
LBL-29732 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Submitted to Zeitschrift fiir Physik 

Nuclear Rotational Population Patterns in 
Heavy Ion Scattering and Transfer Reactions 

J.O. Rasmussen, M.A. Stoyer, L.F. Canto, R. Donangelo, 
andP. Ring 

October 1990 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

'"t!n 
o 1-'· r 
;; :; 0 

1.1 D 
fi) ~ z 

!-' 

~ !lt n 
ro<+o 
11) II) 1J 
:I:'U'I-< 
;,n 

lj:j 
...... 
0.. 

I.C . 
lll 
61 

r 
1-'• 

crn 
;; 0 
!lJ"lJ 
)"< 

"< . fr) 

r 
lj:j 
r 
I 

jl) 
...0 
-...! 
(•J 
r•) 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• 

Nuclear Rotational Population Patterns in Heavy Ion 
Scattering and Transfer Reactions 

J.O. Rasmussen, M.A. Stoyer, L.F. Canto, R. Donangelo, and P. Ring 

Nuclear Science Division, Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720, USA 

October 1990 

LBL- 29732 

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics 
of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under 
Contract DE-AC03-76SF00098 



(..: 

Manuscript for Zeitschrift ftir Physik edition 
honoring the 60th birthday of Professor Hans-Jorg Mang 

Berkeley, 15 October, 1990 

Nuclear Rotational Population Patterns 
in Heavy-Ion Scattering and Transfer Reactions 

John 0. Rasmussen and Mark A. Stoyer 
University of California 

Lawrence Berkeley Laboratory 
Berkeley, CA 94720 

L. Felipe Canto and Raul Donangelo 
Univ. Fed. do Rio de Janeiro 

Rio de Janeiro, Brazil 

and 

Peter Ring 
Tech. Univ. Miinchen 
Garching, Germany 

ABSTRACT 

A model of 239Pu with decoupled neutron is used for theoretical calculations of 

rotational population patterns in heavy ion inelastic scattering and one-neutron transfer 

reactions. The system treated is 90Zr on 239Pu at the near-barrier energy of 500 MeV and 

backscattering angles of 180° and 140°. The influence of the complex nuclear optical 

potential is seen to be very strong, and the Nilsson wave function of the odd neutron 

produces a distinctive pattern in the transfer reaction. 
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Introduction 

Hans Jorg Mang's pioneering work on the microscopic shell-model approach to alpha 

decay rate theory for spherical nuclei [1] set the stage for a microscopic theory of rotational 

population patterns in alpha decay [2]. The essential connection is that on the nuclear 

surface alpha decay amplitudes to various rotational states are simply the spherical harmonic 

expansion coefficients of the alpha wave on the nuclear surface. These amplitudes are 

somewhat modified on passage through the Coulomb barrier, with the barrier transmission 

handled either by coupled-channel calculations [3] or more often by simpler approximations, 

such as, the Froman matrix method [4]. Conversely, the rotational population patterns 

contain information about the alpha wave function on the nuclear surface, but the 

relationship is analogous to that of X-ray diffraction spot intensities to a crystal structure. 

That is, rotational group intensities and X-ray spot intensities are both squares of 

amplitudes, which may have either of two signs. One must guess, use models, or other tricks 

to assign the signs in order to work backwards from experiment. 

Nucleon transfer reactions on deformed nuclei have revealed, for example, the 

Nilsson coefficients of neutron wave functions. The case of (d,p) and (d,t) reactions on 

even-even spheroidal nuclei is especially simple to interpret, as the intensities to particular 

rotational states give directly the probability of that j value within the Nilsson wave function 

of the odd neutron [5]. 

The theoretical calculation of rotational population patterns for neutron transfer 

reactions with heavy ions is more complicated than the deuteron-induced transfer, since 

there can be considerable Coulomb excitation on both the inward and outward path. This 

extra richness in heavy-ion transfer makes the reaction a spectroscopic tool, allowing 
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exploration of higher rotational states than might otherwise be accessible [6]. In particular 

this tool may have special value in the actinide region, where the paucity of sufficiently 

long-lived isotopes for targets limits the cases for pure Coulomb excitation. Furthermore, 

fission competition complicates the study of high rotational states by (heavy-ion, xn) 

reactions. For example, 58Ni ions on a 235U target revealed [7] 234U ground band transitions 

up to spin 26+.90Zr ions on 239Pu at 500 MeV (lab) excited many rotational transitions in 

238Pu [8]. 

In this paper we make a first attempt at a theoretical calculation of the 239Pu neutron 

pickup reaction case mentioned above. To simplify the Coulomb excitation part, we do the 

calculation on the even-even core 238Pu, assuming the rotational energy limit of completely 

decoupled odd neutron to relate the populations to 239Pu. The odd neutron is in the Y2 + 

[ 631] Nilsson state and is only mildly coupled to the core, so the error in energy levels with 

this assumption should not greatly affect the rotation population in 239Pu, since even the 

sudden approximation with implicit zero rotational spacing should be fairly good in this case. 

It is not practical for neutron-transfer experiments, where the experiment is run at energies 

slightly above the Coulomb barrier, to ignore the nuclear optical potential effects. Usually 

the Alder Winther-deBoer Coulomb excitation codes [9] do not incorporate nuclear 

potential effects. However, in a recent paper we have shown [10] that their approach can 

be modified to take into account effects of the real and imaginary parts of a deformed 

nuclear optical potential; the results compared well for the system of 40Ar on 160Gd with the 

fully quantum mechanical coupled-channels calculations of Rhoades-Brown et al.[ll] Our 

modifications in ref. [10] are to expand the complex nuclear potential in spherical harmonic 
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terms added to the normal quadrupole and hexadecapole electromagnetic terms. Though 

we leave the classical trajectory in hyperbolic Rutherford form, we introduce effective energy 

and charge values such that the classical turning radius, and radial force at that point for 

equivalent spherical nuclei are correct, taking into account the real part of the nuclear 

potential. It is important to point out that our present version of Alder-Winther-deBoer 

type codes compute for 180° backward scattering, as do the comparison quantum-mechanical 

coupled-channels and Classical LimitS-Matrix codes. We correct for other scattering angles 

by adjusting the effective bombarding energy to match the distance of closest approach for 

the given scattering angle. However, this simplification, allowing us to consider only M = 0 

rotational state amplitudes, is not an essential one and can be later generalized to arbitrary 

scattering angles. 

Rotational Inelastic Scattering Results 

We show in Fig. 1 the results at three different beam energies for pure Coulomb 

excitation, without the nuclear potential. The rainbow maximum at high spin is seen, with 

the familiar interference oscillations going down to lower spin and the exponential fall-off 

of intensity above the rainbow maximum. To apply these results to 239Pu under the 

approximation described above we· divide each 238Pu level intensity between the two 

corresponding levels in 239Pu according to the statistical weight. That is, the spin-0 

population all goes to spin 1/2 in 239Pu. The spin-2 population divides between spin 3/2 and 

spin 5/2 in the ratio of 4 to 6, and so on. Fig. 2 shows how this approximation compares 

favorably with a complete odd-A Coulomb excitation calculation. In the limit of zero 
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rotational spacing and complete decoupling the results would be identical. The 239Pu 

moment of inertia is so large that the approximation is quite good. The odd-neutron 

coupling is sufficiently small to ignore core rotational motion in the initial state. 

Introduction of the complex deformed nuclear optical potential by the methods of 

ref. [10] makes a profound difference at a near-barrier energy, as is clear from Fig. 3. The 

rainbow maximum and interference oscillations are gone. For this calculation we have used 

effectively a slightly lower energy than the 500 MeV head-on calculation of Fig.2, to take 

into account the mean scattering angle of 140° in an experiment done with this system. (We 

do not plot the partitioning of intensities into the levels of 239Pu, since that is easily enough 

done and would result in the same general monotonic decline of intensity with spin down 

from a maximum at the 5/2 level.) We can rationalize the nuclear potential effects by 

thinking in terms of the earlier theoretical approaches of the Classical Limit S-Matrix 

(CLSM). In the CLSM method the rainbow maximum comes from collisions with the 

spheroidal nucleus oriented about 45 degrees to the point .of closest approach, that is, 

encounters with the perigee in the mid North and South temperate latitudes of the nuclear 

spheroid. Introduction of an attractive real component of the nuclear potential means that 

the Coulomb torque has a destructive interference, and that the torque may even reverse 

sign at short distances, pushing rotational population back to lower spins. Introduction of 

an imaginary absorptive component in the optical potential means the removal of flux for 

the higher latitudes, where the perigee comes too close to the prolate nuclear surface. As 

the energy comes to be above the barrier for equivalent spherical nuclei the only surviving 

trajectories are those with perigee near the equator, where the quadrupole torque is small, 

and only low spins are excited. 
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Neutron Transfer Rotational Population Patterns 

To calculate rotational populations for the 1-neutron transfer reaction we resort to 

a method that we had explored also for the handling of nuclear potential effects for inelastic 

scattering. That is, we integrate the time-dependent coupled Schrodinger equations of 

Alder-Winther-deBoer form inward to closest approach. The vector of complex rotational 

amplitudes is at that point multiplied by a square matrix for the short-range effects under 

consideration. Then the resultant amplitude vector is further integrated along the outward 

path of the collision partners. 

Canto et al. [12] derived expressions for latitude-dependent factors over the nuclear 

surface for transfer reactions. One such factor is aabs• the amplitude factor for survival from 

absorption by the imaginary part of the optical potential. This factor depends on the polar 

angle of closest approach on the nuclear spheroid. 

(1) 

where ~ = 0.54 fm (the optical potential diffuseness), x - cose, R(x) IS the closest 

separation of the nuclear surfaces. 

(2) 
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where a is half the distance of closest approach and W0 is the strength of the imaginary 

optical potential. We argue in the following that the atun factor of ref. [10] will be nearly 

constant with angle, and we replace it by unity. The Nilsson single-oscillator-shell expansion 

is best interpreted as an expansion on a spheroid of half the eccentricity of the deformed 

constant-density nuclear surface. The classical turning surface for the heavy ion collision 

is also a prolate surface due to the electric quadrupole potential. Hence, the tunneling 

distance will be nearly constant at energies near barrier. 

The "spectator" odd neutron wave function on the surface does play a special role 

analogous to the role of Nilsson functions in the microscopic alpha decay theory of Mang 

and collaborators,[2] referred to in the introduction. Clearly, transfer amplitudes in angular 

configuration space are modulated by the odd-neutron wave function. In the angular 
·""'"'' 

.:~ .. ~-t.. 

momentum representation of the Alder-Winther-deBoer method we must make a Legendre 

transformation to get the closest-approach transformation matrix elements T1 I'• thus, 

TI I' = J yiO· aabs(x)"P Nils (RI'x) Yro dx dt> (3) 

The matrix expression is of the same form as the Froman matrix [4]. For angular wave 

function of the Yz + [631] neutron orbital we have used simply the original tabulation by 

Nilsson [5] for diagonalization within one oscillator shell (N =6). The wave function at the 

17 = 6 deformation chosen is as follows, in the original (NtA I representation: 

(4a) 

(4b) 

( i .,., where the numbers are from Nilsson's table of coefficients, not normalized, and where Y LM 

are spherical harmonics. The RL functions are 6th oscillator shell radial wave functions 
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evaluated at the turning radius for the s-state (9.8 fm). Rather than using the Laguerre 

polynomial radial wave functions for the 3-dimensional harmonic oscillator we have 

calculated numerically by the "shooting method" the radial wave functions in a spherical 

Woods-Saxon potential of size appropriate to 239Pu, but without spin-orbit coupling. These 

radial wave functions RL(9.8 Fm) are 0.248, 0.216, 0.154, and 0.0750 for L = 0, 2, 4, and 6, 

respectively. The shell-model energies in our calculation correspond fairly well with the 

average shell model orbital energies of spin-orbit partners in Nilsson's calculation in the 

spherical limit. Here we have separated the intrinsic-spin-up components ( +) from the 

spin-down components (-), since we must separately calculate probabilities for the two spin 

projections and add them, rather than adding amplitudes. In principle, one could perform 

the neutron-transfer experiment on a polarized 239Pu target and measure the polarization 

in the final 91Zr product; hence, we must calculate and add probabilities for the separate 

spin projections. Fig. 4 plots the surface amplitude factors vs. cos 8. The absorption factor 

(top curve) cuts the contribution at the poles to- 60% of their values at the equator. The 

lower curves are products of aabs and the two spin component wave functions. The Nilsson 

functions have major lobes either side of nodes around cos 8 = 0.3 (spin up) and cos 8 = 

0.45 (spin down). 

Fig. 5 shows the theoretical rotational population patterns for the 90Zr lab energy of 

500 MeV, backscattering angle 140°, the mean scattering angle in the experiment, soon to 

be reported [8]. We used the Nilsson wave function for the deformation value of 17 =6, 

which corresponds roughly to B = 0.3 somewhat larger than the experimental deformation. 

We do not show the results here, but calculations for deformations of 17 =4 were also 

performed and were found to resemble those for 17 = 6. It is seen that the spin-up 
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component of transfer gives a rotational population predominantly in a peak near the pure 

Coulomb excitation rainbow maximum around spin 18. The spin-down component 

predominantly populates a peak at spin 10. We do not show here the plots for other 

scattering angles and beam energies, but suffice it to say that the ratio of heights of the spin-

10 and spin-18 peaks is sensitive to these parameters. The higher beam energies and/or 

scattering angles mean closer approach and more optical model absorption of high-latitude 

amplitudes. This, in turn, is manifested by a decrease in the spin-18 peak relative to the 

spin-10. 

Discussion 

It is interesting to consider what would be observed in some idealized cases. In this 

we use the semiclassical orbital concepts embodied in the pioneering work of Miller and 

George [13] for atomic-molecular systems and the early nuclear applications [14]. Even 

though we use these semiclassical pictures for visualization, we now rely on our 

modifications of the older time-dependent-Schrodinger equation approach of Alder, Winther 

and deBoer [9] for numerical calculations. Consider Nilsson orbitals in some large single-j 

shelL For the highest orbital in a prolate deformation, n =j. This is a "pancake" orbital, 

with a single lobe on the equator. Only trajectories approaching the equator will be 

effective for transfer, and since the quadrupole torque vanishes at the equator, only 

low-rotational states should be populated. Likewise, the lowest-energy orbital in the j-shell 

will have its major lobe along the cylindrical symmetry axis, with minor lobes at finite 

angles. Again, low-spin final states should be preferred. If the transferred neutron is from 

an intermediate.n orbital, flat in energy with respect to increasing quadrupole deformation, 

the major lobe will be near 55°, the zero of P z< cos e), and near the angle of maximum 
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torque ( 45°). In this case one should expect favoring of high-spin final states, even more so 

than rotational inelastic scattering, where all orientations contribute. There could also be 

interesting interference effects for neutron orbitals with nodes near 45°, in such cases high

spin population should be suppressed, and interference structure for intensities of reversed 

phase from Coulomb excitation. The Y2 + [631] wave function we treat have major lobes 

near 45°( cos (6) = . 7), so high spins are enhanced. 

There are obviously many ways to modify and improve these exploratory calculations, 

but we believe the essential features of the calculation will remain. It seems clear that the 

sensitivity to nuclear optical effects at these energies so near the top of the barrier may 

obscure effects of the neutron Nilsson function. Transfer experiments at lower energies 

would be cleaner to treat theoretically. Perhaps the next-generation of 47T gamma detector 

arrays, such as Gammasphere and Euroball, can facilitate n-transfer heavy-ion work on 

deformed nuclei at lower energy. Much of interest also to further test the theoretical 

methods here would be ln transfer studies on even-even targets. 

We see that Hans-Jorg Mang's early microscopic treatments in tunneling processes 

take on new relevance in contemporary heavy-ion transfer reaction theory. The prospects 

of further advances along these lines seem bright. 
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Figure Legends 

Fig. 1. Calculated rotational state population patterns for pure Coulomb excitation of 238Pu 
by 90Zr at three different beam energies 480 MeV (open circles, solid lines), 500 MeV (solid 
circles, dashed lines), and 520 MeV (solid squares, dashed lines.) The calculations are all 
for 180° backscattering. 

Fig. 2. Comparison of pure Coulomb excitation calculations for 239Pu using experimental 
rotational state energies (open circles, solid lines) and using the fully-decoupled-neutron 
approximation with Coulomb excitation of 238Pu, partitioning the intensities among the I ± 
1/2 states by statistical weight 21 + 1. The calculation is for 90Zr beam energy of 500 MeV 
and 180° backscattering. 

Fig. 3. Rotational state populations calculated with the complex nuclear optical potential 
and effective-Z, effective-E approximation described in Ref.10. The collision partners are 
the same as in Fig. 1. The profound effects of the nuclear potential in suppressing high-spin 
population as well as the interference oscillations are clearly seen. The beam energy is that 
of experiment, 500 MeV, but adjusted to reproduce the distance of closest approach for a 
140° scattering angle. 

Fig. 4. Angle-dependent amplitude-modulation factors for the transfer calculation shown 
in Fig. 5. The attenuation factor aabs is the top (dash-dot) curve. The lower two curves are 
the products of aabs and the surface Nilsson wave functions of the V2 + [631] orbital (dotted, 
spin up; dashed, spin down). 

Fig. 5. Calculated population patterns in 238Pu from the 1-n transfer on 239Pu by 90Zr. The 
two spin-polarization components are shown separately along with their total populations. 
Here the Nilsson wave function for a deformation of 17 = 6 was used. The complex nuclear 
optical potential was included, as were effective parameters to adjust the orbital distance 
of closest approach in the calculated head-on collision to match that for the conditions of 
the experiment of ref. [8]. That is, an energy of 494 MeV with 180° backscattering was used 
to match the turning distance for 500 MeV with 140° backscattering . 
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