no and the current are related by l=TCa2ecno. 

The beam radius, a is related to ho by ho=kp2a2j4. Equation (143) takes the 

form 

(F)=+jdhh exp(- ~ )F 
ho o o 

Thus <h>=2ho and <h2>=6h02, and ah2=1 /2. Equation (213) then predicts a 

correction to the growth rate of about 16% in the cubic regime, while Eq. 

(3.216) predicts a 25% correction in the quadratic regime. 

We conclude from this analysis that detuning spread due to a realistic 

beam profile does not seriously modify our estimates. Indeed, it appears that 

the most significant correction appears at order 0(1/,4) as indicated by the 

treatment in Sec. 3.B.e. No additional constraint has appeared in the course of 

this more rigorous calculation. 

Finally, it is worth pointing out that this analysis establishes that the 

instability does not depend on an inverted distribution in h (e.g., 8(h-h0)). 

D. RADIATION GUIDING 

In this section, we calculate the overlap integral, 11, in various regimes. 

The simplest estimate 1]-1 (perfect overlap) is adequate when the gain length 

is short compared to the Rayleigh length, Lg<<LR=na2jA,, where A=2nc/m. On 

the other hand, 
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while Lg>Ap. Thus diffraction is always important and, in this case, effects 

which provide guiding of the radiation must be included in our treatment. 

In fact, the strength of guiding is rather critical, due indirectly to a 

combination of two constraints previously discussed. We know that to avoid 

detuning spread, we must have ap2<0(p). On the other hand, the condition 

that beam space-charge be negligible (np>>nb/i) can be written v' <<ap2, where 

v'=l/qzlo. Now we observe from Eq. (3.106) that p=(T/v'/32)1/3 (in the fast-wave 

limit), and putting these two constraints on ap2 together, we have 

v'<<ap2<(7]v'/32)1/3, or T/>>v2f32. Thus guiding must not be so weak, and p so 

small, that the focussing strength consistent with small detuning spread is 

comparable to the beam self-fields. This constraint is not typically severe. 
' 

In this section, we consider: guiding by the ion-channel (viewed as a 

dielectric waveguide), guiding by a conducting waveguide, and optical 

guiding,16 an effect which arises from the resonant contribution to the 

refractive index. In principle one should incorporate all these effects into a 

single model. However, we will consider each separately since, in practice, 

only one dominates. 

We also should add a caveat that employing ion-channel dielectric 

guiding will depend on damping or reduction of the "electron-hose" 

instability, discussed in the previous chapter. 
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1. Ion-channel dielectric guiding 

Neglecting collisions of plasma electrons, the channel serves as a 

cylindrically symmetric, dielectric waveguide, with step discontinuity in the 

dielectric constant, 

e(r ,m) ={ 
1 

wj. 
1-

oi 

; r < b 

;b 5 r 

where r is the radial coordinate, r2=x2+y2. 

(3.220) 

Such a waveguide will always have at least one guided mode, the HE11 

mode. We proceed to apply the results of Marcuse17 to compute the overlap 

between this mode and the beam, in the limit m>>mp. The transverse vector 

potential is, 

; r < b 

mc2 
Ay = -e-A sin(C) 

; b 5 r 
(3.221) 

where ]n and Kn denote the n-th order Bessel functions.18 Equation (221) 

shows that within the channel the vector potential decreases away from the 

axis on the scale 1l1, and evanesces beyond the channel wall on the scale p-1. 

The quantities 1C and J.1 are determined from Maxwell's equations, 
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oY = C 2 k; + c 2 1C'- 1 

1C'- + J..L2 = k ~ 1 

and the continuity condition at r=b 

] 1 ( 1eb ) K/ J..Lb ) 
1C 10 ( 1Cb ) = J.l K

0 
( J..Lb ) • 

It is convenient to define a dimensionless "waveguide parameter" 

where, from Eq. (3.222),V is just the channel parameter of Eq. (2.15), 

v =k b p I 

(3.222) 

(3.223) 

(3.224) 

(3.225) 

In principle, V determines pb and 1eb through Eqs. (3.222) and (3.223), and, 

thus determines the efficacy of the guiding. It is not really surprising to see V 

appear again, since we are again considering shielding, albeit electromagnetic 

rather than just magnetic shielding. 

The total power is related to the dimensionless amplitude, A, according 

to 
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(JJ k b2 2 Ptot = Po c z A A 
' 

where Po=m2c5fe2-8.71 GW, and A is a dimensionless mode area, 

The power flowing through the beam volume is, for Kn<<l 

P - Lp SQ_k 2 A2 
b- 8 0 c za 

Thus the overlap integral is 

The Pierce parameter with dielectric guiding is then 

and the gain length (for J.l=O=O) is 
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25 13 ( r A )1 I 3 
Lg:::::: AR --

tr 31 I z " a) 
I 

(3.231) 

(AI though the actual gain length will of course depel}d on J.l and o, this is 

useful as a figure of merit.) Interestingly, the only explicit current dependence 

in Lg is through the dimensionless mode area, A. 

70 

60 

• 50 

< 40 -bO 30 0 -
20 

10 

1 2 3 4 

I(kA) 

FIG. 3.10. The dimensionless mode area, A, of the HE11 mode of the ion-channel, decreases 

sharply as a function of beam current I for I~ 2 kA. Plot of log10(A) versus I(kA) shows that A 

passes through about 70 orders of magnitude for I varying from 100 A to 4 kA. 

Now, characteristically plasmas shield currents on the scale of a 

plasma skin-depth, kp-1· On the other hand, in order for the radiation mode to 
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be confined to the channel, plasma currents must shield out the field over a 

length of order b. Thus for good guiding, we should require b>kp-1 or V>1. We 

make this more quantitative by solving for K:, J.l and A explicitly in the limits 

of weak (V~ 1), moderate (1~V~5) and strong (V>>1) guiding. 

a. Weak guiding. For V~1 (i.e., I~ kA), the solution of Eq. (3.223) is 

( 
1 lo (V) ) 

J.Lb ::= 2 exp ~ v lz (V ) - rE I 

(3.232) 

and K:b-V. The constant n-0.5772 is Euler's constant. In this regime, J.Lb<<l 

and the fields extend far beyond the channel. For example, J.Lb-0.2 for V=1. 

20 

10 

1 2 

I(kA) 

.. 

3 4 

FIG. 3.11. Plot of A113, the current dependent factor in the gain length of Eq. (3.231) varies by a 

factor of about 30 for I varying from 1 kA to 4 kA. 
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The mode area is 

(3.233) 

and is quite sensitive to current, as indicated in Figs: 3.10 and 3.11. For 

example, A1/3 ranges from A1f3-7x1010 for 1=0.2 kA to A1/3 -2.4 for J-2 kA. For 

V=1, A1f3-0.83. 

The dispersion relation is 

where 

. . ]z (V) 
szn(a) = ~ 

vBA 

(3.234) 

(3.235) 

The angle a is an increasing function of V, with a-12° at V=1. Thus for V~1, 

most of the radiation propagates outside the channel, in quasineutral plasma. 

b. Moderate guiding. For intermediate values of V (1~V~5) we have 

solved Eq. (3.223) numerically. In Fig. 3.5, A1/3 is plotted for the corresponding 

range of current (4 kA</<100 kA), and this plot complements Fig. 3.10. In Fig. 
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3.12, J.Lb and Kb are plotted versus V. Over this range J.Lb is nearly linear and is 

well-fit by J.Lb--0.92+1.11 V. 

0.8 

0.7 

Al/3 
1\.. 0.6 
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0.4 

0.3 .....___.__ ........ __. _ _,__...____._ _ _.._~~....-----__, 

0 20 40 60 80 100 

I(kA) 

FIG. 3.12. The dimensionless mode area, A, of the HE11 mode of the ion-channel, as a function of 

beam current I for 4 kM/~100 kA. 

Now, the HEn mode is unique in that it has zero cut-off and it should 

be noted that at high currents, other guided modes will appear. Each of these 

modes has a non-zero cut-off waveguide parameter, Vc>O, satisfying fn(Vc)=O, 

where n is the radial mode number. For the ion-channel this means that for 

each mode there is a minimum beam current, Ic-Io(Vc/4)2, required for 

propagation. At a given V, the number of additional modes above cut-off is 

just the number of solutions of fn(Vc)=O, with Vc<V. The next mode above 

the HEn mode corresponds to Vc=jo,1=2.405 Uc=24.6 kA). Thus for 1<24.6 kA 
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all modes are below cut-off, except the HE11 mode. The constant jn,s is the s-th 

zero of ln· For reference, the first five mode cut-offs are listed in Table 3.2.19 

s~~------~~------~~--~ 

4 

3 

2 

1 

o~----~----~------~----~ 
1 2 3 

v 
4 5 

FIG. 3.13. The parameters KZl and J1il from Eq. (3.223) and (3.224), as a function of the waveguide 

parameter, V. 

We also note that at high current the simple relation. between V and I 

is altered. When the skin-depth is small, plasma electrons drift appreciably in 

z, and the resulting "vxB" force tends to expel them farther from the channel. 

Asymptotically, for l>>lo, b-a(2nb/np)1/2, and V is bigger by a factor of order 

2112. Thus the cut-off currents listed in Table 3.2 should be considered 

approximate values, accurate only to within a few tens of percents. 
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c. Strong guiding. For V>>1, ,ub-V>>1 and the field evanesces rapidly 

outside the channel. The solution of Eq. (3.223) for 7dJ is 

(3.236) 

and the mode area is 

(3.237) 

Thus A asymptotes to a constant -3.34x1Q-2 independent of current. In this 

limit, the gain length from Eq. (3.231) is Lg-0.2J..p(r/ap)2f3 and has no explicit 

current dependence. The dispersion relation is just w-ckz, i.e., the fields are 

well confined to the channel and don't "see" the plasma. 

Table 3.2: Approximate currents at cut-off for the ion-channel waveguide. 

Vc lc(kA) 

jo,l=2.405 25 

h.r=3.832 62 

h1=5.136 112 

j02=5.520 130 

h1=6.380 173 

It is evident from these considerations that at high currents, typical, for 

example, of induction accelerators, dielectric guiding may be effective in 
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enhancing the overlap of the beam and radiation fields. In principle, this 

mechanism could be employed at very short wavelengths where machined 

waveguides would be inadequate, providing guiding of a sort not available 

for evacuated free-electron radiation devices. In fact, this mechanism can be 

tested and employed independent of the ion-channel laser 'instability. For 

example, it could be employed in an ordinary FEL to inhibit diffraction. 

2. Effect of Conducting Waveguide 

We shall find that, for operation of the ion-channel laser as a 

microwave amplifier, dielectric guiding is not quite as effective as guiding by 

a conducting waveguide. This may be seen from Eq. (3.232). For currents as 

high as a few kA and beam radii of 1 em or so, the field evanesces radially on 

the scale of a fraction of a meter, a larger scale than that of the beam pipe. 

Thus in the microwave regime, it is necessary to consider modifications due 

to the presence of a conducting waveguide. Such modifications have been set 

down by Orzechowski et al.,20 for the FEL, and we take them over directly for 

the ICL. 

a. Rectangular waveguide. Consider first rectangular waveguide with 

dimensions Wx>Wy· We consider operating in the TE10 mode, rather than the 

usual TE01 mode used in FEL work. This is possible since the beam electrons 

make only small excursions off-axis, unlike in the FEL. This choice of mode 

has the added advantage that, depending on the waveguide parameters, 

higher order modes may be below cut-off. The dispersion relation is 
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(3.238) 

where kJ.=rc/wx. We neglect the effect of the plasma in modifying the 

dispersion relation, in the limit kJ.>>kp. The overlap factor is 

(3.239) 

and we assume a<<Wx, so that the field does not vary appreciably across the 

beam. 

b. Circular waveguide. Next, we consider· a circular waveguide of 

radius R, operated in the TEo1 mode. The dispersion relation is that of Eq. 

(3.238) with kJ.=j'odR, where j'o1-3.832 is the first zero of Jo'. We will neglect 

the effect of the plasma in modifying the dispersion relation. The overlap 

factor is 

(3.240) 

using h(j10)-0.4027. We assume a<<R, so that the field does not vary 

appreciably across the beam. Note that three additional modes are above cut-

off, the TEn (kJ.=j'11/R, j'11-1.841), the TMo1 (kJ.=j01/R, jOl-2.405), and the TE21 

(kJ. =j' 21fR, j' 21-3.054). The incorporation of multiple mode effects in the 
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particle dynamics can be accomplished in a manner analagous to that for the 

FEL.21,22 

3. Optical Guiding 

It is evident from the dielectric constant given by Eq. (3.180) and (3.182) 

that t_he fast-wave interaction results in a modified index of refraction, which 

is complex and varies radially. This suggests the possibility of a waveguide 

effect due to the resonant interaction itself, regardless of other conducting or 

dielectric boundaries. Such an effect was noted by Scharlemann et a[.,16, and 

Moore,23 for the FEL. This "optical guiding" or "active guiding" and related 

topics have been studied in detail by Xie24,25 and others.26 In this section, we 
' 

shall give a simple approximate treatment of this effect in the ICL, which is 

valid in the limit of weak guiding. 

We return to and rewrite Eq. (3.152), in the form 

(3.241) 

using Eqs. (3.180) and (3.182). We remove the average over the radiation . 
mode cross-section, 

(3.242) 
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restoring the mode profile, b. We consider a step radial profile for illustration, 

so that H is the step function. We may describe this result in terms of a 

radially varying, complex dielectric constant 

{ 
1- of 2 

2 (I/I0 )X ;r <a 
t:(r)= a 

1 ; a ~ r (3.243) 

Consulting Eq. (3.182), we observe that this may be written, 

e( r) = { 
; r <a 

1 ; a ~ r (3.244) 

where 'and 8 are defined by Eq. (3.121). This corresponds to an index of 

refraction, n=n,+ini, where, for r<a, 

(3.245) 

Typically one distinguishes between gain guiding, where ni dominates, and 

refractive guiding, where n, dominates. In general, both contribute. 

We look for a solution for the radial mode of the form, 

202 



ir 

Chapter 3 Theory of the Ion-Channel Laser 

; r <a· 

b ( r) = 
;a 5 r 

(3.246) 

The quantities K' and Jl are determined from Maxwell's equations, 

or - k2 - ,2 c2 - Z I""' I 

( JLa )2 + ( 1al / = v2 (3.247) 

and the continuity condition at r=b 

(3.248) 

In Eq. (3.247) we have introduced the (complex) waveguide parameter 

(3.249) 

and it will be convenient to express V in terms of amplitude Vo and phase e, 
V=Vaei6. From Eq. (3.246) we see that the mode evanesces radially on a length 

scale 1/Re(JL). In particular, we require Re(JL)>O. 
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We will consider only the weakly guided regime, so that Re(J.l)a<<l. 

We will make the additional assumption I J.la I <<1. In this case, Eq. (3.248) 

may be solved approximately using the small argument expansions for the 

modified Bessel functions,27 

to find, 

(3.250) 

We may simplify Eq. (3.251) somewhat in the limit Vo<1, 

J.1.a ,., 2 exp(- L- r.) 
. v2 . E 

( 

e-2i9 ) 
,., 2 exp - 7 - YE 

0 • (3.251) 

Writing J.l. in terms of amplitude and phase we have J.J.=J.J.oexp(hp), where 

Jloa = 2 exp {- cos~/ 8! - r,} ' 
( .At.) ·{ . sin( 2 e) } "exp z'f' = exp z v; . 

(252) 
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Thus iP=sin(29)/Vo2 modulo 2n, and -nl2<iP<nl2 is required for guiding so that 

Re(J1)>0. 

Now, Eq. (3.252) is implicit in that the overlap factor, 7], depends on Jl, 

which in turn depends on V, which depends on 7J. To close this set of 

equations we need to compute 7J in terms of Jl. Having taken b(0)=1, the mode 

area is28 

I = 2 n J r dr I b ( r) 1
2 

0 

(3.253) 

Equation (255) gives for the overlap integral 7]=1Ca2ji, 

1 21 12 sin( 2 tP) 
7J ,.., y( Jloa) K0 ( Jla ) tP 

(3.254) 

As we would expect, in the limit iP-nr/2 (so that Re(J.l)-70), the mode extends 

to infinity and we find 7]-70. Equation (254) may be rewritten explicitly in 

terms of Vo and 9, using Eq. (3.252), 
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. (2 sin (2 8 ) ) szn 2 

{
- 2 cos (2 8) _ 2 r } Vo 

v; ' (sinv~o)) 
(3.255) 

Combining Eq. (3.255) with Eq. (3.249) provides an iterative algorithm for 

determining 7J and V. Now, in principle 8 must be solved for as well, 

however, we may distinguish two regimes where 8 is determined 

immediately and only Vo (or 7]) need be solved for (self-consistenly for the 

assumed regime). We discuss these regimes in turn. 

a. Small J.L, o limit (cubic regime). In the cubic gain regime, (+ is given 

by Eq. (3.112), (+=2pexp(2i7t/3), so that 

16a~ p 
v~ e2 ;s = exp ( - ilr/ 3 ) 

71 (3.256) 

Thus 8=-lC/6, and f/J=-31/2j2V02. The requirement f/J>-lC/2 then restricts Vo to 

Vo~0.743. Eq. (3.255) becomes 

4 1 { 1 } ( 3
1

' 

2 

) 7J :::;Fv; exp - v; - 2yE sin v; . 
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To solve this, we define Po such that p3=1Jpo3 (po is the Pierce parameter for 

perfect overlap), and a dimensionless parameter a=64p03/2ap3. Then from Eq. 

(3.256), 1J=G/Vo3, and we have 

4 { 1 } . (3 1 

1
2 

) G ""---fT2V0 .exp - - 2-- 2 Yr Sln - 2-
3 V0 V0 • (3.257) 

Since a is formally independent of 77 Eq. (3.259) is easily inverted numerically 

to give V 0 as a function of a. This is plotted in Fig. 3.14(a). The corresponding 

overlap integral77 is plotted versus o in Fig. 3.14(b). 

0.95 
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0.85 

0.80 

0.05 0.10 0.15 0.20 0.25 
() 

FIG. 3.14 (a)The modulus of the waveguide parameter IV I =Vo as a function of the 

dimensionless parameter G=64p0
312al, in the small Jl,D limit ("cubic regime"). This result is 

_well-fit by V0-0.74+0.94G. 
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For 0'<0.05, we may extract a simple analytic scaling law by 

approximating the curve of Fig. 3.14(b), with 7]-2.30'. Taking atJl=ap for some 

a-0(1) we find 7]-2.2 104 p06a:J, and p-28p03a-a(I/qzlo). Thus p-a(vi"'J where 

v=(//10) is Budker's parameter. On the other hand, the condition that beam 

space-charge be negligible (np>>nb/'of) can be written V<<atJl. Thus we must 

have a2>>0(1). This is incompatible with a-0(1). 

Essentially this argument shows that for effective optical guiding in the 

cubic regime, a>0.05 is required (i.e., larger 7]). Otherwise p is so small that the 

constraint on atJl, a{il<O(p), (imposed by the limit on detuning spread) 

ultimately implies that focussing is too weak,aj-v. 

0.2 

0.1 

0.05 0.10 0.15 0.20 0.25 

0" 

FIG. 3.14 (b)The overlap integral for the optically guided mode in the cubic gain regime, as a 

function of fhe dimensionless parameter a=64p0
312aj, corresponding to the solution of Eq. (3.256) 

as depicted in Fig. 3.14(a). For 0'<0.05, this result is well-fit by T]-2.3a. 
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b. Large 8 limit. We tum then to consider operation at large detuning. 

In this case, from Eq. (3.130), we have 8+C+-8, so that guiding is primarily 

refractive. The waveguide parameter is, 

I 

and will assume 8<0 so that V is real and 9=tfr-O. 

lVI 

(J'' 

FIG. 3.15. (a)The modulus of the waveguide parameter I VI = V 0 as a function of the 

dimensionless parameter d=8arJ181, in the limit of large detuning, as given by Eq. (3.258). 

The overlap integral is 
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4 {-2 } 1] = -exp -- 2 y; 
~ y2 E 

0 0 , 

and we note that this expression is just the usual weak guiding result (as in 

(J' 

FIG. 3.15 (b) The overlap integral for the optically guided mode in the limit of large detuning, 

as a function of the dimensionless parameter a'=8aj I ol, corresponding to the solution of Eq. 

(3.258) as depicted in Fig. 3.15(b). For a'<l0-3, this result is well-fit by 1]-2.032 (a')0.903. 

Eq. (3.229), with appropriate modifications). We define a parameter d=Ba{ll 81, 

which is formally independent of 1]. Using V02=d/1], we obtain Vo implicitly 

as a function of d (analagous to Eq. (3.257), 
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(3.258) 

The dependence of Vo and 17 on a' is depicted in Figs. 3.15a,b. 

With a bit of algebra it is not hard to see that this refractive guiding 

regime scales more robustly than the zero detuning case. For illustration, we 

select the optimal detuning given by Eq. (3.132). In this case, 

~ = 
8 ~ (- 1 + i) =a~(- 1 + i) , 

J.L 

1 ,.t p3 
8 =---=-4-

16 p3 a~ ' 

so that a'=321]2/3p02fa, where we take arJ2=ap for some a-0(1). For o'<l0-3, we 

fit 7J(a') by 7]-2.032 (cf)0.903. It is then straightforward to solve f<?r p and we find 

p-24.9p02.513ja0.756, or 

p = 1 . 36 era 756 yO .sJS • 

The condition arJ2>>v may then be written, a>0.28y0.672 and this is not usually 

inconsistent with the requirement a<0(1). For example, consider a 50 MeV 

beam with. 1=100A. At this current, ion-channel dielectric guiding is 

ineffective, while the wavelength will likely be in the infrared making the 

use of a waveguide impractical. For this example, we compute v-6x1o-s, and 

taking a-0.5, we find p-6x1 Q-4. For the same current, at 2 MeV energy, we 
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find p-1%, corresponding to an output power at saturation on the order of 1 

MW. 

We also note that for a controlled experiment it may be important to 

remove the quasineutral plasma surrounding the ion-channel (by lowering 

the intensity· of the ionizing ·laser and producing fewer free electrons). In this 

case, active guiding will be important even for high currents. As an example, 

taking 1=4 kA and 50 MeV, we find p-1%, corresponding to an output power 

on the order of 2 GW. 

We may conclude from this work that refractive guiding in the large 

detuning limit will be quite useful depending on the regime of interest. 

E. EXAMPLES 

In this section, we apply the scalings derived in Sees. B-D, to fashion 

several numerical examples of ion-channel laser performance from 

microwave to X-Ray wavelengths. We consider four numerical examples for 

which parameters are given in Table 3.4. The results have been checked with 

a many-particle simulation based on Eqs. (3.22)-(3.26) and (3.98). The first 

example was also checked with a ·simulation following the full equations of 

motion derived from Eq. (3.4) (i.e., Eqs. (3.6)-(3.8) and (3.98)). We postpone· 

discussion of numerical results to the next chapter. The numerical values 

quoted assume ion-channel dielectric guiding, and the gain lengths and 

efficiencies are for J.l.=O=O. Nevertheless, other regimes are of interest as well 
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(Table 3.3) and we will explore these in the numerical work of the next 

section . 

Table 3.3. Minimum gain length seatings 

Cubic gain regime (aj>p): 

r 
A. II ;o0 =0 ,O,<p 

2n3
112

p 
L, ~ 1 ~(t.) . 0. = - _1_ t. 0. > p 

16 1r !I , 0 16 p3 , • 

Quadratic gain regime (aj<p): 

L ... ~{1 -L(~)2}-l 
' 2 1m~ 6 a~ 

!I 
·0.=-4-, 0 4 

all 

It is also worth noting that, in the first example (microwave regime), it 

would be most natural to confine the radiation in a conducting waveguide. 

Taking a 3 cmx5 em waveguide, operated in the TE10 mode, the overlap factor 

is 1]-0.2, and the Pierce parameter is p-8%, for a gain length of Lg-45 em. The 

output power would be on the order of 600 MW. The beam parameters for 

this example are quite practical, corresponding roughly to what has already 

been achieved with induction linear accelerators.29 
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Table 3.4: Examples of Ion Channel Laser Seatings. 

Microwave Millimeter Infrared X-Ray 

).(em) 2 510-2 1 10"3 1 1~ 

E(MeV) 2 4 10 100 

I(kA) 4 4 4 4 

En(cm-rad) 310•1 110-2 510"4 310"5 

n (cm·3) p 61010 81012 11015 21019 

L8 (cm) 70 16 4 0.2 

A.rJcm) 4101 5 610"1 210"2 

rj(ns) 2101 1 0.1 11Q-3 

ap 0.6 0.5 0.4 2 

a( em) 1 71o-2 310"3 41Q-5 

p(%) 5 3 1 1 

Psat(GW) 0.4 0.5 0.6 3 

Nh 3 6 11 14 

In selecting these examples, the most severe constraint was found to be 

the condition ap2<0(p), which is marginally satisified in the first three 

examples. To exhibit the consequences of this constraint, the fourth example 

was designed with a large ap. It should be emphasized, however, that such an 

X-Ray laser could not be realized without a sharp distribution in axial 

velocity, corresponding to a step radial profile, a spinning or otherwise 

specially prepared beam. In the first three examples, the plasma densities 

required are not out of the ordinary. For the fourth example, the plasma 

density is high; however, it need only be maintained over a few centimeters. 
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For completeness, we review the considerations of Chapter 2, for these 

examples. Scattering with the neutral atoms and ions of the gas will results in 

emittance growth. The increase in normalized emittance in one betatron 

wavelength is L1en=47rreZ2 ln(8max/8min>ff, where f is the ionization fraction, re 

is the classical electron radius and 8maxl8min - 5.26 104/(AZ)l/3. Z is the atomic 

number, and A is the atomic weight. For the examples, below, we take Z-50, 

A-100 and f- 10%, corresponding to Lien- 10-6 cm-rad. This is typically small. 

Most beam-plasma instabilities will be rather benign for typical 

parameters; however, growth of the ion-hose instability30 is not always 

negligible and the number of ion hose e-folds at saturation, N h, becomes 

severe at shorter wavelengths. However, it can be reduced by further 

shortening of the REB pulse length, -r. 

To summarize, we have seen that the ion-channel laser is viable high

power, high-efficiency source of coherent radiation across the· spectrum. 

Needless to say, before proposing a practical experiment based on any of these 

examples, one should ask whether any experiment has already been 

performed which might in some way confirm theory. This appears to be the 

case, as we shall discuss next. 
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F. ION-CHANNEL LASER IN THE OVERDENSE REGIME 

Ion neutralization of the beam on the ro(l time scale imposes a 

significant constraint on beam length and this motivates the study of the 

analogous instability of a magnetically self-focussed beam (nb<np). This 

regime is also of special interest in that experimental evidence has already 

been found, of coherent radiation from intense electron beams injected into 

overdense, unmagnetized plasmas.31,32 Explanations offered for the high 

microwave power levels observed have included streaming instabilities, 

strong-turbulence, and virtual cathode oscillations. Kato et ai.,31 remark on 

the possibility of an FEL analogy based on jitter motion in "large-amplitude 

electrostatic waves generated by instability"; however, to date, no satisfactory 

theory has been set down to explain the measured power levels. We propose 

the ICL instability as a possible mechanism. 

Examining the single particle motion, we observe that the 

Hamiltonian of Eq. (3.3), takes the form 

(3.261) 

where Pz is the canonical axial momentum 
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In Eq. (3.261), we have set qJ-0 from quasi-neutrality. The axial vector 

potential, Az, is due to the axial beam current, together with any plasma 

return current.33 For a step radial profile (a crude approximation, in 

particular, for the plasma return current) 

(3.262) 

Note that here the assumption of a step radial profile takes on additional 

significance in that, with it, the restoring force is linear. For realistic beams, 

nonlinearities in focussing will introduce detuning spread and reduce gain. 

With this approximate form for the Hamiltonian, the problem is 

formally identical to that describe by Eq. (3.3), i.e., the potential of Eq. (3.1) is 

replaced by eAz. There are some important differences, of course, even in this 

idealized model. For example, now "i' is constant at zeroth order (whereas 

previously it suffered a small jitter). We still have Pz constant at zeroth order, 

from translational invariance. 

Table 3.5. Parameters for the experiment of di Capua, et al. 

1=50 kA 

-r=60ns 

a-7.5 ern 

217 

Inet-25 kA 

R-33crn 

rzp-4 x1Q1D crn-3 

L-SOcrn 



Chapter3 Theory of the Ion-Channel Laser 

Although this problem is deserving of a detailed analysis in its own 

right, we may make some simple estimates merely by identifying, 

kp-(2lnet!rJo)1/2ja and ap-(rJnetflo)1/2, and carrying over the scalings laws 

developed for the underdense case. We consider then the experiment of di 

Capua, et al. 32 Parameters are listed in Table 3.5 (where R is the circular beam 

pipe radius and L is the propagation length), and analytic estimates are given 

in Table 3.6. In this experiment, microwave emission was measured from a 

relativistic electron beam propagating through an unmagnetized plasma. The 

power as a function of time was measured in frequency bins ranging from 2-

47GHz.34 

Table 3.6. Estimates for the experiment of di Capua, et al. 

ap-2.3 

V-3.4 

/p-3 GHz 

2jfp-19 GHz 

p-45% 

Lg-9cm 

2-ffp/(1 +aj)-3GHz 

Powt-32GW 

A number of features of this experiment presented anomalies. Two of 

these were the large microwave power radiated (they estimate 4% conversion 

of beam power to microwave power), and the spectrum, which extended far 

above mp, and resisted explanation. A number of the observations in the 

paper are particularly notable: 
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" ... Electron acceleration due to the self-magnetic field of the beam is capable 

of producing synchroton radiation. However, the power levels previously 

observed are substantially higher than those expected on the basis of a single

particle model, indicating that it is necessary to have bunching of the electron 

beam as well. The growth of the radiation could conceivably provide the 

mechanism for such bunching, but it is not at all clear to what extent that occurs 

in our experiment." 

and later 

" ... The Compton boost model proposed in [8] [K. Kato, et al., Phys. Fluids 26, 

3636 (1983)] predicts a frequency upshift in the emissbn from fp to ifp· In our 

experiment, this would correspond to emission at about 35 GHz; we do observe 

emission at this frequency and beyond. Unlike the res~4lts of [8], however, we 

observe a decaying spectrum, not one in which the emitted microwave power is 

uniformy distributed over a wide range of frequencies ... " 

Thus the experimentalists observed large microwave emissions at 

frequencies far above Wp, and theory did not provide them with any 

qualitative or quantitative explanation for their ob':\ervation. Of course, there 

are a number of factors which complicate any clear understanding. Among 

these are time variation in plasma density (also anomalously high) and 

virtual cathode oscillations. Recognizing that this experiment does not 

represent an ideal test of ICL theory, we may nevertheless make simple 

comparisons. 

Now, the experimental results are characterized by overall efficiency of 

about 4% (mostly at Wp) and a broad-band spectrum extending far above Wp· 
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The naive estimate of efficiency gives 45%, which of course one has no reason 

to expect given the highly nonlinear focussing and spreads in momenta, 

associated with the large value of ap-2.3. Thus comparison of efficiency is not 

particularly fruitful. On the other hand, the spectrum as given in Fig. 3 of 

Ref. 31 is quite interesting. For late times (t>120 ns), when the current has 

dropped to 1-10 kA (corresponding to a reduced ap-1), it reveals a plateau in 

the 18-20 GHz and 20-22 GHz windows, bracketing, the expected resonance 

near 2-ffp-19 GHz. In this time range all other frequency windows give no 

reading observable on their plot. This is indicative of a sharp resonance. This 

could be explained tentatively from the result for the resonant frequency: 

m-kzvz-mp. An electron with small transverse energy (small ap) is resonant 

with m-2-fmp, while electrons with large transverse energies are resonant 

with m-2-f m{J!a{il. At later times, many more electrons have small ap. 

One other feature should be noted. Based on the estimates of Sec. D, we 

would expect dielectric and active guiding to be quite strong. Now the 

detectors used in the experiment were mounted on the side of the beam pipe, 

33 em from the center of a 7.5 em radius beam. Even in the overdense regime, 

one expects an optical fiber effect (analagous to ion-channel dielectric guiding) 

due to the radial variation in plasma electron density. A simple estimate 

gives a fiber parameter of V -3.4. Consulting Fig. 3.13, we see that the radial 

mode would then evanesce on a length scale of a/3-2.5 em. Thus the power at 

the wall would be much reduced from that flowing through the beam 

volume. We may conclude that the power levels measured were not 
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accurately calibrated and probably represent underestimates of the total 

radiated power. This is particularly true of higher frequencies, and may 

explain in part the observed exponential fall-off in the spectrum. 

One cannot cite these experimental results as evidence confirming the 

theory of the ICL as set forth here. However, they don't contradict theory, and 

they provide strong motivation for further, more controlled, experimental 

work. 

As for other experimental evidence, it seems likely that some form of 

the ion-channel laser instability will appear naturally, in astrophysical 

circumstances and its applicability to solar bursts merits further study.31,35 

G. SUMMARY 

In conclusion, we have presented the concept of the ion-channel laser, 

together with a theoretical formulation. Several novel features were noted. 

First, the electromagnetic instability itself, and the resonant damping of the 

transverse motion for a weakly driven oscillator. We examined the dielectric 

guiding effect of the ion-channel, noting that it may ultimately prove to be 

problematic due to the electron-hose instability. We also found that, as in the 

FEL, there is an optical guiding mechanism which is quite effective 

depending on the regime of operation. 

Given the practical difficulties typically associated with manipulating 

plasmas, it is important to recognize the advantages to be gained. Perhaps the .,.. 
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primary advantage of the ICL over the FEL, is the short betatron wavelength 

achievable in a plasma. To reach a given wavelength with the ICL, a lower 

beam energy may be used than in an FEL, resulting in higher efficiency and a 

more compact accelerator. Indeed, with optical guiding, operation in the 

visible spectrum with under 100 MeV appears possible. Economically, 

plasmas are "cheap", since one trades the cost of magnets and power supplies, 

for the cost of a laser. 

A disadvantage of the ICL is that the "pump-field" is unstable. 

Fortunately, ion-motion represents a cumulative, electrostatic instability, 

with zero group velocity, while the ICL instability is electromagnetic, 

propagating with a beam slice, with only small slippage. Thus, a reduction in 

the pulse length, -r, lowers the growth of ion instabilities, while not reducing 

the peak laser power, or efficiency. 

Another disadvantage is that in using a plasma, results will be subject 

to axial and radial variation in the plasma density. Axial variation in np, 

especially on the scale of a betatron period, will tend to disrupt the resonance. 

Radial variation in np will make focussing nonlinear, damping growth. Thus 

in any proof-of-principle experiment, control of and diagnostics for the 

plasma will be rather crucial. 

Of course, before proposing a practical experiment based on any of these 

examples, one should perform detailed numerical simluations to confirm the 

theory. This is the subject of the next chapter. 
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Chapter 4: Numerical Simulations 

" ... this free-electron laser is to be three or four miles 

long, its main apparatus buried in concrete tunnels 

beneath the desert . . . just cooling the giant laser will 

require an estimated 450 million gallons of water a year ... " 

-William J. Broad, "Anti-Missile Laser Project Is 

Delayed Nearly 2 Years", New York Times, 4/17/88 

In this chapter we study numerically some example ion-channel laser 

"designs". These numerical simulations provide us with an opportunity to 

check the theoretical scalings, and to confirm the eikonal model. The 

numerical approach also provides us with a straightforward method of 

following the dynamics through saturation, and studying the effect of 

detuning spread on gain length and efficiency. 

In Sec. A, we describe the numerical codes we will use. With these 

codes, we proceed to examine the, examples set down in Table 3.4. 

In Sec. B, we consider variants on the microwave design. We compare 

ECL, FULLCL and theory, finding good agreement. We examine the 

consequences of optical guiding, ion-cl-~nnel dielectric guiding and the 
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introduction of a waveguide. We also examine the effect of detuning spread 

due to spreads in axial momentum and due to a spread in transverse energy. 

Finally we consider the effect of errors in plasma density. 

Having established confidence in the theoretical scalings in Sec. B, we 

go on in subsequent sections to consider examples at shorter wavelength, in 

somewhat less detail. 

In Sec. C we consider variants on the sub-millimeter example. We first 

consider a high gain experiment using a beam typical of induction linacs. We 

then consider a low gain example making use of a low current, low emittance 

beam typical of a storage ring. 

In Sec. D, we consider a high gain 10 ~m amplifier, and, in Sec. E, we 

consider an X-ray laser, which, is severely constrained by the requirement on 

detuning spread, and probably cannot be realized practically at present. This 

example, does however, provide considerable motivation for further work. 

In Sec. F, we offer some conclusions for future numerical and experi

mental work. 

A. THE CODES: ECL AND FULLCL 

We will use two codes, ECL and FULLCL, each running on a VAX 8650. 

The code ECL solves the betatron-averaged equations, Eqs. (3.22)-(3.26), 

combined with Maxwell's equations, Eq. (3.95). The code FULLCL solves the 

full equations of motion, Eqs. (3.6)-(3.8) and (3.95). Each codes relies on a 
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fourth-order Runge-Kutta advance in t. Each makes use of a complex field 

variable (B=Aei«P), advancing the real and imaginary parts. 

Note that, consistent with Eq. (3.95) there is no radial solver, and no 

slippage. The codes merely follow one beam slice and its comoving eikonal, a 

system of ordinary differential equations, rather than the full partial 

differential equations. Thus we cannot fully model sidebands, oscillators, 

lethargy, diffraction, or optical guiding. We also cannot incorporate beam 

break-up, or cumulative plasma effects. Needless to say, all these effects 

should eventually be modelled. On the other hand, simple simulations such 

as discussed here provide considerable graphic insight into the beam 

dynamics, finite temperature effects, and the approach to saturation. These 

codes are also enormously faster. 

Each code checks energy conservation through the integral of Eq. (3.97) 

and quotes a fractional numerical error given by 

_ E1 - Ei 
E;,,.m - T}m; ( &-/ ) 

(4.1) 

where <L1H> is the average change in energy of beam electrons. Et and Ei are 

the final and initial values of E. Thus for example a numerical error of 

enum-1 x1 o-2 (a typical value) for a result of 100 MW of output power, 
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corresponds to an absolute error of 1 MW. The integrals, ci>x, ci>y, and ci>z of 

Table 3.1 could also be used to double-check the accuracy of the numerical 

algorithms, however this has not been implemented yet. 

The initialization and time constraints of each code are rather different 

so we discuss them separately. 

1. Eikonal ICL Equation Solver (ECL) 

In this code, the particle variables are z=kzz-wt+8y, qx, qy, and qz, as 

defined in Eqs. (3.9) and (3.94). Note that the variables 8y and 8x are ignorable. 

ECL integrates the betatron-averaged equations, Eqs. (3.22)-(3.26), combined 

with Maxwell's equations, Eq. (3.95), using a standard fourth-order Runge

Kutta algorithm. 

a. Inputs. The inputs for ECL are: 

En rms normalized emittance, 

I beam current, 

H beam energy, 

A. resonant wavelength (free-space), 

Po input signal power, 

L1m detuning. 

In addition, the user specifies momentum spread (ah or t1pz1Pz) and 

numerical variables, N X' Na, Nh, e, Nt as described below. The user also 

specifies the guiding option of which there are three: 
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(1)ion-channel dielectric guiding (code computes overlap), 

(2)conducting waveguide (user specifies dimensions, code computes overlap, kz, k.L, etc.) 

(3)user-specified overlap (code assumes fast-wave, m=ckz). 

Other significant quantities are determined implicitly from the following 

relations: 

[resonance relation, Eq. (3.16)] 

[dispersion relation, Eq. (3.238)] 

[emittance, Eqs. (3.81), (3.69) 1 

[beam density] 

[plasma wavenumber Eq. (3.1)] 

[plasma density] 

where re is the classical electron radius, re:::e2fmc2-2.8x10-13cm. ECL solves 

these equations iteratively, rejecting a parameter choice which would result 

in an overdense plasma (np>nb). 

b. Initialization. Particles are initialized in z, with a uniform 

distribution -Jr<X< 1r, over N z values. The initialization in qx and qy 

corresponds to qx=qosin( a), qy=qocos( a), where a is distributed uniformly over 
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the interval O<a<(l-e)n/2, with N a values. Results are not sensitive to the 

value of e, and typically, e-10-2. The quantity qo=21/2ap, for a step profile. To 

model a more realistic profile, we use a distribution of N h values of qo 

satisfying <qal>-2ap2, and a user prescribed value of the rms deviation 

(4.2) 

where the subscript "h" refers to the transverse energy, of Eq. (3.141) which is 

proportional to q0 • The quantity ap is determined from the normalized 

emittance of the beam, and the user specified resonant frequency. 

Detuning spread is modelled with a uniform distribution over qz, qzo

q5<qz<qzo+q5, or, alternatively, with the distribution over qo mentioned above. 

It will be convenient to refer to the dimensionless detuning spread, 

qs 
&=1.5q 

0 ' (4.3) 

and to the total fractional momentum spread, 

(4.4) 

In Eq. (4.3) the factor 1.5 appears instead of 1.0 (as in an PEL) due to the 

relativistic mass dependence of the betatron frequency. 
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Note that Os should be distinguished from the average detuning of the 

ensemble, 8o 

(4.5) 

where the angle brackets denote an average over the ensemble. 

c. Numerical requirements. For a cold beam (no detuning spread) all 

particles are initialized with the sa;me qz and q0• The number of macroparticles 

needed may be detemined from the requirement that the initial values of 

<sinz>, <cosz>, <sin(2z)> and <cos(2z)> are small (theoretically, they are 

zero). This requirement, which insures that the beam is not prebunched, can 

be satisfied by any distribution which is symmetric under the transformations 

x~-x and x~x+n/2. For N values specified on the interval [0,7t/2], N x=4N 

macroparticles are required. As for the variable a, results are not sensitive to 

the distribution, provided the value of <ql> is correctly fixed at <ql>=ap2. 

Thus in general the number of macroparticles required to model a cold beam 

is of order N p= NaN x-1 02-103. Modelling momentum spread requires 

Np=NhNaNz-103-104, i.e., an additional factor of ten or so in the number of 

macroparticles. 

The number of steps in t, Nt, required to evolve the system through to 

saturation is typically quite small, on the order of 100-500. This is because all 

quantities vary as the larger of the growth rate or the detuning (and because 

we are using a fourth-order differencing). Thus the number of betatron 
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periods does not enter the time-step scaling, making this code particularly 

efficient for low gain simulations. 

2. Full ICL Equation Solver (FULLCL) 

In this code, the particle variables are x, px, y, py, C, and pz, where C=kzz

mt. The code integrates the full equations of motion, Eqs. (3.6)-(3.8) and (3.95), 

using a standard fourth-order Runge-Kutta advance in t. 

a. Inputs. The inputs for FULLCL are: 

En rms normalized emittance, 

I beam current, 

H beam energy, 

rip plasma density, 

(J) input signal frequency 

Po input signal power, 

In addition, the user specifies the number of particles, Np, and the number of 

time-steps Nt. There are three guiding options as for FULLCL. If a waveguide 

is used and w is below cut-off, or, if the self-consistent beam density is less 

than np, the parameter choice is rejected. Unlike ECL, there are no implicit 

algebraic relations to solve. FULLCL computes ap, intializes the beam and 

integrates in t. 

b. Initialization. The initialization is most easily described in terms of 

eikonal variables. (Note however, that eikonal variables are not actually used 

• 
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to solve for the particle motion.) Particles are initialized in Bx, By uniformly 

over (-1t, 1t). The initialization in qx and qy corresponds to qx=qosin(a), 

qy=qocos( a), where a is distributed uniformly over OsaStr/2, and qo=2 1 12a~. 

There are Np1/3 values for each distribution (i.e., in a, Bx, By). Particles begin at 

t=O with the same C and Pz· 

c. Numerical requirements. From the reasoning given in Sec. 1, we see 

that the number of particles required will be of order Np-103-104. In practice, 

we find fair agreement with ECL and theory for as few as -103. 

The number of steps in t (Nt) required to evolve the system through to 

saturation scales directly with the number of betatron periods. (With the 

fourth order differencing, one may use as few as 30 steps per betatron period.) 

This constraint, combined with the large number of particles required, 

generally limits the application of this code to problems where gain is high, 

and saturation is reached in about ten betatron periods. This typically 

corresponds to the microwave regime. Due to the large number of particles 

and time-steps required, this code does not model detuning spread. 

We proceed to study the examples of Table 3.4, using the codes ECL and 

FULLCL. 

B. MICROWAVE EXAMPLES 

In this section, we consider ICL designs in the microwave regime, with 

parameters as given in Table 4.1, but subject to different guiding mechanisms, 
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and for various values of detuning spread. These beam parameters are typical 

of what can be achieved with an induction accelerator. The wavelength was 

chosen somewhat arbitrarily within the range 11-23 GHZ. This range has 

attracted considerable interest in the microwave power source community, 

for application in a future TeV-energy linear collider. 

Our discussion of this example will be fairly detailed. We will first 

consider an ICL relying solely on ion-channel dielectric guiding. We will go 

on to consider the effect of optical guiding and we will find that it is in fact 

very important. We will also consider the effect of introducing a 3cmx5cm 

waveguide and we will find that it provides an overlap integral (7]) 

comparable to that from optical guiding. In presenting the results based on 

these three guiding mechanisms, we will have established that a practical 

experiment is possible and that the signature of the different guiding 

mechanisms would be clear, experimentally. 

In addition, we will use these examples to check the conclusions of 

Chapter 3, relating to particle motion, gain, effects of detuning and detuning 

spread and the like. Our analysis and survey of parameter-space will not be 

exhaustive, but, hopefully illustrative. In the course of this more or less 

tutorial example, we will have shown that, even in the presence of realistic 

momentum spreads, significant amplification (i.e., a positive experimental 

result) can be expected. 
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Table 4.1. Parameters for Microwave Examples 
{'• 

A.( em) 1.75 

E(MeV) 2 

l(kA) 4 

e"(cm-rad) 0.25 

np(cm-3) 6.21010 

A.tf.cm) 36 

a( em) 1 

afJ 0.57 

Po 50kW 

1. Ion-channel dielectric guiding example 

For this first example, we will assume that the beam pipe is sufficiently 

large that ion-channel dielectric guiding dominates. Now the channel radius 

is b-a(nblnp)1/2-2cm, and the fiber parameter is V -1, from Eq. (3.225), while, 

·from Fig. 3.13, J.L-0.25/b. Thus the ion-channel, HEu mode evanesces radially. 

on a length scale J.l.-1-B em. We assume a beam-pipe radius of perhaps-30 em 

or more and proceed to compute the cubic gain regime seatings for this 

example. 

At 4 kA, the dimensionless HEn mode area is from Eq. (3.233) (or Fig. 

3.11), A-0.7. We compute an overlap integral 1]-6.3 x10-2, from Eq. (3.229). 

From Eq. (3.106) this gives a Pierce parameter p-5.5%, and a gain length from 

Eq. (3.118) of Lg-67 em. The beam power is about 6 GW, so we expect the 
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saturated output power to be about 5.5%x6 GW-330 MW. We will assume an 

input power Po- 50 kW (a typical figure for a magnetron), and this implies 

roughly a length of Lsat-0.5 Lg ln(9P5at/Po)-4 m, for saturation, where the 

factor of 9 arises from Eq. (3.114). 

Table 4.2. Comparison of ECL, FULLCL and Cubic Gain Results 

Cubic Gain 

ECL 

FULLCL 

Psat 

330MW 

392MW 

384MW 

efficiency 

5.5% 

6.6% 

6.4% 

4m 

4.8m 

4.6m 

a. Summary of ECL Results. We turn next to compare these predictions 

to the results of simulation. We followed the eikonal equations through 

twenty betatron periods, using Nt=198 steps in t and Np=1600 particles. The 

initial values of the the sine and cosine averages were <sin(z)>--3x10-11 and 

<cos(z)>-3x10-8. These are sufficiently small that we may consider the beam 

unbunched. Results from ECL are depicted in Figs. 4.1-4.3. Saturation is 

reached at Lsat-4.75 m, with an output power of 392 MW, for an efficiency of 

6.5%. The numerical error in energy conservation is Enum-3x1Q-2 % (12 MW). 
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FIG. 4.1. Results from the eikonal equation solver, ECL, for (a) power in GW versus z (b) beam 

energy versus z, (c)power in watts on a log scale (compared with the analytic result of Fig. 3.4a) 

and (d)eikonal phase, qJ in radians versus z (to be compared with Fig. 3.4b). Parameters are as 

in Table 4.1, and we assume only ion-channel dielectric guiding. 
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FIG. 4.2. ECL result for (a)dimensionless average axial momentum and (b)dimensionless 

transverse momentum amplitude, for the parameters of Table 4.1. Comparing this plot with 

Fig. 4.1(b}, we see that <pz> follows H, as would be expected from the integral t/:Jz;, of Eq. (3.73). 
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FIG. 4.3. ECL result for (a)the average of cos(ljf) and (b)the average of sin(ljf) over the ensemble, 

versus z. We observe that peak power in Fig. 4.1a, and the zero of <sin(ljf)> coincide, as would 

be expected from Eq. (3.96). 
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b. Comparison with FULLCL Results. Next we compare these results to 

those obtained from FULLCL, by solving the full equations of motion. We 

used Nt=500 steps in t, and Np=1000 particles. The initial values of the the 

sine and cosine averages were <sin(8x,y)>-1Q-lO and <cos(8x,y)>--1Q-7. We find 

saturation at z-4.6 m (versus 4;8 m for ECL), with an output power of 384 MW 

(versus 392 MW for ECL, for a difference of about 2%). The numerical error in 

energy conservation is Enum-lxl0-2 % (i.e. 4 MW). Generally agreement 

between theory, ECL and FULLCL is good as we can see by inspecting Fig. 4.4 

(also, Table 4.2). A comparison of the results for phase advance is plotted in 

Fig. 4.5, also giving good agreement. 

We also observe in Fig. 4.4, a discrepancy between the slope of the cubic 

gain regime analytic curve and the numerical results. This is due to the 

nonnegligible value of J.Lip-1.2. Consulting Fig. 3.8a, we see that the growth 

rate will be only 87% of the J1.=0 value, corresponding to the lower slope 

observed in Fig. 4.4. 

The FULLCL code also shows that the beam centroid develops a 

coherent oscillation, as depicted in Fig.4.6. Inspecting this plot we see that the 

amplitude is <py>-0.25 in rough agreement with the theoretical estimate of 

Eq. (3.120) <py>-ap/2312-0.21. In addition, we find a decrease in the rms 

normalized y-emittance from 0.25 cm-rad to 0.20 cm-rad, or L1Eny1Eny-20%. this 

is in rough ·agreement with the theoretical estimate of Eq. (3.82), 

L1Eny1Eny-(Mi/H)/apl-14%. Emittance versus z is depicted in Fig. 4.7. 
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FIG. 4.4. Comparison of theory (straight line) with the results of the ECL (smooth curve) and 

FULLCL (tortuous curve) results for power in gigawatts vs z. 
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FIG. 4.5. Comparison of the phase advance computed by the ECL code (smooth curve) with that 

of FULLCL (tortuous curve) . 
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FIG. 4.6. They-momentum, averaged over the ensemble is plotted versus z. As the beam 

approaches saturation a noticeable coherent oscillation of the beam centroid develops. 
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FIG. 4.7. The normalized rms y-emittance decreases near saturation, consistent with 

conservation of lPy [Eq. (3.77)]. 
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c. Particle Motion. With working codes in hand, it is straightforward to 

follow the particle motion in detail. Making use of ECL, we plot a 

reperesentative sample of' the beam (particles #600-#700), in the 111-qz plane, at 

various positions in t, in Figs. 4.8(a)-(d). Rather than simply depicting a 

"snapshot", each of these plots includes a range of values in t, so one can 

view the particles position and the tangent, and thereby discern the character 

of the motion. 

4P---~--~----.---~--~.----.---~--~----.---~ 

-2~ 

.: 
.:: 
::: -------.. • • 
' --= --= ---.. • • 

. 

. 

. 

Fig. 4.8(a). Orbit segments for one-hundred representative particles for 0<z<0.4 m. We see that 

particles were intialized on the interval (-7t,+7t), all with q;r.-3.7. We also observe that 

particles with sin(yt)>O initially drift backward in q;r. (lose energy) and vice versa for sin(yt)<O, 

all as one would expect from Eq. (3.24), i.e., dqJdt oc-sin(llf). 

Inspecting these figures we observe three qualitatively different kinds 

of orbit. One class of orbits resembles very much what one observes in the 
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FEL, while the others appear to be more weakly perturbed. This can be 

understood from Eq. (3.32), and the variation of the bunching parameter I 

with qy. In the sample of particles we have taken, there are three different 

values of qy, and hence three qualitatively different orbits. 

4 

2 

'I' 0 

-2 

-4 
3.6 3.7 3.8 

qz 
Fig.4.8 (b). Orbit segments for the particles of Fig. 4.8(a), for 0.7<z<1.1 m. We observe that 

some particles are remaining nearly stationary in qz. These are just the particles initialized 

with small qy. 

These plots illustrate the competition between axial bunching and 

forced de bunching, i.e., the effect of the "IT' term (de bunching) in Eq. (3.65) in 

competition with the "E" (bunching) term. The transverse motion of small qy 

particles is strongly perturbed by the growing fields, and these particles 

oscillate with ever large amplitude, extracting energy from the fields through 

the ponderomotive force of Eq. (3.65). The transverse motion of high qy 
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particles is on the other hand only weakly perturbed and they bunch axially 

(or in 11' as we see in Fig. 4.8(d). Low qy particles are also detuned, as seen in Eq. 

(3.27), and in Fig. 4.8 in their vertical motion in the 1/f-qz plane . 

Fig. 4.8(c). Orbit segments for the particles of Fig. 4.8(a), for 2.2 m<z<2.6 m. The three 

populations corresponding to three different values of qy are now very clearly distinguished. 

Larger qy particles have drifted farther back in qu giving up more energy to the fields. 

To make this inspection of the phase-space a bit more quantitative, we 

select two specific groups of five particles, and observe their motion in detail. 

Fig. 4.9 depicts motion in the 1/f-qz plane and Fig. 4.10 depicts qz as a function of 

z, for these particles. Each group of particles has initial phases distributed 

throughout (-7t,+7t). However the first group, depicted in Figs. 4.9(a) and 

4.10(a). has a large qy-ap, while the second group, in Figs. 4.9(b) and 4.10(b) has 
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a small qy-0.05ap. In Figs. 4.9(c) and 4.10(c), both groups are plotted together. 

Inspecting Fig. 4.9 we see that high-qy particles tend to give up energy to 

the fields, while low qy particles tend to absorb energy from the fields (as they 

are driven to higher qy by the transverse Lorentz force). Fig. 4.10(c) shows that 

the peak loss (gain) of high (low) qy particles occurs at roughly the same point 

in z, corresponding to the saturation point and maximum radiated power. 

6 

4 

2 

0 

3.0 3.4 3.8 4.2 4.6 

Fig. 4.8(d). Orbit segments for the particles of Fig. 4.9(a), for 4.4 m<z<5.1 m, including the 

saturation point at z-4.8m. Large qy particles have completed one synchrotron oscillation, and 

are exceuting bound orbits governed approximately by the bounce Hamiltonian of Eq. (3.36). 

Small qy particles (the dark clumps near qz-3.8) have gained energy from the fields. 
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0 w = -1t 
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• '1'
0 
= -n/2 

• '~'o = +n/2 

a '~'o = +1t 

6 '~'o = 0 

4.0 4.2 

Fig. 4.9(a). Depicted is the motion computed with ECL for 0<z<7.3m for a representative 

collection of five particles with qy-a13. This motion is to be compared with that of a simliar 

collection, with qy-O.D_Sa13, depicted in Fig. 4.9(b). Evidently, large qy particles bunch in VI and 

give up energy (moving to the left in the figure). From Fig. 4.9(b) we see that small qy particles 

ga!n a little, and from Fig. 9(c), we see that the difference is positive, leaving some energy to be 

taken away by the fields . 
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Fig. 4.9(b). The motion in VI and qz of five representative macroparticles with small qy-0.0Sa13. 

Because qy is small, the transverse motion of these electrons is strongly perturbed by the signal 

field. As a result they oscillate with growing amplitude, aborbing energy from the field. None 

of them give up energy, as discussed in connection with Eq. (3.77). 
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Fig. 4.9(c). Orbits in the Vf-qy plane of particles with small qy (white dots) and particles with 

large qy (dark dots). Small qy particles gain a small amount of energy. Large qy particles lose a 

large amount of energy. The difference is taken away by the fields. 
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Fig. 4.10(a). Near saturation large qy particles lose a significant amount of energy. On the other 

hand, (b) small qy particles actually gain energy near saturation. This is clearer in (c) where 

both ensembles are depicted together. 
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Fig. 4.10(b). Depicted is qz versus z for the five representative low qy particles of Fig. 4.9. 

Evidently, these particles gain energy near saturation (z-5 m). 
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Fig. 4.10(c). Depicted is qz versus z for the representative particles of Fig. 4.9. While low qy 

particles gain energy, high qy particles lose energy. The average results is a loss for the beam. 
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Inspection of Figs. 4.9 and 4.10 qualitatively confirms the conclusions of 

our discussion of bunching, in particular the ponderomotive force of Eq. 

(3.70) and the invariant C11y of Eq. (3.73). 

d. Effect of detuning spread. Next, we turn to consider the effect of 

detuning spread on the saturation length and output power. There are in 

principle at least three important effects: (1) detuning spread due to spread in 

axial momentum (2) detuning spread due to spread in transverse energy 

("realistic radial profile") and effective detuning spread due to beam space 

charge. The beam density is nb-1.7x1011, and the Lorentz factor is y-3.9, so that 

the spread in kp due to beam self-fields (L1kp/kp-v/2')flp2) will be of order 7%. 

The spread in detuning due to a non-ideal radial profile will be of order 

85-crhaf-20% (depending on the beam profile). The code ECL allows us to 

model detuning spread in two ways: spread in qz, or spread in h. We consider 

each in turn. 

First, we consider spreads in axial momenta. Results for power versus z 

for various spreads in momenta are depicted in Fig. 4.11. A summary of peak 

power and saturation length is depicted in the plot of Fig. 4.12. We observe 

that power is rather insensitive to even significant spreads. This is not 

surprising, given the discussion of Eq. (134) (modified dispersion relation, 

including momentum spread) since the Pierce parameter is relatively large. 

In this connection note that the actual detuning spread 85 as defined by Eq. 

(3.134) is given by Eq. (4.2) as 85=1.5q5/qz, where particles are distributed 
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10 9 
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10 7 - -~ ~ - -~ =-

08 = 3.8% 
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(c) z(m) (d) z(m) 

FIG. 4.11. (a)-(d) Curves for power versus z for the parameters of Table 4.1, with an assortment 

of different spreads in axial momenta (dark curves) plotted with the result for zero detuning 

spread (light curve, the result of Fig. 4.1 (a)), for reference. The corresponding momentum 

spreads (2qJqz) are (a) 5% (b) 6% (c) 7% and (d) 9%. 
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-~ -c. 
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10 5 05 = 5.3% 

10 4 102 
0 5 10 15 0 5 10 15 

(e) z(m) (f) z(m) 

FIG. 4.11. (e)-(f). Stabilization due to detuning spread manifests itself numerically as a 

sensitivity to the number of points used to model the momentum distribution. So for example, 

(a)the result of 4.11(c) is relatively insensitive to a decrease in the particle number by a factor 

of four (the dark curve corresponds to 700 particles, the light curve, 2800). On the other hand 

for 85-9%, the result varies dramatically with particle number. By increasing the number of 

particles it is possible to show that the power curve of 4.11 <0 flattens out. The curve of 4.11(e) 

merely converges, and in fact, has more or less converged with the result of4.11(c). 

uniformly in momenta on the interval [qz-q 5,qz+q 5 ]. (The results for 

saturation power and length are summarized in Table 4.3 and in Fig. 4.12. 

To illustrate the approach to stabilization, in Fig. 4.11 (e) and (f) we 

compare results corresponding physically to reduced growth (e) and no 

growth (f). Numerically, the physically stable system is numerically sensitive 

to the number of particles. In principle, this sort of result can be avoided 

altogether by routinely using 20-40 values of momenta. However, this is not 

always numerically efficient. 
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The results of Figs. 4.11(a)-(d) are summarized in Fig. 4.12, giving peak 

power and saturation length as a functi<?n of 8s, based on these four runs. 

Table 4.3. Effect of axial momentum sprea"d for ion-channel guiding 
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FIG. 4.12. (a) Power at saturation versus detuning spread, based on the data of Fig. 4.11, and (b) 

length for saturation. For these plots, the first appreciable peak in power was selected (even 

though, frequently, the second peak is slightly larger). · 
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From these runs we see that a detuning spread 05<p has only a small 

effect on the output power (a factor of two), in accord with the results of Ch. 3, 

Sec. B.4. For o5>p, we observe an approximately exponential decrease in power 

with detuning spread, as we would expect when 85 enters the gain length 

scaling, as in Eq. (3.135). 

-~ -c. 

(jh= 0.35 

5 10 15 

(a) z(m) 

10 6 

10 5 

10 4 

0 

(b) 

N=1400 

N=700 

5 10 
z(m) 

15 

FIG.l3. (a)Power versus z for the parameters of Table 4.1, with a spread in transverse energy 

corresponding to a parabolic radial profile. The "equivalent" detuning spread is 85-11%. (b) 

The result of (a) compared to the same result for twice as many particles. 

In addition to detuning spread due to axial momentum spread, there is 

a detuning spread due to the spread in transverse energy associated with a 

realistic beam profile (as discussed in Ch. 3, Sec. C). To quantify the effect of 

such an "intrinsic" detuning spread, we consider a distribution in the 

dimensionless transverse energy h with an rms fractional deviation in 
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transverse energy O'h-0.35, equivalent to a parabolic beam profile. The 

equivalent detuning spread is of order 85-0'hatfl-12%. Results are depicted in 

Fig. 4.13. Saturation occurs at z-7.6 m with Psat-41 MW. The peak power is 61 

MW at z-10.7 m, corresponding to a factor of 10 reduction in power, and an 

efficiency of about 0.6%. 

This result is mildly surprising, since for an 11% detuning spread due 

to axial momentum spread the beam is stabilized. On the other hand, 

particles with the largest detuning, i.e., the smallest transverse energy, 

interact negligibly with the wave. They tend to gain energy, but as we see in 

Figs. 4.9(c) and lO(c), this gain is relatively small. Thus the rms detuning Ghar]2 

is not quite "equivalent'' to a numerically equal detuning due to momentum 

spread. Detuning due to energy spread is reduced by a weighting increasing 

with h. 

We performed simliar runs for Gh-0.71 (equivalent to a Gaussian 

beam) and found that the instability was stabilized. This is not surprising 

since the equivalent detuning spread is an enormous 22% (>4p). However, 

this has sobering implications for a practical experiment. Results will depend 

in detail on the character of the transverse energy distribution. On the other 

hand, the situation improves for smaller ap2jp as we shall see in the next 

example. 
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FIG. 14. The result from the code ECL, for (a)power in watts and (b)phase in radians versus z for 

the example of Table 4.1. This differs from Fig. 4.1 (a) because we have included the effect of 

optical guiding. Saturation occurs at Lsat-2.2 m, with P-440 MW. 

1 2 

ECL 
~ FULLCL 

3 

z(m) 

4 5 6 

FIG. 4.15. The results from the code FULLCL (wiggling curve) and ECL, for power versus z, for the 

example of Table 4.1, including optical guiding. FULLCL predicts saturation at Lsat-2.3 m, with 

· P-370MW. 
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2. Effect of Optical Guiding 

All of the previous discussion of Sec. 1 assumed guiding by the HE11 

mode of the ion-channel. On the other hand, a simple estimate of the effect of 

optical guiding for the parameters of the previous example shows that it will 

be quite important. From Eq. (3.258) we find a=64p03/2al-1.5, which is too 

large to apply the weak-guiding results of of Sec. 3.D, and indicates that 1]-1 is 

probably a good approximation. This gives a corrected Pierce parameter 

p-12.4% and a gain length Lg-27 em. The output power at saturation would 

be Psat-744 MW. The length for saturation would then be Lsat-1.6 m, or about 

5 betatron wavelengths. We conclude from this that the parameters of Table 

4.1 would provide a fair test of optical guiding. Since in this case the gain 

length is less than a betatron wavelength, this example also provides an 

interesting test of the eikonal formalism beyond its presumed range of 

validity. 

a. Comparison of ECL and FULLCL results. Taking 1]-1, we performed 

ECL and FULLCL simulations as described above. Results for power versus z are 

depicted in Fig. 4.14. The code ECL predicts saturation at z-2.1m, with 

P sat-440 MW, corresponding to an efficiency of about 7.3%. FULLCL predicts 

saturation at z-2.3 m with Psat-370 MW, for an efficiency of about 6.2% (Fig. 

4.15). 

Thus the power levels are somewhat less than the cubic gain regime 

predictions. This is partially due to corrections to the eikonal approximation 
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in the limit Lg<Ap, and also due to the larger value of p.lp, which lowers the 

growth rate as discussed in connection with Eq. (3.126). For this example, we 

have p.lp-1.8, which from Fig. 3.8(a) predicts a peak growth rate 75% of the p.=O 

value (and somewhat less for zero detuning) . 

0.2 
1\ y 

e 0.0 ....... ..... 
~ v 

-0.2 

1 2 3 
z(m) 

4 5 6 

FIG. 4.16. The y-momentum, averaged over the beam slice is plotted versus z, for the 

parameters of Table 4.1, including optical guiding. Following saturation the beam centroid 

continues to oscillate coherently. 

b. Effect of detuning spread. With op~ical guiding we have seen that the 

Pierce parameter is larger by about a factor of two. With a larger p, the 

condition 05<p is eased and we can expect performance to be much less 

sensitive to detuning spreads. This is seen in the results of Fig. 4.17, which are 

summarized in Table 4.4 and Fig. 4.18. For example, with a 7.5% spread, the 

peak power is reduced by only a factor of 3. 
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FIG. 4.17. (a)-(d) ECL results for power versus z with various detuning spreads (dark curves), 

compared to the cold beam result of Fig. 4.14 (a) (light curves). Optical guiding has increased p, 

and as a result the power is less sensitive to detuning spread. 
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Table 4.4. Effect of axial momentum spread for optical guiding example. 

Os PSIIt LSIIt efficiency Llpz/Pz 

0 440MW 2.2m 7.3% 0 

7.5% 170MW 2.4m 2.8% 10% 

11.3% 98MW 2.5m 1.6% 15% 

12.8% 61MW 2.6m 1.0% 17% 

13.5% 46MW 2.8 m 0.8% 18% 

15% (stabilized) 20% 

10 9 
I 3.0 I I 

2.8t- • • 

• e 2.6t- • 
~ 10 8 to • ~ - • ftS 
~ • 11.1 2.4t- • . 

• .;! 

2.~, 

10 7 2.0 _l _1 
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(a) ()s(%) (b) 

()s(%) 

FIG. 4.18. (a) Power at saturation versus detuning spread, based on the data of Fig. 4.17, and (b) 

length for saturation. For these plots, the first appreciable peak in power was selected (even 

though, frequently, the second peak is the largest). 

In Fig. 4.19, we have collated the results for peak power and saturation 

length as a function of 05/ p, for this example (optical guiding) and the 
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previous example (ion-channel guiding). We observe that the results are 

well-correlated, even though they apply to Pierce parameters differing by a 

factor of two, and different Jllp values. This gives us a fair measure of 

confidence in the condition for gain, 

L1pz 
--<p Pz (c\=0) 

(4.6) 

Where in parenthesis we note for clarity that we have only considered zero 

average detuning. 

By the same reasoning, since p is large we expect the performance to be 

much less sensitive to realistic spreads in transverse energy. This is observed 

10 ° 3 

0 
0 Fig.l2b • 

Fig.18b 0 

~ oeo ·! • 
Ei 10 -l • 2 ~ • ~ - -~ 0 Fig.l2a .....J 

0 

• Fig.l8a 
0 0 

0 •• 
10 -2 • • 1 

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 
(a) OsiP (b) Os /p 

FIG. 4.19. A collation of the results of Figs. 4.12 and 4.18. (a) Power at saturation normalized by 

the cold beam value, versus detuning spread normalized by the Pierce parameter (b) length for 

saturation normalized by the cold beam value. 
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O'h= 0.35 

10 5 
O'h= 0.69 

1 2 3 4 5 6 1 2 3 4 5 6 
(a) z(m) (b) z(m) 

FIG. 4.20. ECL res1,1lts for power versus z with fractional rms spreads in transverse energy (dark 

curves) of (a) 35% and (b)70%(dark curves), compared to the cold beam result of Fig. 4.14 (light 

curve). (a)For the parabolic beam of the peak power is 270 MW, at 2.2 m, ( 56% of the step

profile result). (b)For the case of crh comparable to a Gaussian beam, the peak power is 173 MW 
• 

at 2.1 m ( 36% of the step-profile result) . · 

10 9 

10 8 

~ 
10 7 

~ 

N=1400 

10 4 

0 1 2 3 4 5 6 
(a) z(m) 

FIG. 4.21. Example of the insensitivity of the numerical result to a change in the number of 

. particles used to model energy spread for N=700 and 11'<00, corresponding to 5 and 10 different h

values respectively and C1h=35%. In (a) we see that t!1e linear growth rates agree well, and in 

(b) we see that the peak power levels agree well. Note that the larger number of particles has 

resulted in more realistic phase-mixing and a noticeably smoother power variation in (b). 

265 



Chapter4 Numerical Simulations 

in the results of Fig. 4.20. As a check on the results we varied the particle 

number, obtaining roughly the same results, as shown in Fig. 4.21. We 

conclude that with optical guiding, a positive experimental result would not , 
depend on the beam profile, or the momentum spread, within reasonable 

limits. 

3. Waveguide example 

Next we consider the effect of introducing a waveguide for the 

parameters of Table 4.1. We select (somewhat arbitrarily) a 3cmx5cm guide, 

and increase the plasma density to 1.3x1011 cm-3, (corresponding to A.p-23.6cm) 

in order to maintain resonance at 1.7 em. 

The phase velocity is fJrp-1.016, and qz-3.6, corresponding to a reduction 

in the Pierce parameter by a factor F-0.341, from Eq. (3.110). Thus p-3.3%. 

From Eq. (3.118) we expect a gain length of Lg-0.09A.p/p- 64 em and an output 

power Psat-200 MW, with saturation at Lsat-3 m. 

a. FULLCL results. The numerical result for power versus z is depicted 

in Fig. 4.22. FULLCL predicts Psat-280 MW, with saturation in 2.3 m. for an 

efficiency of 4.7%. 

b. Error in plasma density In practice one expects shot-to-shot 

variations in the plasma density, and it is natural to ask what effect this might 

have on the output power. Taking the last example, we decreased the plasma 

density by about 50% to 9x1Q10 .crn-3, keeping all other inputs fixed. In this case . 
A.p-28.6 em and the resonant frequency is now 12.7 GHz. 
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FIG. 4.22. The results from the code FULLCL for power in gigawatts, versus z for the example of 

Table 4.1, with modications due to a 3cmx5cm waveguide. The analytic result is overlayed for 

comparison. 
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FIG. 4.23. Comparison of the result of Fig. 4.22 for power versus z (light curve), with !he result 

for a 50% error in plasma density (dark curve). 
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FULLCL predicts saturation at Lsat-2.6 m with a saturated power of 260 

MW (Fig. 4.23), about 7% less than the result for a SO% more dense plasma. 

The rf phase at z-410 m has changed by about 388 degrees due to the plasma 

error. Thus the error in power is small, while the error in phase is quite large. 

This is not really surprising, since waveguide corrections tend to diminish 

the detuning. Indeed, even though the resonant frequency is off by about 50% 

(6 GHz), the detuning is only o-Llm/mp--12p--40% (i.e., Llm--2.6GHz). 

Consulting Fig. 3.7, we see that the growth rate will still be appreciable at this 

detuning. (Note that since FULLCL follows the full motion, it should be 

accurate even for a detuning of order unity). 

We conclude from this that for applications requiring good phase 

control, the plasma density will have to be repeatable from shot-to-shot, to 

good precision. However, a positive experimental result will not depend on 

extraordinary control of the plasma density. 

4. Discussion 

For completeness we should note the practical constraints on 'these 

examples, due to plasma effects. The chief constraint is due to ion-motion and 

imposes a limit on the pulse length. The time for ion-neutralization of the 

beam (assuming an atomic weight of -100) is about 15 ns. Typically, induction 

linacs provide pulse lengths in the range 10 ns - 100's of ns, so this is a bit 

short, but acceptable. The ion-hose growth length computed from a rigid 

beam model is Lh-8 em, and with about four e-folds after five meters. In fact, 
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this represents a conservative estimate since it neglects nonlinearities in the 

ion-motion. In addition~ the use of ion-channel dielectric guiding has been 

rendered problematic due to the "electron-hose" instability1 as discussed in 

Chapter 2. r~owever1 electron-hose growth has been quantified only relatively 

recently~ and it may be that other mechanisms may arise~ or be devised to 

reduce it. 

We conclude from the work of this section1 that this example would 

provide a highly efficient~ and compact source of high peak power radiation 

in the 10-30 GHz range1 comparing favorably with the FEL.l We summarize 

our observations: 

(l)The codes ECL and FULLCL agree with each other and theory, despite the fact that 

they solve different equations, on different time-scales. Theory is more or less 

confirmed with respect to simple estimates of efficiency, gain length, saturated power, 

length for saturation, and the details of particle dynamics. 

(2)The result for power versus z assuming only ion-channel guiding is fairly sensitive to 

realistic spreads in axial and transverse momenta . . . 

(3) ... However, optical guiding is predicted to be more effective than ion-channel 

guiding for this example. With optical guiding, p is large and the design is relatively 

insensitive to spreads in transverse energy, or axial momenta. 

(4) Operation in a 3cmx5cm waveguide gives a performance comparable to that 

predicted by optical guiding theory and . . . 

(6) ..... , as a footnote, we observe, that the result for power versus z is not very sensitive 

to a 50% error in plasma density. 
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Of course, more exhaustive surveys of the Os, 8o, f3q1, np, JJ.Ip parameter 

space remain to be performed. However, based on our examples here, and 

theoretical work of the last chapter, one has a good idea of what to expect 

from such a survey. Our purpose here has been merely to illustrate and test 

the scaling laws of Chapter 3. With a fair understanding of the design 

constraints in hand, we devote the remainder of this chapter to a brief 

discussion of ICL examples at shorter wavelengths. 

C. SUB-MILLIMETER EXAMPLES 

In this section we consider two examples in the sub-millimeter regime. 

The first is a high gain experiment that could be performed with an induction 

linac beam. The second is a low gain experiment that could be performed 

with a beam more typical of a storage ring. 

1. High gain example. 

First we· consider the example parameters of Table 4.5. We assume for 

the moment that i?n-channel dielectric guiding dominates; The overlap 

integral from Eq. (3.229) is 7]-1.8x1Q-2. The Pierce parameter is then p-2.6%. the 

beam power is P b-14 GW, so we expect a power at saturation 

P sat-2.4%x14GW -360MW. The betatron wavelength is Ap;...4.7 em, so that the 
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gain length is Lg-O.lA.p/p-18 em. We assume an input power Po-1kW so we 

expect saturation in a length Lsat-0.5Lgln(9Psat!Po)- 1 m. 

The results of ECL are depicted in Fig. 4.24 with the analytic result 
.... 

overlayed. vVe find a peak power of 500 MW in about 2.1 m for an efficiency 

of about 3.6%. The gain is about 27dB/m. Incorporating a spread in transverse 

energy O"h-0.35 we find the system is stabilized at zero detuning. as we would 

expect since the effective detuning spread, C5-0"hafi2-9%-3p. (We have not 

studied variation with 0o for this example). 

Incorporating optical guiding, we find 0'-0.17, so that 77-0.39. The Pierce 

parameter is then p-7%. The gain length is Lg-6.6 em and the length for 

saturation would be of order Lsat-0.5 m with an output power of Psat-1 GW. 

The detuning spread due to space charge effects would be 85-7%-p, and this is 

an acceptable amount, as is that due to spread in h. 

We conclude that this example would provide a highly efficient, and 

compact source of high peak power radiation in the 300 GHz range, 

comparing favorably with the FEL.2 This would be suitable, for example, for 

plasma heating3 and military applications.4 
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Table 4.5. Parameters for High-Gain Sub-Millimeter Example 

Mcm) 5x1Q-2 

E(MeV) 4 
J 

l(kA) 4 

e,.( cm-rad) lx1().:2 

n,(cm-3) 7x1012 

A.tfcm) 5 

a( em) 6x1Q-2 

ap 0.5 

Po(W) 1()3 

10 9 

- 10 6 

== - 10 5 
~ 

10 4 analytic 

10 3 ECL 

10 2 

0 1 2 3 
z(m) 

FIG. 4.24. Result for power vs z for the·high gain example of Table 4.6, from ECL (dark curve) 

with a step-radial profile (no spread in transverse energy) compared to the analytic result 

(light curve). •· 
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2. Low gain example. 

As a different millimeter-wave example we consider a low gain 

experiment which could be performed with the high-quality low-current 

beam typical of a storage ring.s Parameters are given in Table 4.6.6 For this 

example we will also assume ope~ation in a 1cmx1cm waveguide. The 

overlap integral is 7]-8.4x10-4, so that the Pierce parameter is p-1.6x10-3, and 

the gain length is Lg-2.3m. For this simulation we assumed an input power 

of Po-1 kW, and we find P-100 kW after 15 meters, still in the exponential 

gain regime, as shown in Fig. 25(a). Taking into account the spread in 

transverse energy this is reduced to about 25 kW, as shown in Fig. 4.25 (b). 

Table 4.6. Parameters for Low-Gain Millimeter Example 

).(em) 1x1o-1 

E(MeV) 5 

l(kA) 0.05 

e,/cm-rad) 3x10-3 

n (cm·3) p 1x1012 

A.Jicm) 15 

a( em) 5xto-2 

ap 0.14 

P0(W) 1(/3 

We conclude that this example would provide a useful proof-of 
" 

principle for parameters typical of a storage ring. Extended to shorter 

wavelengths, operation with such a beam would have applications in the 
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study of solid-state phenomena,7 in a wavelength range which, except for the 

FEL, is devoid of other tunable sources. 

-~ -~ 
analytic 

O'h= 0.35 
EO.. 

to 2~~~~~~~~~~~ 102 
0 5 .10 15 0 5 10 15 

(a) z(m) (b) z(m) 

FIG. 4.25. (a)ECL result for power versus z (dark curve), for the low-gain millimeter wave 

example of Table 4.6, compared to the analytic result (light curve). (b)ECL result for an rms 

spread in transverse energy CTh-0.35 (comparable to a parabolic profile) compared to the cold 

beam result of (a) (light curve). 

D. INFRARED EXAMPLE 

For the next example, we consider amplification of 10J.1m radiation 

from a C02 laser, the goal of recent FEL experiments.8 Instead of the 50 MeV 

beam typically required in FELs (due to the. longer wiggler wavelength), we 

consider a 10 MeV beam, with other parameters as in Table 4.7. This lower 

energy has numerous advantages, among these are: shorter device length 

(more compact), lower beam break-up growth (lower emittance), and higher 

Pierce parameter (higher efficiency). 
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Using the HE11 mode overlap we have 7]-7x10-3, p-1.4x10-2 and Lg-4 

em. We expect a saturated power of Psat-0.6 GW, and assuming an input 

power of 1 kW, saturation should occur in a le'ngth Lsat-0.3 m. ECL predicts 

saturation in 22 em with an output power of Psat-0.94 GW, as depicted in Fig. 

4.26(a). This corresponds to a gain of 154 dB/m and an overall efficiency of 

2.5%. 

'!! 

Table 4.7. Parameters for Infrared Example 

Mcm) lxlo-3 

E(MeV) 10 

l(kA) 4 

en<cm-rad) 5x104 

np<cm-3) lx1015 

A.tfcm) 0.6 

a( em) 3xlo-3 

a!J 0.4 

P0(W) 1()3 

We also examined the effect of detuning, 8o;eO (not detuning spread, 85) 

as shown in Fig. 4.26(b). For large negative d,etuning, growth is still in the 

(quadratic) exponential gain regime after 80 em, where P-3.4 MW. For large 

positive detuning, the system is stabilized (within numerical accuracy), in 

qualitiative agreement with theory. 

.. 
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Numerical Simulations 
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FIG. 4.26. (a) ECL result for power versus z (dark curve), for the infrared example of Table 4.8, 

predicting gain of roughly 154dB/m, with saturation in 38 em. Plotted with it is the analytic 

result (light curve) which agrees well, due to the low value of p. (p.-1x10·2-p). (b) ECL result for 

power versus z for detunings 8o--20%(dark curve), c5o-20%(light curve), compared to the result 

of (a) for zero detuning (dashed curve). As predicted by theory, the result for the large positive 

detuning (light curve) is stable. 

Inspecting Fig. 26(b) further we observe that the result for 80--20% is 

rather irregular suggestive of possible numerical instability. To check this we 

doubled the number of steps in z (to 798) and found an indistinguishable 

result. Energy was conserved to within 6% of gain (i.e. the beam had lost 3.6 

MW, while the signal had gained only 3.4 MW). This result was also 

insensitive to particle number. 
"' We also examined the effect of a spread O'h-0.35 in transverse energy, as 

indciated in Fig. 4.27. We conclude that the system is stabilized for this value 
• 
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of Gh at zero detuning. This is not surprising since the equivalent detuning 

spread is 8s-5.6%-4p . 

N=2800 

0.2 0.4 0.6 0.8 1.0 
z(m) 

Fig. 4.27. The example of Fig. 4.26 is stabilized by the detuning spread associated with a 

realistic beam profile. It is instructive to see how this appears in the numerical data. Here 

depicted is power versus z of runs with different numbers of particles. The numerical variables 

are Nz=28, Na=S and Nh values of transverse energy where Nh=S, 10, and 20. This dependence 

on N h is characteristic of the proximity to the stability boundary in 05 • When the system is 

physically unstable, it is numerically insensitive to the value of Nh~S. 

In this connection we note that when Gh or 85 is sufficienctly large to 

stabilize the ·system, ECL will still give growth, but the growth depends on the 

number of values used to model the distribution (Nh), and can be reduced 

arbitrarily by increasing Nh. On the other hand, when the system is physically 

unstable, the result is insensitive to the number of values in the distribution 

(see, e.g., Fig. 4.21). 
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Including optical guiding, we find a-7.5x10-2, so that 1]-0.17, giving a 

Pierce p~rameter, p-4%. The gain length is then Lg-1.4 em and the length for 

saturation would be of order Lsat-0.1 m with an output power of Psat-1.5 GW. 

The detuning spread due to space charge effects would be 8s-4%-p, and this is 

an acceptable amount, as is that due to spread in h. 

We conclude that this example would provide a highly efficient, and 

compact source of high peak power radiation in the 10 J.Lm range. 

E. X-RAY EXAMPLE 

For our. last example we consider generation of 100 Angstrom radiation 

from a 100 MeV beam with other parameters as given in Table 4.8. Two of 

these parameters are rather problematic: emittance and ap. The emittance is 

lower by a factor of ten or more than is currently achievable at this current. 

The value for a~ is larger than theory has considered and for a realistic beam 

profile would correspond to considerable detuning spread. Nevertheless the 

example is useful insofar as it provides some motivation for further work on 

the large a~ limit. 

Using the HEn mode overlap we have 77-0.1, p-1.6x10-2 and Lg-1.6x10-2 

em. We expect a saturated power of Psat-6 GW, and assuming an input power 

of 1 W, saturation should occur in a length z-0.2 em. ECL predicts saturation 

in 0.5 em with an output power of P sat-15 GW, corresponding to a gain of 

2x104 dB/mandan overall efficiency of 4% . 
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Unfortunately, but not surprisingly, this example will suffer in practice 

from a huge detuning spread c55-0"hap2-9>>1>>p, which stabilizes the system. 

To surpass this obstacle, would require a rather special manipulation or 

preparation of the beam, which we leave as a topic for further work.9 

Table 4.8. Parameters for X-Ray Example 

A.< em) lx1Q-6 

E(MeV) 100 

l(kA) 4 

en(Cm-rad) 3x1o-5 

np<cm-3) 6x1Q20 

A.tf.cm) 2x1Q-3 

a( em) 2x1o-5 

afJ 5 

P0(W) 1 

F. SUMMARY 

We conclude this chapter noting that the numerical work has 

confirmed theory in essentially all respects. Simple estimates of efficiency, 

gain length, saturation power, emittance variation and the like give the 

correct answers to within a few tens of percents, which is what one expects 

from simple scaling laws. From this work the theory of the ICL is advanced to 

the state where goals for practical experiments can be planned, and 
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perfomance can be estimated incorporating the ever-present effects of energy 

spread. 

Further studies of detuning and detuning spread are of course 

important. In fact, a practical conclusion from this work is that control of 

detuning spread will be the key to a successful experiment. In practice, this 

means a small spread in axial momentum t1pz/Pz<D(p), and a low emittance, 

such that ahaj50(p). 

At the same time there is much more elaborate numerical modelling 

to be done. Important problems include: (1) implementing a radial field 

solver to demonstrate, numerically, optical guiding, (2) modelling multiple 

mode effects in the microwave regime, (3) incorporating slippage and side

bands, (4) detailed studies of tapering, (5) numerical investigation of oscillator 

configurations, (6) incorporation of ion-motion and the resulting detuning 

sweep along the beam, and investigation of the ion-coupled dispersion 

relation, and its consequences for beam break-up in the ion-focussed regime. 
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Chapter 5: Conclusions 

" Never trust the artist. Trust the tale." 

-D. H. Lawrence 

In this chapter we summarize the discussion of plasma constraints of 

Ch. 2, the theoretical scalings of Ch. 3, and the numerical results of Ch. 4. We 

go on to consider prospects for future experimental tests of theory, and for 

practical applications. 

.. 
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A. SUMMARY 

In this work we have answered essentially three questions: 

1. Under what conditions is an ensemble of relativistic simple harmonic oscillators subject to an 

electromagnetic instability? 

2. Do these conditions apply to realistic relativistic electron beams propagating the ion

focussed regime? 

3. Is the gain length short enough, and the frequency high enough to make this instability a 

viable source of efficient, coherent radiation? 

The answer to question (1) lies in the formulae of Ch. 3, and in the 

examples simulated in the last chapter. The answer to questions (2) and (3) is 

yes. 

More specifiCally, in answer to (1) and (2), we have seen that for small 

betatron parameter (and small spread in axial momentum) detuning spread is 

small, and amplification occurs. The answer to (3) depends on the beam of 

course. Specifically, we have seen that design of an ICL parameter set proceeds 

from assumed values for current (D, energy (mc2-n, normalized emittance (en), 

and the resonant frequency of interest (ro-2-frop). Current and energy 

determine the Pierce parameter for perfect overlap (p0 ). The plasma frequency 

is determined from ro, and then determines ap. With these parameters in 
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hand, the overlap integral (7J) can be computed (whether it be due to ion

channel dielectric guiding, optical guiding or waveguide overlap). 

From these parameters, we may derive the key figures of merit: (a)the 

efficiency~ (p), (b)the gain length (Lg), and (c)the detuning spread due to 

transverse energy spread (ahafil). The design can be judged roughly in terms of 

these figures of merit. The gain length determines whether saturation can be 

reached in a reasonable length. The Pierce parameter determines the 

efficiency. The betatron parameter represents a correction to the gain length 

and the efficiency, and this correction must be taken into account when afil>p. 

For any given design, practical constraints due to plasma effects must 

also be taken into account. InCh. 2 we found that these are primarily due to 

ion-motion. The effects of ion-motion may be put in three categories for 

conceptual purposes. As the ions collapse inward to neutralize the beam, the 

betatron frequency drifts upward. Thus each slice finds itself at a slightly 

different detuning, and samples a different part of the gain curve. In addition, 

the ion density becomes nonuniform, and focussing becomes anharmonic. 

Finally, focussing is with respect to the ion-column center of mass, which will 

oscillate in response to the beam centroid oscillations (ion-hose). We have 

accepted these effects as a. constraint on pulse length. In practice, it will be 

interesting to see just how stringent these constraints are, and this requires 

more elaborate numerical work or, better yet, experimental work. 
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B. PROSPECfS 

The usefulness of all this theoretical work is in laying the groundwork 

for designing, planning and proposing practical experiments, whether they be 

with high current induction linac beams~ or low current (but high quality) 

beams typical of synchrotron sources. Much further theoretical work can be 
11 

done of course. In particular, incorporation of space-charge in the analytic 

model will be important for low energy beams. On the numerical side, 2-D 

solution of the Schrodinger I eikonal equation for the vector potential could 

usefully buttress our simple model of optical guiding. Non-axisymmetric, 

fully-electromagnetic, 3-D (or at least 2-D) particle-in-cell simulations of 

channel formation and propagation can be used to assess ion-motion effects. 

However, given the numbers of the last chapter (short gain lengths, high 

efficiencies, short wavelengths) there is every reason to. proceed with a 

practical experiment. 

Indeed there are many applications for which the ICL merits 

investigation. These include the ground-based laser concept,I the two-beam 

accelerator (linac microwave power source),2 UV /X-ray laser applications,3 

and others. In addition, it is likely that this electromagnetic instability will 

appear -in a natural way in astrophysical circumstances. At the same time, in 

experiments relying on ion-focussing, the coupling of the beam centroid to 

the ion-motiC?n will result in beam break-up and emittance gro\,Vth in a long 
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pulse---an electromagnetically-coupled ion-hose. Thus an understanding of 

the ion-coupled dispersion relation will be important in characterizing 

emittance growth in the ion-focussed regime . 
.. 

Reviewing the volumes of work published" in just the last ten years on 

the FEL alone, one. realizes that it would be impossible to cover the 

equivalent ground in one thesis. However, with this work we have at least 

shown that the ICL merits serious attention. It is amusing to note that this 

electromagnetic instability, and the electron-hose, are just two instabilities, 

revealed by a bit of careful attention to the short-pulse beam-plasma regime. 

Each has rather serious consequences. for our understanding of th~ IFR. One 

can't help but wonder what other discoveries await us there. 
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