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Abstract 

A refined version of Hartle's perturbative method of solving Einstein's equa
tions for rotating massive objects is applied for the investigation of the general 
relativistic Kepler frequency of a rotating neutron star. From the precise de
termination of rotating limiting mass neutron star models for seventeen repre
sentative neutron matter equations of state we find Kepler frequencies which 
are systematically larger by ~10-15% than those obtained from the empirical 
formula of Haensel and Zdunik. The latter results however can be reproduced 
from Hartle's method as well by accounting for a small mass uncertainty of the 
limiting star model of~ 2%. In comparison with an exact numerical solution, 
Hartle's method is relatively easy to implement and should prove to be a prac
tical tool for testing the compatibility of nuclear equations of state on pulsar 
periods. 

PACS numbers: 2l.65.+f, 97.10.Kc, 97.60.Jd, 97.60.Gb 
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It is well known that neutron star masses impose a constraint on theories of nu

clear matter. Similarly fast rotation can impose constraints, perhaps more detailed, 

although a pulsar sufficiently fast to do so has not been found to date. This situation 

could easily change in the near future in view of the rapid pace of discovery of mil

lisecond pulsars in globular clusters [1]. In view of this we report on our refinement 

of Hartle's perturbative solution of Einstein's equations for massive, rotating objects. 

The method is much easier to implement than an exact solution of Einstein's equa

tions for a rotating star, and makes it a practical tool for studying the implications 

of fast rotation on the equation of state of neutron star matter. 

Hartle's method, because it is perturbative with respect to deviations from spher

ical symmetry caused by rotation, is referred to a.s applying to "slow" rotation [2, 3]. 

To the best of our knowledge it ha.s remained an unanswered question to date up 

to which rotational star frequencies, n, it is applicable. Light on this topic will be 

shed in a subsequent investigation [4], where we validate the method down to pe

riods of P ~ 0.5 msec, i.e. values which are much shorter than the smallest yet 

observed periods (like P(PSR 1937 +21 )=1.6 msec, see [5]), and which are unlikely to 

be achieved by ne1dron stars [6]. Reservations concerning the applicability of Hartle's 

method have been expressed in the literature (cf. [7, 8]). These have their origin in 

the rotation-induced mass increase obtained for neutron stars which rotate at that 

limiting frequency beyond which the (Maclaurin) secular instability sets in, which 

is too small compared to calculations based on the exact general relativistic equa

tions [8, 9]. In Ref. [10] however it has been found that this is no longer a problem 

once self-consistency, inherent in the determination of star models rotating at their 

respective Kepler frequencies, is imposed. 

Another basic problem concerns the empirically established formula for the Kepler 
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frequency, OK. We recall that for rotation at frequencies beyond the Kepler value, 

mass shedding at the equator sets in which. makes the star unstable. Therefore OK 

sets an absolute upper bound on the rotational frequency. For every nuclear equation 

of state, which is the essential input quantity for the construction of models of neutron 

stars, there are uniquely determined values of OK for each star in the sequence up to 

the limiting mass value. The Kepler frequency of the limiting-mass star obeys the 

so-called empirical formula which has been extracted from exact numerical studies 

of rapidly rotating neutron star models, performed for a sample of different neutron 

matter equations of state [11]. It relates both mass and radius of a non-rotating, 

spherically symmetric neutron star model of limiting mass, denoted respectively by 

Ms and R,., with OK. (To date there exist only heuristic arguments which motivate 

such a dependence ( cf. [12]). In [4] we perform an analysis which motivates this 

dependence quantitatively.) The empirical formula is given by [11] 

(1) 

The quantity C in Eq. (1) denotes a constant. Values of CFIP = 7200 s-1 [11] and 

CHz = 7700 s-1 [13] have been extracted for it. 

As we shall see, the refined self-consistent Hartle method leads to Kepler fre

quencies which show a similar dependence on spherical mass and radius as the exact 

method. In a subsequent work we will show how this dependence can be analytically 

motivated, however with C depending weakly on the equation of state [4]. In our 

investigation we construct self-consistent models of rotating neutron stars from Har

tle's method, based on a collection of a total of seventeen representative equations of 

state. 

The idea of Hartle's treatment of rotating, fully relativistic massive objects is to 

develop a solution of Einstein's field equations that is based on a perturbation of the 

line element from that of a static star. The perturbed form is [2, 3], 

(2) 

The metric functions in Eq. (2), v, 1/J, JL, and .\ depend on the radial coordinate as 

well as on the star's frequency n, which is not shown for the purpose of brevity. These 

functions are obtained in terms of monopole and quadrupole components which are 

themselves the solutions of a set of coupled differential equations which follow from 

Einstein's field equations [2, 8]. We refer to this system of equations as Hartle's stellar 

structure equations. 
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Table 1: Equations of state of this work 

Label Equation of state Description f Ref. 

1 G3oo R,H,K=300 (14] 
2 HV R,H,K=285 (15, 16] 
3 GDCM2 8180 R Q K =265 B 114 = 180 

' ' ' (17] 
4 GDCM2 265 R, I-1, ]{ =265 (17] 
5 G~oo R, H, 1r, K =300 [14] 
6 G;oo R, H, 1r, K =200 (18] 
7 A~~nn + HV R, H,/(=186 (10] 
8 GDCM1 225 R,H,K=225 (17] 
9 GDCM1 

8180 R Q K =225 B 114 = 180 
' ' ' (17] 

10 HFV R, H, .6., K =376 (16] 
11 A~0EA + HFV R, H, .6., ]{ =115 (10] 
12 BJ(I) NR, H, .6., (19] 
13 WFF(UV 14+ TNI) NR, NP, ]{ =261 (20] 
14 FP(V14+TNI) NR, N, K =240 (21] 
15 WFF(UV14+UVII) NR, NP, K =202 (20] 
16 vVFF(AV14+UVII) NR, NP, ]{ =209 (20] 
17 Pan( C) NR, H, .6., K =60 (22] 
f The following abbreviations are used: R = relativistic; NR 

= non-relativistic; N = pure neutron; NP = n, p, leptons; 
1r = pion condensation; H = composed of n, p, hyperons, 
leptons; .6. = .6.1232-resonance; Q = quark hybrid composi-
tion; ]{ = incompressibility in MeV; B 114 = bag constant 
in MeV. 

The ingredient missing from earlier applications of Hartle's method is the tran

scendental equation for the general relativistic Kepler frequency. It is given by (7] 

(3) 

(4) 

Equations (3) and ( 4) are to be evaluated at the star's equator. The quantity V 

defined in Eq. ( 4) denotes the orbital velocity measured by an observer with zero 

angular momentum in the </~-direction. Primes refer to derivatives with respect to the 

radial coordinate. The quantity w occuring in Eqs. (2) - ( 4) denotes the frequency 

of the local inertial frames (dragging effect). An essential feature is that V and w 

(like the metric functions v and 'lj;) depend on nK. The latter quantity is uniquely 

3 



related to the mass of the rotating neutron star model, Mrot· Once a neutron matter 

equation of state has been specified, Hartle's stellar structure equations can be solved 

in combination with Eqs. (3) and (4) to obtain the properties of a neutron star model 

rotating at 0 = OK. We stress once again that in this Letter we are only interested 

in non-rotating as well as rotating neutron star models at their limiting gravitational 

masses. The construction of non-rotating neutron star models is relatively easy to 

accomplish by solving the Oppenheimer-Volkoff equations. In contrast, the construc

tion of models of rotating neutron stars of limiting mass is more involved since a 

self-consistency problem inherent in the determination of the Kepler frequency of Eq. 

(3) is encountered. In short, the problem is to find that value of the star's central 

energy density, tc, for which Hartle's stellar structure equations lead for Mrot(n) to 

its limiting value (i.e. [8Mrotf8tc] = 0) for 0 = OK which simultaneously satisfies 

Eqs. (3) and (4). Surprisingly this has not been recognized in applications of Hartle's 

method. (A detailed description for finding the Kepler frequency is outlined in Refs. 

[10, 23).) 

In Fig. 1 we plot our results for nK, calculated from Eq. (3), as a function of 

J[Ms/ M0 )/[Rs/10 km)3 for the seventeen neutron matter equations of state (labeled 

"1" through "17") of Table 1. This collection contains equations of state derived from 

relativistic nuclear field theory ("1" through "11") as well as from non-relativistic 

Schroedinger theory based on potential models for the nucleon-nucleon interaction 

("12" through "17''). It turned out that a very precise determination of the limiting 

mass is required since nK changes very rapidly as a. function of Mrot (related to rapid 

changes in radius) at the mass limit [7], which can be represented by 

(5) 

This sensitive dependence of OK on limiting mass is grahica.lly depicted by means 

of the vertical bars in Fig. 1 for all equations of state of our collection. Each of 

these bars shows the change of nK with respect to relative rotational mass changes 

fj.Mrotf Mrot .:S 1%. Typically the associated error in determining nK is, according to 

Eq. (5), ~ ±10%. \11./e stress that the precise determination of mass (and radius) in the 

framework of the exact method is restricted by the fact that a compromise between 

numerical accuracy and radial grid spacing is to be made. This implies errors in 

mass and radius of respectively 1% and 5% [7). In other words the determination 

of the mass limit to better than 1% has not been performed for the exact method. 
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Figure 1: Comparison of the Kepler frequency OK (solution of Eq. (3)) calculated 
for the seventeen equations of state of Table 1 (labeled "1" through "17"). The 
ordering at small x-values is (from left to right) "1" "2" "5" "3" "6" "4" Note ' ' ' ' ' . 
that equations of state "3" and "6" are located at more or less the same x-value. 
Therefore only label "6" is drawn in. The vertical bars show the sensitive dependence 
of OK on limiting rotational star mass (see text). The slope of the Haensel-Zdunik 
approximation (solid line), given by CHz = 7700 s-1 , is compared with values of 
8500 s-1 and 8800 s-1 supported by our investigation. 

In contrast Hartle's method is numerically easier to treat and therefore provides an 

appropriate tool for a. more precisely investigation of OK (.Mrot)· 

We conclude from the above described sensitive dependence of OK on limiting 

mass that: 

1. The rotating limiting mass models must be determined to a. very high degree 

of accuracy (1% in tlMrot/ Afrot to get 10% in tlf!K/OK)· Since this degree of 

accuracy is a problem of the exact method, values of OK derived from it [7, 11] 

may have underestimated f!K by up to 10-15%; 

2. Our nK values support a. slope value of 8.500 s-1 ~ CHartle ~ 8800 s-1 (lower and 

upper dashed lines in Fig. 1, respectively). In comparison with CHz = 7700 s-1 , 

our C-value is 10-15% larger; 
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3. We believe the Haensel and Zdunik [13) results for OK are underestimates for the 

following reason. They can be obtainea from Hartle's method for the equations 

of state labeled "1" through "9", "12", and "14", provided the limiting mass 

values are all assumed to be underestimated by ~ 1% (see bottom ends of 

the vertical bars of Fig. 1 ). The assumed errors for the remaining equations 

of state are ~ 2%. This is shown, for example, for equation of state "17" 

(Pan(C)) by means of the vertical dotted line. The lower part of it ends at the 

Haensel-Zdunik value (solid line). Note that an underestimate of the mass is 

more natural than an overestimate since one begins the calculations at a lower 

mass and works up to the maximum. 

More details of the findings presented here will be given in a. subsequent article 

[4] where we: (a) report the results of a. sequence of stars that are rotating at their 

Kepler frequencies up to the limiting star of each sequence; (b) compare rotating 

neutron star models derived from Hartle's method with their exact counterparts (the 

rotation induced mass increase, for example, is very well obtained in the framework 

of Hartle's formalism [4]); (c) shed light on the empirical formula for nK by means 

of an analytic investigation of Hartle's method (an expression for the slope factor 

C is derived which exhibits its dependence on the equation of state). In essence the 

applicability of Hartle's method down to rotational periods of~ 0.5 msec is confirmed. 

For this reason we feel confident as concerns the findings of this Letter. 

Since Hartle's method is much simpler to implement than an exact solution of the 

general relativistic equations for a rotating star, we draw attention to it in this Letter 

as a practical tool in evaluating the implications of pulsar rotation on the equation 

of state ( cf. [10) and reference [4]) just as the Oppenheimer-Volkoff equations are 

for evaluating the constraints imposed by neutron star masses. It is only a little 

more complicated than solving the latter problem because the equations (exact or 

approximate) for rotation do not simply constitute an initial value problem as for a 

static star. 

In summary, from the investigation of the Kepler frequencies, nK, of rotating neu

tron star models for seventeen neutron matter equations of state in the framework of 

Hartle's "slow" rotation formalism, we have shed light on the sensitive dependence 

of this quantity on the limiting neutron star mass. From the very precise determina

tion of the limiting mass point, which turned out to be of crucial importance since 

even small deviations from it strongly influence f!K, we have demonstrated the im-

6 



' 

pact of mass errors of~ 1% (inherent in the determination of the limiting mass from 

the exact method) on the Kepler frequency. We arrive at a corresponding ~ ±10% 

uncertainty of f!K. 
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