
r
. 1

:···~·)· ·'
·,·p .'- (''""

l tS
'- .. ···

..

LBL-29817
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

EARTH SCIENCES DIVISION

IRIS-SEIS Users Manual and Installation Guide

Version 1.3.0

D. Okaya, E. Karageorgi, and T.M. Daley

November 1990

~~-~~~
, ~ .. "' •. _:;.!;;.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

- --- -~-·-----...,

-tJ(")
o 1-'· r
;; ;; 0

11 D
f(f ~ z

1-'

~ !lJ (")
IDC"I-0
I'D I'D 1J
A"l.tl-<
l.tl

Ul
lSI

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

. .

IRIS-SEIS Users Manual
and Installation Guide

Version 1.3.0

Compatible with SIERRASEIS v1.3

David Okaya, Eleni Karageorgi, and Thomas M. Daley

SierraSeis Maintenance Center
Earth Sciences Division

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

November 1990

The SierraSeis Maintenance Center
is operated by the Earth Sciences Division

for Incorporated Research Institutions for Seismology

/

LBL-29817

This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

'·

Copyright© 1990 by the University of California.

The name SierraSeis is a registered trademark of Sierra Geophysics, Inc.
SIERRA and SIERRA GEOPHYSICS are registered trademarks of Sierra Geophysics, Inc.

iii

miS-SEIS Users Manual and Installation Guide

I INTRODUCTION 1

II SIERRASEIS ENVIRONMENT 3
A Structure of SIERRASEIS 8
B Structure of IRIS-SEIS 23
c Structure of LOCAL-SEIS 30

ill IRIS-SEIS 37
A Installation of IRIS-SEIS 37
B Running an IRIS-SEIS job 44
c Processors within IRIS-SEIS 47
D Stand-alone utility programs

provided within IRIS-SEIS 57

IV LOCAL-SEIS 65
A Installation of LOCAL-SEIS 65
B Running a LOCAL-SEIS job 71
c Adding a new processor to LOCAL-SEIS 74
D Creation of an initialization subroutine 77
E Creation of an execution subroutine 87

v USER DEVELOPMENT WORK AREA 93
A Installation of template directory "local13/user1" 93
B Creation of user work area 98
c Developing a new processor in the work area 101

Appendix I IRIS-SEIS manual pages 105

Appendix II FfOCIO library 161

....

1

I • INTRODUCTION

The IRIS-SEIS seismological processing package
The IRIS-SEIS seismological processing package is a software extension to Sierra

Geophysics' SIERRASEIS seismic data processing package. By using IRIS-SEIS,
one can apply algorithms which are not provided within the original SIERRASEIS
package. In addition, IRIS-SEIS provides an environment so that users may add
locally developed algorithms into the IRIS-SEIS I SIERRASEIS package. Some
knowledge of FORTRAN and UNIX is required to add routines into IRIS-SEIS.

IRIS-SEIS will not run as a stand-alone software package but is written to be
integrated with SIERRASEIS. The user must have a valid SIERRASEIS license in
order to properly install and run IRIS-SEIS. IRIS-SEIS as presented here is supported
on SUN/UNIX-based systems; references to operating system commands or to installa
tion command files are based on the UNIX operating system.

In addition to providing access to all original processing routines, IRIS-SEIS pro
vides several capabilities which are not available in SIERRASEIS. Most important,
IRIS-SEIS separates SIERRASEIS routines from IRIS routines so that the IRIS-added
routines do not corrupt the SIERRASEIS routines or infrastructure. Functionality
available within IRIS-SEIS are user-definable headers, import of external data, utility
processors to fix trace headers, and additional processing algorithms.

Just as IRIS-SEIS is designed not to corrupt original SIERRASEIS libraries and
executables, IRIS-SEIS provides an extension for users to add routines without
adversely affecting IRIS-SEIS libraries and executables. This third tier ("LOCAL
SETS") is designated for locally developed algorithms. Shell subroutines are provided
within IRIS-SEIS to allow the user to create new processing routines; these can be
copied and modified for inclusion into LOCAL-SETS.

This reference manual provides information which is needed to optimally use
IRIS-SEIS. The first of three sections discusses the SIERRASEIS environment which
provides a reference into which IRIS-SEIS and "LOCAL-SEIS" resides. The second
section provides information on IRIS-SEIS (e.g., capabilities, installation procedures,
how to run a job, etc.). The third section provides similar information on LOCAL
SETS. Within the appendices, user documentation on each IRIS-SEIS processor is
given. An appendix describes a set of C-language I/0 utility routines for FORTRAN
code; several IRIS-SEIS processors use this library.

Library of IRIS-community processors
It's the intent of IRIS to assemble a user-developed library of processing algo

rithms which may be useful to various batch-mode seismological data processors
within the IRIS community. If you create a new LOCAL-SETS processor, please con
sider giving permission to IRIS to incorporate it into IRIS-SEIS. The processor will
be included in the subsequent release of IRIS-SEIS to be distributed to all people eligi
ble to receive IRIS-SEIS (i.e., have a valid SierraSeis license).

Processor routines of any kind (algorithms, utility, editing, trace header manipula
tions, etc.) will be accepted - whatever may be useful to IRIS members (given the
wide range of types of seismological data which could be run through IRIS-SEIS). The
SierraSeis Maintenance Center (SMC) will accept processor routines and will check
the subroutines to ensure the code is compatible with the SierraSeis environment.

"

3

II - SIERRASEIS ENVIRONMENT

SIERRASEIS is designed to routinely handle data sets consisting of a few to a few hun
dred thousand seismograms. The package was originally created to process conventionally
collected seismic reflection data using the seismic trace-to-seismic trace manipulation strategy
used by essentially all the major data processing packages. In this strategy, seismograms are
induced into a processing stream in the order in which they are stored. Trace selection and
manipulation are based on a user-specified order of processing routines. This orderly
approach to seismogram manipulation allows for the creation and execution of large-scale
batch jobs using a common input reference scheme.

Although able to handle large data sets, SIERRASEIS is capable of manipulating indivi
dual or a small number of seismograms. While the seismograms cannot be manipulated in a
screen-interactive approach, the data can be processed using small, fast jobs. The reference to
"batch" mode processing does not imply slow-queue, low priority processing but to the non
interactive nature of the selection of processing steps. In this mode, one first chooses the pro
cessing steps to apply to a selected range of seismograms, then executes the processing steps
to the selected data. The provision within SIERRASEIS of an environment to manipulate
seismograms plus the availability of a number of processing and display algorithms compen
sates for the lack of screen-interactive capability (e.g., mouse or cross-hair selection of pro
cessing steps).

Trace-to-trace seismogram handling
Two major data handling schemes exist for processing seismic data: "file sequential" or

"trace sequential" order (Figure 1). Given a processing list of several steps, data can be pro
cessed in "file sequential" order by individually applying each step to all the data, producing
intermediate output results which are used as the input for the next step. This scheme
requires large I/0 resources.

Within the "trace sequential" ("trace-to-trace" or "trace-by-trace") scheme, a seismic trace
is processed through all the requested steps in the order the steps are specified. Upon comple
tion, the next input trace is obtained and processed through all the requested steps. When a
multi-trace processing step is reached, this step must accumulate sufficient input traces to
satisfy the processing algorithm before releasing the seismograms to the rest of the processing
stream.

Due to the major constraint of handling data stored on one or a number of magnetic
tapes, major seismic processing packages are usually constructed to process seismic traces in
trace-to-trace sequential order. In this form, the access of data is orderly (first through last
stored traces) but loses the speed of random access capability of seismograms. Processing
which requires irregular access usually necessitates the use of temporary, run-time disk files
which are used for random access.

Seismic traces and trace headers
Within trace-to-trace processing, the identity of the seismograms is important.

Identification or description parameters such as shot or CDP gather number, trace number
within the gather, source-receiver offset, sample rate, and trace length are often required infor
mation for many processing algorithms. These information exist for each seismogram and are
termed "trace headers" or "global variables" within processing packages. Proper trace header
values and their corresponding seismogram are passed in tandem from step to processing step
within most processing packages.

A processing job's trace flow is regulated (i.e., defined) by the user's selection of pro
cessing steps. The actual flow of traces through these steps depends on the seismograms'
trace header values. An unsuccessful processing job is often due to traces incorrectly flowing
(or not flowing) through portions of a sequence of processing steps.

4

Figure 1: Data Handling Schemes

' .

i (File Sequential

..

Deconvolve All Data

Display All Data

Trace Sequential

Trace 2 Input Trace 3 Input

Deconvolve Deconvolve Deconvolve

and

5

From a user's standpoint, to ensure that a job will complete successfully, one must
-know the ranges of trace header values in the input data (range of shot numbers con

tained in the data, for example),

-understand the trace flow created by the sequence of processing steps.

Trace flow and railroad cars
An analogy for trace-to-trace processing is a railroad system between two localities

(points A and B). A train composed of a number of train cars will pass, one car at a time,
from point A to point B, traveling through a number of stops and sidings. The train cars are
flexible enough to be used for various purposes.

At the front of each railroad car slots will be placed where panels with numbers or
words on them can be inserted; these slots will be used to identify characteristics about the
car itself. Some parameters may physically describe the car (length, height, weight, color),
some may describe the car in relation to the train (train name, car number), and some may
describe the contents of the car (passenger seats or cargo, number of passenger seats, number
occupied, type of cargo, etc.).

In this analogy, the origination point is equivalent to the input data; the destination is the
end result (display or output of data). Each train car is a seismic trace; the train is the data
set comprising the entire set of traces. The I.D. slots are the trace headers which are used to
store descriptors.

As grand master engineer, you plan a routing schedule for the train (Figure 2). For
example, a passenger train composed of a specified number of cars of a certain physical
description can travel, ear-by-car, through a number of stops (processors). At stop 1 after the
point of origin, passengers can disembark. At stop 2, each car can enter a roundhouse where
workers remove the passenger seats and paint the car (updating the identifiers in the process).
Stop 3 may be a loading plant where items are placed into the modified cars. At stop 4 cars
can selectively be chosen so that those of an excessive weight can be partially unloaded. At
the next stop, groups of cars are accumulated so that the cars can be reordered before being
released (in car-to-car manner).

In addition to the direct route between points A and B, branches can be constructed.
These branches can be constructed to allow selected cars to undergo extra modifications
before being returned back in to the original route. Alternatively, a branch can have a dead
end termination so that an additional route can exist in parallel to the original route.

In a similar manner, seismic traces can be individually passed from one processing step
to another. Trace amplitudes or header values can be analyzed or modified depending on
each processing algorithm. Trace flow can created to be all-inclusive (all seismograms) for all
or any of the algorithms; however, partial processing can be established using inclusion logic
based on trace header information.

6

Figure 2: Car-by-car Routing Schedule

..

-

7

FIGURE 3A: Table of SIERRASEIS Directories

The following directories and files exist within the overall .• ./sierra directory.

rasvue
slib15
sseis13

ext e wit e muons or run-t1me envrronment vana es.
Text file listing licensed SIERRA products.
Directory containing rasvue; might be named "rasvue new".
Directory containing SierraLib and drivers for SIERRASEIS.
Directory containing SIERRASEIS version 1.3 and contains the
subdirectories listed in Fi ure 3B. ·

FIGURE 3B: Table of SIERRASEIS version 1.3 Subdirectories
The following directories are contained within the .• ./sierra/sseisl3 directory.

driver

extend

inc

install

lib

main

plot

run

seismic

util

subroutines which define the infrastructural framework of SIERRASEIS.

subdirectories containing source and object code for the extension pack
ages (e.g., migration, deconvolution, f-k filtering, etc.).

include files which act like common blocks for various subroutines.

shell and make files needed to build SIERRASEIS.

archive libraries containing all object code for sseisl3 subdirectories.

main-level routines for the executables crsras, gntabl, rasplot, ssinit,
and ssexec.

device-driver code needed to properly compile and link rasplot.

key files and executables for SIERRASEIS. The important executables
are ssinit and ssexec.

source and object code for all processors in the basic package of SIER
RASEIS.

utili subroutines which hel define the SIERRASEIS infrastructure.

8

11-A. Structure of SIERRASEIS

1) Users viewpoint of SIERRASEIS
SIERRASEIS is a seismic data processing package which operates in trace-sequential

format. The package will process a set of data based on a list of steps provided in a text file
("job listing" as defined in the SIERRASEIS manual). The list of steps within this file must
obey a small number of rules regarding format and syntax.

To implement the desired job, the user must run SIERRASEIS in two phases: initializa
tion and the execution. Within the first phase, the user-created text file ("job listing") is
checked by SIERRASEIS for any syntax or typing mistakes. Improper or undefined process
ing steps or parameter values are usually caught at this point. If all input text appears valid,
the computer rc#ol!rces for the execution phase of the job are computed and in some cases
allocated. If errors are detected, the second, execution, phase will not run properly.

The actual data processing is performed within an execution phase. At the start of this
phase all unallocated computer resources are obtained and input data are processed in trace
sequential format. Upon normal completion of the job (e.g., no run-time errors are encoun
tered), SIERRASEIS cleans up after itself, closing all files and removing certain temporary
work files.

The two phases are conducted using separate executable programs. For SIERRASEIS,
ssinit (or a variation such as "ssinit13" for version 1.3) is the program to perform the job ini
tialization. For the execution phase, the executable ssexec (or "ssexec13") is used.

Communication between the "init" and "exec" phases is performed via the use of a tem
porary file. This file has the SIERRASEIS file suffix ".CMB". The job description as inter
preted by ssinit is listed in this file to be used by ssexec. Any resources (e.g., memory, tem
porary disk space) to be needed are also described within this file. If an error is detected dur
ing by ssinit, the ".CMB" file is not created.

Run-time documentation is provided within SIERRASEIS files whose suffixes are ".IPR"
for ssinit and ".EPR" for ssexec. These files will contain run-time printouts, errors, and other
information diagnostic to the processing job.

A more complete description about the use of SIERRASEIS can be found in Chapter 1
of the SIERRASEIS Basic Users Manual.

2) Organizational framework of SIERRASEIS
The files which compose SIERRASEIS are organized into several different directories.

These directories as described in Figure 3 are maintained within the sseisl3 directory within
the overall sierra directory.

The driver and util directories contain subroutines which define the infrastructural
framework of SIERRASEIS. These routines perform functions such as the definition of run
time parameters, the reservation of memory at execution time, and the passing of "init"-phase
parameters to the "exec"-phase.

The seismic and extend directories contain source and object code which define the
seismic processors available in the SIERRASEIS basic and extension packages. The lib
directory contains the archive libraries composed of these object code. The libraries are
separated into basic (sseis.a), extension (extend.a), array processor or simulator code (ap.a or
apsim.a), and driver/utility code (SYSLIB.a).

The main directory contains main-level (or "driver-level") routines for the executables
crsras, gntabl, rasplot, ssinit, and ssexec. crsras and rasplot are used for raster plotting.
gntabl is a utility routine used by the shell file "makelk" (install directory). ssinit and ssexec
are the primary SIERRASEIS executables.

...

9

The inc directory contains include files which are specified within various SIERRASEIS
subroutines. These files act like common blocks through which information is passed between
subroutines. The most important include files are SSCOM.INC and SSCOMC.INC which are
used to define and store Global Common Variables. More on GCV's below.

The run directory contains key files and executables for SIERRASEIS. The important
executables are ssinit and ssexec. The text file ERRORS.LST is used by the two executables
whenever a run-time error occurs; this file contains the error messages which appear in .IPR
or .EPR files.

Text file PROC.LIS in the run directory is an important file and represents the master
list of available SIERRASEIS processors. The file also serves as a look up table which indi
cates for any processor name (e.g., /AGC) the corresponding initialization and execution phase
subroutines which ssinit and ssexec need to implement. The executable gntabl in this direc
tory translates PROC.LIS, creating two subroutines, "lkinit.f' and "lkexec.f' which are subse
quently linked into ssinit and ssexec.

The install directory is composed of shell and make files which are needed to properly
install or update SIERRASEIS. The files can be divided into two parts: configuration and
construction. The configuration files are used to set the initial installation environment; the
construction files are used to compile subroutines, create archive libraries from the object
code, and link executables. Figure 4 contains a list of files and their specific functionality.

The plot directory contains device-driver code needed to properly compile and link
"rasplot."

The bench directory contains benchmark jobs and data for testing this version of SIER
RASEIS.

3) Structural and operational framework of SIERRASEIS
The seismic processing subroutines associated with the processors available in SIER

RASEIS are linked to top-level "main" or "driver" routines to form the executables ssinit and
ssexec. The "driver" routines are so named because they "drive" or regulate the trace-by-trace
flow control of input data and call the requested processing subroutines in the appropriate
order. These routines also regulate computer resources and ensure run-time documentation
gets written to .IPR and .EPR files.

Sections below discuss the ssinit and ssexec drivers, global common variables (trace
headers), the regulation of job control within an ssexec run, and the regulation of trace flow
for multiple trace processors. These are concepts which should be understood to utilize SIER
RASEIS to its maximum capability.

The ssinit driver: The initialization of a seismic processing job is conducted with the execut
able ssinit. This program will interpret a user's job listing, checking for errors and determin
ing the computer resources needed by the execution routine (ssexec).

As Figure 5 illustrates, ssinit identifies processing steps within a job listing and interacts
with a subroutine named "lkinit" which contains essentially a look-up table of processor
names. These processor names are associated with the names of specific subroutines which
obtain parameters from a job listing. Subroutine "lkinit" returns the name of the subroutine

·• (in computer form, it actually returns the address of the subroutine with the given name).
ssinit subsequently conducts a call to this subroutine. These subsidiary subroutines interpret
parameters from the job listing and determines resources needed during run-time. This infor
mation is stored within the job's .CMB file for communication with ssexec. ssinit also stores
the order in which processors should be applied.

As an example, suppose the job we wish to run contains the following information:
/JOB
/DIN

FILENAME 'TESTDATA'

10

Figure 4: Installation Shell and Make files for SIERRASEIS

The •• ./sierralsseis13/install directory contains shell and make files needed to build
SIERRASEIS. The files within this directory can be divided into two parts: configuration and
construction. The configuration files are used to set the installation environment:

installcfg a template file for "install."

protomakefile a precursor of "makefile," used in conjunction with "installcfg" by
"install."

makefile.old an earlier version of "makefile."

The construction files are used to build the SIERRASEIS executables:

ectones.

comptree a shell file which identifies and compiles all source code subroutines
within a given directory.

liball obtains all object code in other SIERRASEIS directories and creates
archive libraries using the archive command. Net result are ".a" files in
the lib directory: sseis.a, extend.a, ap.a or apsim.a, and SYSLIB.a. This
shell file calls "libtree."

libtree a shell file which identifies and archives all object code within a given
directory.

makefile used with the make command to create ssinit and ssexec, the two exe
cutables which define SIERRASEIS.

makelk a shell file which makes two key lookup subroutines which are neces
sary to make SIERRASEIS work properly. This shell uses executable
gntabl and text file PROC.LIS to create files "lkinit.f' and "lkexec.f."

ran.lib a text file which denotes the time and date that the archive libraries
were last reconstructed.

...

11

Figure 5: The SSINIT Driver

Driver

Allocate resources

get/PROCESSOR name
from job listing

call LKINIT
....

call processor initialization
subroutine

y

Shutdown

...

...
....

obtain address of initialization
subroutine for this processor

interpret processing parameters;
allocate resources;
store in . CMB file

12

/DISPLAY
HORZ 25. VERT 2.0 MODE VA W
DESC 'TEST PLOT OF DATA'

$EOJ

ssinit initially obtains the first line of text within the job listing, searching for a call to a pro
cessor named /JOB. Once obtained, ssinit calls "lkinit" to identify the initialization subroutine
associated with processor JOB. The name of this subroutine is returned from "lkinit"
(JBJOBO, in this case) to the main-level routine whereby it is subsequently invoked. Subrou
tine JBJOBO will perform job initializations.

Upon completion of the subroutine call, ssinit will obtain "/DIN", the next processor
within the job listing. Using "lkinit," the initialization subroutine DINOOO is identified. When
DINOOO is invoked by ssinit, the parameters within the /DIN processor in the job listing are
interpreted. This information is stored in a SIERRASEIS .CMB file for use by ssexec.

ssinit will then process in sequential order the rest of the job listing (/DISPLAY in the
above example) by first obtaining the next processor name, calling "lkinit", then invoking the
proper initialization subroutine. This procedure is repeated until either the "$EOJ" card is
reached or there are no more text lines in the job listing.

The ssexec driver: If the initialization of the seismic job was without error, the execution or
processing phase can begin. Upon commencement of the ssexec program, the contents of the
SIERRASEIS .CMB file are retrieved. This information lists the order of processor names as
selected by the user.

With behavior similar to the ssinit program, ssexec will call each processor in the order
given. For each processor, subroutine "lkexec" is called. This subroutine will return for the
processor the name of the actual subroutine which performs the data processing step as
described by the processor.

For the first processor, /JOB, the subroutine name JBJOBA is retrieved and then the sub
routine is called by ssexec. In the execution mode, this subroutine defines certain job-related
variables and initializes (clears) other variables.

The following processor in the example as discussed above was /DIN. The subroutine
name DINAAA is obtained from "lkexec" and invoked. At this point, a seismic trace is read
from the specified disk file into a trace buffer. Control of the program is returned to ssexec
which gets the name of the next processor (/DISPLAY), obtains its subroutine name from
"lkexec" (i.e., DSOOOO), and calls the subroutine, passing as an argument the seismic trace.
Subsequent processors in the user's list are called in a similar manner until the last processor
is reached and called. At this point, ssexec returns to the top in order to cycle through the
processor list with the next seismic trace as obtained by /DIN.

Figure 6 illustrates the operations within the execution driver ssexec. The operations are
made one step more complicated in that trace flow must be monitored. For example, if a sub
routine such as that for F-K filtering requires a gather of data, the execution subroutine will
request more traces before filtering will take place. ssexec must recognize this request and
backtrack in the job listing for more data rather than advance traces within the job stream.
The mechanism to do this is via two run-time parameters ("global common variables) named
KST ATE and KCMBCK which are described in more below. ""

Job sequence number and run-time file names:
SIERRASEIS run-time files are named using what SIERRASEIS terms the "job sequence

number". This is a one to four character text string (characters and/or numbers) which is used
to identify all run-time files. The user is asked by the ssinit routine for this text string and
again by the ssexec routine. The "job sequence number" identifies all files related to a partic
ular processing job.

13

Figure 6: The SSEXEC Driver

I Driver I

Allocate resources,
read .CMB information

.. get/PROCESSOR name
from . CMB file

f call LKEXEC j ...
----1 ... obtain address of execution

subroutine for this processor

I
call processor execution

subroutine ...
... receive incoming seismogram;

either process
or

resume multiple trace condition
(release trace or go back for more)

Check trace flow control
(KSTA TE/KCMBCK):
a) send trace to next processor;
b) last processor in list, goto first

processor with next trace;
c) multiple mode: release trace;
d) multiple mode: get another.
e) end-of-data: cleanup

Release resources; and shutdown

14

The format of run-time job files associated with a processing job is:
SSabcdvv.SFX

where abed is a one to four alphanumeric character sequence (the "job sequence number"), vv
is a "version number" (most noticeable for raster plot files), and SFX is a three character file
suffix. The suffix names are:

File/Suffix
SSabcdOO.IPR
SSabcdOO.CMB
SSabcdOO.CBR
SSabcdOO.EPR
SSabcdOO.RAN
SSabcdOO.RAS

Descnpuon
Output from ssinit with any error statements
Communication file between ssinit and ssexee
Parameter file for processors used in ssexec
Output from ssexec with run-time status and any errors
Temporary scratch disk file used by ssexec.
Raster plot file

For the above files, abed is the "job sequence number" one uses during execution of the
ssexec program.

Global common variables (trace headers): Seismic trace headers are an integral part of
trace-by-trace data processing. These scalar values (a) identify individual seismic traces (i.e.,
shot or CDP gather number, trace number within gather), (b) provide descriptive information
as to data dimensionality (i.e., sample rate, trace length, #traces/gather), (c) provide geometry
information once calculated (i.e., midpoint X-Y coordinates, source-receiver offset). Within
SIERRASEIS, these trace headers also give information regarding job status and trace flow.

Trace headers can be considered to be elements of an array of values for which there is
one array for each seismic trace. When a data trace enters the trace flow of a processing job,
an array of trace headers essentially tags along with the data trace. The trace header informa
tion is thus passed along with the seismic data.

For a seismic data processing package such as Cogniseis DISCO, a true array of trace
headers exists for each trace and both the data and header arrays are passed from one execu
tion processing subroutine to another. For processing packages such as SIERRASEIS or
MERLIN SKS, the array of trace headers is structurally defined as a FORTRAN common
block. In this latter construction, the common block can be accessed by any subroutine (pro
cessing or driver-level); header values are available at any time.

For SIERRASEIS, the common block which contains the trace headers is named
"SSCOM.INC" in the .• .line directory of SIERRASEIS. Since a common block construction
is used, the variables within the common block are referred to as "global common variables"
or GCV's.

Within the SSCOM.INC common block, GCV's are grouped into four types of variables
based on FORTRAN declaration: integer, real, CHARACTER*8 and CHARACTER*4. The
common block defines (allocates space for) more than SIERRASEIS actually requires, leaving
room for expansion (IRIS-SEIS takes advantage of this feature):

F RTRAN IERRA El
declaration
INTE ER
REAL 100
CHAR*8 42
CHAR*4 21

The number of time samples in each seismogram is an integer number and is stored in loca
tion SSCMAI(63); within common block SSCOM.INC, the value of SSCMAI(63) represents
the trace length.

15

Using a form of equivalence, a list of variable names is associated with each type of
common block information. For example, the number of samples per seismogram,
SSCMAI(63), is equivalenced to the variable KNSAMP; either reference within a processing
subroutine will yield the proper number of samples. The shot number, KSHOT, and the CDP
number, KCDP, are the same as SSCMAI(76) and SSCMAI(15). The real-valued sample rate,
SR, is stored in SSCMAR(28). The reference of GCV's by name rather than "array(index)" is
for convenience both as a user and as a programmer.

The include file SSCOM.INC is accessed during execution of both ssinit and ssexec.
The global common variables (GCV's) contained within the include file are used to describe
the seismic data (trace headers, data dimensions), describe the processing job (line number,
job name), and regulate the job control (trace flow). GCV values within the include file are
initialized (cleared) prior to calling any processor subroutines. During execution of ssinit, the
values of GCV's which are set or reset by any processor subroutine are "passed" or are
"available" to the next processor subroutine.

When a seismic trace is entered into the processing stream by use of /IN, /DIN, /DMX,
or any of the synthetic processors within ssexec, GCV's are filled into the include file. These
values are treated as trace headers and are essentially passed from subroutine to processor
subroutine with the seismic data. In certain instances, values which were defined in the initial
ization phase of a processor may be retrieved from the SIERRASEIS .CMB file by the
processor's execution phase subroutine.

The include file (common block) "SSCOMC.INC" contains the names of the individual
GCV's in the order in which they are defined in SSCOM.INC. SSCOMC.INC contains four
sets of CHARACTER *6 arrays, one for each array defined in the .INC file. -

.I M .IN
vana INT INT HAR

SSMAI(63) KNSAMP NNAMI(63)
contents: #sam les #sam les "KNSAMP"

By scanning the arrays in SSCOMC.INC for the character string "KNSAMP", we can obtain
the location (index) where the corresponding value of KNSAMP is stored in SSCOM.INC.

Job control (a GCV named KST ATE): The trace-by-trace flow of seismic data within
ssexec is described by the value of a GCV named KST ATE. The state of the trace flow
determines whether a seismic trace is passed from one processor to the next (trace-by-trace) or
has encountered a multiple-trace processor (f-k filtering, for example). A multiple-trace pro
cessor must first accumulate into memory or a temporary disk file (".RAN" file) a specified
number of seismic traces. Once accumulated, the data are processed by some algorithm, then
released in either trace-by-trace or multiple-release form. The value of KST ATE indicates to
ssexec which of these trace operations to conduct.

T wit m a rocessor su rounne:
no ata passed out (multiple trace accumulation)
data in place & releasable (trace-by-trace or multiple release)
end of input reached (no more incoming data)
no incoming trace in buffer but end of data not reached
(multi le release fta)

In a job of simple processing trace flow (e.g., input, gain, bandpass filter, output), all
processors work trace-by-trace so that KST ATE has value 2 until the last trace is read. After
the last trace is processed, KST ATE will equal 3 and will trigger job shutdown and cleanup.

A subroutine is schematically structured in such a manner:

-~·

16

SUBROUTINE HAL VE(TRACE)
DIMENSION TRACE(l)

IF(KSTA TE.EQ.3)RETURN

DO l=l,KNSAMP
TRACE(n= TRACE(I)/2.

END DO
KSTATE=2
RETURN
END

A trace is passe(into HALVE, divided by two for all trace samples (1 through KNSAMP),
and then returned• via the RETURN statement. The seismic data in the TRACE buffer is
passed to the next 'processor by being returned from this subroutine and having a KST A TE=2
(trace-by-trace flow).

Upon first entry to this subroutine, the incoming KSTA TE status is checked in order to
see if it is equal to 3; if so, the job is in a state of "End-of-Data" and no processing should
occur.

Note that it is within the subroutine code that the behavior of the processor is determined
(e.g., the programmer has to define and set the various KSTA TE states according to the
desired trace flow behavior).

Multiple trace flow (KSTATE & KCMBCK): For those processor subroutines which require
more than one data trace for their algorithms, a second GCV named KCMBCK is used in
conjunction with KSTA TE to regulate the accumulation and release of the data (keeping in
mind that all trace action is performed one trace at a time). The subroutine must accumulate
via programming statements the proper number of traces prior to application of the processing
algorithm. Upon completion, proper trace flow must be constructed to release the appropriate
number of traces. The programmer must remember that the subroutine is re-entered and
exited each time a trace is accumulated or released.

2
2
3
4

not used
(1)

accumu ate traces (go ac or more; no re ease)
trace-by-trace (incoming trace is released)
release stored traces (return here for next trace)
end of data (no more data for entire job)
ssexec sets before returning to a routine which
had set KCMBCK= 1. The subroutine should
reset to 1 or 2.

ssexec regulates trace flow based on these two GCV's. KSTA TE is used to determine
upon leaving a processing subroutine whether to continue to the next processor with the
current data trace (KST A TE=2) or to go back to the previous processor to look for an addi
tional trace to receive (KSTA TE= 1). If the end of the input data has been reached,
KST A TE=3 is used as a flag to indicate that no processing is done and subroutine cleanup
should take place. A KSTA TE=4 is a flag denoting "in transit" while ssexec searches back up
the list of processing routines for the next available data trace.

KCMBCK is used by ssexec in backward searching mode to identify whether a process
ing subroutine is a mid-stream source of seismic traces. When a multiple-trace processor has
completed its computation, it must release its traces in trace-by-trace mode. KCMBCK=l
flags for ssexec that this routine still has traces to release. ssexec in this case will not return
to the top of the processor list but will stop at this routine to get its next trace. Only those
processors which follow this routine in the job listing will receive the data.

17

ssexec will search backwards one processor at a time. KCMBCK=O indicates the current
processing routine is not a source of data and the next processor back should be examined.
This checking is conducted until a source routine is found (or the first, input, processor at the
top of the list is found).

The states of KSTATE and KCMBCK must be set, checked, and updated by the pro
grammer within each processing subroutine. For a multiple-trace algorithm, the programmer
must first use these two GCV's to receive sufficient traces. When enough are accumulated,
the GCV's must be reset according to the nature of the outgoing traces (multiple release or
trace-by-trace if all the input traces are compressed into a single output trace). In addition,
since the subroutine is re-entered for each trace operation, he or she must keep track of the
status of mid-stream action (when only part of the data is accumulated or released). An
example of multiple trace flow can be found in subroutines EXMULO.F and EXMULX.F
within the IRIS-SEIS processor source code directory (•• ./sierra/irisl3/seismic).

Example of multiple trace flow: Figure 7 illustrates the relationship between trace flow and
the values of KSTATE and KCMBCK. In this example, a simple 5-processor job is used:
input of seismic traces, application of normal moveout, F-K filtering, AGC gain, and plotting
(/IN, /NMO, /FK, /AGC, and /DISPLAY, respectively). For brevity, the F-K filtering will be
conducted using gathers composed of three traces (also, the actual name of the SIERRASEIS
processor is "/FKFIL T").

To get the entire job rolling, /IN will release the first trace into the processing flow.
/NMO will apply normal moveout (using trace-by-trace flow). Upon entry into /FK, the
seismic trace is placed into temporary storage. Since insufficient traces are held for the filter
ing, /FK will set KST ATE-KCMBCK (= 1-0) to return above for additional data. ssexec
checks the processor immediately above /FK to see if it is a local source of data. Since
/NMO is a trace-by-trace processor, ssexec moves back one processor. Since /IN is the first
processor, ssexec will call the proper liN subroutine and obtain the second data trace.

Similar to the first trace, the second trace is passed through /NMO and into /FK. Since
IFK still does not have a "full" gather (3 traces), it sets trace flow to obtain an additional
trace.

The third trace which is released by /IN and processed by /NMO is received by /FK.
Since a full set of traces is. now stored within /FK, the F-K filtering is performed. At this
point, three traces are available for release to the rest of the processing flow. KSTA TE and
KCMBCK are reset to 2 and 1 to denote that /FK is now a local source of traces.

The first seismic trace can now be released to subsequent processors. This trace will be
processed by /AGC and /DISPLAY in normal trace-by-trace action. When the last processor
is finished with the trace, ssexec backtracks to identify the nearest source for the next trace.
With a KCMBCK=l, the subroutine for IFK will be re-entered. This subroutine will then
retrieve the second data trace for subsequent processing.

The third data trace retrieved from /FK will deplete the held traces in this routine. Since
/FK has no more data, its KST ATE-KCMBCK status will be reset to 2-0 indicated that it is
ready for a new gather (ready and waiting in trace-by-trace mode). After the third released
trace reaches the end of the processing flow, ssexec will scan back for more data. With this
new KSTATE-KCMBCK state, /FK will be ignored as a source of data; ssexec will end up
back at the top at /IN.

Traces 4-6 will repeat the processing flow encountered by traces 1-3. Since it is "empty"
when trace 4 is passed into it, IFK will reaccumulate data, resetting its KSTATE-KCMBCK to
1-0 (similar to when trace 1 entered /FK).

When no more data is available to /IN, KSTA TE is set to equal three. With this GCV
value, each processing subroutine will either clean up any resources used, complete its process
(close a plot file, for example), or simply exit without any processing. Upon reaching the last
processor in the job, ssexec will perform final clean up, run-time printouts, and will terminate.

18

Figure 7. Example of trace flow and KST ATE-KCMBCK values

Job listing (order of processors) is:
/IN
/NMO
/FK
/AGC
/DISPLAY

In this example, gathers of three traces will be f-k filtered. All other routines are single trace
(trace-by-trace) processors. In the below table, the values of KSTATE-KCMBCK are given.

trace trace operation /lN /NMO /FK /AGC /DISPLAY
tirst /lN: enter stream release

/NMO: release 2-0
enter /FK: release 2-0 2-0

need more, reset GCV's,
leave /FK and go back release 2-0 1-0
check /NMO KCMBCK=1? release 2-0 1-0
check one more back (/IN)

second /lN : release 2nd trace release
/NMO: release 2-0
enter /FK: release 2-0 2-0

need more, reset GCV's,
leave /FK and go back release 2-0 1-0
check /NMO KCMBCK=1? release 2-0 1-0
check one more back (/IN)

th1rd /IN: release 3rd trace release
/NMO: release 2-0
enter /FK: release 2-0 2-0

sufficient: process release 2-0 0-0

first reset GCV's, release trace 1 [release 2-0] 2-1
/AGC: [release 2-0] 2-1 2-0
/DISPLAY: [release 2-0] 2-1 2-0 2-0
/AGC: source of next trace? ~release 2-0] 2-1 2-0
/FK: source of next trace? [release 2-0] 2-1

second release 2nd trace [release 2-0] 2-1
/AGC: [release 2-0] 2-1 2-0
/DISPLAY:. [release 2-0] 2-1 2-0 2-0
/AGC: source of next trace'! [release 2-0] 2-1 2-0
/FK: source of next trace? [release 2-0] 2-1

third release 3nd trace (last) [release 2-0] 2-0
/AGC: [release 2-0] 2-0 2-0
/DISPLAY: [release 2-0] 2-0 2-0 2-0
/AGC: source of next trace'! [release 2-0] 2-0 2-0
/FK: source of next trace? [release 2-0] 2-0
/NMO: source of next trace? [release 2-0]
/IN: source of next trace?

fourth /IN: enter stream release

[like traces 1-3]

19

trace trace o erauon

2-0 2-0
2-0 2-0 2-0

2-0

no
more 3-0 3-0

3-0 3-0 3-0
3-0 3-0 3-0 3-0
3-0 3-0 3-0 3-0 3-0

20

4) Writing a pair of subroutines for a /PROCESSOR
Each processor must have an initialization and an execution subroutine. Within these

subroutines, one must keep track of global common variables, trace flow, and any needed
memory and disk resources. Communication between the initialization and execution subrou
tines must be constructed properly with the aid of utility subroutines provided within SIER
RASEIS. Issues relevant to programming of SIERRASEIS-compatible subroutines are dis
cussed in Section IV.

A naming convention for SIERRASEIS-compatible processors exists. For processor
names, up to eight alphabetic characters can be used; no numbers are acceptable. The name
"trWODIMEN" is valid; the name "/2DIMEN" is not. The initialization and execution sub
routines can have names up to 6 alphanumeric characters in length (due to size limits in the
PROC.LIS file and due, in part, to limits in certain other computer operating system naming
conventions). Again, more on this will be discussed in Section IV.

5) The PROC.LIS file and subroutines ssinit.F and ssexec.F: master list of SIERRASEIS
processors

The lookup subroutines lkinit.F and lkexec.F serve important roles in the functionality
of executables ssinit and ssexec. These two subroutines equate processor names with other
subroutines so that the proper subroutine is called at the appropriate time. The lookup sub
routines must exist prior to final compilation/link of the executables.

A text file named "PROC.LIS" (located in the .• ./sseis13/run directory) is the master list
in which processor names and their corresponding initialization and execution subroutines are
listed. A portion of this file is excerpted below:

I I DI
DISPLAY DSOOOO DSEXEA
DMX DMOOOO DMEXEA
DOUT DOOOOO DOUTAA
EXP XPONTO XPONTA
EXPGAIN EXOOOO EXPGAA
FIL TPAN FIOOOO FILPNA
FSUM FLOOOO FLSUMA
GATHER GATHRO GATHRA

The first column contains processor names (i.e., DISPLAY). The second and third columns
contain initialization and execution processor names (DSOOOO and DSEXEA, respectively).
ssinit calls subroutine DSOOOO in order to digest/DISPLAY parameters. When live traces are
to be plotted during the execution phase, ssexec passes the data into DSEXEA which creates
the raster plot Due to internal SIERRASEIS constraints, the processor names are no more
than eight characters in length and the subroutine names are no more than six characters.

Prior to building the executables ssinit and ssexec during installation, the programmer
must construct the needed subroutines lkinit.F and lkexec.F with the use of a stand-alone
program named gntabl. This utility program separates the initialization and execution subrou
tine names from the PROC.LIS file and places them into the separate lookup subroutines.
Once compiled, the object code lkinit.o and lkexec.o are used to build ssinit and ssexec. The
shell file makelk located in the .. ./sseisl3/install directory will run gntabl and compile the
lookup subroutines.

A schematic representation of the lookup subroutines is shown on the next page:

21

lkmat.F lkexec.lf
SUBROUTINE LKINIT(name,sub) SUBROUTINE LKEXEC(name,sub)
CHARACTER*8 name,sub CHARACTER*8 name,sub

IF(name.EQ. 'DIN') sub=DIOOOO IF(name.EQ. 'DIN') sub=DINAAA
IF(name.EQ. 'DISPLAY') sub=DSOOOO IF(name.EQ. 'DISPLAY') sub=DSEXEA
IF(name.EQ. 'DMX') sub=DMOOOO IF(name.EQ. 'DMX') sub=DMEXEA
IF(name.EQ. 'DOUT') sub=DOOOOO IF(name.EQ. 'DOUT') sub=DOUTAA
IF(name.EQ. 'EXP') sub=XPONTO IF(name.EQ. 'EXP') sub=XPONTA
IF(name.EQ. 'EXPGAIN') sub=EXOOOO IF(name.EQ. 'EXPGAIN') sub=EXPGAA
IF(name.EQ. 'FIL TP AN') sub=FIOOOO IF(name.EQ. 'FIL TP AN') sub=FILPNA
IF(name.EQ. 'FSUM') sub=FLOOOO IF(name.EQ. 'FSUM') sub=FLSUMA
IF(name.EQ. 'GATHER') sub=GATHRO IF(name.EQ. 'GATHER') sub=GATHRA

In actuality, these subroutines return not the processor subroutine name, but the integer-valued
address of the subroutine. For internal SIERRASEIS reasons, having the address rather than
the subroutine name simplifies the call to the routine.

This information about the PROC.LIS file and the processor subroutine names is impor
tant for debugging a troublesome processing job. If the programmer is unable to either deci
pher an error message or understand why a processor subroutine function as it does, he or she
may have to look at the processor subroutine's source code. To determine where the error is,
the programmer should scan the PROC.LIS file for the name of the appropriate "init" or
"exec" subroutine. Fatal error messages are called by a utility subroutine named "MPEROR";
calls to this subroutine must be identified. If the second argument is the error message number
received, then the error is located in this section of code; for example:

IF(user _ vel.EQ.O) CALL MPEROR("NMO", 13).

MPEROR will print error message #13 associated with /NMO as located in the ERRORS.LST
text file in .. ./sseis13/run. The programmer can try to decipher why the IF decision failed;
this will often explain why the job is bombing.

Upper case I Lower case Characters: SIERRASEIS/IRIS-SEIS and UNIX
Because it is constructed to run on many different computer environments, SIERRASEIS

is written to always use upper-case characters. Any keyboard input into SIERRASEIS is
automatically converted to upper-case. For some operating systems (VAX VMS, for exam
ple), this is not a problem. For UNIX versions of SIERRASEIS, the user must be aware of
this behavior.

Information entered into the keyboard can be done in either upper- or lower-case, know
ing that all entries are converted to upper-case. If the information entered is a file or device
name, then SIERRASEIS will look for the upper-case name of the file or device. As a result,
in UNIX systems, all SIERRASEIS filenames must be in upper-case. This is not necessarily a
problem, but is sometimes an annoyance.

UNIX device names are by default in lower case and are not easily convertible to upper
case. Because of this, upper-case symbolic links must be used to point to the (lower-case)
device names. Thus, for example, when a tape mount request arises, even if the answer is
/dev/rmt16 (in lower case), SIERRASEIS will not find the tape drive; /DEVJRMT16 (upper
case) will not exist. A symbolic link, such as TAPE16, which points to /dev/rmt16 will
make the tape drive accessible to SIERRASEIS. These need to exist locally within the direc
tory in which the job is being executed. The user can respond to a tape request with either
'TAPE 16' or 'tape 16' knowing that SIERRASEIS will find the symbolic link and access the
proper device. [Alternatively, he or she could also create a root level directory named /DEV
which contains only symbolic links such as RMT16 which point to the actual devices. This
removes the need to have local symbolic links].

22

This upper-case/lower-case behavior exists within IRIS-SEIS. Because of this, the user
can run the command line shells using lower-case characters knowing that IRIS-SEIS will
access the upper-case files.

Filenames for the '/DIN', '/DOUT', and IRIS-SEIS processors /UNIXIO, and /MONI
TOR processors are not subject to upper-case conversion. These names are entered within a
job listing and are not entered via the keyboard during execution. The filenames (and paths)
can be either upper or lowercase.

It should be possible to have a run-time parameter which specifies whether
SIERRASEIS!IRIS-SEIS should automatically convert to upper case or should leave charac
ters in whatever case is entered. This could easily be a job parameter defined within the
/JOB processor at the beginning of a job listing. The structural changes which would have to
be made are sprinkled· throughout SIERRASEIS, however; this is an improvement which
Sierra personnel would need to implement.

..

23

II-B. Structure of IRIS-SEIS

The desire or need to add additional processing capability to SIERRASEIS can arise
quickly in an academic environment. While additions can be made directly to the SIER
RASEIS package, the danger arises of inadvertent programming errors corrupting the func
tionality of the original software. IRIS-SEIS is a programming structural addition to SIER
RASEIS which allows for the separation but integration of locally developed processors and
SIERRASEIS routines.

IRIS-SEIS is divided into two parts~ The first part provides already-developed routines
distributed as a package of IRIS processors. These processors are hopefully the beginning of
a community-developed set which will be distributed through IRIS to those with SIER
RASEIS licenses. These routines are checked to ensure they are fully compatible with
SIERRA-SEIS prior to installation into IRIS-SEIS. IRIS-SEIS executables are named irisinit
and irisexec and are used instead of ssinit and ssexec.

The second part of IRIS-SEIS is a development environment for those who wish to
create new processors. In this environment (termed "LOCAL-SEIS"), executable programs
similar to ssinit and ssexec will allow the use of locally-developed, IRIS, and SIERRASEIS
processors within the same processing job.

Within the IRIS-SEIS construction, source and object code, link libraries, and utility pro
grams and make files are housed in a self-contained directory named irisl3 which is installed
at the same level as SIERRASEIS; i.e., the same level as directory sseis13 within the overall
sierra directory. The construction of the IRIS-SEIS executables, irisinit and irisexec, will
incorporate link libraries containing SIERRASEIS basic and extension object code, and utility
and driver routines in addition to IRIS-SEIS object code.

The full capability of SIERRASEIS is available within IRIS-SEIS. A job listing which
contains only SIERRASEIS processors can be run using SIERRASEIS or IRIS-SEIS. How
ever, a job listing which contains IRIS-SEIS processors will not run under SIERRASEIS.

The sections here describe the structural and organization framework of IRIS-SEIS. For
installation procedures and explanations on running seismic processing jobs with IRIS-SEIS,
see section III.

Directory/File Structure of IRIS-SEIS in relation to SIERRASEIS
IRIS-SEIS resides at the same directory level as SIERRASEIS:

.. ./sierra/
sseisl3/

irisl3/

extend/
inc/
install/
lib/ - sseis.a, extend.a
main/ - ssinit.o, ssexec.o
run/ - ssinit, ssexec, PROC.LIS, lkinit.o, lkexec.o
seismic/

inc/
install/
lib/ - irisseis.a
main/ - irisinit.o, irisexec.o, (loclkinit.o, loclkexec.o)
run/ - irisinit, irisexec, PROCIRIS.LIS, irislkinit.o,

irislkexec.o, lkinit.o, lkexec.o
seismic/

The files lkinit.o and lkexec.o in iris13/run differ from those m sseis13/run in that they
recognize IRIS-SETS calls (as explained below).

24

The executable irisinit is constructed by linking iris13/main/irisinit.o with irislkinit.o
and lkinit.o in iris13/run and with libraries irisseis.a, sseis.a, extend.a and SierraLib libraries.
The executable irisexec is formed by linking iris13/main/irisexec.o with irislkexec.o and
lkexec.o in iris13/run and with libraries irisseis.a, sseis.a, extend.a and SierraLib libraries.

The files loclkinit.o and loclkexec.o in iris/main are dummy routines within IRIS-SEIS.
These (empty) routines are replaces with live routines in LOCAL-SEIS.

Structural· and Operational framework of IRIS-SEIS
IRIS-SEIS functions in a manner identical to SIERRASEIS. Since IRIS-SEIS is an addi

tion to SIERRASEIS, the structures of both are the same in infrastructure, organization, and
installation. The run-time environment of both packages are also the same. From a user's
point-of-view~· one does not need to understand the differences as described below in order to
use IRIS-SEIS.

The IRIS-SEIS initialization and execution programs interpret a list of processing state
ments (i.e, the "job listing") using the same approach as that used by the SIERRASEIS exe
cutables. The initialization executable irisinit interprets a job listing and with the help of a
lookup subroutine calls the correct processor subroutines. The execution program irisexec
conducts the data processing by invoking the requested subroutines while regulating the
proper trace flow control.

Primary difference between the two packages: behavior of lookup subroutines
The modifications to the pre-existing SIERRASEIS structural framework which were

required to implement IRIS-SEIS were quite few in number. The primary modification is in
the behavior of the driver routines ssinit.F and ssexec.F with their lookup subroutines lkinit.F
and lkexec.F. These modifications are essentially transparent to users; installation/update util
ity programs and shell files implement the modifications. Users run the resulting executables
without need to account for the structural differences.

As explained in section II-A, the driver routines use these lookup subroutines to identify
for a given processor the actual subroutine which is to be invoked in order to implement the
processing step. Within SIERRASEIS, a processor whose name is not defined within these
lookup subroutines is considered undefined (and fatal error messages are invoked).

The definition of a new processor can be done by simply adding the names of the pro
cessors and the appropriate application subroutines to these lookup subroutines. The new pro
cessor would then be available to the driver routines via the lookup subroutines.

A schematic representation of this change is as follows:

old lkmat.F new lkmat.F
~UBROUTINE LKINIT(name,sub) SUBROUTINE LKINIT(name,sub)
CHARACfER*8 name,sub CHARACfER *8 name,sub

IF(name.EQ. 'DIN') sub=DIOOOO IF(name.EQ. 'DIN') sub=DIOOOO
IF(name.EQ. 'DISPLAY') sub=DSOOOO IF(name.EQ. 'DISPLAY') sub=DSOOOO
IF(name.EQ. 'DMX') sub=DMOOOO IF(name.EQ. 'DMX') sub=DMOOOO
IF(name.EQ. 'EXPGAIN') sub=EXOOOO IF(name.EQ. 'EXPGAIN') sub=EXOOOO
IF(name.EQ. 'GATHER') sub=GATHRO IF(name.EQ. 'GATHER') sub=GATHRO

IF(name.EQ. 'NEWN AME ') sub=NEWNAO
RETURN RETURN
END END

SIERRASEIS and added processors become intermixed in various ways within this approach.
Certain text lookup files and link libraries will contain original SIERRASEIS and new names
and subroutines, allowing for the possibility of adverse effects by incorrect non-SIERRASEIS
routines.

..

25

IRIS-SEIS structurally separates SIERRASEIS and IRIS-SEIS subroutines (as will be
explained in the following section) and intentionally preserves as much of the original SIER
RASEIS structural framework as is possible.

The primary modification to SIERRASEIS is in the contents of the lookup subroutines
lkinit.F and lkexec.F. With the use of modified SIERRASEIS utility programs, the original
SIERRASEIS lookup subroutines can be constructed to call a second set of lookup subrou
tines if needed. For example, when called by the initialization driver (ssinit or more
correctly, irisinit) to get the subroutine name of a non-SIERRASEIS processor, lkinit.F will
not find the name in the list of original SIERRASEIS names. Since not successful, lkinit.F
will call a subsidiary but similar subroutine named irislkinit.F which will contain the names
of IRIS processors and subroutines.

Within this latter construction, all IRIS-SEIS related subroutines (source and object code)
can be physically separated from SIERRASEIS files, creating a clear division between the ori
ginal and added software. This separation reduces the risks imposed by incorrect program
ming within the added routines.

A schematic example of the new construction is as follows:

new lk1mt.F lriSikmit.F
SUBROUTINE LKINIT(name,sub) SUBROUTINE IRISLKINIT(name,sub)
CHARACfER*8 name,sub CHARACfER*8 name,sub

IF(name.EQ. 'DIN') sub=DIOOOO IF(name.EQ. 'NEWNAME') sub=NEWNAO
IF(name.EQ. 'DISPLAY') sub=DSOOOO IF(name.EQ. 'PROCTWO') sub=PROC20
IF(name.EQ.'DMX') sub=DMOOOO IF(name.EQ. 'ANOTHER') sub=ANOTHO
IF(name.EQ. 'EXPGAIN') sub=EXOOOO RETURN
IF(name.EQ. 'GATHER') sub=GATHRO END
IF(sub.EQ.NULL)

CALL IRISLKINIT(name,sub)
RETURN
END

These lookup subroutines actually return the address of the named subroutines and not
the names themselves.

The separation of IRIS-SEIS files from SIERRASEIS files requires the need for a paral
lel infrastructure similar to that of original SIERRASEIS. Separate archive libraries and
installation make and shell files exist. This duplication is used during the installation and
updating of IRIS-SEIS.

The stand-alone executable gntabl uses file "PROC.LIS" to create subroutines lkinit.F
and lkexec.F. Similarly, a stand-alone executable irisgntabl uses file "PROCIRIS.LIS" to
create subroutines irislkinit.F and irislkexec.F. The purpose and structure of file
"PROCIRIS.LIS" is identical to that of "PROC.LIS" in that it is a master list of available rou
tines added beyond those available in SIERRASEIS. The relationship between processor
name ("/PROCESSOR") and the initialization and execution subroutines is described here.

To allow for the lkxxxx subroutines to call irislkxxxx subroutines, a modification in exe
cutable gntabl was installed. Thus, gntabl, lkinit.F, and lkexec.F in .. ./irisl3/run are
modified versions from the files with the same names in .. ./sseisl3/run.

While there are structural differences from a programming stand-point, the appearance
and run-time behavior of IRIS-SEIS is no different than those of SIERRASEIS. Users of
IRIS-SEIS do not need to understand the structural differences as described above.

26

Organizational framework
The several subdirectories containing IRIS-SEIS within the iris13 directory are similar in

organization as those which contain SIERRASEIS. These subdirectories do not duplicate files
which exist within SIERRASEIS but contain only those files which are needed to define
IRIS-SEIS. Directories are listed in Figure 8.

The inc directory contains include files, most of which are the same as those found in
.. ./sseis13/inc. The important file here is "IRISCOMC.INC" which is a modification of
SSCOMC.INC to allow for user-defined GCV's (trace headers).

The install directories contain shell and make files needed to install or update IRIS-SEIS.
The purpose of each file is listed in Figure 9.

Within the, main directory, files "irisinit.F" and "irisexec.F" are the "driver"-level rou
tines for IRIS-SEIS and will become irisinit and irisexec upon compilation. These routines
are modified from "ssinit.F" and "ssexec.F" to allow for the addition of IRIS-SEIS functional
ity.

The run directory contains the executables irisinit and irisexec and files needed to con
struct the lookup routines. Two sets of lookup routines are needed. gntabl and "PROC.LIS"
will create "lkinit.F" and "lkexec.F". irisgntabl and "PROCIRIS.LIS" will create "irislkinit.F"
and "irislkexec.F".

The files gntabl, "lkinit.F" and "lkexec.F" are modified from those found in
.. ./sseis13/run. The changes here allow the routines to recognize the IRIS-SEIS files
"irislkinit.F" and "irislkexec.F"

The seismic directory contains source and object code for the processors available from
IRIS for IRIS-SEIS. Useful subroutines to examine are: "EASYIN.F" and "EASYEX.F"
which illustrate the structure of the most basic of processors (/EASY ADD); "EXTRCO.F" and
"EXTRCX.F" which illustrate a processor (/EXTRCTRC) with parameters; and "EXMULO.F"
and "EXMULX.F" which form the processor /EXMUL TRC, an example of a multiple trace
processor.

The utility directory contains source and executables for stand-alone programs which
provide functionality in concert with IRIS-SEIS. For example, tapeoper when used with pro
cessors /INOPER or /OUTOPER will provide the user with external tape mounting capability;
a reply to a tape request can be given from a terminal different than from where a job is
being run. This allows for tape drive sharing and batch job tape mounting. A full list of util
ity functionality is given in section III-D.

User-definable trace headers (GCV's)
IRIS-SEIS takes advantage of certain constructions within SIERRASEIS in order to

allow for new trace headers (GCV's) to be defined and manipulated. The new headers are
defined to look like addition SIERRASEIS headers so that they are compatible with many
aspects of the original package. Due to limitations in SIERRASEIS, however, certain opera
tions cannot be performed with user-defined headers (trace sorting, for example). In most
cases, there are run-time ways to circumvent the limitations.

The new headers are defined by using empty slots within arrays which exist within the
common block SSCOM.INC. The locations of these slots are identified by the definition of
the header name within arrays in the common block IRISCOMC.INC (which was modified
from the original common block SSCOMC.INC). When a new header name appears in an
array in IRISCOMC.INC, the index (location) in the array is the location within a parallel
array in SSCOM.INC which contains the actual value of the header. IRIS-SEIS contains pro
cessors and programming utility subroutines to define and bookkeep these additions.

27

FIGURE 8: Table of IRIS-SEIS version 1.3 Subdirectories

The following directories are contained within the .. ./sierra/iris13 directory.

subdrrecto
bench

inc

install

lib

main

run

seismic

utility

include files which act like common blocks for various subroutines.

shell and make file~ needed to build IRIS-SEIS.

archive libraries containing all object code for iris13 subdirectories.

main-level routines for the executables gntabl, irisgntabl, irisinit, and
irisexec.

key files and executables for IRIS-SEIS. The important executables are
irisinit and irisexec.

source and object code for all processors in IRIS-SEIS. Includes the
FfOCIO package for FORTRAN-compatible C-language 1/0 routines.

utilit stand-alone ro ams which are com atible with IRIS-SEIS.

28

Figure 9: Installation Shell and Make files for IRIS-SEIS

The .. Jsierra/irisl3/install directory contains shell and make files needed to build IRIS
SEIS. The files within this directory can be divided into two parts: configuration and con
struction. The configuration files are used to set the installation environment:

tile tunctton
mstall sets mstallatlon envrronment (defines directory paths), creates a new

"makefile," and will even begin compilation.

installcfg a template file for "install."

protomakefile a precursor of "makefile," used in conjunction with "installcfg" by
"install."

makefile.old an earlier version of "makefile."

The construction files are used to build the IRIS-SEIS executables:

e

compone compiles a single .F subroutine to generate an object file. Proper com
pilation flags are set within this shell file.

comptree a shell file which identifies and compiles all source code subroutines
within a given directory.

liball obtains all object code in other IRIS-SEIS directories and creates
archive libraries using the archive command. Net result are ".a" files in
the lib directory: irisseis.a and ftocio.a. This shell file calls "libtree."

libtree a shell file which identifies and archives all object code within a given
directory.

makefile used with the make command to create irisinit and irisexec, the two
executables which define IRIS-SEIS.

makelk a shell file which makes the four key lookup subroutines which are
necessary to make IRIS-SEIS work properly. This shell uses executable
gntabl and text file PROC.LIS to create files "lkinit.f' and "lkexec.f."
Executable irisgntabl and text file PROCIRIS.LIS then create files
"irislkinit.f' and "irislkexec.f." Note that PROC.LIS here is the same as
that in .• ./sseisl3/run/PROC.LIS. However, gntabl is a modified ver
sion of that in .. ./sseis13/run.

ran.lib a text file which denotes the time and date that the archive libraries
were last reconstructed.

29

Functionality within IRIS-SEIS
Additional functionality is available within IRIS-SEIS. The ability to import or export

data diskfiles from outside SIERRASEIS is provided. A tape operator system is provided so
that tape mount requests can be fulfilled from various terminals or by other users; sharing of
tape drivers by simultaneous jobs is possible. Trace monitoring and trace flow modification
processors are available. Several trace header correction routines can be accessed in order to
fix incorrectly defined headers.

These and additional functionality available within IRIS-SEIS are described in section
III.

30

ll-C. Structure of LOCAL-SEIS

The provision of a third level of processing subroutine definition and execution exists
within IRIS-SEIS to allow for the addition of user-created processors. This structural exten
sion allows users to add routines to IRIS-SEIS, essentially creating a local version able to mix
the new routines with processors from SIERRASEIS and IRIS-SEIS without corrupting either
of the packages.

LOCAL-SEIS, as named here, is the platform in which processing routines can be
developed ·and tested. The added routines must be designed to conform to the SIERRASEIS
environment (naming conventions, variable definition and usage, subroutine design, etc.). Pro
vided that new routines are constructed properly, LOCAL-SEIS can provide a flexible or
tailored processing environment depending on the added local applications.

In order to be compatible with SIERRASEIS, the LOCAL-SEIS construction and organi
zation are very similar to those used to define IRIS-SEIS. If a user understands the structure
of SIERRASEIS and IRIS-SEIS, he or she will understand the format of LOCAL-SEIS.

The intention here is that routines which are developed within LOCAL-SEIS can be for
warded to IRIS' SIERRASEIS Maintenance Center for inclusion into IRIS-SEIS. It is the
hope that the IRIS SIERRASEIS users community will develop and share useful processing
routines.

Directory/File Structure of LOCAL-SEIS in relation to SIERRASEIS and IRIS-SEIS
As LOCAL-SEIS is similar in form to IRIS-SEIS, the major subdirectory housing

LOCAL-SEIS resides at the same directory level as the IRIS-SEIS directory. Figure 10 illus
trates the relationship between the LOCAL-SEIS directory (.. ./sierrallocal13), the IRIS-SEIS
directory (.• ./sierra/irisl3), and SIERRASEIS (•• ./sierra/sseisl3).

Structural and Operational framework of LOCAL-SEIS
LOCAL-SEIS has the same relationship to IRIS-SEIS that IRIS-SEIS has to SIER

RASEIS. In this construction, when the driver-level executable, localinit, is asked to apply a
processor, it first looks to see if the processor is provided within SIERRASEIS by using
lookup subroutine lkinit.F. If not found, subroutine irislkinit.F is invoked to see if the pro
cessor is provided in IRIS-SEIS. If still not found, the subroutine loclkinit.F is called to see
if the processor is defined as a local user addition. Since all SIERRASEIS, IRIS-SEIS, and
local processors are linked to create the executable localinit, if the processor is defined at any
of the three stages, the appropriate subroutine can be invoked. The same behavior is true for
the execution executable localexec.

Once processing subroutine names are determined, the behavior of the drivers localinit
and localexec are identical to those for ssinit, ssexec, irisinit, and irisexec. The initialization
drivers all check user job listings and determine run-time resources. The execution drivers all
control the (normally) trace-by-trace processing of seismic data.

Each local processor has an initialization and an execution subroutine. These subroutines
must conform to the SIERRASEIS environment; i.e., they must be constructed in such a
manner as to be able to be inserted directly into SIERRASEIS without causing fatal run-time
behavior.

Trace flow behavior for localinit and localexec is the same as that found in SIER
RASEIS and IRIS-SEIS. The trace-by-trace processing scheme is still the framework about
which subroutines must be constructed; multiple-trace action must be coded into individual
subroutines.

'•

31

FIGURE 10: Directory/File Structure of LOCAL-SEIS

The structural relationship between the directories for LOCAL-SEIS, IRIS-SEIS, and
SIERRASEIS are described below. As can be seen, the subdirectories are organized in simi
lar manner .

.. ./sierra/
sseis13/

extend/
ind
install/
lib/ sseis.a, extend.a
main/ ssinit.o, ssexec.o
run/ ssinit, ssexec, PROC.LIS, lkinit.o, lkexec.o
seismid

IriSl3/
ind
install/
lib/ irisseis.a
main/ irisinit.o, irisexec.o
run/ irisinit, irisexec, PROCIRIS .LIS, irislkinit.o, irislkexec.o,

lkinit.o, lkexec.o
seismid

locall3/
install/
lib/ locseis.a
main/ localinit.o, localexec.o
run/ localinit, localexec, PROCLOC.IRIS, loclkinit.o, loclkexec.o
seismid
userl/

Note 1: "lkinit.o" and "lkexec.o" in .. ./iris13/run are not the same as those files with the
same name in .. ./sseis13/run.

To create localinit, one must link the following:

f77 localinit.o loclkinit.o irislkinit.o lkinit.o locseis.a irisseis.a sseis.a extend.a
(+other SIERRA.a's) -o localinit.

localexec is made using the following:

f77 localexec.o loclkexec.o irislkexec.o lkexec.o locseis.a irisseis.a sseis.a extend.a
(+other S IERRA.a' s) -o local exec.

32

Text file PROCLOC.LIS and lookup subroutines
The lookup subroutines locJkinit.F and loclkexec.F are constructed using a stand-alone

executable locgntabl and the text file PROCLOC.LIS. This text file is the master list of
locally added routines and also provides the names of the initialization and execution subrou
tines. The executable locgntabl interprets the text file to create the lookup subroutines.

master 1st:
executable:
output:

initialization
execution

IER EI IRI - I L L- EI
PR .LI R IRI .LI PR L .LI
gntabl irisgntabl locgntabl

lkinit.F
lkexec.F

irislkinit.F
irislkexec.F

loclkinit.F
loclkexec.F

IRIS-SEIS has in the directory .. ./irisl3/run its own version of gntabl, irisgntabl, lkinit.o,
lkexec.o, irislkinit.o, and irislkexec.o. LOCAL-SEIS uses the object code of these files to link
with its own files, loclkinit.o and loclkexec.o, which are located in .• ./locall3/run.

Organization framework of LOCAL-SEIS
Since locally developed processors are added to LOCAL-SEIS, the programmer must

become quite familiar with the sub-directory structure and file organization of the .. Jiocall3
directory. The sub-directory structure is very similar to that found in .. ./iris13; see Figure 11.
As many files from IRIS-SEIS are used as is possible; only the files in LOCAL-SEIS are
duplicated if necessary. Full procedures for the addition of a new processor are given in sec
tion IV-C.

The main directory contains the source and object code for the driver-level routines
localinit and localexec. These do not need to be modified in order to add a processor. The
program "locgntabl.F" should not be modified, either.

The lib directory contains an archive library of processor object code from the seismic
directory. A shell file within the install directory will update the locseis.a file.

The run directory contains needed object code (lookup subroutines) and final executables
localinit and localexec.

The file PROCLOC.LIS should be modified just once for each new processor added to
LOCAL-SEIS. Prior to making the executables, PROCLOC.LIS should be edited to include
the name of the new processor and the names of the corresponding initialization and execution
subroutines. These names must conform to naming conventions as defined within SIER
RASEIS. Once these names are entered, they should not be revised whenever the subroutines
in the seismic directory are modified. These entries should be changed only if the names of
the processor or subroutines are changed.

The initialization and execution subroutines should be placed into directory seismic. The
object code can be created by running within this directory the shell file "compone" found in
the install directory. A typical compile command may look like:

(prompt) .. 1 . ./install/compone routine.F

The shell file "compone" contains numerous compilation flags and options. The include file
compilation flag is used within this shell - see a listing of "com pone". The path listing in the
command above illustrates the location of the shell relative to subroutines within the seismic
directory. Once error-free object files are constructed, the proper installation should continue
from the directory install.

The install directory contains nearly all the shell and make files required to install or
update LOCAL-SEIS.

33

FIGURE 11: Table of LOCAL-SEIS version 1.3 Subdirectories

The following directories are contained within the •• ./sierrallocall3 directory.

lib

main

run

seismic

user1

archive library containing all object code for local13 subdirectories.

main-level routines for the executables locgntabl, localinit, and
local exec.

key files and executables for LOCAL-SEIS. The important executables
are localinit and localexec. The PROCLOC.LIS file should have an
entry for each added processor with the names of their corresponding
initialization and execution subroutines.

source and object code for all processors in LOCAL-SEIS. Locally
. produced subroutines should be placed here.

a development directory for a user. This directory is a work area where
one may develop a processor prior to insertion into LOCAL-SEIS. The
directory contains subdirectories similar to those found in .. ./local13.

Note: No inc directory is present; LOCAL-SEIS uses the include files from IRIS-SEIS
(.. ./iris13/inc).

34

User Development area
For some sites, testing and adding processors into LOCAL-SEIS will be sufficient. For a

multi-user locality where different persons are developing routines, LOCAL-SEIS may best
serve as the working, net "local" version. In this mode, new processors are best developed
outside so that the local version is not accidentally corrupted. Within loca113/, a subdirectory
is provided whereby a user can develop subroutines prior to inclusion into LOCAL-SEIS.

The loca113/userl directory contains the files and subdirectories which define a develop
ment environment for individual users. This directory should be copied for each person who
wishes to create SIERRA-SEIS - compatible processing subroutines. The relationship
between the user development directory and LOCAL-SEIS is analogous to the relationship
between LOCAL-SEIS and IRIS-SEIS or between IRIS-SEIS and SIERRA-SEIS. Essentially,
the userl directory is a structural framework whereby processors can be added but will
(should) not corrupt its host LOCAL-SEIS.

If a user is familiar (by now) with the structure of SIERRASEIS, IRIS-SEIS, and
LOCAL-SEIS, he or she will be familiar with the userl directory. Figure 12 illustrates the
directory structure of user. Five directories are defined: install which contains make and
shell files to make test executables userinit and userexec; lib which contains a development
archive library; main which contains subroutines which do not need any modification; run
which contains object code needed for proper compilation and the test executables userinit
and userexec; and seismic which is where development subroutines can be located.

The steps required in order to add a new test routine are described in section IV.
Briefly, these steps are:

(a) add new processor and
.• ./locall3/userllrun/PROCUSER.LIS.
TGAINX.

(b) write subroutines tgainO.F and tgainX.f.
(c) compile subroutines:

(%) • ./install/compone tgainO.F
(%) • ./install/compone tgainX.F

subroutine names to text file
Example: TESTGAIN and TGAINO,

(d) make archive library: run shellliball in .. ./userl/install.
(e) make lookup subroutines: run shell makelk in .. ./userllinstall.
(f) make executables:

(%) make userinit; make userexec

To modify and reinstall a pre-existing subroutine, steps b, c, d, and f must be used.

35

FIGURE 12: Directory/File Structure of USER DEVELOPMENT work area

The structural relationship between the directories for the user development work area
(userl), LOCAL-SEIS, IRIS-SEIS, and SIERRASEIS are described below. As can be seen,
subdirectories are organized in similar manner. Compilation of development subroutines
involves linking object code from several directories .

... /sierra/
sseis13/

lriS13/

locall3/

extend/
inc/
install/
lib/
main/
run/
seismic/
mel
install/
lib/
main/
run/

seismic/
mstall/
lib/
main/
run/
seismic/

userl/

sseis.a, extend.a

ssinit, ssexec

irisseis.a
irisinit.o, irisexec.o
irisinit, irisexec, PROCIRIS.LIS, PROC.LIS, irislkinit.o,
irislkexec.o, lkinit.o, lkexec.o

locseis.a
localinit.o, localexec.o
localinit, localexec, PROCLOC.IRIS, loclkinit.o, loclkexec.o,

install/ - make files
lib/ - userseis.a
main/ - userinit.o, userexec.o
run/ - userinit, userexec, PROCUSER.LIS, userlkinit.o,
userlkexec.o
seismic - subroutine.F, subroutine.o

To create userinit, one must link the following:

f77 userinit.o userlkinit.o loclkinit.o irislkinit.o lkinit.o userseis.a locseis.a irisseis.a
sseis.a extend.a (+other SIERRA.a's) -o userinit.

userexec is made using the following:

f77 userexec.o userlkinit.o loclkexec.o irislkexec.o lkexec.o locseis.a irisseis.a sseis.a
extend.a (+other SIERRA.a's) -o userexec.

Creation of the executables as stated above will produce working versions able to mix the
development processors with those available in SIERRASEIS, IRIS-SEIS, and LOCAL-SEIS.

An alternative approach to creation of the executables is to only specify those subrou
tines needed for a particular test job. The executables will be much smaller in size and will
take less time to compile/link.

37

Ill - IRIS-SEIS

In this section, information is provided on how to install IRIS-SEIS, how to run a job
with IRIS-SEIS, what capabilities are provided by the IRIS-SEIS processors, and what utility
programs are provided which are compatible with IRIS-SEIS processors.

A complete set of manual pages for IRIS-SEIS processors is provided in APPENDIX
ONE.

lli-A. Installation of IRIS-SEIS

This chapter presents a step-by-step installation procedure for IRIS-SEIS. It is not neces
sary to use the "SIERRA" account used for installation of SIERRASEIS, however, write
permission is required within the main SIERRA directory (.. ./sierra).

For the installation and make files, the SIERRA directory is assumed to be placed into
the root-level directory named usr; the sierra directory is defined as /usr/sierra. Given this
definition for all needed paths, the installation may be made easier by creating a symbolic link
of either /sierra within /usr to point to the directory containing sierra or /usr/sierra pointing
to the subdirectories within sierra. However, by editing a few files, the user can explicitly
give the directory where sierra/ is located if it is not desired to define a root-level symbolic
link.

The installation procedures below discuss a quick and a complete approach to installation
of IRIS-SEIS. The quick approach can be used as needed object code and executables are
already provided in compiled/linked form within the distribution tar tape. These files can be
used provided the host CPU is/compatible with a SUN 4 (SPARC) with OS 4.0.3. If the host
CPU is not compatible, then the full installation procedures should be used.

The installation of LOCAL-SEIS is covered in section N-A.

Quick Installation of ffiiS-SEIS

To install IRIS-SEIS using the quick steps, the following steps are required:
(1) extract IRIS-SEIS from the distribution tar tape,
(2) update the SGCONFIG.DA T file,
(3) either:

(A) create a symbolic link /usr/sierra or sierra within /usr to point to the
overall SIERRA directory, or

(B) make full pathname changes to the following files (#lines to change):
-iris13/install/makefile: three lines
-iris13/install/makefile.old: three lines
-iris13/install/compone: one line
-irisl3/indiRISSEIS.INC: one line
-bin13/sh.link: all lines

(4) recompile iris13/seismidinoutoper.dir/oper opcom.F,
(5) run shell iris13/installlliball, -
(6) use the makefile to create executables irisinit and irisexec,
(7) run shell file iris13/utility/makeall,
(8) fix symbolic links in •. ./sierra/binl3.

38

(1) E~tract IRIS-SEIS from distribution tape
The normal installation of SIERRASEIS will create a directory structure consisting of a

main Sierra directory ("sierra") in which subdirectories named slibl5, sseisl3, and rasvue (or
rasvue new) will be present. In general, there should also be two text files present:
SGCO~FIG.DAT and SGPROD.DAT.

Change the working directory to the SIERRASEIS directory where these subdirectories
and files are present (e.g., ••)sierra/).

Use the tar command to extract all files, e.g.;
(%) tar xvf /dev/rmt16

The proper tape drive device name must be used. When the tar is completed, three new sub
directories should exist: iris13, Iocall3, and bin13. The directory for IRIS-SEIS should use
about 15 Mbytes of disk; the directory for LOCAL-SEIS will require about 8 Mbytes. The
directory bin13 should be very small (<lOK).

(2) Update the SGCONFIG.DAT file
The SGCONFIG.DAT file defines some run-time environment variables which are

needed for SIERRASEIS to run. Since IRIS-SEIS is constructed as similar to SIERRASEIS
as is possible, a few extra environment variables need to be defined within this file. A backup
copy of this file must be made before the implementation of the following changes.

The original SGCONFIG.DAT file may contain as an example the following lines
(assuming RASVUE is installed too):

DEFAULT _product /usr/sierra/
DEFAULT SSERRORS /usr/sierra/sseis13/run/
DEFAUL T-PLTCFG /usr/sierra/sseis 13/plot/PLTCFG. V36INCH
! -

!--
! RASVUE definitions (e.g.,:)
DEFAULT MENU /usr/sierra/rasvue new/
!-------------~-------------------------- -

Add the following lines (note the trailing "/"):
DEFAULT IRISERR /usr/sierra/iris13/run/
DEF A UL T=LOCERR /usr/sierra/locall3/run/

If the use of the symbolic link for /usr/sierra is chosen, then the above pathnames should be
kept. If instead of the symbolic link the full pathnames are used, then the correct path must
be substituted for /usr/sierra. The path given for DEFAULT IRISERR should be the direc
tory which contains the file IRISERR.LST. The path given for DEFAULT LOCERR should
be the directory which contains LOCERR.LST. -

No change should be made to the SGPROD.DA T file.

(3) Directory pathnames: symbolic links or explicit definition
Several installation and update make/shell files reference object code or include files in

order to properly build the IRIS-SEIS executables. The correct locations of these files must
be stated. The installation/make files have used the definition /usr/sierra as the directory
which contains sseis13, iris13, and Iocal13.

A symbolic link can be used to point this directory definition to the true location where
the user's sierra/ directory resides. Within the /usr root-level directory, a symbolic link
named sierra should be created. For example:

(%) In -s /home/seis/sierra sierra
This symbolic link will equate /usr/sierra with the directory location /home/seis/sierra.

..

39

Alternatively, if the symbolic link is not used, the directory paths should be given expli
citly by the user. Changes to the following files must be made:

All references to /usr/sierra should be modified to the true location of the user's sierra/
directory. When these changes are made, the new pathnames should point to the true loca
tions of the directories or files.

(4) Recompile one subroutine: oper _ opcom.F
One subroutine will need to be recompiled if the symbolic link /usr/sierra is not used:
(%) cd .. ./iris13/seismic/inoutoper.dir
(%) . .1 . ./install/compone oper_opcom.F

An object code file should be created. The use of ' . .! .• ' is very important here - the
irisl3/install directory is referenced using the relative position of the subdirectories. This
subroutine, oper opcom.F, is used for the tape operator I external tape mounting system which
is a feature within IRIS-SEIS.

When this routine is recompiled along with all other subroutines, then the steps below
should be followed:

(%) cd .. ./irisl3/install
(%) compall

The compall shell will recompile all source code. This process will take a while.

(5) Make the IRISSEIS.a archive library
Now that the subroutine object code is constructed, the appropriate archive library is

needed in order to compile/link. The user should change directory to the install directory if
he or she is not already there:

(%) cd .. ./iris13/install
(%) liball

Running the liball shell will create or update the archive library irisseis.a. This shell will
also create the library of FORTRAN-to-e VO functions (ftocio.a).

(6) Create IRIS-SEIS executables

and

Create the IRIS-SEIS executables irisinit and irisexec using the makefile:
(%) make irisinit

(%) make irisexec.

The executables will be placed into .. ./iris13/run.

40

(7) Make utility programs
Several utility programs which are compatible with IRIS-SEIS reside in the directory

.. ./irisl3/utility. These can be compiled using the following:
(%) cd •• ./iris13/utility
(%) makeall.

The shell· file makeall will compile several programs by invoking the compilation shell
Fcornp and rnaketapeoper.

(8) Fix symbolic links in •. Jsierralbin13
The directory bin13 is provided for convenience to point to the various directories where

executables reside. Rather than place the several directories into one's PATH environment
variable or create aliases for each executable, one may place just the .. ./sierralbin13 directory
in the PATH environment variable list. Within this directory, symbolic links for all IRIS
SEIS (and SIERRASEIS) executables point to the proper executables. This directory
simplifies management of executable locations and definitions.

To define the proper symbolic links, it is essential that correct path definitions were
entered into the file ••• /sierralbin13/sh.link as specified in step (1) above. Then:

(%) cd •• Jsierralbin13
(%) sh.link

The shell file sh.link will create the proper symbolic links. The pathnames can be verified
by fully listing the directory contents ('Is -1') or by running an executable program.

This directory must be placed into the user's PA Til environment variable listing (in the
.login or .cshrc file).

Full Installation of IRIS-SEIS

To conduct a full installation of IRIS-SEIS, the following steps are needed:

(1) extract IRIS-SEIS from the distribution tar tape,
(2) update the SGCONFIG.DA T file,
(3) either:

(A) create a symbolic link /usr/sierra or sierra within /usr to point to the
overall SIERRA directory, or

(B) make full pathname changes to the following files (#lines to change):
*irisl3/install/makefile: three lines
*irisl3/install/makefile.old: three lines
*iris13/install/compone: one line
*iris13/indiRISSEIS.INC: one line
*bin13/sh.Iink: all lines

(4) compile all source code
(5) create archive libraries using shell iris13/install!liball,
(6) run the 'make' option within the install shell in irisl3/install
(7) run shell makelk in irisl3/install
(8) use the makefile to create executables irisinit and irisexec,
(9) run shell file iris13/utility/makeall,
(1 0) fix symbolic links in .. ./sierra/bin 13.

(1) Extract IRIS-SEIS from distribution tape
The normal installation of SIERRASEIS will create a directory structure consisting of a

main Sierra directory ("sierra") in which subdirectories named slib15, sseis13, and rasvue (or
rasvue new) will be present. In general, there should also be two text files present:
SGCO~FIG.DAT and SGPROD.DAT.

..

41

The working directory should be the SIERRASEIS directory where these subdirectories
and files are present (e.g., ••)sierra/).

Use the tar command to extract all files, e.g.;
(%) tar xvf /dev/rmt16

The proper tape drive device name should be used. When the tar is completed, three new
subdirectories should be created: iris13, local13, and bin13. The directory for IRIS-SEIS
should use about 15 Mbytes of disk; the directory for LOCAL-SEIS will require about 8
Mbytes. The directory binl3 should be very small (< lOK).

(2) Update the SGCONFIG.DAT file
The SGCONFIG.DAT file defines some run-time environment variables which are

needed for SIERRASEIS to run. Since IRIS-SEIS is constructed as similar to SIERRASEIS
as is possible, a few extra environment variables need to be defined within this file. A backup
copy of this file should be made before the implementation of the changes below:

The original SGCONFIG.DA T file may contain as an example the following lines
(assuming RASVUE is installed too):

DEFAULT _product /usr/sierra/
DEFAULT SSERRORS /usr/sierra/sseis13/run/
DEPAUL T-PLTCFG /usr/sierra/sseis 13/plot/PL TCFG. V36INCH
! -
!--
! RASVUE definitions (e.g.,:)
DEFAULT MENU /usr/sierra/rasvue new/
!-------------~-------------------------- -

Add the following lines (note the trailing "/"):
DEFAULT IRIS ERR /usr/sierra/iris 13/run/
DEF A UL T=LOCERR /usr/sierra/local13/run/

If the use the symbolic link for /usr/sierra is chosen, then the above pathnames should be
kept. If intead of the symbolic link the full pathnames are used, then the correct path must
be substituted for /usr/sierra. The path given for DEFAULT IRISERR should be the direc
tory which contains the file IRISERR.LST. The path given for DEFAULT LOCERR should
be the directory which contains LOCERR.LST. -

No change should be made to the SGPROD.DAT file.

(3) Directory pathnames: symbolic links or explicit definition
Several installation and update make/shell files reference object code or include files in

order to properly build the IRIS-SEIS executables. The correct locations of these files must
be stated. The installation/make files have used the definition /usr/sierra as the directory
which contains sseis13, iris13, and locall3.

A symbolic link can be used to point this directory definition to the true location where
the user's sierra/ directory resides. Within the /usr root-level directory, create a symbolic
link named sierra. For example:

(%) In -s /home/seis/sierra sierra
This symbolic link will equate /usr/sierra with the directory location /home/seis/sierra.

Alternatively, if the symbolic link is not used, the directory paths should be given expli
citly by the user. Changes to the following files must be made:

tile me
irisl3/installlma:kefile ROOT DIR = /usr/sierra/iris13

RUN D IR = /usr/sierra/iris 13/run
LK _ DIR = /usr/sierra/iris 13/run

42

(4) Recompile all source code
To recompile all IRIS-SEIS source code, do the following:
(%) cd .• Jiris13/install
(%) compall

The compall shell will recompile all source code. This process will take a while.

(5) Make the IRISSEIS.a archive library
Now that all subroutine object code are constructed, the appropriate archive library is

needed in order to compile/link. Within the install directory:
(%) liball

Running the liball shell will create or update the archive library irisseis.a. This shell will
also create the library of FORTRAN-to-e 1/0 functions (ftocio.a).

(6) Run 'make' option in install shell
At this point, nearly all the necessary object code will exist. The missing subroutines are

the lookup subroutines used by the IRIS-SEIS drivers. These subroutines are created by run
ning stand-alone programs ssgntabl and irisgntabl (as discussed in section II A-C). Before
the creation of the lookup tables, it is necessary that the stand-alone executables exist. This
can be done in two different ways.

The first approach is using the install shell. Within
(%) install

If the user gets the UNIX operating system command install, then his or her path is set so
that the current directory is not searched first. This can be avoided by renaming the install
shell:

(%) mv install install.sh
(%) install.sh

When the screen menu appears, the 'make' option should be selected. The shell file will
proceed to create executables gntabl and irisgntabl.

and

The second approach may be easier. Within the irisl3/install directory, run:
(%) make ssgntabl

(%) make irisgntabl

(7) Create lookup subroutines: lkinit.F, lkexec.F, irislkinit.F, irislkexec.F
Since the stand-alone executables exist from step (6), the lookup subroutines can be

created. Within the iris13/install directory, the programmer should run the shell file makelk:
(%) makelk

This shell will run the stand-alone programs ssgntabl and irisgntabl, using the text files

43

.. ./iris13/run/PROC.LIS and •• ./iris13/run!PROCIRIS.LIS as input. The SIERRASEIS banner
should flash on the screen for each executable run.

From the execution of these programs, the output will be the lookup subroutines. These
subroutines will also be compiled to produce object code. The source and object code of
these routines will be placed into the .• ./iris13/run directory.

(8) Create IRIS-SEIS executables
Create the IRIS-SEIS executables irisinit and irisexec using the makefile located in

.. ./iris13/install:
(%) make irisinit

and
(%) make irisexec.

The executables will be placed into .• ./iris13/run.

(9) Make utility programs
Several utility programs which are compatible with IRIS-SEIS reside in the directory

.. ./iris13/utility. These can be compiled using the following:
(%) cd .• Jiris13/utility
(%) make all.

The shell file makeall will compile several programs by invoking the compilation shell
Fcomp and maketapeoper.

(10) Fix symbolic links in .• ./binl3
The directory binl3 is provided for convenience to point to the various directories where

executables reside. Rather than place the several directories into a PA TI-l environment vari
able or create aliases for each executable, the user may place just the .. ./sierralbin13 directory
in the PA TI-l environment variable list. Within this directory, symbolic links for all IRIS
SEIS (and SIERRASEIS) executables point to the proper executables. This directory
simplifies management of executable locations and definitions.

To define the proper symbolic links, it must be ensured that correct path definitions were
entered into the file .• ./sierra/bin13/sh.link as specified in step (1) above. Then:

(%) cd .. ./sierra/bin13
(%) sh.link

The shell file sh.link will create the proper symbolic links. The pathnames can be verified by
a complete listing of the directory contents ('ls -1') or by running an executable program.

The programmer must ensure that this directory is placed into his or her PATH environ
ment variable listing (in the .login or .cshrc file).

Verification of Installation
The best test of a successful installation is to run an IRIS-SEIS job. The executables can

be tested in two parts. First, a job which calls only SIERRASEIS processors (a plot job, for
example) and is known to run correctly within SIERRASEIS can be used. Same results
should be produced by using IRIS-SEIS. Second, an IRIS-SEIS processor can be inserted into
this job stream, then run with IRIS-SEIS. If the processor is called correctly, then no run
time errors should occur.

The next section (III-B) describes how to run IRIS-SEIS jobs.

44

lli-B. Running an IRIS-SEIS job

The run-time environments of SIERRASEIS and IRIS-SEIS are very similar due to the
structural similarity between SIERRASEIS and IRIS-SEIS. Since IRIS-SEIS is in actuality an
extension of SIERRASEIS, the behavior of IRIS-SEIS is the same as that for SIERRASEIS.

' , Because of this, IRIS-SEIS is downward-compatible; that is, a job which will run in SIER
. RASEIS will run in IRIS-SEIS (but a job which runs in IRIS-SEIS may not necessarily run

within SIERRASEIS).
To run a job within IRIS-SEIS, the user follows the approach needed to run a job in

SIERRASEIS:
(a) construct a job listing. The calls to processors and the list of processing parameters

must be syntactically correct.
(b) check the job listing by using the initialization executable, irisinit.
(c) run the job by using the execution executable, irisexec.

The format of the job listing must conform to the rules set forth for SIERRASEIS job listings.
IRIS-SEIS processors can be called at any point within a job listing. These processors can be
treated as if they were SIERRASEIS processors.

The executables irisinit and irisexec are run as if they were the executables ssinit and
ssexec. irisinit interprets a job listing and determines run-time conditions. irisexec conducts
the actual processing.

The trace-by-trace data handling scheme is adhered to by IRIS-SEIS. This scheme is
identical in behavior to that used by SIERRASEIS. The contents of trace headers (GCV's)
should be understood in order to allow for proper trace flow to occur.

Shells to simplify the initialization and execution steps: ffiiSCHECK and ffiiSRUN
The run-time behavior of the SIERRASEIS and IRIS-SEIS driver executables is based on

interactive entry of job information. In this mode, the job listing name and job-execution
parameters are entered via a console keyboard at run-time.

This behavior is not always optimum, particularly when a series of jobs to be run does
not need monitoring. IRIS-SEIS provides a few shell files which allow users to run an IRIS
SEIS job using command-line entry of parameters and to run jobs from within shell file list
ings.

The normal commencement of an IRIS-SEIS or SIERRASEIS job will require from the
user four keyboard entries for the initialization step and (at least) two entries for the execution
step. IRIS-SEIS shell files IRISCHECK and IRISRUN are constructed to allow the user to
run a job by providing command line parameters rather than to interactively enter parameters.

For example, the initialization step irisinit can be replaced with the command
IRISCHECK:

lriSIDI :

IRISCHECK:

(o)
SierraSeis banner
input file name
job sequence number
version number
run-time o tions

user res onse:
lriSIDlt

<return>
job listing name (e.g., FIL TER.DA T)
CODE (e.g., FIL T)
<return> to default
<return> to default

By providing run-time information using command line parameters needed by the shell file
IRISCHECK, the interactive query system required by irisinit can be bypassed. The need to

45

enter the first <return> after the initial SIERRA-SEIS banner can also be bypassed. This
shell assumes that the user will wish to select default values for the version number and run
time options.

An additional advantage is that this command line approach can be easily placed into
'background' execution. This replaces the steps of interactive parameter entry followed by an
interrupt and the issuance of the 'background' UNIX command:

IRIS CHECK FIL TER.DAT FIL T &

as opposed to the entire sequence of:

(%) irisinit
[SierraSeis banner] <return>
Input file name: FILTER.DAT
job sequence number: FIL T
version number: <return> [to default]
run-time options: <return> [to default]
AZ [to interrupt]
(%) bg [to place in background]

The execution phase can be run using a similar command-line shell:

1nsexec:

IRIS RUN:

('0

SierraSeis banner
job sequence number
version number

user res onse:
1nsexec
<return>
CODE (e.g., FIL T)
<return> to default

The commencement of a processing job is simple using the command-line approach. Again,
the process can be easily placed into 'background' using this approach.

The use of IRISRUN does not take subsequent interactive queries into account. For
example, answers to tape drive requests are not placed on the command line. The IRISRUN
shell will not allow for tape requests and will most likely abort.

Two ways to circumvent the above problem for background execution exist. The first
approach is to create a copy of IRISRUN and insert the correct tape request responses into
the shell file prior to running the job. Alternatively, one can use the external tape request
option provided within IRIS-SEIS to remove all tape requests from requiring interactive key
board response (explained in more detail in section III-C).

Two additional run-time shells: irischeck and irisrun
The SIERRA-SEIS banner displayed at the beginning of an IRIS-SEIS job causes the

elimination of whatever console screen information existed on the screen. The user can
bypass this behavior by using the shell files irischeck and irisrun. These shells are used in a
manner identical to IRISCHECK and IRISRUN but no information should be sent to the
user's console screen. These shells redirect screen information to temporary files (which are
removed upon completion of the job process).

For the above examples, the job listing FILTER.DA T can be run using the two lines:
(%) irischeck FIL TER.DA T FILT
(%) irisrun FILT &

The screen will not be erased by the SIERRA-SEIS banner (nor does the user have to wait
for it to finish writing).

46

The shell files IRISCHECK, IRISRUN, irischeck, and irisrun are located in the
.. ./irisl3/run directory. Symbolic link pointers exist within / .• ./bin13 so that if this latter
directory is already in the programmer's PATH environment variable list (i.e. irisinit or
irisexec can already be accessed), he or she should be able to use these shells.

Summary of IRIS-SEIS executables and shells:

.. · .name: parameter entry:
•· "- -·tnsmit mteracuve keyboard

irisexec interactive keyboard

IRISCHECK command line
IRISRUN command line

irischeck command line
irisrun command line

screen behavior:
banner clears screen and quenes pnnted
banner clears screen and queries printed

banner clears screen and queries printed
banner clears screen and queries printed

nothing to screen
nothing to screen

47

Ill-C. Processors within IRIS-SEIS

The processors available within IRIS-SEIS can be divided into five types: data process
ing, utility processors related to the seismic data, trace header (GCV) manipulation, utility
processors related to the processing job, and modifications of SIERRASEIS processors (Figure
13). These processors are provided to add extra capability to those available in SIERRASEIS.
Several capabilities provided in IRIS-SEIS are described below followed by descriptions of
processors and their functionality. Manual pages for each processor are provided in Appendix
One.

Important functionality within IRIS-SEIS includes: structural examples of simple and
,. complex processors (/EASY ADD, /EXTRCTRC, and EXMUL TRC), external job monitoring

(/MONITOR), dynamic trace header definition (/DEFHEAD, /HEADEQL, /HEADLIST,
/HDMINMAX), irregular data entry (/GATHCNTR, /TRCOUNTR, /INTRLEA V), physical
omission of traces (/OMIT, /OMITTRAC), and an external tape mount request/response sys
tem (/INOPER, /OUTOPER).

Job utility processors

Print total number of GCV is data: /COMV ARPR
A small utility processor will indicate the total number of GCV's which are used for the

current processing job. SIERRASEIS/IRIS-SEIS jobs customarily have a minimum number of
trace headers which are defined. One can determine if additional, user-defined GCV's are
used given the output from this processor.

Normally there are 137 integer, 71 real, 10 character*8, and 1 character*4 GCV's used
within SIERRASEIS. Any total exceeding these indicates that user-defined headers exist.

A major role that this processor plays is that it is essentially a very minor-impact proces
sor which can be inserted into a list of processors. Due to programming oddities within pro
cessor subroutines, occasionally a sequence of processors may result in a syntactical error in
the initialization stage. For some reason, inserting essentially a dummy or null routine into
the middle of the sequence can break up a bad sequence and remove the error.

Example of a very simple trace-by-trace processor: /EASY ADD
The processor /EASY ADD is an example of a processor which works in trace-by-trace

mode. An algorithm which operates strictly on individual seismograms can be inserted into
LOCAL-SEIS using the initialization and execution subroutines associated with this processor.
The /EASYADD subroutines are provided as examples which one can be copied and
modified.

The EASYADD processor assumes that a given algorithm will be essentially hardwired
into the processor, no user-choice parameters are to be defined (see /EXTRCTRC for exam
ples of how to define user parameters).

The subroutines for EASY ADD should not be modified. Rather, a copy of each subrou
tine, EASYIN.F and EASYEX.F in subroutine directory .. ./locall3/seismic or into a user
development-level subdirectory within .. ./locall3. The new processor should have its own
processor name and should be defined in the .. ./locall3/run/PROCLOC.LIS text file. Normal
installation and update procedures can be followed (see section IV -C).

Example of a trace-by-trace processor with user parameters: /EXTRCTRC
The definition and use of user-choice parameters makes a processor generically more

useful. Rather than having hardwired algorithm parameters for special case processing, a pro
c.es~or can b~ applied to various data sets if algorithm parameters can be selected within a job
hstmg. Unhke /EASY ADD, the processor IEXTRCTRC is an example of a trace-by-trace
processor which has several parameters defined for user selection.

48

FIGURE 13: Processors Within IRIS-SEIS

Urigmal 1K1~-~~1~
Type Name l.J . Functionality
Job Utility /~OMVARPR pnnts total number of GCV values

/EASY ADD example of simple trc-trc processor
/EXTRCTRC example of trc in/trc out processor
/EXMULTRC example of multiple trace processor

...

'.': /MONITOR * monitor job by printing trace GCV's values
' /NUMTRFLO # of traces passing this point of trace flow ' ..

'
/UNIXIO read/write UNIX binary file with/without GCV's)

Headers IDEFHEAD define new GCV /trace header
/FLOTDAT calculate floating datum statics
/GATHCNTR set KSHOT when KFLDFN changes
/HEADEQL set any GCV value w/ scalar math option
/HEAD LIST print values of any 6 specified GCV's
/HDMINMAX get GCV min/max values within data
/TRCOUNTR fix trace header keyed on gather number

Data Utility /AMPDUMP dump amplitudes; like /TRDUMP
/INTRLEAV interleave traces and/or pad gathers
/NULENGTH changes trace length
/OMIT omit traces based on GCV ranges
/OMITTRAC omit traces by GATHER/TRACE
/RMSAMP print RMS-amplitudes for traces/sections

Processing /AIRWVMUT automatic air wave mute using RANGE
/AMPMATH applys scalar math to trace amplitudes
/BULKSHFf integral sample static bulk shifts
/CLIP IT clips amplitudes above a specified threshold
/DIPFIL time domain Butterworth dip filter
/EXCORTPR data taper for extended correlation
/FILTER simple FFT bandpass (four comers of trapezoid)
!OKAGC more effective AGC than /AGC
/ROT rotates three component data
!TRTAPER Tapers end of zero parts (dropouts) of trace
/XCORR simple X-corr using VECLIB

Modified SIERRASEIS
Job Uulny /lNOPER * /IN with console response

/Ol:JTOPER * /OUT with console response
NAXIN /IN with VAX header byte swapping

Data Utility /PEAKVAL prints trace peak amplitudes

Processing /FIGURE /DISPLAY for figures (no side labels)

Note: Column U denotes the processor interacts with an external, stand-alone utility program.

49

These user-choice parameters are defined within the initialization subroutine using SIER
RASEIS utility subroutines DRT ABL and DRPRMS. DRT ABL defines valid parameter
names and what types of and how many values can be given (i.e., integer or real values, char
acter strings). DRPRMS will retrieve parameter names and values from a job listing. The
software code within the initialization subroutine must be structured to interpret the values
which are retrieved. The subroutine also must store these parameters using utility subroutines
(DRSA VE) in order to transfer them to the execution subroutine.

Example of a multiple-trace processor: /EXMUL TRC
For algorithms which require more than one seismogram, multiple-trace data flow is

required within the processor's execution subroutine in order to temporarily store, process, and
release the seismograms. This internal trace flow is required since the multiple-trace behavior
must be compatible with the overall trace-by-trace data handling scheme. EXMULTRC
presents within its execution subroutine the programming code required to make the multiple
trace handling work.

The accumulation/release aspect of multiple-trace flow is described in section II-A. The
processor must use global common variables KST ATE and KCMBCK to regulate when to
return for more data or when to release data. /EXMUL TRC is designed so that one can use
the structural framework of the execution subroutine, only needing to insert the multiple-trace
algorithm.

Job monitoring: /MONITOR
The provisions within SIERRASEIS to monitor the progress of a job are to either use the

'/PRMODCOM' processor or to estimate the status from the size of run-time output files
(growth of .EPR or .RAS files). The MONITOR option of the '/PRMODCOM' processor
will send the values of specified GCV's to the monitor from which the job was run. One can
limit the number of monitor prints by using the trace flow INCLUDE limiters; however, there
is no way to turn off this behavior once the job is started.

The progress of a job can be judged by the growth of .EPR or .RAS files. With experi
ence, a user can estimate for the processors in the job listing what size output to expect for
either the run-time execution phase printout (.EPR file) or for plot raster files (.RAS). These
estimates are approximate.

The /MONITOR processor allows a user to selectively examine the progress of a job.
When using this processor, a user specifies two GCV's in which to identify seismic data; for
example, shot gather and trace number (KSHOT and KTRC), or CDP gather and offset
(KCDP and RANGE). The processor will update the active trace's values of these GCV's in
a local temporary file.

A stand-alone utility program named monitor will examine the GCV values in the local
file. When an updated set of values are detected, monitor will display to the terminal screen
the GCV values. This program will continue to display the GCV values of each active trace
passing through /MONITOR until either the job has completed or the user interrupts or kills
the monitor process.

The default local filename for both /MONITOR and monitor is 'MONITOR.TMP'.
The following lines will use this file:

JO
GATHER 'KSHOT'TRACE'KTRC'

One can select a different local filename if 'MONITOR.TMP' is already in use:

job listing: /MONITOR
FILENAME 'MONIT.local'
GA TilER 'KSHOT' TRACE 'KTRC'

50

I external: (%) monitor MONIT.loca:I

In this case, the user specifies the filename as a command line argument for monitor. Note
that for SIERRASEIS!IRIS-SEIS, the filenames can use lower case characters.

Number of data seismograms passing through trace flow: /NUMTRFLO
There are times when the knowledge of how many seismic traces will pass through a

specific point in a processing job's trace flow structure is useful. For example, in order to
efficiently store a set of CDP gathers onto disk, one may wish to know how many total traces
are stored in the range of CDP gathers.

Process6~·)NUMTRFLO will count the number of traces which flow through the proces
sor. The total" number will be printed into the .EPR file at the end of the processing job.

Import and export of binary data files: /UNIXIO
The need to transport data in and out of SIERRASEIS arises quickly. Intermediate pro

cessing steps which exist as stand-alone programs may be applied - one must be able to
export SIERRASEIS data, then import the externally processed results. Other data which one
may wish to process with SIERRASEIS may have originated outside of the package and may
not be readily available in SEGY format. IRIS-SEIS provides a disk 1/0 processor named
/UNIXIO which allows for the import and export of binary data disk files.

/UNIXIO is designed to read or write seismograms stored in either unformatted 32-bit
floating point or 16-bit integers. The processor will use data written such that the last sample
of a seismogram is followed immediately by the first sample of the next seismogram. This
format is compatible with C-language write statements; FORTRAN unformatted write state
ments often carry 4-byte record headers which are not compatible with this processor.

UNIXIO will read seismograms of uniform trace length (KNSAMP, the number of sam
ples per seismogram). Trace headers (GCV's) will be created so that proper trace flow can
take place.

As an additional option in /UNIXIO, the trace headers (GCV's) for each trace can be
stored. In this form, user-defined headers will also be kept for future processing. External
programs which will act upon disk files which contain trace header information will need to
skip both a file header and each of the trace headers in order to access the seismograms. A
brief description of this file format is described in the manual pages for /UNIXIO.

Large blocks of continuously recorded data can be easily viewed with IRIS-SEIS by
using /UNIXIO. This processor will read the data, breaking the continuous data into shorter,
uniform length segments which can be plotted. The net display will be akin to a drum
recording display where the end of one seismogram wraps around to continue with the begin
ning of the next seismogram.

By convention, data output from UNIXIO with or without GCV's is stored in ".UIO"
format. This format name is used to differentiate between this format and the format used in
SIERRASEIS ".DIO" files. The two formats are not compatible. The ".UIO" suffix is not
automatically appended to disk file names but must be explicitly stated using the FILENAME
parameter. Although any (or no) suffix can be used, the convention of using the ".UIO"
suffix helps keep track of data files in this format.

Trace header manipulation processors

Definition and manipulation of dynamic trace headers (GCV's): /DEFHEAD,
/HEADEQL, /HEADLIST, /HDMINMAX

The current version of SIERRASEIS (v1.3) has no provision for user definition of new
trace headers (GCV's). IRIS-SEIS takes advantage of portions of the structural framework of
SIERRASEIS to allow for this capability. New GCV's can be defined either within

..

51

processing subroutines or by using a processor written to define new headers.
The processor /DEFHEAD will allow a user to define a new GCV during the course of

a processing job. The new GCV can be designated to hold either an integer or floating point
value or can contain a character string of four or eight characters. The contents of the header
can be filled by using SIERRASEIS's '/PRMODCOM' processor or with /HEADEQL. This
latter routine is used to set a GCV value based on another GCV; scalar math can be applied
to the incoming GCV value.

Similar to the '/PRMODCOM' routine in SIERRASEIS, the processor /HEADLIST can
be used to print the values of up to six GCV' s for each trace which passes into this processor.
/HDMINMAX will examine the values of a specified GCV for all traces which pass through

.. the processor, printing at the completion of the job the minimum and maximum values which
were encountered.

All the above IRIS-SEIS processors will work with original SIERRASEIS GCV's or
with user-defined routines. Certain other SIERRASEIS processors will accept user-defined
routines; however most SIERRASEIS processors will not recognize the new ones. For exam
ple, '/GATHER' will not sort on any header; the '/AUX' and INCLUDE systems won't
accept new names either. Certain SIERRASEIS routines can be made to accept the new
GCV's by equating the values of the new GCV with acceptable SIERRASEIS GCV's. For

'example, either of the GCV's KUSRCM and RUSRCM within SIERRASEIS can be used as a
'user GCV'. The contents of these GCV's can be set equal to a user-defined GCV (using
/HEADEQL, for example). The INCLUDE system will recognize the KUSRCM/RUSRCM
header. See the /IN, /AUX, and INCLUDE processors in the SIERRASEIS BASIC manual.

The tape and disk l/0 routines do not have a provision for the explicit storage of user
defined headers. One can bypass this by placing user-defined values into GCV' s which
'/OUT' or '/DOUT' will write to tape/disk. The user must be careful in this case not _to
overwrite GCV values which may be needed in subsequent runs. The values can be
recovered in later jobs by redefining the new headers and extracting their values from the
transfer SIERRASEIS GCV's. The UNIX binary disk file l/0 capability provided by IRIS
SEIS (/UNIXIO) will allow for the preservation of the user-defined headers (see below).

Any GCV header (SIERRASEIS or user-defined) can be accessed within subroutines. A
programmer can make provisions for run-time parameter selection of GCV's using subroutines
available within the IRIS-SEIS library. Specifically, subroutine irisDEFHED.F is used to
define a GCV. Subroutine irisGETHED.F will obtain the contents of a particular GCV.
These subroutines can be found in .. ./iris13/seismic.

Calculate floating datum statics: /FLOTDAT
The statics algorithms provided in the '/GEOMETRY' do not have a provision for float

ing datum statics. /FLOTDAT will compute static elevation corrections based on the eleva
tion of the CDP location:

STATrec =(ELEV CDP -ELEVrec)IV datum

" and

STAT shot =(ELEV CDP -ELEVshot)IV datum

The net static is the sum of the receiver and elevation statics. The static shift is applied using
the '/STATIC' processor.

The elevation of the CDP location is stored in global common variable KCDPDT. The
receiver elevation is in KGPEL, the shot elevation is in KSPEL.

Other schemes for floating datum statics exist and can be easily implemented. One
should examine the set of geometry GCV's which are available (see Appendix 2 of the SIER
RASEIS Basic manual).

52

Header fix of irregular data incorrectly counted by /IN: /GATHCNTR, /TRCOUNTR,
/INTRLEAV

The '!IN ' processor was written to accept uniform data; that is, an integral number of
gathers containing a regular number of traces per gather. When data is read in using this pro
cessor (from SEGY tapes, for example), the gather and trace numbers are incremented by
counters. For uniform data (i.e., roll-along multichannel reflection data), this is not a problem.
When irregular data or a partial gather is entered, however, the counters do not update prop
erly. As a result, all subsequent gather/trace numbers will not identify the correct seismo
grams.:.

Within the DATA parameter in the '/IN' processor, one specifies the number of seismo
grams per 'input gather. This value, GCV 'KNTR', is used to determine the dimensionality of
the gathers. If the data is read by '/IN' in 'shot gather' mode (data types 1 or 5), then all
gathers ·are expected to have KNTR traces per gather. Rather than have the counting keyed
on a pre-defined GCV (KFLDFN, the field file number, for instance), the traces are simply
counted (1 to KNTR; next gather, 1 to KNTR ...). The GCV counters, KSHOT and KTRC, as
a result are quite uniform.

The erroneous counting will mis-identify traces, leading to erroneous trace flow and pro
cessing. As an example, data consisting of 3 shots will be examined, with 6 traces per gather
(KNTR=6) with the second gather incomplete, having only three traces (traces 4, 5, and 6 are
physically missing):

mcommg tape tape actual actual counted counted
trace# KFLDFN KFLDTN KSHOT KTRC KSHOT KTRC

I lUI 1 1 1 1 1
2 101 2 1 2 1 2
3 101 3 1 3 1 3
4 101 4 1 4 1 4
5 101 5 1 5 1 5
6 101 6 1 6 1 6

7 102 1 2 1 2 1
8 102 2 2 2 2 2
9 102 3 2 3 2 3

10 103 1 3 1 2 4
11 103 2 3 2 2 5
12 103 3 3 3 2 6
13 103 4 3 4 3 1
14 103 5 3 5 3 2
15 103 6 3 6 3 3

Because the '/IN' processor will count traces, it will not see that a partial gather was encoun
tered. In this example, the trace flow for subsequent processors will involve two full gathers
followed by one incomplete gather rather than the correct pattern of full, partial, and full gath
ers. This can be a major mistake, particularly if geometry is applied to these misnumbered
traces.

If this incorrect numbering is encounted, the IRIS-SEIS processors /GATHCNTR and
/TRCOUNTR can be used to properly renumber the traces. /GATHCNTR will renumber the
gather number KSHOT, keying on changes in the field file number KFLDFN. /TRCOUNTR
will resequence the trace numbers within a gather (KTRC for KSHOT, for example), restart
ing at one when a new gather number is encountered.

In the above example, /GATHCNTR will resequence the KSHOT numbers based on
values of KFLDFN. When the KFLDFN number changes, so will the KSHOT number (i.e.,
at incoming traces 7 and 10 when the KSHOT number changes to 2 and 3, respectively).

53

Based on the updated KSHOT gather numbering, ffRCOUNTR will resequence the trace
numbers (KTRC in this case). Since after /GATHCNTR, KSHOT switches from values of 2
to 3 at incoming trace 10, the trace numbering for KTRC will restart at one. Incoming traces
10 through 15 will have, as a result, KTRC numbers of 1 through 6. The net result of using
these two processors is to have properly indexed (KSHOT, KTRC) data. The subsequent pro
cessors will apply the correct trace flow.

Irregularly sized gathers can be made uniform using the processor /INTRLEAV. This
processor can detect when partial gathers are encountered and will pad the gathers so that a
full number of traces exist for each gather. The resulting data will be uniformly-dimensioned
data.

Seismic data utility processors

Print seismogram amplitudes: /AMPDUMP
Similar to SIERRASEIS processor '/TRDUMP', processor /AMPDUMP will print

seismogram sample amplitudes. The amplitudes can be printed in FORTRAN write() formats
F15.5 (floating point), 115 (integer), or E15.7 (exponential). The traces are identified by using
the values of two GCV's; one can specify any two headers.

Change trace length (number of trace samples): /NULENGTH
One can easily change the number of samples per seismogram by changing the GCV

value of KNSAMP, the number of samples per seismogram. /NULENGTH will change the
KNSAMP value for both the initialization and execution stages. If the new trace length is
shorter than that for the incoming trace, the trace is simply truncated. If the new trace length
is greater than the incoming trace, the extra, trailing samples are zeroed.

The use of /NULENGTH is equivalent to the double use of '/PRMODCOM':
/NULENGTH NEWTIME 6000.

is the same as
/PRMODCOM MODIFY KNSAMP SET 1501
/PRMODCOM MODIFY KNSAMP SET 1501 INITPR

This example assumes the sample rate is 4 msec. The first call to '/PRMODCOM' will reset
the GCV KNSAMP during the execution phase. The behavior of '/PRMODCOM' requires
that the call be repeated for the initialization phase.

Physical omission of data traces: /OMIT, /OMITTRAC
A data set's uniform dimensionality is a characteristic which SIERRASEIS handles

easily. A number of gathers with a fixed number of traces per gather can be entered and pro
cessed by SIERRASEIS with no difficulty. Irregular data can present trace flow problems
unless attention is paid to the trace labeling as defined by trace header GCV's (see section on
irregular data above).

Due to a preference to preserve data uniformity, when traces are edited (zeroed for
example), GCV headers are set to indicate processors should skip the traces. The traces are
still physically present, however, and occupy positions within the trace flow.

IRIS-SEIS provides processors which will physically remove traces from the trace flow.
These processors, /OMIT and /OMITTRAC will reduce the number of traces which will
enter into the processors which follow. These routines should be used carefully as they
change the uniformity of data dimensions (number of gathers by number of traces per gather).
Certain hidden GCV values which describe the total number of traces in a data set are not
updated to the new value (as either processor does not know a priori how many traces will
actually be removed; this is a function of exactly which traces are input into the job stream).
The use of either of these processors can reduce the amount of time needed to run a job by

54

reducing the amount of traces which pass through the trace flow.
The processor /OMIT can be used to remove blocks of data. The blocks of data can be

defined as all seismograms that have a certain GCV value or that fall within a range of GCV
values. For individual trace referencing, the processor /OMITTRAC should be used. This
latter processor uses two GCV' s to identify traces to drop.

Print seismogram RMS amplitudes: /RMSAMP
The processor /RMSAMP will compute the RMS-amplitude for each trace and will print

the running RMS-amplitude for all traces up to the current trace. RMS-amplitudes are com
puted using either all (positive and negative) amplitudes or just positive amplitudes. Traces
are identified using any two GCV's. As an added option, the user can print absolute ampli
tudes rather than RMS-amplitudes.

Seismic data processing processors

Automatic air wave mute: I AIRWVMUT
The processor /AIRWVMUT will apply a surgical mute to remove air waves. The pro

cessor determines the zone to mute based on the source-receiver offset (GCV 'RANGE') and
the speed of sound in air. GCV RANGE values must be defined either by applying geometry
or by explicitly defining RANGE. The width of the air wave mute can be set as run-time
parameters.

Apply scalar math to seismogram amplitudes: /AMPMATH
I AMPMA TH will modify seismogram amplitudes by applying scalar math to each sam

ple amplitude. The scalar math is applied as:

OUT (t)=(MULT 1 *IN (t)+ADD 1)*MULT 2+ADD 2

Each trace amplitude is first multiplied by MULT 1, then added to ADD 1• The net result is
then multiplied by MULT 2 and added to ADD 2.

Optionally, the scalar math can be applied as:

OUT (t)=(IN (t)IDIV 1+ADD 1)/DIV 2+ADD 2

Here, each trace amplitude is first divided by DIV 1, then added to ADD 1• The net result is
then divided by DIV 2 and added to ADD 2.

The default values of the scalar coefficients are such that if no coefficients are modified,
the output trace is simply the input trace.

Integral sample static shifts: /BULKSHFT
/BULKSHFT will apply static shifts to data traces involving whole (integral) sample

shifts. By using only integral sample shifts, the statics can be applied quickly as no amplitude
interpolation needs to be applied.

Reset excessive amplitudes to a user-specified level: /CLIPIT
Similar to a despiking routine, /CLIPIT will detect amplitudes above a user-specified

threshold. Amplitudes beyond this threshold are reset to the threshold value.

Spatial-domain Butterworth dipfiltering: /DIPFIL
/DIPFIL will apply an (x-t) domain Butterworth dip filter to data gathers. The algorithm

is based on an algorithm by Hale and Claerbout (GEOPHYSICS, v. 48, 1033-1038, 1985).
The symmetric-dip filter can preserve or reject dips within the specified dip range.

...

55

Prepare uncorrelated traces for extended correlation: /EXCORTPR
Uncorrelated seismic traces can be prepared for extended correlation using

/EXCORTPR. This processor will cosine-taper the end of the original data, then zero pad
the data to a length necessary to produce the desired extend-correlated data. The cross
correlation can be performed by the SIERRASEIS processor 'NCORR'.

Simple frequency-domain bandpass filtering: /FILTER
/FILTER applies frequency-domain bandpass filtering to seismic data. This processors

transforms each seismogram into the frequency domain to apply a box-car frequency filter.
User parameters are the four comers (0%, 100%, 100%, 0%) to define the box-car. The ends
of the filters (the 0-100% rise and 100-0% drop) are cosine-tapered. This routine is easier to
use than '/STVF' but is not as quick.

An alternative automatic gain control processor: /OKAGC
The '/AGC' processor is sometimes not as ruthless in its amplitude balancing as might

be expected. For these situations, the user can apply /OKAGC. This alternative AGC pro
cessor will quite strongly balance amplitudes within and across seismic traces.

Three component trace rotations: /ROT
Sets of three component data can be rotated into principal orthogonal directions using

ROT. The rotation is specified as user parameters. Data traces must be stored in triplets (the
three components). Output traces are the three rotated seismograms.

Automatic taper of amplitude dropouts: /TRT APER
Amplitude dropouts sometime exist within seismic data. These dropouts can cause

adverse processing artifacts, particularly if they occur in uncorrelated seismic data.
/TRT APER is designed to scan trace amplitudes to search for amplitude dropouts. When
detected, the ends of the dropouts are cosine-tapered to create more gentle transitions into the
dropouts.

Cross Correlation using an external sweep: /XCORR
/XCORR will conduct cross-correlation of seismic traces using an external correlation

operator. The external sweep is obtained from a disk file which should contain only the
sweep amplitudes. All data passed into the /XCORR will be cross-correlated.

Modifications of SIERRASEIS processors
Two important processors here are the modified versions of '/IN' and '/OUT' which

allow for external tape mount requests and replies. These processors, /INOPER and
/OUTOPER are described below.

External tape mount requests and responses: /INOPER, /OUTOPER
When data is to be read from or written to tape, the '/IN' and '/OUT' processors within

SIERRASEIS issue tape mount requests. These requests are sent directly to the console or
monitor from where the job was run; the responses also must come from that monitor. This
behavior is not a problem when the job is run from a terminal designated for (often long) pro
cessing jobs.

This behavior is not useful under certain conditions. When the tape drives are not
located in the same room as the monitor, one must return to the monitor after mounting the
tapes; to verify the tape mount (i.e., see the tape moving) or to fix an incorrect mount (i.e., to
re-hit the on-line button), the user must go back to the room with the tape drives. To be able
to reply to the tape request at a monitor near the tape drives (often the system console) would
be useful.

56

If the monitor from where the job was started does not have multiple-window capability,
the job essentially ties up the monitor for the duration of the job. Having the job in 'back
ground' when a tape request arises will force the job to abort. An independent tape request
system would not occupy the monitor, freeing it for other work. In certain system
configurations, a login process will be terminated if the process is idle for a specified amount
of time. Under this situation, the interactive nature of the processing job will be interrupted,
causing the job to be lost during logout. Again, an independent tape request system would
circumvent this problem.

IRIS~SEIS provides an external tape mount request and reply system which is directly
compatible with the SIERRASEIS framework. Using modified versions of the '/IN' and
'/OUT' processors, IRIS-SEIS will send the tape requests not to the monitor from where the
job was run but to a tape monitor file. This file will store both tape mount requests and tape
mount replies. The modified I/0 processors, named /INOPER and /OUTOPER, will pause
upon issuance of a tape mount request to the tape monitor file. Upon sensing that a reply was
returned into the file, the processors will interpret the reply and continue. The file requests
and responses are identical to those which normally are sent to the monitor.

A stand-alone utility program tapeoper is used to examine the tape monitor file. This
utility program will identify each request with a request number and will display this informa
tion. After mounting the appropriate tape, one can reply to the request using the utility pro
gram. The responses are given using the request number in order to identify the job which
sent the request (several requests can be present at the same time).

The benefits of this approach are several. The user may respond to a tape mount request
from not only the monitor from where the job was run but from any terminal. Since the
responses are external to the processing job, the job can be run in UNIX 'background' or as a
batch job. Monitor timeouts will not affect the ability to respond to the job nor will they
abort the job. Other users (i.e., a tape operator) can reply to the tape requests. Since a job
will pause until its tape request is met, one can share tape drives between concurrent jobs by
alternating the jobs to which tape replies are made.

The processors /INOPER and /OUTOPER behave exactly in the same way as '/IN' and
'/OUT' except for the tape requests/responses. The data selection (BI/EI parameters) and for
mat translation (SEGY /HOUSE) behavior are identical. The processors are essentially inter
changeable (except for the tape requests/responses); a tape written with /OUTOPER can be
read back in with '/IN'.

Print trace peak amplitudes: /PEAKV AL
/PEAKV AL is similar to either I AMPDUMP or '!fRDUMP' in that it will display

amplitudes contained in seismic traces. /PEAKV AL will print only peak (minimum and max
imum) amplitudes.

Raster plots for figures: /FIGURE
The '/DISPLAY' processor can be used to generate raster plots to be used for either

slide or journal figures. These plots often need to be reduced or fit into specified dimensions
(i.e., 35 mm frame). For such reductions, having extra blank paper on the sides of the plot
help in the photographic reduction by providing a uniform background on all sides. Plots
created by '/DISPLAY' have a text header plotted on the left side of the plot.

/FIGURE is a modification of '/DISPLAY' which will not print the text header. Rather
than cut the header off a plot created by '/DISPLAY', the raster file can be plotted by using
/FIGURE. The plot parameters are the same for the two processors.

57

III-D. Stand-alone Utility programs provided within IRIS-SEIS

Stand-alone utility programs supplied with IRIS-SEIS can be divided into four groups of
functionality: external tape request/response, monitoring of run-time progress of a job, exami
nation of trace header of data values for exported binary disk files, and raster file manipula
tion.

A brief summary of the available utility programs follows. An explanation on how to
use each program follows a description of its functionality.

tapeoper

tapeoperbells

monitor

GCVminmaxl
GCVminmaxR
UIOdump
UIOlength

UIOminmax

UIOtruncate

rascat

rasdump

Stand-alone Utility Programs

~xternal tape request/response:

displays and responds to tape requests by /INOPER and /OUTOPER.

monitors the tape request file for incoming requests - rings the monitor
bell when a new request is detected.

Job monitor:

displays on console active trace GCV values; interacts with /MONI
TOR.

Binary format disk files (.UIO format) and GCV values:

scans a . UIO file, printing min/max values for up to four integer GCV' s.
scans a .UIO file, printing min/max values for up to four real GCV's.
dumps key GCV values for all requested traces.
scans a . UIO file, listing names of all user-defined GCV values and
printing #samples/trace and #traces in disk file.
scans a . UIO file, printing min/max trace amplitude values for all
requested traces.
copies a .UIO file while truncating the trace lengths.

Raster file manipulation:
concatenate two .RAS files into one in order to plot side-by-side rather
than one after another.
print descriptive parameters of a .RAS file.

External tape request/response: tapeoper
The external tape request and response system allows users to receive and respond to

tape request messages at monitors or consoles other than the one at which the processing job
was begun (see section III-C). While inside a processing job, one must use the /INOPER or
/OUTOPER processors in place of '!IN' or '/OUT'. These IRIS-SEIS processors communi
cate with the external program tapeoper to allow for external response to tape requests.
tapeoper allows anyone to see what tape requests are still waiting for some action. Depend
ing on tape allocation permissions, anyone can respond to the tape requests.

In order to use the tapeoper approach to tape requests, one must use /INOPER or
/OUTOPER instead of '!IN' or '/OUT'. All uses of parameters are identical for /INOPER
'/IN' and /OUTPER-'/OUT'. Example:

/JOB
/OUTOPER

FORMAT SEGY DENSITY HY

58

When the job is run through IRIS-SEIS, tape request messages will not appear on the terminal
at which the job was run. Rather, messages must be retrieved by using the stand-alone pro
gram tapeoper. When this program is invoked, all active tape messages/requests will be
displayed. At this point, one may mount a tape and respond to the appropriate request.

tapeoper will display communication messages which normally would be sent to the ter
minal. Each message will have an I.D. number along with the date, time, job sequence
number, request status, and the text of the message. An example of information given by
tapeoper is: · ,,

ID# D~TE Til\.ffi KSEQ STAT MESSAGE

502 1-APR-90 02:31:30 CPY MESG SierraSeis Input tape request ~

The message "SierraSeis Input tape request" was issued at 2:31:30 on April 1, 1990. The
message I.D. number is 502; this number is important when a message is to be replied to.
The job sequence number is "CPY", which implies that , when the job was run, the letters
"CPY" was used by irisexec to identify the communication file created by irisinit. The
STAT ("STATUS") column here shows that the text message is indeed just a message. If the
message was an actual request that needed a response, the STAT value would be "REQU".
Other possible states are "PEND" for pending (a request was replied to and is in the process
of being enacted) and "DONE" for done (a request was successfully replied to).

To reply to a tape request from INOPER, the user must provide the tape drive and tape
density as answers to two successive queries. The initial request for the tape drive may look
like:

ID# DATE Til\.ffi KSEQ STAT MESSAGE
---- ---- ---- ---- ---- ----
502 1-APR-90 02:31:30 CPY MESG SierraSeis Input tape request
503 1-APR-90 02:31:30 CPY MESG Please ready tape number DA T2 for Input
504 1-APR-90 02:31:31 CPY REQU Enter tape drive [ldev/rmt8]

The subsequent request for the tape drive density will look like

505 1-APR-90 02:31:49 CPY REQU Enter tape density [1600].

Each time the current messages are displayed on the screen, a prompt follows to ask
what the user wishes to do. He or she may list the messages again, reply to a request, delete
a line from the list, clear all lines from the screen, get on-line help, or quit the program. The
two-line prompt will look like:

List Reply Del Clear Help Quit:
command, [i5], [a8]>

and indicates that the command has been entered, and optionally a message I.D. number [i5
format] and a short text string [a8 format]. The command can be the full command or can be
the first letter [in upper or lower case].

Command Input Behavior

List

Reply

Delete

Clear

Lor I
L, I.D.#
I, I.D.#
R, I.D.#, text
r, I.D.#, text
D, I.D.#
d, I.D.#
Cc
C, I.D.#
c, I.D.#

List current messages.
List from I.D.# to end.

Reply to a request with text string.

Delete a message or request from current list.

Clear all messages.
Clear all messages from start to J.D.#.

Help
Quit

H or h
Q or q

59

Print list of command options.
Quit tapeoper.

The LIST command will list all messages which are current. The list will always give
all messages which are stored, from first stored to most recent, unless a subset is asked for.

The range of messages can be limited by specifying a message I.D. number; only those
messages between this number and the most recent I.D. number will be printed. For example:
1,501 will print messages between #501 and the most recent.

To REPLY to a request, one must identify the request using the I.D.#, then provide the
!"- text answer. For example, the tape mount request as shown in the example above (request

#504) can be given by r, 504, TAPEO. The answer TAPEO is the same response as if the
request was presented to the terminal; that is, in this case (UNIX operating systems) it is the
symbolic link pointing to the appropriate tape drive. A request for the tape density could be
answered with: r, 505, 6250.

When a reply text string is entered, the string is placed into a tape request history disk
file which /INOPER and /OUTOPER uses to communicate requests. These IRIS-SEIS rou
tines will retrieve the reply string, verify the response, and commence the I/0 action. Within
tapeoper, first a "PEND" status (reply is pending) will appear. If the response is valid, the
status is switched to "DONE" (as found using a successive "LIST"). If the response is
invalid, a new message will appear upon the next use of "LIST" with most likely a diagnostic
message followed by a new request.

The tape request history disk file can contain only fifty lines of messages at any given
time. Periodic purging of old messages should be conducted using the "CLEAR" command.
Messages which are still openly requested or pending cannot be purged, however. These lines
must be explicitly deleted prior to purging. The DELETE command will allow you to
remove any line from the list of messages. After issuing a DELETE command, a
verification prompt is received; the user must answer with an affirmative (Y or y) to indeed
remove the line.

Once the status of all lines are either "MESO" or "DONE", the set of lines may be
purged using the CLEAR command. If this command is selected with no I.D.# argument,
then all lines are purged. If an I.D.# is provided, then only those lines from the first line up
and including the given line number is purged.

The HELP command can be used to obtain a quick look at the input formats for these
commands along with a short description of their functionality.

The QUIT command gracefully shuts down the tapeoper program. As an external disk
file is used by this program, a proper closing of the file is needed in order to store the most
current values to be contained within the file.

New external tape request/response messages: tapeoperbells
While waiting for a tape request to come up, the tapeoperbells can be used in fore

ground or background mode. This utility detects when new tape requests are logged. The
monitor bell is rung until the program is interrupted. The user can then call tapeoper to
examine the new tape request.

Execution is simple. In UNIX foreground:
(%) tapeoperbells

When the monitor bell (control-G) rings, interrupt the program. For background use, note the
job PID number from the UNIX "ps" command. When the bell rings, kill the job using the
UNIX "kill" command. Then use tapeoper to identify the new request.

60

Job monitor: monitor
The monitor program is used in conjunction with the IRIS-SEIS /MONITOR processor

to examine the status of trace flow within a processing job. This functionality is similar to
the use of the MONITOR option in '/PRMODCOM'. The latter option will print to the ter
minal screen values of selected GCV' s for each seismic trace passing through the '/PRMOD
COM' routine. Once started, however, this behavior cannot be turned off. The use of the
/MONITOR processor with the stand-alone program monitor can be started and stopped as
desired.

/MONITOR .)\(ill place the values of two GCV's from the active seismic trace into a
temporary file, updating the values as each new trace enters the processor. monitor will
examine this file, printing the GCV values to the terminal screen each time a new set of
values is detected. The stand-alone program will continue to display trace GCV values until
it is interrupted.

By default, the temporary file is named MONITOR.TMP and will be located in the
directory where the IRIS-SEIS job is run. A different temporary file name can be defined by
using the "FILENAME" parameter within /MONITOR. When the monitor program is
invoked, specify the same filename as a command line argument. For example, the IRIS
SEIS job description file may have the following call to /MONITOR:

/MONITOR
GATHER 'KCDP'
TRACE 'RANGE'
FILENAME 'MONIT.sort'

Since the temporary file that will be used is named "MONIT.sort", teh user invokes monitor
using this name:

(%) monitor MONIT.sort

In this example, the CDP and offset values for each trace that enters /MONITOR will be
displayed for as long as. monitor is executed.

UIO format files - Integer GCV minimum-maximum values: GCVminmaxi
The stand-alone utility program GCVminmaxl can be used to obtain the

minimum/maximum values for up to four trace header (GCV) values within a disk file stored
by /UNIXIO. The disk file must have the GCV headers stored ('WRITE' I 'USEGCV'
options in /UNIXIO). While one could run an IRIS-SEIS job using the processor named
/HDMINMAX, this utility program is faster to run.

The utility program is run using the following command line arguments:
(%) GCVminmaxi file nbypass ntraces 11 12 13 I4 format.

file is the filename of the UIO-format datafile. nbypass is the number of traces to skip prior
to computing minimum/maximum values. ntraces is the number of traces to use to compute
the extrema. 11, 12, 13, and 14 are the four possible GCV headers in which the
minimum/maximum values are computed (for each header). The values for these latter argu
ments are the index positions of the GCV's within the integer GCV common block
SSCOM.INC. For example, the CDP number, "KCDP", is located at index 15 (the 15th
integer GCV); the number of samples per trace, "KNSAMP", is located at index 63. The for
mat argument is used to indicate whether the data trace values are stored in 32-bit floating
point or 16-bit integers. format is 32 for real values and 16 for integers; the default value is
32.

As an example, the following line
(%) GCVminmaxi CDP7.UIO 0 200 IS 26

will find the minimum/maximum values for GCV headers "KCDP" and "KFOLD" (GCV
indices 15 and 26, respectively) for the first 200 traces in file CDP7.UIO. No traces are
skipped at the beginning of the file. The data format is assumed to be 32-bit floating point.

61

UIO format files - Real GCV minimum-maximum values: GCVminmaxR
Similar to GCVminmaxl, GCVminmaxR can determine the minimum/maximum values

for real trace headers (GCV values). The operation of GCVminmaxR is similar to that of its
integer-format counterpart; the programs are run in the same manner.

As an example,
(%) GCVminmaxR CDP7.UIO 0 200 3 4 13 29 16 will find the minimum/maximum

values for GCV headers "CDPX", "CDPY", "RANGE", and "STATIC" (real GCV indices 3,
4, 13, and 29, respectively) for the first 200 traces in file CDP7.UIO. No traces are skipped
at the beginning of the file. The data format is explicitly stated to be 16-bit integers.

• UIO format files - Dump key GCV values for requested traces: UIOdump
An easy way to identify the traces within a UIO-format file is with UIOdump. This

program will list key identifying GCV values for each trace encountered. The headers whose
values will be dumped are "KFLDFN", "KFLDTN", "KCDP", "KTRACE", "KSHOT", and
"KTRC". Upon the initial open of the data file, the number of samples per trace
("KNSAMP") as stored in the trace headers will also be given.

The program is run using the following command line arguments:
(%) UIOdump filename nbypass ntraces format

where filename is the UIO-format data file, nbypass is the number of traces to initially skip,
ntraces is the number of traces to read, and format is the data sample format. format is 32
if the data is 32-bit floating point samples and is 16 if the samples are 16-bit integers. for
mat=32 is a default condition.

UIO format files - Data file format: UIOiength
UIOiength is a utility program which will give structural information regarding a UIO

format file. This information can be used to describe the dimensionality of the data file for
either other utility programs or within IRIS-SEIS jobs. UIOiength will provide information
on number of samples per trace ("KNSAMP"), the total number of GCV's stored for the four
format types (integer, real, character*8 and character*4), the number and names of any user
defined headers, and the total number of traces contained within the file.

UIOiength is run with the following command line arguments:
(%) UIOiength filename format.

filename is the UIO-format data file. format is the format of data samples (=16 for 16-bit
integers and =32 for 32-bit floating point). The default format value is 32; if the numbers are
stored in 4-byte real values, no format argument needs to be given.

Upon execution, the number and names of headers are given along with the number of
samples per trace. The program will determine the number of traces within the file by actu
ally trying to read each trace. For large data files, there may be a pause between the initial
listings of header and sample numbers and the number of traces within the file.

UIO format files - Trace amplitude minimum/maximum: UIOminmax
While GCVminmaxl and GCVminmaxR are stand-alone programs to determine header

minimum/maximum values, UIOminmax can be used to determine amplitude extrema per
seismic trace. This program can be used to determine amplitude ranges (for plot scaling, for
example). Each trace is identified by printing six key header values along with the amplitude
minimum and maximum. The six headers are "KFLDFN", "KFLDTN", "KCDP",
"KTRACE", "KSHOT", and "KTRC".

UIOminmax is run in an identical manner as UIOdump:
(%) UIOminmax filename nbypass ntraces format

where filename is the UIO-format data file, nbypass is the number of traces to initially skip,
ntraces is the number of traces to read, and format is the data sample format. format is 32
if the data is 32-bit floating point samples and is 16 if the samples are 16-bit integers.

62

format=32 is a default condition.

UIO format files - Trace length truncation: UIOtruncate
The length of data traces can be modified by running an IRIS-SEIS job using processors

'/PRMODCOM' or /NULENGTH. For UIO-format data files, one can also accomplish this
change using the utility program UIOtruncate. This stand-alone program will allow trace
lengths to be shortened or lengthened (up to 20,000 samples/trace). This program runs faster
than a SIERRA-SEIS or IRIS-SEIS job.

To modify trace lengths of UIO-format data, use:
(%) UIOtruncate infile outfile ntraces NewKNSAMP format

where infile is the incoming UIO-format file, outfile is the modified (output) file, ntraces is ~
the number of traces to process, NewKNSAMP is the new number of samples per trace, and
format is the data sample format (16 or 32; see above examples). One can obtain the origi-
nal number of samples per trace or verify whether the output file is the proper size by using
UIOiength.

Raster file manipulation - Concatenate two .RAS files: rascat
For large-width raster plotters, the act of plotting several narrow-width plots can con

sume a large amount of plotting paper. In order to save paper, the utility program rascat may
be used. This program will "concatenate" two SIERRASEIS .RAS files into one larger .RAS
file so that both original files will plot across the plotting paper rather than in consecutive
manner. Several narrow plots can be "concatenated" into one mega-.RAS file with successive
calls to rascat.

rascat will interpret the encoded form of two .RAS files in order to reconstruct the
proper encoded form for the merged file. This is necessary to allow the raster driver (i.e.,
'RASPLOT') to function properly. rascat can merge files of the same or variable physical
dimensions. A small plot can be merged with a large plot; the resulting plot dimensions will
always be large enough to encompass both plots.

To use rascat, one simply gives the two incoming plots and the output plot file name:
(%) rascat plotl.RAS plot2.RAS outplot.RAS

where plotl.RAS and plot2.RAS are the two incoming raster plots and outplot.RAS is the
merged plot. To concatenate three or more plots together, successive calls to rascat must be
executed where the output file from a previous call becomes one of the input files for the suc
cessive call. Keep in mind that when concatenating large raster files, the available disk space
will diminish rapidly.

Raster file manipulation - print descriptive parameters: rasdump
rasdump is a utility program which will print descriptive parameters from a given SIER

RASEIS raster file. For programming reasons, a raster file is structured in a more complex
format than a pure raster bit map form of the desired plot. Rather, the raster bytes are divided
into - 60K records which are written as sets of 512-byte blocks. Actual raster scans will map
across these blocks.

The first 512-byte block of a .RAS file serves as a header block. The first 32 bytes are
divided into eight 4-byte integers; rasdump will provide these values:

bytes description
1- 4 Number raster records in plot
5- 8 Number of bytes per record
9-12 Number of raster scans per record

13-16 Total number of raster scans in plot
17-20 Plot direction: l=LTOR, 2=RTOL
21-24 Swap flag
25-28 Raster file type: 1 =B&W, 2=color

63

I 29-32 Number of color masks

From these values, rasdump will compute the number of bytes per raster scan.

Programming Considerations: UIO-format files
Stand-alone programs can be encoded which are capable of reading or wntmg UIO

format files. These programs must properly account for the file and trace headers which are
associated with the data traces. The stand-alone programs described above which manipulate
UIO-format files use a library of subroutines which performs much of the header operations.
This library is contained in the source code file UIOsubs.F in the .. Jirisl3/utility directory.
A description of the UIO format can be found in section IIIB and in the manual pages for
/UNIXIO.

The library of UIO header operations include the following functionality:

UI rea hea
UI Oprin the ad
UIOcheck
UIOwritehead
UIOgetKNSAMP
UI Oreadtrace
UIOgettrace
UIOgettrhead
UIOwritetrace
UIOputtrace
UIO uttrhead

rea s e eader to o tam e ne V s
prints to monitor screen GCV information
checks if file 1/0 operation was successful
writes file header to output file
obtains KNSAMP from first seismic trace's GCV headers
reads next seismic trace's headers and amplitudes
performs actual trace amplitude read
performs actual trace header read
writes next seismic trace's headers and amplitudes
performs actual trace amplitude write

erforms actual trace header write

The library of subroutines is written in FORTRAN but uses the FTOCIO library
(APPENDIX B) to use C-language 1/0 for its file operations. As in C-language file 1/0, one
must bookkeep the current location of the file "pointer" in order to keep track of which por
tion of the file one is going to read from or write to.

65

IV - LOCAL-SEIS

LOCAL-SEIS is a platform where development of processors can take place. This plat
form provides subroutines and shell files which are needed to compile and link the new rou
tines with SIERRASEIS and IRIS-SEIS. While a description of LOCAL-SEIS was presented
in section II-C, the sections here present information on how to install, run jobs with, and add
to LOCAL-SEIS.

IV -A. Installation of LOCAL-SEIS

This chapter presents a step-by-step installation procedure for LOCAL-SEIS. It is not
necessary to use the "SIERRA" account used for installation of LOCAL-SEIS, however,
write-permission is required within the main SIE~RA directory (.• ./sierra).

The overall directory for LOCAL-SEIS is named local13 and exists at the same level as
irisl3 which contains IRIS-SEIS. Similar to IRIS-SEIS, the top-level directory which will
contain both local13 and irisl3 is defined as /usr/sierra in all LOCAL-SEIS installation and
make files. If the sierra directory is located within /usr or a symbolic link sierra is created
within /usr to point to the location of the sierra directory, no pathname substitutions are
needed. If the user had to change pathname locations in make files during the installation of
IRIS-SEIS, he or she is required to do the same for LOCAL-SEIS.

The installation procedures below discuss a quick and a full approach to installation of
LOCAL-SEIS. The quick approach can be used because needed object code and executables
are already provided in compiled/linked form within the distribution tar tape. These files can
be used provided the host CPU is compatible with a SUN 4 (SPARC) with OS 4.0.3. If the
host CPU is not compatible, then the full installation procedures must be used.

The following procedures are described with the assumption that IRIS-SEIS has been
already installed (see section III-A).

Quick Installation of LOCAL-SEIS

To install LOCAL-SEIS using the quick steps, the user is required to perform the follow
ing steps:

(1) extract LOCAL-SEIS from the distribution tar tape,
(2) either:

(A) if symbolic link /usr/sierra or sierra within /usr was created to point to
the overall SIERRA directory, skip, or

(B) make full pathname changes to the following files (#lines to change):
-Iocal13/install/makefile: three lines
-local13/install/makefile.old: three lines
-loca113/install/compone: one line

(3) run shell local13/install/liball,
(4) use the make file to create executables localinit and local exec,
(5) fix symbolic links in .. ./sierra/binl3 if necessary.

(1) Extract LOCAL-SEIS from distribution tape
The initial installation procedure for IRIS-SEIS should have extracted the Iocal13 direc

tory from the distribution tape. The user should check to see if subdirectories exist within
local13 and if various types of files exist within these subdirectories (see section II-C for a list
of LOCAL-SEIS subdirectories and files).

66

If these files are not present, then they must be extracted from the distribution tape.
Change the working directory to the overall SIERRASEIS directory (e.g., •• ./sierra/).

Use the tar command to extract all files, e.g.;
(%) tar xvf /dev/rmt16 Jlocall3

The proper tape drive device name must be used. When the tar is completed, an additional 8
Mbytes of files should be created.

(2) Directory pathnames: symbolic links or explicit definition
Several installation and update make/shell files reference object code or include files in

order to properly build the LOCAL-SEIS executables. The correct locations of these files
must be stated. The installation/make files have used the definition /usr/sierra as the direc
tory which contains sseis13, iris13, and locall3.

If IRIS-SEIS was installed using either the explicit path /usr/sierra or a symbolic link
pointing to this path, then no action should be taken at this step. Either of these options
which were used for IRIS-SEIS will automatically work for LOCAL-SEIS.

If the installation of IRIS-SEIS did not use the symbolic link or if the location of the
overall sierra directory is not at /usr/sierra, then some directory paths must be given expli
citly. Make the changes to the following files:

All references to /usr/sierra should be modified to the true location of the user's sierra/
directory. When these changes are made, the new pathnames should point to the true loca
tions of the directories or files.

No modification to file .. ./loca113/install/compone should be made. The include flag
used during the compilation of a LOCAL-SEIS subroutine is the same as that used for the
compilation of an IRIS-SEIS subroutine within .. ./iris13/install/compone.

(3) Remake the LOCSEIS.a archive library
In order to remake ("archive" and "ranlib") the archive library of LOCAL-SEIS object

code, the liball shell must be used. Change directory to the install directory :
(%) cd .. ./locall3/install
(%) liball

Running the liball shell will create or update the archive library locseis.a.

(4) Create LOCAL-SEIS executables
Create the LOCAL-SEIS executables localinit and localexec using the makefile located

in .. ./local13/install:
(%) make localinit

and
(%) make localexec.

The executables will be placed into .. Jiocall3/run.

..

67

(5) Fix symbolic links in .• ./sierralbin13 if necessary
The directory binl3 is provided for convenience to point to the various directories where

executables reside. Rather than place the several directories into the user's P A TI-l environ
ment variable or create aliases for each executable, one may place just the .• ./sierralbin13
directory in the P A TI-l environment variable list. Within this directory, symbolic links for all
LOCAL-SEIS, IRIS-SEIS, and SIERRASEIS executables point to the proper executables.
This directory simplifies management of executable locations and definitions.

The proper symbolic links should have been established during installation of IRIS-SEIS
using the shell file .. ./sierralbin13/sh.link. If symbolic links to localinit and localexec are
missing, either rerun .. ./sierralbin13/sh.link or define them explicitly:

(%) cd .• ./sierralbin13
(%) ln -s /usr/sierra/locall3/rui1J1ocalinit localinit

and
(%) ln -s /usr/sierra/local13/run/localexec localexec

Use the correct path to point to .• ./locall3/run (if not /usr/sierra).

Full Installation of LOCAL-SEIS

A full installation of LOCAL-SEIS includes several more steps beyond the quick instal
lation:

(1) extract LOCAL-SEIS from the distribution tar tape,
(2) either:

(A) if symbolic link /usr/sierra or sierra within /usr was created to point to
the overall SIERRA directory, skip, or

(B) make full pathname changes to the following files (#lines to change):
-locall3/install/makefile: three lines
-locall3/install/makefile.old: three lines
-locall3/install/compone: one line

(3) compile all source code
(4) create archive libraries using shell locall3/installlliball,
(5) run the 'make' option within the install shell in locall3/install
(6) run shell makelk in locall3/install
(7) use the makefile to create executables localinit and localexec,
(8) fix symbolic links in .. ./sierralbin13.

(1) Extract LOCAL-SEIS from distribution tape
The initial installation procedure for IRIS-SEIS should have extracted the locall3 direc

tory from the distribution tape. The programmer should check to see if subdirectories exist
within local13 and if various types of files exist within these subdirectories (see section 11-C
for a list of LOCAL-SEIS subdirectories and files).

If these files are not present, then they must be extracted from the distribution tape.
Change the working directory to the overall SlERRASEIS directory (e.g., .. ./sierra/).

Use the tar command to extract all files, e.g.;
(%) tar xvf /dev/rmt16 ./local13

Use the proper tape drive device name. When the tar is completed, an additional 8 Mbytes
of files should be created.

(2) Directory pathnames: symbolic links or explicit definition
Several installation and update make/shell files reference object code or include files in

order to properly build the LOCAL-SEIS executables. The correct locations of these files
must be stated. The installation/make files have used the definition /usr/sierra as the

68

directory which contains sseis13, iris13, and local13.
If IRIS-SEIS was installed using either the explicit path /usr/sierra or a symbolic link

pointing to this path, then no action should be taken at this step. Either of these options
which were used for IRIS-SEIS will automatically work for LOCAL-SEIS.

If the installation of IRIS-SEIS did not use the symbolic link or if the location of the
overall sierra directory is not at /usr/sierra, then some directory paths must be given expli
citly. Make the changes to the following files:

All references to /usr/sierra should be modified to the true location of user's sierra/ direc
tory. When these changes are made, the new pathnames should point to the true locations of
the directories or files.

The file •• ./local13/install/compone needs no modification. The include flag used during
the compilation of a LOCAL-SEIS subroutine is the same as that used for the compilation of
an IRIS-SEIS subroutine within •. .liris13/install/compone.

(3) Recompile all source code
To recompile all LOCAL-SEIS source code, do the following:
(%) cd .. ./loca113/install
(%) compall

The compall shell will recompile all source code. There are not very many subroutines
which exist within the installation version of LOCAL-SEIS, so the recompilation should be
quick.

(4) Make the LOCSEIS.a archive library
In order to remake ("archive" and "ranlib") the archive library of LOCAL-SEIS object

code, use the liball shell. Change directory to the install directory :
(%) cd .. ./locall3/install
(%) liball

Running the liball shell will create or update the archive library locseis.a.

(5) Run 'make' option in install shell
At this point, nearly all the necessary object code will exist. The missing subroutines are

the lookup subroutines used by the LOCAL-SEIS drivers. These subroutines are created by
running the stand-alone program locgntabl (as discussed in section II A-C). Before the crea
tion of the lookup tables, the programmer should verify that the stand-alone executable exists.
This can be done in two different ways.

The first approach is using the install shell. Within
(%) install

If the UNIX operating system command install appears, then the path is set so that the
current directory is not searched first. This can be bypassed by renaming the install shell:

(%) mv install install.sh
(%) install.sh

69

When the screen menu appears within the install shell, select the 'make' option. The shell
file will proceed to create the executable locgntabl.

The second approach may be easier. Within the locall3/install directory, run:
(%) make locgntabl

(6) Create lookup subroutines: loclkinit.F, loclkexec.F
Now that the stand-alone executable exists from step (5), the lookup subroutines can be

created. Within the local13/install directory, run the shell file makelk:
(%) makelk

This shell will run the stand-alone program locgntabl, using the text file
.. ./locall3/run/PROCLOC.LIS as input. The SIERRASEIS banner will flash on the screen as
the executable is run.

From the execution of these programs, the output will be the lookup subroutines. These
subroutines will also be compiled to produce object code. The source and object code of
these routines will be placed into the .. ./loca113/run directory.

(7) Create LOCAL-SEIS executables
Create the LOCAL-SEIS executables localinit and localexec using the makefile located

in .. ./locall3/install:
(%) make localinit

and
(%) make localexec.

The executables will be placed into .• ./local13/run.

(8) Fix symbolic links in .. ./bin13
The directory binl3 is provided for convenience to point to the various directories where

executables reside. Rather than place the several directories into the user's PATH environ
ment variable or create aliases for each executable, one may place just the .. ./sierra/bin13
directory in the PATH environment variable list. Within this directory, symbolic links for all
LOCAL-SEIS, IRIS-SEIS, and SIERRASEIS executables point to the proper executables.
This directory simplifies management of executable locations and definitions.

The proper symbolic links should have been established during installation of IRIS-SEIS
using the shellfile .• ./sierra/bin13/sh.link. If symbolic links to localinit and localexec are
missing, either rerun .. ./sierra/bin13/sh.link or define them explicitly:

(%) cd .. ./sierra/bin13
(%) In -s /usr/sierra/locall3/run/localinit localinit

and
(%) In -s /usr/sierra/locall3/run/localexec localexec

Use the correct path to point to .. ./Iocall3/run (if not /usr/sierra).

(NOTE): SGCONFIG.DAT entry
The installation of IRIS-SEIS resulted in an additional two lines being placed into the

SGCONFIG.DA T file located in .. ./sierra. One of the two lines is relevant to LOCAL-SEIS,
if the following line is missing, add it in:

DEFAULT LOCERR /usr/sierra/local13/run/
The full directory path should point to the run directory for LOCAL-SEIS (i.e., may not be
exactly as stated above). If this line is missing from the SGCONFIG.DA T file, the program
mer should check the installation of IRIS-SEIS for completeness.

70

Customization of Executable Names

If the user wishes to rename localinit and localexec, then he or she should modify the
makefile in local13/install. Near the bottom of the makefile are the compile/link commands
to constrain the executables. For the "-o" option, the name desired for the
initializati<?nlexecution phase executables is shown in the following example:

f77 localinit.o f77 localinit.o
[libraries and flags] ==> [libraries and flags]
-o localinit -o uscinit

Within this example, the version of localinit at the University of Southern California is named
uscinit.

A more complete name change requires modifications of the LOCAL-SEIS name for
.IPR and .EPR listings. These changes can be performed with modifications in the subrou
tines "loc _ drinpt.F" and "loc _ drxtim.F" in local13/seismic/fR.

Verification of Installation
The best test of a successful installation is to run a LOCAL-SEIS job. The executables

can be tested in two parts. First, a job which calls only SIERRASEIS processors is used (a
plot job, for example) and is known to run correctly within SIERRASEIS. Same results
should be produced by using LOCAL-SEIS. Second, an IRIS-SEIS processor should be
inserted into this job stream, then run with LOCAL-SEIS. If the processor is called correctly,
then no run-time errors should occur.

The next section (IV-B) describes how to run LOCAL-SEIS jobs.

•.

71

IV-B. Running a LOCAL-SEIS job.

The run-time environment of LOCAL-SEIS is very similar to those of SIERRASEIS and
IRIS-SEIS. The procedures to run a seismic job within LOCAL-SEIS are the same as for
SIERRASEIS and IRIS-SEIS. LOCAL-SEIS is downward-compatible; that is, a job which
will run in SIERRASEIS or IRIS-SEIS will run in LOCAL-SEIS. However, a job which runs
in LOCAL-SEIS may not necessarily run within SIERRASEIS or IRIS-SEIS.

To run a job within LOCAL-SEIS, the user follows the approach needed to run a job in
SIERRASEIS:

(a) construct a job listing. The calls to processors and the list of processing parameters
must be syntactically correct.

(b) check the job listing by using the initialization executable, localinit.
(c) run the job by using the execution executable, localexec.

The format of the job listing must conform to the rules set forth for SIERRASEIS job listings.
LOCAL-SEIS processors can be called at any point within a job listing. These processors can
be treated as if they were SIERRASEIS processors.

The executables localinit and localexec are run as if they were the executables ssinit and
ssexec. localinit interprets a job listing and determines run-time conditions. localexec con
ducts the actual processing.

The trace-by-trace data handling scheme is adhered to by LOCAL-SEIS. This scheme is
identical in behavior to that used by SIERRASEIS. The contents of trace headers (GCV's)
should be understood in order to allow for proper trace flow to occur.

Summary of LOCAL-SEIS executables and shells:

name:
locahmt
local exec

LOCALCHECK
LOCALRUN

localcheck
local run

parameter entry:
mteractive keyboard
interactive keyboard

command line
command line

'

command line
command line

screen oenav10r:
banner clears screen and quenes pnnted
banner clears screen and queries printed

banner clears screen and queries printed
banner clears screen and queries printed

nothing to screen
nothing to screen

Shells to simplify the initialization and execution steps: LOCALCHECK and LOCAL
RUN

The run-time behavior of the initialization driver executable localinit is based on interac
tive entry of job information. In this mode, the job listing name and job-execution parameters
are entered via a console keyboard at run-time.

This behavior is not always optimum, particularly when a series of jobs to be run does
not need monitoring. LOCAL-SEIS provides a few shell files which allow users to run a
LOCAL-SEIS job using command-line entry of parameters and to run jobs from within shell
file listings. These shells are similar to a set of shells available within IRIS-SEIS.

The normal commencement of a LOCAL-SEIS, IRIS-SEIS or SIERRASEIS job will
require from the user four keyboard entries for the initialization step and (at least) two entries
for the execution step. LOCAL-SEIS shell files LOCALCHECK and LOCALRUN are con
structed to allow the user to run a job by providing command line parameters rather than to
interactively enter parameters.

For example, the initialization step localinit can be replaced with the command LOCAL
CHECK:

72

locallmt: query: user reSQ_onse:
(%) locahmt
SierraSeis banner <return>
input file name job listing name (e.g., FIL TER.DAT)
job sequence number CODE (e.g., FILT)
version number <return> to default
run-time options <return> to default

LOCAL CHECK: query: user response:
(%) LO(.;A~J:{_._UAT FILT

By providing run-time information using command line parameters needed by the shell file
LOCALCHECK, the interactive query system required by localinit can be bypassed. One
also bypasses the need to enter the first <return> after the initial SIERRA-SEIS banner. This
shell assumes that the user will wish to select default values for the version number and run
time options.

An additional advantage is that this command line approach can be easily placed into
'background' execution. This replaces the steps of interactive parameter entry followed by an
interrupt and the issuance of the 'background' UNIX command:

LOCALCHECK FILTER.DAT FIL T &

as opposed to the entire sequence of:

(%) localinit
[SierraSeis banner] <return>
Input file name: FIL TER.DAT
job sequence number: FIL T
version number: <return> [to default]
run-time options: <return> [to default]
AZ [to interrupt]
(%) bg [to place in background]

The execution phase can be run using a similar command-line shell:

localexec: query: user response:
(%) local exec
SierraSeis banner <return>
job sequence number CODE (e.g., FIL T)
version number <return> to default

LOCALRUN: query: user response:
(%) LOLALRUN I'll I

The commencement of a processing job is simple using the command-line approach. Again,
the process can be easily placed into 'background' using this approach.

The use of LOCALR UN does not take subsequent interactive queries into account. For
example, answers to tape drive requests are not placed on the command line. The LOCAL
RUN shell will not allow for tape requests and will most likely abort.

Two ways to circumvent the above problem for background execution exist. The first
approach is to create a copy of LOCALRUN and insert the correct tape request responses
into the shell file prior to running the job. Alternatively, one can use the external tape request
option provided within IRIS-SEIS to remove all tape requests from requiring interactive key
board response (explained in more detail in section III-C).

..

73

Two additional run-time shells: localcheck and localrun
The SIERRA-SEIS banner displayed at the beginning of a LOCAL-SEIS job eliminated

whatever console screen information existed on the screen. This behavior can be bypassed by
using the shell files localcheck and localrun. These shells are used in a manner identical to
LOCALCHECK and LOCALRUN but do not send any information to ,the console screen.
These shells redirect screen information to temporary files (which are removed upon comple
tion of the job process).

For the above examples, the job listing FILTER.DAT can be run using the two lines:
(%) localcheck FILTER.DAT FILT
(%) localrun FILT &

The screen will not be erased by the SIERRA-SEIS banner (it is not necessary to wait for it
to finish writing).

The shell files LOCALCHECK, LOCALRUN, localcheck, and localrun are located in
the .. ./Iocall3/run directory. Symbolic link pointers exist within / •. ./bin13 so that if this latter
directory is already in the user's PATH environment variable list (i.e. localinit or local exec
can already be accessed), these shells could be used.

74

IV -C. Adding a New Processor to LOCAL-SEIS

The addition of a new processor to LOCAL-SEIS requires seven steps. These steps
involve construction of the processor initialization and execution subroutines along with slight
modifications to the structure of LOCAL-SEIS. Shell files are provided within
.• ./Iocall3/install to help implement the modifications.

Briefly, the steps needed to add a new processor are:
1. Select new, unused names for the processor and the associated initialization and execution

subroutines.
2. Add these names to the master PROCLOC.LIS file.
3. Regenerate the loclkinit.F and loclkexec.F subroutines.
4. Create the source code for the initialization and execution subroutines.
5. Compile the initialization and execution subroutines.
6. Remake the LOCSEIS.a archive library.
7. Remake the LOCAL-SEIS executables.

1. Select new names for processor and associated subroutines.
Since LOCAL-SEIS accesses IRIS-SEIS and SIERRASEIS processors, a new LOCAL

SEIS processor must have a name distinct from all other processors. The programmer must
scan the files .• Jsseis13/run/PROC.LIS and .. ./irisl3/run/PROCIRIS.LIS to see if the new
LOCAL-SEIS processor name is already used.

Naming convention rules for SIERRASEIS require that a new processor name is limited
to one to eight alphabetic characters. No numerals can be used; "mMESTWO" is a valid
processor name while "{fiMES2" is not. [NOTE: the up to eight characters of a processor
name do not include the preceding "/"; the "/" character is used here to differentiate between
processor names and names of other files].

The selection of a name should reflect the functionality of the processor. Usually up to
an eight character name can be determined which is descriptive of the function of the proces
sor. Overly generic names should be avoided (e.g., "/ADD" for a new stacking routine).
Cryptic names should also be avoided (e.g., "/CVTWODM" for "constant velocity f-k (two
dimensional fft) migration").

The initialization subroutines have six-character names. These characters can be alpha
betic or numerical; in general they end with a "0". Alternatively, "IN" or "INI" can be used
as the last two or three characters.

The execution subroutines also have up to six alphanumeric characters. SIERRASEIS
execution subroutines generally end with "A", while IRIS-SEIS routines may end with "X",
"EX", or "EXE", depending on the number of characters needed to make the name unique.

While the initialization and execution subroutines are limited to six characters, second
level subroutines (those called by these two subroutines) can have any number of characters.
Because of the number of other subroutines used within SIERRASEIS, the user may wish to
prefix or suffix any subsidiary subroutines. A feature within UNIX FORTRAN allows for
subroutine names of variable length (e.g., IRIS_ GETHED(), for example).

2. Add new names to master PROCLOC.LIS file
The new names of the processor and the initialization and execution subroutines should

be entered into the PROCLOC.LIS file within .. ./loca113/run. The initial contents of
PROCLOC.LIS is:

processor: mit name: exec name:
(LOCAL FILES

NULLMOD NULLMO NULLMX
(MODIFIED IRISFILES

NULLIRIS NULLIO
(MODIFIED SIERRA

NULLSS NULLSO

75

NULL IX

NULLS X

The null processors have empty subroutines which exist within .• ./locall3/seismic.
Suppose a new processor is /FFTPLOT. The initialization and execution subroutines are

named "fftplO" and "fftplx", respectively. The PROCLOC.LIS file will look like:

processor: m1t name: exec name:
(LOCAL FILES

NULLMOD NULLMO NULLMX
FFTPLOT FFTPLO FFTPLX
(MODIFIED IRISFILES

NULLIRIS NULLIO NULLIX
(MODIFIED SIERRA

NULLSS NULLSO NULLSX

3. Regenerate loclkinit.F and loclkexec.F files.
The newly modified PROCLOC.LIS file is used to create the lookup subroutines

"loclkinit.F" and "loclkexec.F". The executable locgntabl is used to create these subroutines.
The shell file makelk located in .. ./Iocal13/install can be used to invoke locgntabl:

(%) cd .. ./Iocal13/install.
(%) makelk.

The shell file will place the lookup subroutines into ... !Iocall3/run and will also compile the
subroutines in order to create object code.

4. Create the source code for initialization and execution subroutines.
The initialization and execution subroutines should be written according to rules as will

be discussed in sections IV-D and IV-E. The format and structure of these subroutines should
try to follow the structure of SIERRASEIS subroutines as much as possible; this ensures com
patibility. Remember that at least two subroutines are required for each new processor.

Once completed, the subroutines should be placed into directory .. ./loca113/seismic.

5. Compile the initialization and execution subroutines.
The initialization and execution subroutines can be compiled using the shell compone

located in .. ./locall3/install. For example, to compile subroutines "exampO.F" and
"exampx.F":

(%) cd .. ./Ioca113/seismic
(%) . ./install/compone exampO.F
(%) . ./install/compone exampx.F

Note the relative directory definition of file "compone" compared to the location of the source
code files. Two new object files, exampO.o and exampx.o, will appear.

6. Remake the LOCSEIS.a archive library.
Once the new object code exists, the archive library LOCSEIS.a needs to be updated:
(%) cd .. ./locall3/install.
(%) liball

The liball shell will re-archive the object code within .. ./Ioca113/seismic and "ranlib" the
archive library.

76

7. Remake the LOCAL-SEIS executables.
The LOCAL-SEIS executables, localinit and localexec can be recompiled using the

make shell:
(%) ~e localinit

and
(%) make l~calexec.

The executables should be properly linked and constructed; they should appear in the
.. ./locall3/run directory.

If an object code file is missing, return to the •• ./locall3/seismic directory to see if it was
compiled correctly.

Revising a Processor in LOCAL-SEIS
If an error occurs in one of the subroutines related to a processor, the user may have to

fix the code within the subroutine. Upon debugging and revision, the updated subroutine
needs to be reinstalled into the proper executable.

To revise an executable, the following steps are needed:
1. Edit the (initialization or execution) subroutine.
2. Compile the subroutine
3. Remake the LOCSEIS.a archive library
4. Remake the appropriate LOCAL-SEIS executable (localinit or localexec).

1. Edit the (initialization or execution) subroutine.
If a mistake exists within the initialization or execution subroutine, the code should be

debugged and revised. The updated subroutine should be placed within .. ./local13/seismic.

2. Compile the subroutine.
The revised subroutine should be recompiled:
(%) cd .. ./locall3/seismic.
(%) . ./install/compone subroutine.F

Note the relative location of file "compone" relative to the location of the source code subrou
tine.

3. Remake the LOCSEIS.a archive library.
Once the revised object code exists, the archive library LOCSEIS.a needs to be updated:
(%) cd .. ./locall3/install.
(%) liball

The liball shell will re-archive the object code within .. ./loca113/seismic and "ranlib" the
archive library.

4. Remake the appropriate LOCAL-SEIS executable (localinit or localexec).
If the revised subroutine was an initialization subroutine, then remake the initialization

executable:

able:

(%) cd .. ./loca113/install.
(%) make localinit
If the revised subroutine was an execution subroutine, then remake the execution execut-

(%) cd .. ./local13/install.
(%) make localexec
Either of the two new executables will be placed within .. ./local13/run.

•

77

IV-D. Creation of an Initialization Subroutine

The initialization subroutine is the subroutine called during the initialization phase of a
seismic processing job. The subroutine is called from within localinit and sets up the
behavior of the processor for subsequent execution. This subroutine defines and retrieves user
parameter values and conveys them to the execution phase via temporary communication files.
The name of the subroutine is defined within the PROCLOC.LIS file as described in section
IV-C.

The initialization subroutine is constructed to have six major parts:

Part Note:
1. vanable declarations mclude tiles and defaults
2. parameter definition call to DRTABL()
3. parameter retrieval and processing call to DRPRMS()
4. printing to .IPR listing WRITE(LO,*)
5. parameter transfer to EXEC subroutine call to DRSA VE()
6. work space reservation: EXEC subroutine call to DRRSRV(),DRGNCL()

Certain (and sometimes numerous) rules and regulations govern each part. Prior to construct
ing a subroutine, one should examine subroutines within .• ./sseis13/seismic and
••• /iris13/seismic for examples. In particular, subroutines for IRIS-SEIS processors
/EASY ADD, /EXTRCTRC, and /EXMUL TRC should be examined. The SIERRASEIS
Programmer's Manual should also be consulted, particularly for detailed information on SIER
RASEIS function-type subroutines.

The initialization subroutine is used to define the parameters which describe the options
available for a processor. Parameter values are used to regulate how the processor is to treat
seismic data. Based on the run-time behavior of the processor's algorithm, a programmer can
define available parameters and also regulate default values and how parameter values are to
be interpreted and made available to the execution phase. Resources (work arrays or buffers)
can be allocated by the INIT subroutine for use in the execution subroutine.

Key SIERRASEIS initialization subroutines
The construction of an initialization subroutine is structured around several key subrou

tines which are provided within SIERRASEIS. These subroutines are used in two major
ways: parameter definition/retrieval and parameter transfer to EXEC subroutine.

DR AVE()
DRGNCL()

DRRSRV()

from the

commumcate va ues to execuuon-p ase su routme.
reserve seismic trace and work buffers for execution-phase sub
routine.
reserve extra work s ace for execution- hase subroutine.

The programmer must define within the subroutine all possible parameter options, even if
only a subset may be selected within a seismic processing job at any one time. The definition
of each parameter is conducted using subroutine DRTABL(). Programming statements must
be given to retrieve and process each parameter. Subroutine DRPRMS() is used for parame
ter retrieval.

The transfer of parameter values from the initialization to the execution subroutines is
conducted using subroutines DRSA VE(), DRRSRV(), and DRGNCL(). The transfer is per
formed via one or two temporary SIERRASEIS-format files (.CMB and .CBR files). The exe
cution subroutine must be coded in a specific manner to receive the parameter values. The

78

format in which this is done is based on the execution subroutine argument list (e.g., FOR
TRAN statement "SUBROUTINE ABCDEF(arg1, arg2, arg3 ...)"). The order and size of
arguments passed into the execution subroutine are defined by the initialization subroutine.
This definition is the primary mechanism to pass parameter values between the initialization
and execution subroutines.

Schematic Initiaiization Subroutine
A schematic subroutine shown in Figure 14 has the six major parts of an initialization

subroutine. This subroutine defines three possible parameters that a user may choose and
defines the code to process whatever choices are made (or keep default values). Print state
ments to the .IPR file allows the user to see how the processor has interpreted parameter
values from the job listing. Finally, transfer of parameters to the execution subroutine is esta
blished.

The subroutine is named using no more than six characters with the last character(s)
describing that it is an initialization subroutine. In this case, the subroutine name ends with
an '0'; however it could end with "I", "IN", "INI", or any other similar description. This
name is listed within the "PROCLOC.LIS" file in •. ./locall3/run.

The first section is for variable declaration and default values. The include files are part
of the SIERRASEIS infrastructure and allow the subroutine access to the common global vari
ables (SSCOM.INC) and to the .IPR output unit number for the subsequent WRITE state
ments (SSCUNI.INC). The subroutine will make use of an array named "freq()". Default
values for "freq()", "numtraces", and "ix" are defined. The variable "ix" is a trace counter
which will be incremented within the execution subroutine. Initially, "ix"=O, indicating to the
execution subroutine that it has been entered for the first time. Initial setup can be flagged to
occur at this moment.

In the second section, the programmer has defined three possible parameters which the
user may select for this processor. The user may override default values by specifying values
after the parameters "TRACES", "FREQBEG", or "FREQEND". Within the call to
DRT ABL(), the third argument is the variable in which values for the parameter will be
returned. The fourth argument is a number code which identifies that particular parameter
definition. A more complete description of function DRTABL() is provided below.

Once the parameters have been defined, their values may be retrieved from the job list
ing. Subroutine DRPRMS() retrieves each parameter which is specified after the call to the
processor in the job listing. Since the parameters may be specified in any order, DRPRMS()
matches the parameter name to those given by DRT ABL(). DRPRMS will identify the
number code of the parameter as specified by DRTABL() and will return this code number
("return code"), the number of values which follow the parameter in the job listing, and the
actual values.

In the example of Figure 14, if the code number returned from DRPRMS() is "1", then
according to DRTABL() the specified parameter is "TRACES". The code within section
three of the subroutine will retrieve the value specified with the parameter and assign it into
variable "numtraces". The next call to DRPRMS() will obtain the next parameter from the ..
job listing. When no parameters are left for this processor, a return code number of "-1" is
returned, signifying no more calls to DRPRMS() should be made.

Within section three, the values for all parameters which are retrieved should be checked
for validity. Values which are unrealistic, will exceed dimension limits, or will produce
incorrect operation of the execution subroutine should be detected here. Error statements can
be printed in the .IPR file and the job can be made to abort by calls to subroutine
LOCMPEROR().

Documentation print statements can be made to the .IPR file using write statements with
an output unit number stored in a SIERRASEIS variable "LO". This variable is defined
within the include file "SSCUNI.INC" which must be declared at the beginning of the

•

79

Figure 14. Schematic Example of Initialization Subroutine

subroutine EXAMPO

C 1. Variable Declarations: include files, defaults
#include "SSCUNI.INC" real freq(2)

numtraces=48
ix=O

freq(1)=10.

C 2. Parameter D'!finition: user
DRT ABL('name' ,format, variable,returncode,#values,repeatable?)
DRTABL('TRACES ','DEC ',itemp,1,1,.FALSE.)

choices

#include "SSCOM.INC"
integer numtraces,ix

freq(2)=40.

c call
call

call DRTABL('FREQBEG
','FLOT' ,xtemp,2,1 ,.FALSE.)
','FLOT',xtemp,3,1,.FALSE.)

call DRTABL('FREQEND

100 call DRPRMS(iretcode,nvalues)
if(iretcode.EQ. 1)then
elseif(iretcode.EQ. 2)then
elseif(iretcode.EQ. 3)then
end if go to 1 00

C 3. Parameter retrieval and processing
if(iretcode.eq. -1)goto200

numtraces=itemp
freq(1)=xtemp

freq(2)=xtemp
200 continue

if(freq(2) .LT. freq(1))call irisMPEROR('EXAMPLE',1)

C 4. Print to .IPR write(LO, 300)numtraces write(LO,
400)freq(l),freq(2) 300 format('EXAMPLE> number of traces is' ,iS)

400 format('EXAMPLE> start, end frequencies:',2f10.3) C 5. Parameter
communication call DRSA VE(numtraces,4,1) call DRSA VE(freq,5,2)

call DRSAVE(ix,6,1) C 6. Work space reservation
call DRGNCL('EXAMPLE',KNSAMP,KNSAMP) call

DRRSRV(dummy,7,KNSAMP)

C Result of steps 5 and 6: execution subroutine is defined as: C subroutine
EXAMPX(jp,trace,work,numtraces,freq,ix,scratch) C real trace(1),work(l),scratch(l),freq(l)

C integer numtraces,ix C NOTE: "ix" is a trace counter used in execution subroutine.
RETURN END

80

subroutine. A WRITE statement should have a companion FORMAT statement which
identifies the processor in some way. In the example in Figure 14, two lines of text will
appear in the .IPR file from this processor.

Parts 5 and 6 of the schematic subroutine are used to transfer parameters and to reserve
work space within the execution subroutine. Each item saved or reserved using functions
DRSAVE(), DRRSRV(), or DRGNCL() will appear as a subroutine argument for the execu
tion subroutine:

c lmes m 1mtiahzanon subroutine:
call DRSA VE(numtraces,4,1)
call DRSA VE(freq,5,2)
call DRSA VE(ix,6,1)
call DRGNCL('EXAMPLE' ,KNSAMP,KNSAMP)
call DRRSRV(dummy,7,KNSAMP*2)

c execution subroutine declaration:
subroutine EXAMP(jp,trace,work,numtraces,freq,ix,scratch)
dimension trace(l),work(l),freq(l),scratch(l)
integer jp,numtraces,ix

DRSA VE() will transfer an already defined value to the execution subroutine. The second
argument of DRSA VE() is the location of the value within the execution subroutine argument
list. For example, "numtraces" will be the fourth argument in the execution subroutine's
SUBROUTINE statement argument list. Variable "freq" will be available from the fifth argu
ment. The number of elements to be retrieved is given by the third argument of DRSA VE();
note that there will be two values contained in "freq()" in the execution subroutine.

The function DRGNCL() is used to define the work space occupied by the
incoming/outgoing trace and its associated work buffer. By default, DRGNCL() defines the
first three arguments of the execution subroutine: a job process number ("jp"), the
incoming/outgoing trace buffer ("trace"), and a work buffer ("work"). The size of the trace
and work buffers are given by the second and third arguments of DRGNCL().

DRRSRV () is used to dynamically allocate work space when the execution subroutine is
invoked. This subroutine defines the size of the work space needed (i.e., KNSAMP*2) and
the location in the SUBROUTINE argument list (i.e., sixth argument in SUBROUTINE argu
ment list above). The array "scratch" specified as the sixth argument in the execution subrou
tine argument list will be the array which contains the dynamically allocated work space.

Notes - 1: Variable declaration - include files and defaults
The use of include files within a subroutine allows the subroutine to access variable

values which are used by the SIERRASEIS infrastructure. Access to all global common vari
ables is through the include file "SSCOM.INC". Output to the run-time text files (.IPR and
.EPR files) requires the inclusion of file "SSCUNI.INC". Other more specialized functionality
may require separate include files; the identification of these files is made through examination
of SIERRASEIS subroutines which perform similar behavior. Most application subroutines
will probably only need the two files mentioned here.

Notes - 2: Parameter definition - the DRT ABL function
The DRTABL() function has six arguments which define the full behavior of parameters

and their values. These parameters can be used to obtain single or several values; parameters
can be also used as flags with no values or can be repeatably given.

The six arguments for DRTABL() in proper order are "name", "format", "variable",
"return code", "#elements", and "repeatable". Examples of the arguments within this function
are found in Figure 14.

81

The "name" argument contains the name of a parameter which can be specified by a user
within a job listing. The character string for "name" can be up to eight alphabetic characters
long; current limitations within the SIERRASEIS utility routines prevent numerals to be used.
As a result, a parameter name of "GATETWO" is valid while "GATE2" is not.

The "format" argument specifies the format of the value(s) which are to be specified fol
lowing the parameter name. The value of "format" is a four-character text string. Valid text
strings are:

value:
DEC

'FLOT'
'ALF'
'ALFS'
'ALST'
'DELT'
'LGL'
'HEX'
'OCT'

value followmg parameter 1s:
an mteger
a floating point
a character string (character*8)
a character string terminated with a single quote
more than one character string terminated with a single quote
numbers in delta format (first, last, increment)
a logical value (.TRUE. or .FALSE.)
a hexadecimal value
an octal value

An example of an 'ALF' string is 'VA W'. An example of an 'ALFS' string is
'/scr/work/DATA.DIO'. An example of an 'ALST' string is 'KSHOT KTRC KNSAMP'.

The "variable" argument is the name of the variable or array in which values are placed
into upon retrieval from the job listing. A call to DRPRMS() retrieves the values and places
them into the variable given in the "variable" slot.

The "return code" value given in the fourth slot is returned by DRPRMS() whenever the
defined parameter is obtained from the job listing. The return code value generally increases
from one call to DRTABL() to the next but can be given in any order. Values up to 9999
are acceptable.

The number of elements (values) that can be retrieved for a given parameter·is given as
the fifth argument "# elements". If a single value is needed, give the integer value "1". If
two values are needed, give the value "2".

The "repeatable" argument is used to indicate whether a parameter can be given only
once per processor call or can be given more than once. For example, a processor which
builds a two-dimensional horizon model may allow for several horizons. The parameter
"HORIZON" can be given several times if the "repeatable" argument is defined as ".TRUE.".
If the value is ".FALSE.", then "HORIZON" can be given once and thus only one horizon
could be given.

The first call to DRT ABL() in Figure 14 is:
call DRTABL('TRACES', 'DEC', itemp, 1, 1, .FALSE.)

In this example, the parameter is named "TRACES". The value to be given with this parame
ter is a single integer which will be retrieved in variable "itemp" by DRPRMS(). The return
code is "1". The parameter "TRACES" cannot be specified more than once per processor call.

Notes - 3A: Parameter retrieval and processing - DRPRMS function
The DRPRMS() function identifies from the job listing the next parameter specified for

the given processor. The function returns three items: the parameter return code, the number
of values within the job listing associated with the parameter, and the values stored in the
variable as specified within the appropriate call to DRTABL(). The return code is used to
identify which portion of subsequent code should be used to process the values which
occurred within the job listing. The number of values is used to indicate how many values
should be processed. When no more parameters exist to be processed for the processor,
DRTABL() returns a return code of "-1".

82

The return code is used to transfer programming control to appropriate parameter pro
cessing code. Two programming structures exist which use the return code - IF-ELSEIF's or
a conditional GOTO:

1

if(iretcode.EQ. 1)then
[process]

elseif(iretcode.EQ. 2)then
[process]

endif
goto100

goto(110, 120)iretcode
110 [process]

goto100

120 [process]
goto100

200 continue 200 continue

If more than one value is to be retrieved by DRPRMS() for a parameter, then the vari
able name given to DRT ABL() should be a dimensioned variable. For example:

subroutine EXAMPO
dimension itemp(5)

call DRTABL('VELS', 'DEC', itemp, 1, 5, .FALSE.)
100 call DRPRMS(iretcode,nvalues)

if(iretcode.EQ. -1)goto200

if(iretcode.EQ. 1)then
velstart=itemp(1)
velend=itemp(5)

endif
goto100

200 continue

Lines from the job listing which call this processor would look like:
/EXAMPLE

VELS 4500, 5000, 5700, 6200, 7800

Notes - 3B: Parameter retrieval and processing - Error Statements
If an error is detected during parameter processing, either warning or fatal error messages

should be invoked. For non-fatal warnings, messages can be written to the .IPR text file
which is generated by localinit. Non-fatal warnings are written using the WRITE/FORMAT
statements:

WRITE(L0,600)itemp
600 FORMAT('EXAMPLE> WARNING: user choice of',i5,' exceeds limits')

For fatal errors, LOCAL-SEIS uses a fatal-error subroutine which is identical to one used
by SIERRASEIS. Within SIERRASEIS, the subroutine "MPEROR" is invoked with a proces
sor name and an error statement. This subroutine scans the error text file ERRORS.LST in
.. ./sseis13/run to select the proper error statement. The statement is then printed into the .IPR
or .EPR file.

83

For LOCAL-SEIS, the subroutine LOCMPEROR will obtain error messages from the
error text file LOCERR.LST in •. .llocal13/run. If an error is detected, invoke the subroutine
as follows:

IF(itemp.GT.maxvalue)call LOCMPEROR('EXAMPLE',13)
LOCMPEROR will scan the error text file for the errors associated with processor 'EXAM
PLE'. Error number 13 in this section will be printed to either the .IPR or .EPR for localinit
or localexec, respectively. The executable can be asked to abort gracefully.

If the programmer uses subroutine LOCMPEROR, he or she will need to enter the
appropriate error statements into text file LOCERR.LST. This text file is scanned to see the
format in which error statements are entered. Within the file, the user can specify whether the
error is fatal or not; this will determine whether the job will crash or continue.

Notes - 4: Printing to .IPR listing
Information can be written to the .IPR using WRITE statement unit number "LO" pro

vided the "SSCUNI.INC" file is included at the top of the subroutine. The unit number
"SLO" will print information into the .EPR file. Sufficient information regarding user-selected
parameters should be printed into the .IPR to allow the user to determine whether the parame
ters were processed correctly.

Notes- 5: Parameter transfer to the EXEC subroutine- the DRSAVE function
In certain cases where several values need to be saved in order to transfer them to the

execution subroutine, one may find a construction where the transfer is not performed one at a
time using several calls to DRSA VE(). Rather, a single array may be used to store the
numbers and then transfer them via one call to DRSA VE(). The fewer number of calls to
DRSAVE() translates into fewer subroutine arguments for the execution subroutine. This
increases, however, statements needed to recover the values from the array. Figure 15 illus
trates the differences between these two approaches.

Contents of variables defined by DRSAVE() are saved between the initialization and
execution subroutines. Just as important, the contents of these variables are saved between
calls (i.e., seismograms) to the execution subroutine. In trace-by-trace processing, the con
tents are available for each successive seismogram. If the execution subroutine modifies the
contents of such a variable, the updated value is made available when the subroutine is called
for the next seismogram.

Notes -6: Work space reservation for EXEC subroutine- DRRSRV, DRGNCL functions
In order to make memory requirements efficient for localinit and localexec, one can use

DRRSRV() and DRGNCL() to dynamically allocate memory for localexec. These routines
allow the initialization subroutine to determine the amount of memory needed based on vari
ous factors (i.e., gather size based on number of traces and samples per trace). The memory
will not be allocated until the execution subroutine is invoked in localexec. This approach is
more efficient than to declare an array of the needed size within the initialization subroutine
and then saving the space using DRSA VE(). It is often difficult to know just how large to
declare an array a priori to any specific job.

A fundamental difference between DRSA VE() and DRRSRV()/DRGNCL() is that the
contents of variables saved by DRSA VE are transferred from the initialization to the execu
tion subroutines. For the latter functions, no contents exist during the initialization subroutine.

The contents of the work buffer as defined by DRGNCL() are not saved between calls
to the same execution subroutine by successive seismograms. To save the contents of a work
buffer, an extra array should be allocated by using DRRSRV(). The contents of an array
allocated by DRRSRV() will be saved between calls to the subroutine by successive seismo
grams.

84

Figure 15. Examples of efficient array transfer for DRSAVE()

A: Approach ONE

Initialization routine code:

call DRSAVE(numtraces,4,1)
call DRSAVE(freqO,S,l)
call DRSAVE(freql,6,1)
call DRSAVE(cdp0,7,1)
call DRSAVE(cdpl,8,1)
call DRSAVE(time0,9,1)
call DRSAVE(timel,lO,l)

call DRGNCL('EXAMPLE',KNSAMP,KNSAMP)

Execution routine code:

subroutine EXAMPX(jp,trace,work,numtraces,freqO,freql,
+cdpO,cdpl,timeO,timel)
real trace{l),work(l)

B: Approach TWO

Initialization routine code:

xpass(l)=freqO
xpass(2)=freql
xpass(3)=cdp0
xpass(4)=cdpl
xpass(S)=timeO
xpass(6)=timel
call DRSAVE(numtraces,4,1)
call DRSAVE(xpass,5,6)

call DRGNCL('EXAMPLE' ,KNSAMP,KNSAMP)

Execution routine code:
subroutine EXAMPX(jp,trace,work,numtraces,xpass)
real trace(l),work(l),xpass(l)

freqO=xpass(l)
freql=xpass(2)
cdp0=xpass(3)
cdpl=xpass(4)
timeO=xpass(S)
timel=xpass(6)

..

85

Assignment of Global Common Variables
Values of global common variables (GCV's) which are set within the initialization sub

routine will be passed to subsequent subroutines during the execution of localinit. For the
processors selected within a job listing, each initialization subroutine will be invoked in the
order listed. Updated GCV values will be passed to the successive subroutines.

For example, the IRIS-SEIS processor /NULENGTH is used to modify a seismogram
length by changing the number of samples per seismogram. The GCV to be modified is
KNSAMP. The initialization subroutine interprets the new trace length from the job length
and resets KNSAMP accordingly. Initialization subroutines which follow the subroutine for
/NULENGTH will use the modified trace length.

The act of modifying a GCV within the initialization subroutine does not automatically
make the change during the execution subroutines. The programmer must ensure that the new
value of a GCV is communicated to the execution subroutine and that the GCV is properly
reset for appropriate seismograms within the execution subroutine. An example of this
behavior can be seen by examining the initialization and execution subroutines ("NULENO.F"
and "NULENX.F", respectively) within ••• iris13/seismic for the processor /NULENGTH.

Accessing Global Common Variables
The contents of GCV's can be set in a subroutine by one of two different ways. In the

first method, the GCV's which are defined within SIERRASEIS (i.e., listed in include file
"SSCOM.INC") can be explicitly accessed by name. For example, the CDP number can be
directly set using a line such as "KCDP = 100".

An alternative programming approach is to access a GCV though the use of an index
location within the GCV storage arrays located in the include file "SSCOM.INC". As
explained in Section 11-A, the four types of GCV's are accessible using arrays SSCMAI(),
SSCMAR(), SSCMA8(), SSCMA4() within "SSCOM.INC". Each index position in each
array is defined in SSCOM.INC as a valid GCV; reference to a particular location in an array
is the same as a reference to a specific GCV by name (i.e., SSCMAI(l5) is the same as
KCDP). Manipulation of a GCV can be performed provided the array index location is
known.

A programming aid to access GCV's is provided within IRIS-SEIS to access both GCV's
defined within "SSCOM.INC" and user-defined GCV's. The subroutine irisGETHED() will
obtain the array type and index location for any GCV. The GCV can then be accessed by use
of the array. For example, a call to irisGETHED() to obtain information on KCDP will indi
cate that the 15th position of the integer GCV array should be used. The CDP number is thus
accessible through array SSCMAI(15) as is illustrated in the following lines of programming
code:

character*6 cname
integer index,iformat
cname='KCDP'
call irisGETHED(cname,index,iformat)
if(iformat.eq.l)SSCMAI(index)=lOOl

Given a GCV name as stored in variable "cname", the array format and array index position
is returned. The array format is =1 for the integer array SSCMAI(), =2 for the real array
SSCMAR(), =3 for the CHAR*8 array SSCMA8(), and =4 for the CHAR*4 array SSCMA4().
The values of variables "index" and "iformat" can be transferred to the execution subroutine
in order to access the GCV during execution-phase processing.

Use of the subroutine irisG ETHED() allows a processor to be constructed in a generic
manner in which any GCV can be accessed if necessary. Use of this subroutine can be found
in the /HEADLIST processor subroutine "HDLSTO.F" in .. ./irisl3/seismic.

86

Definition of New Global Common Variables
If necessary, a new GCV can be defined within a processor. Utility subroutine iris

DEFHED() can be used to define a new GCV for use within a subroutine or to be made
available within subsequent processor subroutines. The subroutine will place the new GCV's
name into the list of available GCV's within the "IRISCOMC.INC" include file and will
reserve an index location in the appropriate GCV array in "SSCOM.INC".

The irisDEFHED() subroutine can be used in the following manner:

character*6 cname
character*4 cformat
integer index, iformat
cname='testhd'
cformat='FUEAUL'
call irisDEFHED(cname, cformat, index, iformat)

The variable "cname" contains the name of the new GCV; the characters can be alphanumeric
(and can even include punctuation). The variable "cformat" describes which GCV type to
use; proper values are the 4-character strings "INT", "REAUL", "CHR8", are "CHR4". The
variables "index" and "iformat" are returned by the subroutine and describe the index location
within the GCV array and the array type (as defined by subroutine irisGETHED()).

To define a new header within a processor, both the initialization and execution subrou
tines should use irisDEFHED(). The use of the subroutine in the initialization subroutine
will make the new GCV available for subsequent processors in the initialization phase of pro
cessing. The execution subroutine will need to use irisGETHED in order to define the new
GCV for each seismogram which enters the subroutine. For examples, see processor /DEF
HEAD subroutines "DEFHDO.F" and "DEFHDX.F" in .. Jiris13/seismic.

More information
For more information, read the Programmer's manual provided for SIERRASEIS. Also,

much information can be extracted through the examination of already-existing subroutines
located in .. ./sseisl3/seismic and .. ./iris13/seismic. Most likely, the specifics of programming
steps needed may already exist located in various subroutines. It is often easier to modify a
subroutine which is similar to what the user needs rather than to rewrite one from scratch.

87

IV -E. Creation of an Execution Subroutine

The execution subroutine is the subroutine called during the execution phase of a seismic
processing job. The subroutine is called from within localexec and performs the actual pro
cessing to seismic traces or seismic GCV' s. This subroutine retrieves user parameter values
as defined within the initialization phase, performs run-time resource allocation, processes
seismograms, sets or resets GCV values, and sets or resets trace flow behavior as required by
the subroutine algorithm. The name of the subroutine is defined within the PROCLOC.LIS file
as described in section IV -C.

The execution subroutine is constructed to have seven important parts:

Part Note:
1. subroutme argument list as defined within mit
2. variable declarations include files and declarations
3. initial allocations first time ever in subroutine
4. processing algorithm actual processing work
5. trace flow single or multiple traces?
6. printing to .EPR listing WRITE(SLO, *)
7. end of job cleanup release resources

Similar to the initialization subroutine, there are rules and regulations which govern each part.
Prior to constructing a subroutine, the programmer should examine subroutines within
.. ./sseis13/seismic and .. ./iris13/seismic for examples. In particular, subroutines for IRIS-SEIS
processors /EASY ADD, /EXTRCTRC, and /EXMUL TRC should be examined. The SIER
RASEIS Programmer's Manual should also be consulted, particularly for detailed information
on SIERRASEIS function-type subroutines.

The execution subroutine is used to process seismic data. An algorithm is emplaced into
the subroutine which works on single seismograms (trace-by-trace operations) or with multiple
sets of seismograms. The execution subroutine should be programmed to conduct initial
resource allocation, monitor trace flow, send print statements to the .EPR text file if necessary,
and clean up resources upon passage of the last seismogram. Figure 16 illustrates a schematic ·
execution subroutine which is consistent with the initialization subroutine in Figure 14.

1. Subroutine argument list: consistency with initialization routine
The declaration of the subroutine ("SUBROUTINE" line of code) should have an argu

ment list which is consistent with the information which was saved in the initialization sub
routine by the subroutines DRSA VE(), DRGNCL(), and DRRSRV() (see previous section).
The variables within the argument list are used either to retrieve information which is to be
conveyed from the initialization subroutine or to dynamically allocate space during use of the
execution subroutine.

The first three arguments of a subroutine is by SIERRASEIS convention always defined
to be an integer variable used by the localexec driver, the trace array, and a work array. The
three arguments are defined by a call to DRGNCL() within the initialization subroutine; the
size of the trace and work arrays are specified there.

Any subsequent variables must have been defined by DRSA VE(), DRGNCL(), or
DRRSRV(). Any of these values within the argument list will be saved between calls to the
execution subroutine; this is one way to communicate values between successive seismo
grams.

2. Variable declarations: declarations and include files

Any variable which appears in the argument list should be declared at the top of the exe
cution subroutine. Dimensioned arrays can be specified without the full dimension as if to
indicate the address of the array (i.e., "trace(1)" is the address of element one but represents

88

Figure 16. Schematic Example of Execution Subroutine

C 1. Subroutine Argument list: as defined in init routine. C This subroutine is com-
patible with Figure 14. subroutine EXAMPX(jp,trace,work,numtraces,freq,ix,scratch)

C 2. Variable Declarations: include files, declarations
#include , :·sscUNI.INC" real

#include "SSCOM.INC"
trace(l),work(l),scratch(l),freq(l)

• . • ! •

mteger numtraces,tx

C (Part of 5. Trace flow goes at the top)

C 3. Initial allocations
i=l,KNSAMP

endif

4.

ix=ix+l

if(KST A TE.eq .3)goto500

if(ix.eq.O)then
scratch(i)=O

Processing
====================

do
end do

algorithm c
c
c algorithm using arrays traceO, workQ, freqQ, scratchQ, c and variable

numtraces
c ---

C 5. Trace flow (GCV's KSTATE, KCMBCK) KSTATE=2
KCMBCK=O

C 6. Print to .EPR listing C Be careful about a writeO statement for every trace
C if the expected data sets will be large. write(SLO,IOO)ix
100 format('EXAMPLE> Trace ',i5, 'processed.') gotolOOO

C 7. End-of-Data (KST A TE=3): Cleanup or release resources.
600 write(SL0,200) 200 format('EXAMPLE> Only reached when End-of-

Data occurs')

1000 RETURN END

.,

...

,

89

the entire array). Dynamically-allocated double-subscripted arrays can be used by passing the
array and dimension sizes via the argument list. This information can thus be used in the
declaration as follows:

subroutine EXAMPXGp,trace,work,array,isize,jsize)
dimension trace(1), work(l),array(isize,jsize)

Do not place a GCV name such as KNSAMP in the argument list. Remember also that the
initialization subroutine must have specified the proper array size within its calls to
DRGNCL(), DRRSRV(), and DRSAVE():

subroutine EXAMPO

call DRGNCL("EXAMPLE",KNSAMP,KNSAMP)
call DRRSRV(temp,4,isize*jsize)
call DRSA VE(isize,5,1)
call DRSA VEGsize,6,1)

Include files should be declared at the start of an execution subroutine if variables
defined within the include files are to be used. If any GCV's are used, the include file
"SSCOM.INC" should be used. If any output to the .EPR file is to be written, the file
"SSCUNI.INC" should be included.

Other variables which are used within the subroutine will be cleared upon each succes
sive entry (each new seismogram). Prior values will not be available for re-use. The excep
tion is any variable which exists within the subroutine argument list.

3. Initial allocations: first time setups
Certain processing algorithms require initial setup upon first time entry into a processor

subroutine. For example, prior to processing the first seismogram in a data set, algorithm
variables or flags may require initial values or clearing (see Figure 16). Devices can be allo
cated or disk files can be opened or created as needed. The subroutine code must bookkeep
the condition of "first-time entry" in order to set initial values, then bookkeep that the initial
values were set. A flag or counter should be used to keep track of initial subroutine entry.

A flag counter can bookkeep the number of traces encountered by a processor. This
counter is incremented for each trace which enters the subroutine. Provided that the counter
is first set to zero within the initialization subroutine, the counter can indicate when the first
ever trace is encountered:

Initialization subroutine:
subroutine EXAMPO
integer counter
counter=O
call DRSAVE(counter,4,1)
call DRGNCL('EXAMPO' ,KNSAMP,KNSAMP)
return
end

Execution subroutine
subroutine EXAMPX GP ,trace, work,counter)
integer counter
counter=counter+ 1
if(counter.EQ.1)then

[set initial values]
endif
return

end

90

In this example, "counter" is passed to the execution subroutine with an initial value of "0".
For each seismogram entered into the subroutine, the counter is incremented. Upon the first
entry into the subroutine (counter=O), initial values can be set. Subsequent entries will bypass
this portion of the code.

Rather than use a seismogram counter, a logical variable can be defined. A logical vari
able which questions whether the entry has been previously entered can be set to ".FALSE."
in the initialization subroutine. If the logical variable value is ".FALSE." in the execution
subroutine, initial values can be set after which the logical variable can be set to ".TRUE.".
Subsequent entries into the subroutine will bypass the local code.

4. Processing algorithm
The processing algorithm can be any process which works on the seismic data or GCV

header values. The processing algorithm can operate on single seismograms or can be pro
grammed to require more than one seismogram. In addition, there is nothing to prevent a pro
grammer from accessing other peripherals or graphical devices within the processor.

The primary programming consideration is that the algorithm must ultimately be compa
tible with single seismogram re-entry and release ("one-trace-at-a-time" flow). Any program
ming calls to other subroutines or peripherals must be compatible with the SIERRASEIS pro
gramming environment.

The best guide as to how processing algorithms are incorporated into subroutines can be
found in the actual processor subroutines. These can be found in .. ./sseis13/seismic or
.. ./iris13/seismic.

5. Trace flow: single and multiple traces
Each execution-phase subroutine must explicitly state the trace flow behavior for the sub

routine. The trace flow can be trace-by-trace or multiple-trace algorithms; additionally, the
processor can be made to operate when no data is left (end of the job). The accumulation or
release of multiple traces must also be properly accounted for within the subroutine.

The behavior of trace flow is defined for a subroutine by the values of GCV's
"KSTA TE" and "KCMBCK". The execution-phase driver localexec always assumes that a
single trace enters the subroutine. The trace flow behavior upon leaving the subroutine is
determined by the driver based on the values of these GCV's. According to the value of
KSTA TE, the driver will either pass the seismogram to the next processor in trace-by-trace
flow or return to a previous processor to obtain another seismogram in multiple accumulation
flow. The value of KCMBCK indicates whether the subroutine has a number of seismograms
ready for multiple release. The values of these GCV's must be set prior to leaving the sub
routine.

The status of KST ATE should also be checked upon entry to the subroutine. When no
data is left to be processed, KSTA TE will have the value of "3 ". An IF conditional can be
emplaced to skip the entire subroutine if the end-of-data status is reached. Other processors
may wish to perform end-of-data operations such as cleanup, resource release, or final prin
touts to the .EPR file.

A more full explanation of KSTA TE and KCMBCK is available in section II-A. Pro
gramming examples can be found in the seismic directories for SIERRASEIS or IRIS-SEIS.
For examples of trace-by-trace processor subroutines, examine those processors which operate
in trace-by-trace mode (IAGC, for example). Similarly, examine multiple trace processors for
examples of how to manipulate the proper GCV's. Examples are also provided in
/EASY ADD, /EXTRCTRC, and /EXMULTRC within the

A final word regarding KSTA TE and KCMBCK values which has implications as to
bookkeeping of the values of these GCV's. The values of KSTA TE and KCMBCK are
passed from one processor to the next. Since each processor resets the values of these
GCV's, the values when re-entering a specific processor subroutine may not be the same as

..

..

•

..

91

when it was exited one seismogram previously. For example, if one processor sets
KSTA TE/KCMBCK to imply multiple-release flow and the next processor operates in trace
by-trace flow, the values of KSTATE/KCMBCK when re-entering the first processor's subrou
tine will indicate trace-by-trace flow. This subroutine cannot be written with the assumption
that the KSTATE/KCMBCK values are "remembered"; rather, it is best to internally maintain
these values within storage variables so that the GCV's can be retrieved and thus explicitly
reset to the proper flow values. An example of this can be found for the processor
EXMUL TRC (subroutines "EXMULO.F" and "EXMULX.F" in ..• /iris13/seismic .

6. Printing to .EPR listing
Run-time printing from an execution subroutine is performed in a manner similar to the

printing to an .IPR file. The FORTRAN unit number for a WRITE statement is defined
within the SIERRASEIS variable "SLO" which is defined in the include file "SSCUNI.INC".
A write statement which will appear in the .EPR file is thus:

subroutine EXAMPX(jp,trace, work)
include "SSCUNI.INC"

write (SLO,lOO)
100 format('EXAMPLE> Entered subroutine')

return
end

The results of a write statement will appear in the .EPR file once for each time the subroutine
is re-entered unless some type of selectivity is installed. An internal trace counter can be
used to identify some desired re-entry interval.

7. End of job cleanup
The value of GCV KSTATE will become "3" when no more input data is available to

the job stream. At this point, a processor should be programmed to either simply exit its sub
routine or to conduct end-of-job shutdown. The end-of-job shutdown can include final prin
touts to the .EPR file, resource release, diskfile closings, or any other operations prior to com
plete termination of the processing job.

The value of KST ATE should be checked upon entry into the execution subroutine so
that the end-of-job status can be immediately detected. If found, flow within the subroutine
should not reach other portions of code which is designed for KST ATE values of 1 ,2, or 4.

93

V - USER DEVELOPMENT WORK AREA

LOCAL-SEIS is provided within IRIS-SEIS to be a platform where development of pro
cessors can take place. This third tier of seismic routines allows the user to mix locally
developed processors with those which exist within SIERRASEIS and IRIS-SEIS. The
separation of local routines from all others allows for a seismic processing package tailored to
the applications at an individual locality.

For a single user site, the data processor/programmer can add routines directly to
LOCAL-SEIS. In a multi-user environment, however, there are advantages to having a ver
sion which contains "final" versions of new routines. In this form, development by two or
more persons can occur in separate areas which do not affect each other nor the "final" ver
sion.

For these multi-user sites, the development areas exist similar to LOCAL-SEIS. In fact,
the relationship between the development areas and LOCAL-SEIS is similar to various ver
sions of LOCAL-SEIS and IRIS-SEIS: when a processor is finalized locally, it can be
installed into the library of "approved" processors (LOCAL-SEIS for an individual site and
IRIS-SEIS, hopefully, as the repository of processors developed among the SIERRASEIS
community).

Within the development areas, a programmer can install a processor into a library which
gets linked with all other SIERRASEIS, IRIS-SEIS, and LOCAL-SEIS processors. The
resulting executables are then available for testing of the processor by the programmer or
user. The development version can be modified for debugging purposes without affecting the
performance of LOCAL-SEIS.

The structure of this work area is described in section II-D. The developer works within
a directory structure similar to LOCAL-SEIS but creates executables known as userinit and
userexec rather than localinit and localexec. The installation of a routine into the user ver
sion is essentially identical to the procedures used to install a routine into LOCAL-SEIS.

A user development area template directory is provided within LOCAL-SEIS and is
named .. ./Ioca113/userl. For each person who wishes to install a processor, a copy of this
directory should be made as described below. This somewhat custom directory separates his
or her developmental code from the code of other developers.

V-A. Installation of template directory "local13/userl"

This section presents a step-by-step installation procedure to create the template develop
ment directory userl. This installation needs to be performed only once (preferably when
LOCAL-SEIS is installed). It is not necessary to use the "SIERRA" account used for installa
tion of userl, however, write-permission is required within the LOCAL-SEIS directory
.. ./local13. The files in this directory should be kept as master copies and that a copy of the
directory should be made where modifications can be made.

The template development directory is named userl and exists at the same level as other
directories which define LOCAL-SEIS (install, lib, main, run,and seismic, for example).
The installation of this directory is made easier since LOCAL-SEIS is already installed prior
to installation of this directory.

Changes to pathname locations in make files during the installation of LOCAL-SEIS,
should be repeated for userl. If symbolic links were used, this step can be bypassed.

The installation procedures below discuss a quick and a full approach to installation of
userl. The quick approach can be used because needed object code and executables are
already provided in compiled/linked form within the distribution tar tape. These files can be
used provided the host CPU is compatible with a SUN 4 (SPARC) with OS 4.1. If your host

94

CPU is not compatible, then you should use the full installation procedures.
The following procedures are described with the assumption that LOCAL-SEIS has been

already installed (see section IV -A).

Quick Installation of template user development directory

To install the template user development directory using the quick steps, you will need to
perform the following steps:

(1) locate the userl directory in .. ./local13.
(2) either:

(A) if symbolic link /usr/sierra or sierra within /usr was created to point to
the overall SIERRA directory, skip, or

(B) make full pathname change to the following file (#lines to change):
-loca113/userllinstall/makefile: one line

(3) run shell local13/userllinstall/liball,
(4) use the makefile to create executables userinit and userexec, .
(5) test executables to verify installation, then remove executables to save space if

desired

(1) Locate the userl directory in .. ./local13.
The initial installation procedure for IRIS-SEIS should have extracted the userl directory

within the local13 directory from the distribution tape. If these files are not present, then they
can be extracted from the distribution tape. Change the working directory to the overall
SIERRASEIS directory (e.g., •. ./sierra).

Use the tar command to extract the files, e.g.;
(%) tar xvf /dev/rmtl6 ./local13/userl

Use the proper tape drive device name.

(2) Directory pathnames: symbolic links or explicit definition
If IRIS-SEIS was installed using either the explicit path /usr/sierra or a symbolic link

pointing to this path, then no action should be taken at this step. Either of these options
which were used for IRIS-SEIS and LOCAL-SEIS will work for the user development area.

If the installation of IRIS-SEIS did not use the symbolic link or if the location of the
overall sierra directory is not at /usr/sierra, then the user should explicitly give some direc
tory paths. Make the change to the following file:

The reference to /usr/sierra should be modified to the true location of the sierra/ directory.
When this change is made, the new pathname should point to the true location of the develop
ment directory.

No modification to file .. ./Iocall3/userllinstall/compone is required. The include flag
used during the compilation of a LOCAL-SEIS subroutine is the same as that used for the
compilation of an IRIS-SEIS subroutine within .. ./irisl3/install/compone.

(3) Remake the user development archive library
In order to remake ("archive" and "ranlib") the archive library of user development

object code, use the liball shell. Change directory to the install directory :
(%) cd .. ./loca113/userl/install
(%) liball

Running the liball shell will create or update the archive library userseis.a.

"

95

(4) Create development executables
Create the development executables userinit and userexec using the makefile located in

.. ./locall3/user 1/install:
(%) make userinit

and
(%) make userexec.

"'· The executables will be placed into .• ./locall3/userl/run.

(5) Test executables to verify installation
": By running a LOCAL-SEIS job the user can test the executables. If this developmental

version of LOCAL-SEIS is to be used, the user must either place into .. ./sierralbinl3/fR sym
bolic links which point to the executables or place the .• ./locall3/userl/run directory
within his or her path variable. Alternatively, the user can move the executables to the direc
tory in which the test job will run.

and

The symbolic links for the development versions can be created as follows:
(%) cd .. ./sierra/bin13
(%) In -s /usr/sierra/local13/userl/run/userinit userinit

(%) In -s /usr/sierra/locall3/userl/run/userexec userexec
Use the correct path to point to .. ./locall3/userllrun (if not /usr/sierra).

After running the test job successfully, the executables can be removed in order to save
space.

Full Installation of user development area

A full installation of the user development area includes only a few more steps beyond
the quick installation:

(1) locate the userl directory in .. ./locall3.
(2) either:

(A) if symbolic link /usr/sierra or sierra within /usr was created to point to
the overall SIERRA directory, skip, or

(B) make full pathname change to the following file (#lines to change):
-locall3/install/makefile: one line

(3) compile all source code
(4) create archive libraries using shell loca113/userl/install!liball,
(5) create usergntabl by using the makefile within locall3/userllinstall
(6) run shell makelk in loca113/userllinstall
(7) use the makefile to create executables userinit and userexec,
(8) Test executables to verify installation

(1) Locate the userl directory in .. ./locall3.
The initial installation procedure for IRIS-SEIS should have extracted the userl directory

within the local13 directory from the distribution tape. If these files are not present, then they
must be extracted from the distribution tape. Change the working directory to the overall
SIERRASEIS directory (e.g., .. ./sierra).

Use the tar command to extract the files, e.g.;
(%) tar xvf /dev/rmt16 ./loca113/userl

Use the proper tape drive device name.

96

(2) Directory pathnames: symbolic links or explicit definition
If IRIS-SEIS was installed using either the explicit path /usr/sierra or a symbolic link

pointing to this path, no action should be taken at this step. Either of these options which
were used for IRIS-SEIS and LOCAL-SEIS will work for the user development area.

If the installation of IRIS-SEIS did not use the symbolic link or if the location of the
overall sierra directory is not at /usr/sierra, then some directory paths must be given expli
citly. Make the change to the following file:

The reference to /usr/sierra should be modified to the true location of the user's sierra/
directory. When this change is made, the new pathname should point to the true location of
the development directory.

No modification to the file .• ./loca113/userl/install/compone is required. The include
flag used during the compilation of a LOCAL-SEIS subroutine is the same as that used for the
compilation of an IRIS-SEIS subroutine within .. ./iris13/install/compone.

(3) Recompile all source code
Steps to recompile all source code within the userl directory:
(%) cd .• ./loca113/userllinstall
(%) compall

The compall shell will recompile all appropriate source code. There are few subroutines
which exist within the essentially empty userl directory, so the recompilation should be
quick.

(4) Remake the user development archive library
In order to remake ("archive" and "ranlib") the archive library of user development

object code, use the liball shell. Change directory to the install directory :
(%) cd .. ./loca113/userllinstall
(%) liball

Running the Iiball shell will create or update the archive library userseis.a.

(5) Create "usergntabl" by using the install makefile
At this point, nearly all the necessary object code will exist. The missing subroutines are

the lookup subroutines used by the userinit and userexec drivers. These subroutines are
created by running the stand-alone program usergntabl (as discussed in section II A-C).
Before the creation of the lookup tables, the user must verify that the stand-alone executable
exists.

Within the loca113/install directory, run:
(%) make usergntabl

(6) Create lookup subroutines: userlkinit.F, userlkexec.F
Now that the stand-alone executable exists from step (5), the lookup subroutines can be

created. Within the locall3/userl/install_ directory, run the shell file makelk:
(%) makelk

This shell will run the stand-alone program usergntabl, using the text file
.. ./locall3/run/PROCUSER.LIS as input. The SIERRASEIS banner should flash on the screen
as the executable is run.

· ..

97

From the execution of these programs, the output will be the lookup subroutines. These
subroutines will also be compiled to produce object code. The source and object code of
these routines will be placed into the .• ./loca113/userl/run directory.

(7) Create development executables "userinit" and "userexec"
Create the user development executables userinit and userexec using the makefile

located in .• ./local13/userl/install:
(%) make userinit

and
(%) make userexec.

The executables will be placed into ... 11oca113/userl/run.

(8) Test executables to verify installation
The user may run a LOCAL-SEIS job in order to test the executables. If this develop

mental version of LOCAL-SEIS is to be used, the user must either place into
.. ./sierralbin13/fR symbolic links which point to the executables or place the
.. ./locall3/userl/run directory within his or her path variable. Alternatively, the user can
move the executables to the directory in which he or she wishes to run the test job.

and

The symbolic links for the development versions can be created as follows:
(%) cd .• ./sierralbin13
(%) In -s /usr/sierra/loca113/userl/run/userinit userinit

(%) In -s /usr/sierra/locall3/userl/run/userexec userexec
Use the correct path to point to .. ./loca113/userl/run (if not /usr/sierra).

After running the test job successfully, the executables can be removed in order to save
space.

Verification of Installation
The best test of a successful installation is to run a LOCAL-SEIS job. The executables

can be tested in two parts. First, by using a job which calls only SIERRASEIS processors (a
plot job, for example) and is known to run correctly within SIERRASEIS. The user should
get the same results by using userinit/userexec. Second, by inserting an IRIS-SEIS processor
into this job stream, then running with userinit/userexec. If the processor is called correctly,
then no run-time errors should occur.

98

V-B. Creation of user work area

A user work area can be created by the duplication of the development directory tem
plate userl. The copy of this directory can be customized to allow an individual programmer
to develop and test algorithms without impacting the local version of LOCAL-SEIS. Once a
processor has been successfully developed within a user work area, it can be "officially"
installed into the local version of LOCAL-SEIS.

For a multi-programmer environment, separate custom directories should be created. The
separate sets of work space will allow for processor development which will be safe from
accidental programming mistakes from other efforts. While each programmer will have a
separate directory, the programmers should try to benefit from each other's experiences.

A custom work area is created by copying the directory contents of the userl directory
template. Minor installation procedures are needed. In addition, customization of executable
names can be performed.

It is not necessary to use the "SIERRA" account used for installation of userl, however,
. write-permission is required within the LOCAL-SEIS directory .. ./locall3. It must be ensured

that the new subdirectories of the work area have sufficient file/directory permissions to allow
the user read/write access to the development files.

Since the creation of a user work area is performed by copying the userl directory tem
plate, there is no need for quick/full installation procedures. Here, the assumption is that the
template directory has been properly installed so that only one set of procedures is required to
set up the work area.

Installation of a custom development directory

To install a user's custom development directory, the following steps should be per
formed: Assume the user's development directory name will be represented by "XXXX"

(1) copy userl into a user's directory ("XXXX"),
(2) either:

(A) if symbolic link /usr/sierra or sierra within /usr was created to point to
the overall SIERRA directory, skip, or

(B) make full pathname change to the following file (#lines to change):
-locall3/XXXX/install/makefile: one line,

(3) run shell locall3/XXXX/instaii!Iiball,
(4) use the makefile to create executables userinit and userexec.

(1) copy userl into a user's directory ("XXXX")
The contents of the userl directory should be copied into a directory for the new work

area:
(%) cd .. ./Iocall3
(%) cp -R userl XXXX

Fix any file permissions which may be incorrect by running a shell file m
.. ./Iocall3/XXXX/install:

(%) cd .. ./Iocai13/XXXX/install
(%) sh.chmod

(2) Directory pathnames: symbolic links or explicit definition
If IRIS-SEIS was installed using either the explicit path /usr/sierra or a symbolic link

pointing to this path, then it is not necessary to do anything at this step. Either of these
options which were used for IRIS-SEIS and LOCAL-SEIS will work for the user development
area.

If the installation of IRIS-SEIS did not use the symbolic link or if the location of the
overall sierra directory is not at /usr/sierra, then the programmer must give explicitly some

99

directory paths. Make the change to the following file:

The reference to /usr/sierra should be modified to the true location of your sierra/ directory.
When this change is made, the new pathname should point to the true location of the develop
ment directory "XXXX".

i", Not modification to the file •• ./local13/userl/install/compone is required. The include
flag used during the compilation of a LOCAL-SEIS subroutine is the same as that used for the
compilation of an IRIS-SEIS subroutine within .. ./iris13/install/compone.

(3) Remake the user development archive library
In order to remake ("archive" and "ranlib") the archive library of user development

object code, use the liball shell. Change directory to the install directory :
(%) cd .. ./locai13/XXXX/install
(%) liball

Running the liball shell will create or update the archive library userseis.a.

(4) Create development executables
Create the development executables userinit and userexec using the makefile located in

.. ./local13/XXXX/install:
(%) make userinit

and
(%) make userexec.

The executables will be placed into .• ./loca113/XXXX/run.

User customization of executable names
An individual user may wish to replace the names of userinit and userexec with more

personal names. These names can be used to distinguish between executables created by
different developers. There are two methods to change th~ executable names; both methods
affect the manner in which the executables are made.

The first method requires a simple modification to the "makefile" in the developer's
locai13/XXXX/install directory. Within this file, there are two references to the compile flag
"-o" which specify the names of the executables userinit and userexec. The developer can
customize his or her executable names by replacing within these lines the new names for
userinit and userexec. For example, the line

-o . ./(RUN DIR)/userinit
will become -

-o . ./(RUN DIR)/ekinit
if the executable userinit is to be renamed ekinit. The basic drawback of this simple
approach is that the "make" command will not recognize the new name but will require the
old name:

(%) make userinit
rather than

(%) make ekinit.
The second approach is to fix the names of userinit and userexec so that the "make"

command will recognize the new names. These changes are more pervasive through the user
work area:
(1) rename the files userinit.F and userexec.F and associated files:

(%) cd .. ./loca113/XXXX/main
(%) mv userinit.F ekinit.F (or whatever new name is to be used)

(%) mv userinit.o ekinit.o
(%) mv userexec.F ekexec.F
(%) mv userexec.o ekexec.o

(2) update "makefile" to reflect new names
(%) cd .• Jiocall3/XXXX/install

100

Edit file "makefile". Change all references of userinit to the new name, i.e., "ekinit". Simi
larly, change all references of userexec to the new name (such as "ekexec").
(3) remake executables:

(%) make ekinit .
and

(%)make ekexec
for example.

User access to the executables
For testing purposes, a user may wish to access the executables from some directory

other than the directory where the executables are stored. This access can be made by (1)
placing the development run directory into the PATH environment variable list, (2) placing
the executables into an accessible directory, or (3) placing symbolic links pointing to the exe
cutables into an accessible directory. Any of these methods is acceptable.

Reducing the size of the executables
The executables userinit and userexec contain all processors provided by SIERRASEIS,

IRIS-SEIS, and LOCAL-SEIS. The two executables will reside on about 5 Mbytes of disk.
For developmental purposes, the user may find that only a few processors are needed (input,
new processor, and output/display). It is possible to link only the subroutines for these pro
cessors with the SIERRASEIS libraries in order to generate executables tailored only for the
processors needed. The size of these tailored executables will be smaller than the fully func
tional executables.

... ,,

....

..)

..

101

V-C. Developing a New Processor in the Work Area

The development of a new processor has two phases: initial addition to the local work
version of LOCAL-SEIS and the update of existing processor subroutines. Both phases are
similar to those needed to add a processor to the "official" version of LOCAL-SEIS and are
described below.

Adding a new processor
The addition of a new processor to a development version of LOCAL-SEIS requires

seven steps. These Steps involve construction of the processor initialization and execution
subroutines along with slight modifications to the structure of the work version of LOCAL
SEIS. Shell files are provided within .. ./locall3/XXXX/install to help implement the
modifications.

The reference to file names and executables below will use the names userinit and
userexec. However, customized names if used should be ·inserted in their places.

Briefly, the steps needed to add a new processor are:
1. Select new, unused names for the processor and the associated initialization and execution

subroutines.
2. Add these names to the PROCUSER.LIS file.
3. Regenerate the userlkinit.F and userlkexec.F subroutines.
4. Create the source code for the initialization and execution subroutines.
5. Compile the initialization and execution subroutines.
6. Remake the userseis.a archive library.
7. Remake the executables userinit and userexec.

1. Select new names for processor and associated subroutines.
The naming convention for a new processor is identical to the convention for LOCAL

SEIS. See section IV-C for a full discussion regarding the names for a new processor and its
associated initialization and execution subroutines.

2. Add new names to PROCUSER.LIS file
The new names of the processor and the initialization and execution subroutines should

be entered into the PROCUSER.LIS file within .. ./locall3/XXXX/run. The initial contents of
PROCLOC.LIS is:

processor: mit name: exec name:
(LOCAL FILES

NULLMODU NULUMO NULUMX

The null processor has empty subroutines which exist within ... llocall3/XXXX/seismic.
Suppose a new processor is /FFTPLOT. The initialization and execution subroutines are

named "fftplO" and "fftplx", respectively. The PROCUSER.LIS file will look like:

processor: mlt name:
(LOCAL FILES

NULLMOD NULLMO
FFTPLOT FFTPLO

exec name:

NULLMX
FFfPLX

3. Regenerate userlkinit.F and userlkexec.F files.

The newly modified PROCUSER.LIS file is used to create the lookup subroutines
"userlkinit.F" and "userlkexec.F". The executable usergntabl is used to create these subrou
tines. The shell file makelk located in .. ./locall3/XXXX/install can be used to invoke
usergntabl:

(%) cd .. ./locall3/XXXX/install.

102

(%) makelk.
The shell file will place the lookup subroutines into •• ./Ioca113/XXXX/run and will also com
pile the subroutines in order to create object code.

4. Create the source code for initialization and execution subroutines.
The initialization and execution subroutines should be written according to rules as dis

cussed in sections IV-D and IV-E. The format and structure of these subroutines should try
to follow the structure of SIERRASEIS subroutines as much as possible; this ensures compati
bility. Remember that at least two subroutines are required for each new processor.

Once completed, the subroutines should be placed into directory
.• ./locall3/XXXX/seismic.

5. Compile the initialization and execution subroutines.
The initialization and execution subroutines can be compiled using the shell compone

located in .• ./Ioca113/XXXX/install. For example, to compile subroutines "exampO.F" and
"exampx.F":

(%) cd •. ./Iocai13/XXXX/seismic
(%) . ./instaiVcompone exampO.F
(%) . ./instalVcompone exampx.F

Note the relative directory definition of file "compone" compared to the location of the source
code files. Two new object files, exampO.o and exampx.o, will appear.

6. Remake the userseis.a archive library.
Once the new object code exists, the archive library userseis.a needs to be updated:
(%) cd .. ./loca113/XXXX/install.
(%) liball

The liball shell will re-archive the object code within .. ./locai13/XXXX/seismic and "ranlib"
the archive library.

7. Remake the development LOCAL-SEIS executables. ·
The development executables, userinit and userexec can be recompiled using the make

shell:
(%) make userinit

and
(%) make userexec.

If the executable names were changed, the new names should be used. The executables
should be properly linked and constructed; they should appear in the .. ./loca113/XXXX/run
directory.

If an object code file is missing, return to the ... /locall3/XXXX/seismic directory to see
if it was compiled correctly. 1

Revising a Processor
If an error occurs in one of the subroutines related to a processor, the programmer may

have to fix the code within the subroutine. Upon debugging and revision, the updated subrou
tine needs to be reinstalled into the proper executable.

To revise an executable, the following steps are needed:
· 1. Edit the (initialization or execution) subroutine.
2. Compile the subroutine
3. Remake the userseis.a archive library
4. Remake the appropriate executable (userinit or userexec).

"

·~

103

1. Edit the (initialization or execution) subroutine.
If a mistake exists within the initialization or execution subroutine, the code should be

debugged and revised. The updated subroutine should be placed within
.. ./locall3/XXXX/seismic.

2. Compile the subroutine.
The revised subroutine should be recompiled:
(%) cd .. ./local13/XXXX/seismic.
(%) . ./instalVcompone subroutine.F

Note the relative location of file "compone" relative to the location of the source code subrou
tine.

3. Remake the userseis.a archive library.
Once the revised object code exists, the archive library userseis.a needs to be updated:
(%) cd .. ./local13/XXXX/install.
(%) liball

The liball shell will re-archive the object code within .. ./Iocal13/XXXX/seismic and "ranlib"
the archive library.

4. Remake the appropriate executable (userinit or userexec).
If the revised subroutine was an initialization subroutine, then remake the initialization

executable:

able:

(%) cd .. .llocal13/XXXX/install.
(%) make userinit
If the revised subroutine was an execution subroutine, then remake the execution execut-

(%) cd .. ./Iocall3/XXXX/install.
(%) make userexec
If custom names were installed, use the new names instead. Either of the two new exe.

cutables will be placed within .. ./local13/XXXX/run.

Testing a new processor
A simple processing job should be constructed to test the new processor. The test should

examine the validity of both the processor function and the trace flow. Small amounts of data
or synthetic seismograms with known GCV values can be used in conjunction with plot
displays and header printing.

WRITE statements within the initialization and execution phase subroutines are useful at
the development stage.. WRITE statements in the initialization subroutine can be used to ver
ify that input parameters are obtained and translated properly. Care must be exhibited in the
execution subroutine regarding WRITE statements; too many WRITE statements for large test
data sets will create very large .EPR text files.

If a new processor works properly, the processor can then be installed into LOCAL
SEIS. If it does not function correctly, make the necessary programming fixes and update the
object code, the archive library of processors, and the executables.

105

APPENDIX I - IRIS-SEIS Manual Pages

Processor Pa2e
1 AIRWVMUT 75
2 AMPDUMP 77
3 AMPMATII 79
4 BULKSHFT 81
5 CLIP IT 83
6 COMVARPR 85
7 DEFHEAD 87
8 DIPFIL 89
9 EASY ADD 91

10 EXCORTPR 92
11 EXMULTRC 94
12 EXTRCTRC 96
13 FILTER 98
14 GATIICNTR 100
15 HDMINMAX 102
16 HEADEQL 104
17 HEAD LIST 107
18 INTRLEAV 109
19 MONITOR 112
20 NULENGTII 114
21 NUMTRFLO 116
22 OKAGC 118
23 OMIT 120
24 O.MITTRAC 122
25 PEAKVAL 124
26 R.t\1SAMP 126
27 ROT 128
28 TRCOUNTR 130
29 TRTAPER 132
30 UNIXIO 134

106

**IRIS ** IRIS-SEIS **

PROCESSOR: AIRWVMUT User notes New XX Changes __ -

By: David Okaya Manual date: January 26, 1990

FUNCTION: Automated Surgical Mute of Air Wave

AIRWVMUT perfmms automated surgical muting of an air wave. Using the source
receive offset (GCV 'RANGE') and the speed of sound in air, the air wave arrival time is
computed by AIRWVMUT. Amplitudes are muted in a window centered about this time. An
additional taper zone can be specified on each side of the muted window.

The width of the surgical mute zone can widen with offset to account for the changing
shape of the air wave with offset distance. Mute zone widths are specified in RANGE-width
pairs (width in millisec). For traces whose offset falls between RANGE-width pairs, the mute
zone width is interpolated between the nearest given RANGE-width pairs. Traces which fall
before the first given RANGE value are not muted. Traces which fall beyond the last given
RANGE value has a mute zone width equal to the last specified width value.

The surgical mute zone has an amplitude which is dropped to a relative dB level. By
. default, amplitudes in the mute zone are 60 dB lower than their original level.

The side tapers are based on a cosine function and range in scaling from 100% beyond
the taper zone to the surgical mute zone dB level when the taper reaches the surgical mute
zone.

PARAMETERS
Synopsis:

/AIRWVMUT

Parameter
AIR VEL

MUTWIDTH

DB LEVEL

TPRWIDTH

AIRVEL velocity Opt
MUTWIDTH rangel width] range2 width2... Opt
DBLEVEL dbdrop Opt
TPR WIDTH taperwidth Opt

Req/
Fmt Opt Default Comment Argument

velocity

range} width}

real Opt I 090.

real Opt -->

Velocity of sound in air. Default in
ftlsec.
defines surgical muting zone by
using RANGE-width pairs. Width
in mscc, RANGE is GCV value.
Default is two pairs, (100,250) and
(5280, 500). Specify up to 50 pairs.
Amplitudes in mute zone arc
dropped from original amplitude by
this amount. Units are in dB.

db drop

taperwidth

real Opt 60.

real Opt I 00. Width of taper zones on either size
of surgical mute. Measured in mil
liscc.

107

GLOBAL COMMON VARIABLES
RANGE must be defined prior to using this routine. KSORT type does not matter.

GCV's are not changed.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN FILENAME 'SHOTS'
/AIRWVMUT

Using all defaults, these shot gathers will have air waves muted based on a speed of sound in
air of 1090 ft/sec. Offsets less than 100 ft will not be muted. At 100 ft offset, the mute zone
is 250 msec; at 5280 ft, the mute zone is 500 msec. Offsets between these distances have
mute zones which are interpolated between these mute times. offsets greater than 5280 have
mute zones of 500 msec. Amplitudes in the surgical mute zone are suppressed by 60 dB.
Side tapers are 100 msec in width.

/DIN FILENAME 'SHOTS'
/AIRWVMUT

MUTWIDTH 440. 100. 1000. 300. 8000. 750.
TPRWIDTH 250.

Traces less than 440 ft offsets are not tapered. Traces between 440 and 1000 ft have mute
zones between 100 and 300 msec. Traces between 1000 and 8000 ft have mute zones between
300 and 750 msec. The taper width is 250 msec.

SUBROUTINE NAMES
INIT subroutine: AIRWVO.F
EXEC subroutine: AIRWVX.F
DIRECTORY: ... /iris 13/seismic

REVISION HISTORY

26jan90 D. Okaya Initial installment

108

**IRIS ** IRIS-SEIS **

PROCESSOR: AMPDUMP User notes New XX Changes __ -

By: David Okaya Manual date: January 27, 1990

FUNCTION: Print trace amplitudes

AMPDUMP prints the amplitudes of the first NSAMPLE samples of each seismic trace.
The amplitudes can be printed in either integer, real, or exponential format, depending on
amplitude magnitudes. Integer format uses FORTRAN '115' format. Real numbers are printed
using 'Fl5.5', and exponential numbers use 'E15.7'. The range of amplitudes to be printed
must be known, otherwise a printout overflow may occur.

The amplitudes for each trace are identified by a 'gather' and 'trace' number. These
values can be any two GCV's, however a pair of GCV's which uniquely identify each trace
should be selected (i.e., KSHOT and KTRC or KCDP and KTRACE).

PARAMETERS
Synopsis:

/AMPDUMP

TRACE
NSAMPLES
FLOAT

INT
EXP

GATHER GCVgath
TRACE GCVtrace
NSAMPLES samptoprint
FLOAT none
INT none
EXP none

c r
chr*6

samptoprint int
none none

none none Opt
none none Opt

·GLOBAL COMMON VARIABLES

KTRC
none
yes

none
none

a

Opt
Opt
Req
Opt
Opt
Opt

er type or trace 1 ent1 1Cat1on.
Trace type for trace identification.
Number of samples to print.
Aag requesting real format (This is
selected by default).
Aag requesting integer format.
Aag requesting exponential format.

GATHER and TRACE GCV's must be defined. None are changed.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN FILENAME 'DATA'
/AMPDUMP

NSAMPLES I 00
EXP

....

109

TRACE 'RANGE'

First 100 samples of each trace is dumped in exponential format. Each trace is identified by
KSHOT and RANGE values.

SUBROUTINE NAMES
INIT subroutine: AMPDMO.F
EXEC subroutine: AMPDMX.F
DIRECTORY: .. ./iris 13/seismic

REVISION HISTORY

lljul89 D. Okaya Initial installment

110

** IRIS ** IRIS-SEIS **

PROCESSOR: AMPMA TH User notes New_ Changes XX . -

By: David Okaya Manual date: January 27, 1990

FUNCTION: Perform scalar math on amplitudes of seismic traces.

AMPMA TH perfonns scalar math on trace amplitudes. All amplitudes are affected in
the same manner. Math operations are as follows:

OUT(t) = (MULTA * IN(t) + ADDA) * MULTB + ADDB .

The input trace IN (t) is first multiplied by MUL T A, then added to ADD A. The net result is
then multiplied by MUL TB and subsequently added to ADDB.

The use of DIVA and DIVB is similar to MUL T A and MULB:

OUT(t) = (IN(t) I DNA) + ADDA) I DNB + ADDB .

The MULT and DIV parameters can be used in combination (e.g., MULTA and DIVB).
By default, amplitudes of outgoing traces are the same as those coming in.
Analogous scalar math can be fonned to trace headers (GCV's) using HEADEQL.

PARAMETERS
Synopsis:

/AMPMATH

Parameter
MULTA
ADDA
MULTB
ADDB
DIVA
DIVB

MUL T A float number
ADDA float number
MUL TB float number
ADDB float number
DIVA float number
DIVB .ftoa(number

oat num er
float-number
float-number
float-number
float-number
floa(number

pt
Opt
Opt
Opt
Opt
Opt

GLOBAL COMMON VARIABLES
None are affected or used.

Default Comment

Opt
Opt
Opt
Opt
Opt
Opt

mner multiplier.
inner additive.
outer multiplier.
outer additive.
inner divisor.
outer divisor.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/AMPMATH
MULTA 2.
ADDA 5000.
DIVB .25

111

Incoming trace amplitudes from disk file DA T A.DIO are first doubled, then DC-shifted by
+5000, after which they are divided by 0.25.

SUBROUTINE NAMES
INIT subroutine: AMATHO.F
EXEC subroutine: AMA THX.F
DIRECTORY: .. ./iris 13/seismic

HISTORY

6sep88 D. Okaya
23nov88 D. Okaya

Initial installment
Add DIV A/DIVB parameters.

112

**IRIS ** IRIS-SEIS **

PROCESSOR:BULKSHFT User notes New XX Changes __ -

By: David Okaya Manual date: February 6, 1990

FUNCTION: Whole sample trace shifting (statics)

BULKSHFT perfonns whole sample statics by shifting trace amplitudes up or down.
This processor is faster than STAT APL Y since whole (integral) sample shifts are involved; no
amplitude interpolations are applied. The specified time shift, SHIFI'MS, is rounded to the
nearest sample.

A positive time shift pushes the amplitudes later into the trace; a negative time shift pulls
the amplitudes up towards t=O. Samples which are vacated by the shifting have zero ampli
tude.

PARAMETERS
Synopsis:

I /BULKSHFf
SHIFI'MS time

Ar ument
tzme

GLOBAL COMMON VARIABLES
GCV's are not affected.

EXAMPLE or OTHER NOTES
/IN

DATA 1 12000 4 96 0

IBULKSHFI'
SHIFI'MS 2000.

Traces are delayed in time by 2000 msec (500 samples).

REVISION HISTORY

06feb90 dao Initial installment

\

Comment

08jun90 dao modified for SUN/UNIX IRIS-SEIS installation.

SUBROUTINE NAMES
INIT subroutine: B ULKSO.F
EXEC subroutine: BULKSX.F
DIRECTORY: .. ./iris 13/seism ic

Req

...

'~

113

** IRIS ** IRIS-SEIS **

PROCESSOR: CLIPIT User notes New XX Changes __ -

By: Eleni Karagorgi Manual date: June 24, 1990

FUNCTION: Clip excessive amplitudes to a user-specified level

CLIPIT is similar to a despiking routine in that it removes amplitudes above a user
specified acceptable level. The replaced values are set to the user-specified level.

Run-time action can be listed in the .EPR file.

PARAMETERS
Synopsis:

/CLIP IT
CLIPAMP level
DOC none
NODOC none

Req/
Parameter Argument Fmt Opt Default
CLIP AMP

DOC
NO DOC

level

none
none

GLOBAL COMMON VARIABLES
No GCV's are affected.

EXAMPLE or OTHER NOTES

/IN
/CLIP IT

CLIPAMP 1000.
DOC

real Opt 100000000.

Opt
Opt

Comment

Opt
Opt
Opt (default)

amplitudes above this level are reset
to this level.
print action in .EPR file.
do not print action in .EPR file
(default).

All trace amplitudes above 1000. are reset to 1000. Amplitudes below -1000. are reset to
-!GOO. Any substitutions are documented in the .EPR file.

SUBROUTINE NAMES
INIT subroutine: CLIPTO.F
EXEC subroutine: CLIPT A.F
DIRECTORY: .. ./iris 13/seismic

REVISION HISTORY

00oct88
25nov89

E. Karageorgi
D. Okaya

Initial installment
Changed run-time print statements to user options. Fixed sign preservation.

114

** IRIS ** IRIS-SEIS **

PROCESSOR: COMV ARPR User notes New XX Changes __ -

By: David Okaya Manual date: November 26, 1988

FUNCTION: Print number of Global Common Variables for this job.

COMV ARPR prints the number of GCV's defined for the job. The job will contain
Sierra-defined GCV's and possibly user-defined GCV's. COMV ARPR will print these
numbers once in the .IPR listing. If desired, the numbers can be printed in the .EPR listing,
once for each trace that enters the routine. Output will look like:

COMV ARPR> NNAMI, NNAMR, NNAM8, NNAM4: 137 71 10 1

NNAMI, NNAMR, NNAM8, and NNAM4 are the number of integer, real, CHAR*8, and
CHAR*4 GCV's, respectively.

This routine performs a different, valuable service. While quite an inocuous routine, it
provides a routine which is defined but does not take up any computer resources. There are
cases where, for reasons unknown, other processors may need to have something following
them. This is particularly true when a processor has string or character arguments. SierraSeis
for some reason wants SOMETHING to follow the string/character arguments; COMV ARPR
provides a valid processor in the .DAT or .IN file yet does not perform operations which will
slow the job down.

PARAMETERS
Synopsis:

I /COMVARPR

Parameter Argument
EXEC none

EXEC

GLOBAL COMMON VARIABLES
None used.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

!HEAD LIST

Req/
Fmt Opt Default

Opt not used

HEADERS 'KCDP KTRACE KSHOT KTRC'

Opt

Comment
Specify this parameter to get listings
in the .EPR file. If not used, then
COMV ARPR will operate just
once in the .IPR file.

/COMVARPR

SUBROUTINE NAMES
INIT subroutine: CVPRIO.F
EXEC subroutine: CVPRIX.F
DIRECTORY: .. ./iris13/seismic

HISTORY

29aug88 D.Okaya

115

Initial installment

116

** IRIS ** IRIS-SEIS **

PROCESSOR:DEFHEAD User notes New XX Changes __ -

By: David Okaya Manual date: November 26, 1988

FUNCTION: Define new trace header I Global Common Variable

DEFHEAD allows a new trace header or GCV to be defined for the job. DEFHEAD
places the new name into the GCV common blocks (SSCOM.INC) and obtains an index posi
tion within the common blocks. The new GCV name is then available for subsequent
definition and manipulation (by reference using the index position).

SierraSeis makes a distinction between integer, real, CHAR*8, and CHAR*4 variables.
Each new name must be no more than 6 characters long. Alphanumeric characters and sym
bols are permissible. A fatal error will occur if a name has been previously defined (by Sierra
or by the user).

PARAMETERS
Synopsis:

/DEFHEAD

Parameter
INTEGER
REAL
CHREIGHT
CHRFOUR

INTEGER GCV-name
REAL GCV-name
CHREIGHT GCV-name
CHRFOUR GCV-name

Argument
GCV-name
GCV-name
GCV-name
GCV-name

Fmt
char*6
char*6
char*6
char*6

Req/
Opt
Opt
Opt
Opt
Opt

GLOBAL COMMON VARIABLES

Default
none
none
none
none

Comment

Opt
Opt
Opt
Opt

defines an INT header.
defines a REAL header.
defines a CHR*8 header.
defines a CHR *4 header.

The new name is entered into the appropriate common block. The appropriate hidden
GCV variable NNAMI, NNAMR, I\TNAM8, or NNAM4 is incremented properly (see COM
V ARPR for printing these values out).

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/DEFHEAD
REAL 'DEPTH'

/DEFHEAD
INTEGER 'P-WAVE'

•

117

A new REAL header named 'DEPTH' and a new INTEGER header named 'P-WAVE' are
defined.

SUBROUTINE NAMES
INIT subroutine: DEFHDO.F
EXEC subroutine: DEFHDX.F
DIRECfORY: ... /irisl3/seismic

HISTORY

10jun88 D. Okaya Initial installment

118

** IRIS ** IRIS-SEIS **

PROCESSOR: DIPFIL User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Dip-filtering in the time domain

DIPFIL applies dip-filtering in the time domain. The processor is based on a Butter
worth dip-filter algorithm by Hale and Claerbout (GEOPHYSICS, 48, pp. 1033-1038, 1985).

Parameters required are the dip-filter slope in msec/trace, the dominant frequency of the
data in Hz, and the selection of low-dip pass or reject.

PARAMETERS
Synopsis:

/DIPFIL
DIP dip
FREQ dlJm Jreq
MODE passornot

Parameter
DIP

FREQ
MODE

Ar ument
ip

domJreq
- passornot

GLOBAL COMMON VARIABLES
No change to GCV's.

EXAMPLE or OTHER NOTES
/IN

DATA 1 6000 4 48 0
/DIPFIL

DIP 4. FREQ 25. MODE 0

real Req
int Req

Default Comment

Req
Req
Req

none D1p o ter edge m msec/trace.
Filtering will be between +dip and
-dip.

none Dominant frequency of data.
none passornot=O is low-pass (reject dip

ping events outside dip range). pas
sornot=l is high-pass (reject flat
dips).

The 48-channel shot gathers will be dipfiltered at 4 msec/trace. The input data has a dominant
frequency of 25 Hz. Low dips will be passed.

..

•

SUBROUTINE NAMES
INIT subroutine: DIPIN.F
EXEC subroutine: DIPEX.F
DIRECTORY: .. ./iris13/seismic

REVISION HISTORY

119

14apr85
25apr90
28jul90

D. Okaya
T. Daley
D. Okaya

Installed into DISCO from Stanford SEP program.
Converted from DISCO routine into SierraSeis routine.
Revised run-time memory allocation code.

120

** IRIS ** IRIS-SEIS **

PROCESSOR:EASYADD User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Shell routine for trace in-trace out processing.

EASY ADD is a shell routine to allow a user to easily add a processing algorithm. The
processor must be a trace in-trace out algorithm and cannot require any run-time parameters;
i.e., the algorithm is hard-wired into the subroutines.

For trace-to-trace processing with user parameters, see EXTRCTRC. For multiple trace
processing, see EXMUL TRC.

PARAMETERS
Synopsis:

I JEASYADD
[no parameters]

Parameter Argument
none

GLOBAL COMMON VARIABLES
None modified.

EXAMPLE or OTHER NOTES

Req/
Fmt Opt Default. Comment

This routine can be copied and subsequently modified to construct a new processor which
processes traces on an individual manner.

SUBROUTINE NAMES
INIT subroutine: EASYIN.F
EXEC subroutine: EASYEX.F
DIRECTORY: .. ./irisl3/seismic

REVISION HISTORY

25jan90 dao Initial installment

..

..

121

** IRIS ** IRIS-SEIS **

PROCESSOR:EXCORTPR User notes New XX Changes __ -

By: David Okaya Manual date: February 5, 1990

FUNCTION: Prepare uncorrelated Vibroseis data for extended correlation

EXCORTPR prepares uncorrelated Vibroseis shot gathers for extended correlation.
SierraSeis's NCORR processor will not allow for extended correlation. /EXCORTPR will
allow for self-truncating extended correlation by tapering the uncorrelated seismograms, then
zero-padding to a sufficient length to allow NCORR to perform Vibroseis correlation.

The taper at the ends of the uncorrelated seismograms is used to remove a cross
correlation edge effect. A cosine taper is used; the taper length is a run-time parameter.

The length of zero-padding is determined in one of two ways; either explicitly or by
computing the needed length based on sweep length and desired extended-correlation length.
The relationship between padded uncorrelated length, sweep length, and resulting extended
correlation length is

texl-corr =tuncorr-pad -tsweep

The amount of padding which is necessary is the difference between the original uncorrelated
trace length and the amount tunco"-pad. The amount of padding is also equal to the difference
between the original correlated length and the desired extended correlation length. The new
uncorrelated trace length tuncorr-pad can be explicitly given with the· PADTO parameter. Alter
natively, one may specify the sweep length and the amount of desired extended correlation
time (using then SWEEPLEN and CORRLEN parameters). Given the incoming seismogram
trace length, the processor will determine the amount of padding required to produce the
desired correlation time.

The actual Vibroseis correlation is conducted using the NCORR processor.
The only GCV affected by this processor is KNSAMP; if either the PADTO or

SWEEPLEN/CORRLEN parameters are given, the uncorrelated seismograms are zero-padded
to a longer amount of travel time (i.e., KNSAMP is increased). If none of these parameters
are given, the output length is the same as the input; no padding is performed.

PARAMETERS
Synopsis:

/EXCORTPR
TPR WIDTH tapermsec
PADTO padmsec
SWEEPLEN sweepmsec
CORRLEN corrmsec

Opt
Opt
Opt
Opt

122

Req/
Parameter Fmt O~t Default Comment Argument
TPRWIDTH tapermsec real Opt 250. Width of cosine taper at end of

uncorrelated data.
PADTO padmsec real Opt none Pad uncorrelated traces to this

length.
SWEEPLEN sweepmsec real Opt none Sweep length (in msec). Used with

CORRLEN.
CORRLEN corrmsec real Opt none Desired output correlation length (in

msec). Used with SWEEPLEN.

GLOBAL COMMON VARIABLES
KNSAMP is changed if either PADTO or SWEEPLEN/CORRLEN is specified.

EXAMPLE or OTHER NOTES
!DMX
!EXCORTPR

TPRWIDTH 400.
PADTO 30000.

Suppose /DMX outputs uncorrelated data of 24000 msec length with 18000 msec sweeps.
Conventional correlation will produce 6000 msec traces. EXCORTPR will use a 400 msec
cosine taper at 23000-24000 msec, then zero-pad the traces to 30000 msec. Subsequent con
ventional correlation (/VCORR) will then produce 12000 msec data (30000 msec uncorrelated
length - 18000 msec sweep length).

/DMX
/EXCORTPR

TPRWIDTH 400.
SWEEPLEN 18000.
CORRLEN 12000.

Since SWEEPLEN and CORRLEN are specified, EXCORTPR will determine that 30000
msec uncorrelated traces are required for subsequent conventional correlation to produce the
requested 12000 msec extend-correlated traces (sweep length plus desired correlation length).
The amount of zero-padding which will be perfonned is the difference between the incoming
uncorrelated trace length and the determined 30000 msec. Traces are cosine tapered, then
zero-padded.

SUBROUTINE NAMES
!NIT subroutine: EXTPRO.F
EXEC subroutine: EXTPRX.F
DIRECTORY: .. ./irisl3/seismic

REVISION HISTORY

02feb90 dao Initial installment

123

** IRIS ** IRIS-SEIS **

PROCESSOR: EXMUL TRC User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Example of Multiple-trace processing

EXMUL TRC is an example routine of multiple trace processing. This routine will accu
mulate a gather of traces, allow for gather processing, then release the traces. The trace flow
conditions will allow for partial gathers to be received based on indexing using a GCV given
by the GATHNAME parameter.

Other parameters may be defined in the INIT phase subroutine for use in the EXEC sub
routine.

By itself, EXMULTRC will accumulate then release a gather of traces. No gather pro
cessing will be conducted.

PARAMETERS
Synopsis:

I ~XMULTRC

Parameter Argument

GATHNAME gather_ GCV Req

Req/
Fmt Opt Default Comment

GATHNAME gather_ GCV char*6 Req none GCV to key gathering.

GLOBAL COMMON VARIABLES
A GCV must be used to indicate gather changes within the trace flow.

EXAMPLE or OTHER NOTES
/IN
/EXMULTRC

GATHNAME 'KSHOT'

In this example, shot gathers will be accumulated for shot gather processing.

SUBROUTINE NAMES
INIT subroutine: EXMULO.F
EXEC subroutine: EXMULX.F
DIRECTORY: .. ./irisl3/scismic

REVISION HISTORY

25jan90 dao Initial installment

124

** IRIS ** IRIS-SEIS **

PROCESSOR:EXTRCTRC User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Example of trace-to-trace processing

EXTRCTRC is a shell routine which illustrates trace-to-trace processing. Each trace
which enters the processor exists prior to the arrival of the next trace.

Examples of single and multiple integer and real parameters are defined.
This routine can be copied and modified in order to install a trace-to-trace routine into

LOCAL-SEIS.

PARAMETERS
Synopsis:

!EXTRCTRC

Parameter
ONEINT

Argument
int_single

ONEINT int single
TWOINT intl int2
ONEFLOAT fit single
FIVFLOA T fl]'), f3 /4 /5

Req/
Fmt oet Default
int Opt none

Comment
parameter to
value.

Opt
Opt
Opt
Opt

get single integer

TWOINT inti int2 int
ONEFLOAT

Opt none parameter to get two integer values.
jlt_single real Opt

TWOINT fl j2f3 f4 f5 real Opt

GLOBAL COMMON VARIABLES
No GCV's are modified in this shell routine.

EXAMPLEorOTHERNOTES
None.

SUBROUTINE NAMES
INIT subroutine: EXTRCO.F
EXEC subroutine: EXTRCX.F
DIRECTORY: .. ./iris13/seismic

REVISION HISTORY

25jan90 · dao Initial installment

none parameter to get single floating
point value.

none parameter to get five floating point
values.

125

** IRIS ** IRIS-SEIS **

PROCESSOR: FILTER User notes New_ Changes XX -

By: David Okaya Manual date: January 20, 1990

FUNCTION: Simple bandpass filter using 4 corner points in frequency domain

FILTER is a simple bandpass filter routine which applies a 4-comer filter in the fre
quency domain. The four comer points define a boxcar which is cosine tapered on the edges.
The filter is applied to the entire trace and is the same for all traces.

The bandpass filter is applied in the frequency domain and uses an FFf routine from
Claerbout FGDP (e.g., does not use AP FFf routine).

As an option, the amplitude level of the filtered region beyond the edges of the boxcar
taper can be specified. Default value is 60 dB from full amplitude of the boxcar.

PARAMETERS
Synopsis:

/FILTER
CORNERS c1 c2 c3 c4
DBLEVEL base level

DB LEVEL base level

GLOBAL COMMON VARIABLES
No GCV's are modified.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/FILTER

real Opt

CORNERS 10. 15. 50. 55. DBLEVEL 75.

Default
none

60 dB

Comment

Req
Opt

cl-c our comer pomts: cl=
0% left comer, c2=100% left
comer, c3= 100% right comer, and
c4=0% right comer, with frequen
cies increasing from left to right.
specifies amplitude drop surround
ing boxcar. Boxcar tapers rise from
this level to full amplitude of box
car.

In this job, the input data arc filtered using a 10-15-50-55 Hz boxcar. The edges are cosine
tapered (10-15 and 50-55 Hz). Beyond the filter boxcar, frequencies are suppressed by 75 dB.

126

SUBROUTINE NAMES
INIT subroutine: FIL TRO.F
EXEC subroutine: FILTRX.F and FILTRX FFT.F
DIRECTORY: .. ./iris13/seismic -

HISTORY

07jul89
10oct89
20jan90

D. Okaya
D. Okaya
D. Okaya

Initial installment
Taper switched from cosine-squared to cosine.
Added DBLEVEL option.

127

** IRIS ** IRIS-SEIS **

PROCESSOR:GATHCNTR User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Adjust KSHOT header keyed on KFLDFN value

GATHCNTR resets KSHOT values which are improperly set by /IN. Due to a self
counting feature in IN, uniform KSHOT/K.TRC numbers are created. When irregular gathers
are read (i.e., traces are missing), the KSHOT/K.TRC numbers do not properly increment but
are counted so that each KSHOT gather has KNTR traces/gather. As soon as one irregular
gather is reached in the processing stream, all subsequent traces are misidentified.

GATHCNTR resets KSHOT values based on values of KFLDFN. When a change in
the KFLDFN value is detected to signify a new field gather, the KSHOT value is updated. All
subsequent traces have this new KSHOT value until KFLDFN changes. The KSHOT value
can begin at a user-specified value (ARST) and be updated by a user-specified increment
(INCREM).

While GA THCNTR will fix KSHOT values to be compatible with KFLDFN values,
TRCOUNTR can be used to fix KTRC values.

For this routine to work properly, KFLDFN must be read correctly by the /IN processor.

PARAMETERS
Synopsis:

/GATHCNTR
FIRST first KSHOT
INCREM del KSHOT

Req/
Parameter Argument Fmt oet
FIRST first_KSHOT mt Opt

INC REM del KSHOT int Opt

GLOBAL COMMON VARIABLES

Default
1

1

Comment

Opt
Opt

value of KSHOT for first gather in
processing stream.
increment between successive gath-
ers.

KSHOT is updated based on values of KFLDFN. KTRC values can be changed by using
/HEADEQL or !fRCOUNTR.

EXAMPLE or OTHER NOTES

/IN
/GATHCNTR
!fRCOUNTR

KSHOT

128

In this example, irregular gathers incorrectly numbered by /IN are reset by GATHCNTR.
New KSHOT numbering starts at 1 and increments by 1. I.rrlproper KTRC numbers are subse

. quently renumbered using the KSHOT option in GRCOUNTR.

/IN
/GATHCNTR
/HEADEQL

HEADIN 'KFLDTN' READOUT 'KTRC'

If the KFLDTN trace numbering is correct and matches the desired KTRC numbering, one
may set KTRC equal to KFLDTN without perfonning the resetting conducted by
TRCOUNTR.

SUBROUTINE NAMES
INIT subroutine: GACNTO.F
EXEC subroutine: GACNTX.F
DIRECfORY: .. ./iris13/seismic

REVISION HISTORY

18dec89 dao Initial installment

..

..

129

** ffiiS ** ffiiS-SEIS **

PROCESSOR: HDMINMAX User notes New XX Changes __ -

By: David Okaya Manual date: January 26, 1990

FUNCTION: Prints minimum and maximum values of a given GCV/header.

HDMINMAX will print the minimum and maximum value of a given GCV or trace
header. Any GCV may be searched. All input traces are checked before the extrema are
printed into the .EPR file.

On occasion, GCV values for some traces will not be defined and will thus be set to
zero. In order to ignore zero values and search for minima above zero, the NONZERO option
can be selected to search only for non-zero minima/maxima.

PARAMETERS
Synopsis:

IHDMINMAX

Parameter
HEAD IN
NONZERO

Argument
GCVin
none

HEADIN GCVin
NONZERO none

Req/
Fmt Opt
chr*6 Req
none Opt

GLOBAL COMMON VARIABLES

Default Comment

Req
Opt

none name of GCV to check.
none ,ignore zero values during search.

The specified GCV is scanned for extrema values. No GCV values are changed.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN FILENAME 'DATA'
/HDMINMAX

HEADIN RANGE

The offset values of all traces are scanned with the minimum and maximum offsets printed in
the .EPR file.

SUBROUTINE NAMES
INIT subroutine: HDMINO.F
EXEC subroutine: HDMINX.F
DIRECTORY: .. ./iris 13/seismic

REVISION HISTORY

26nov88 D. Okaya Initial installment

130

** IRIS ** IRIS-SEIS **

PROCESSOR:HEADEQL User notes - New XX Changes __

By: David Okaya Manual date: November 26, 1988

FUNCTION: Set GCV values using another GCV and scalar math.

HEADEQL allows for the assignment of a GCV value using another GCV and scalar
math. This module is similar to /PRMODCOM except that more flexible scalar math is possi
ble. The GCV value is assigned using the following math:

GCVout = (MULTA * GCVin + ADDA) *MULTB + ADDB

Math is conducted using real operations; if the outgoing GCV is an integer GCV, its value is
converted to an integral number at the last possible moment.

A GCV can be operated upon itself.
For scalar or constant definition of a GCV, set MUL T A equal to 0.0.

A self-incrementing trace counter exists and can be used to increment the GCV. The
resulting trace counter sum/product is then added to the modified incoming GCV value. The
trace counter can have its own math performed onto it:

COUNTout = (CMULTA * COUNTER +. CADDA) *CMULTB + CADDB

where

COUNTER = CST ART+ DELC * (lth trace - 1)

The resulting output GCV value is then

GCVout = (MULTA * GCVin + ADDA) *MULTB + ADDB + COUNTout

To use the counter, specify any of the counter parameters. To get a simple trace counter (1 to
ntrace ...) requiring no math, use the "COUNTER" parameter.

* To use header math without the counter, do not specify any counter parameter.
* To use just counter math, set the MUL T A and MUL TB parameters to .zero.
* To use both header and counter math, set the appropriate parameters.
* The resulting GCV value is the sum of both header and counter math. To not use either one,
the header or counter sum/product can be set to zero.

Due to the commutative property of multiplication, the product of a multiplier with the
sum of a GCV value and the trace counter is the same as the sum of the products of the multi
plier with both the CGV value and trace counter:

SCALAR * (GCVin + COUNTER) = SCALAR * GCVin + SCALAR * COUNTER.

..

PARAMETERS
Synopsis:

/HEADEQL

Parameter
HEAD IN

READOUT
MULTA
ADDA
MULTB
ADDB
COUNTER

CST ART

DELC

Argument
GCVin

GCVout
multiplier
additive
multiplier
additive
none

c initial

c increm

131

READIN GCVin
READOUT GCVout
MUL T A multiplier
ADDA additive
MUL TB multiplier
ADDB additive
COUNTER
CST ART c initial
DELC c increm
CMUL 1A c multiplier
CADDA c additive
CMUL TB c multiplier
CADDB c Cidditive

Fmt
chr*6

chr*6
float
float
float
float
none

float

float

Req/
Opt
Opt

Opt
Opt
Opt
Opt
Opt'
Opt

Opt

Opt

Default
none

none
1.0
0.0
1.0
0.0
none

1.0

1.0

Comment

Req
Req
Opt
Opt
Opt
Opt
Opt
Opt
Opt
Opt
Opt
Opt
Opt

name of GCV to retrieve value
from.
name of GCV to tranfer value to
inner multiplier
inner additive
outer multiplier
outer additive
specifies a simple incrementing trace
counter is to be added to the header
(GCV) math. This counter starts at
1 and increments by one for each
trace.
initial value of trace counter for first
trace.
increment value of trace counter per
trace

CMULT A multiplier float Opt 1.0 inner counter multiplier
CADDA additive float Opt 0.0 inner counter additive
CMUL TB multiplier float Opt 1.0 outer counter multiplier
CADDB additive float Opt 0.0 outer counter additive

Note: If no counter parameter (COUNTER, CST ART ...) is used, then by default all counter
parameters are reset to zero; that is, CST ART, CDEL, CMUL T A, CADDA, CMUL TB, and
CADDA equal zero.

GLOBAL COMMON VARIABLES
Output GCV value is modified from the incoming value. If the output GCV does not

already exist, it should be defined by DEHEAD prior to calling this routine.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/DEFHEAD

FLOAT OFFSET .
/HEADEQL

READIN RANGE
READOUT OFFSET
ADDA -5280.

132

In this job, a new GCV named "OFFSET" is created. Its value is taken from RANGE and is
modified by -5280.

/DIN
FILENAME 'DATA'

/DEFHEAD
FLOAT KM

/HEADEQL
READIN KCDP
READOUT KM
MULTA .05
CSTART 101.
DELC 2.
CMULTA .05

In this job, a new GCV header named "KM" is created. The value of KM is dependent on the
KCDP number and an incrementing counter:

KM = .05 * KCDP + .05 (101. + 2 * COUNTER).

SUBROUTINE NAMES
INIT subroutine: HDEQLO.F
EXEC subroutine: HDEQLX.F
DIRECTORY: .. ./iris 13/seismic

HISTORY

10jun88 D. Okaya
29nov88 D. Okaya

Initial installment
Install COUNTER options.

133

** IRIS ** IRIS-SEIS **

PROCESSOR: HEADLIST User notes New XX Changes __ -

By: David Okaya Manual date: November 27, 1988

FUNCTION: List up to six GCV values per seismic trace

HEADLIST prints the values in the .EPR file of up to six GCV's for each seismic trace.
Its function is similar to /PRMODCOM except that the listing is more concise and that user
defined GCV's are accessible.

There is a quirk in the way SierraSeis accepts character string input and this processor
encounters it often. If an INIT-phase error is obtained describing an illegal parameter, follow
the call to HEADLIST with a call to COMVARPR or with "$EOJ". The quirk in SierraSeis
wants to see some additional text in the job description file. COMV ARPR is a processor with
very little impact on the net seismic job.

PARAMETERS
Synopsis:

I /HEADLIST

Parameter
HEADERS

Argument
GCVname

HEADERS GCVnamel... GCVname6

Req/
Fmt Opt Default
chr*6 Opt none

GLOBAL COMMON VARIABLES

Req

Comment
up to six GCV names, entire set
should be enclosed in single quotes.

The specified GCV's are printed in the .EPR file, one listing per trace.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

• /HEADLIST
HEADERS 'KCDP KTRACE CDPX CDPY'

$EOJ

SUBROUTINE NAMES
INIT subroutine: HDLSTO.F
EXEC subroutine: HDLSTX.F
DIRECTORY: .. ./irisl3/scismic

HISTORY

9jun88 D. Okaya Initial installment

134

** IRIS ** IRIS-SEIS **

PROCESSOR: INTRLEA V User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Interleave seismic traces or pad irregular gathers

INTRLEAV is a routine which ~reates regular gathers from gathers of irregular trace
numbers. Gathers which are short from an expected number of traces are back-padded with
zero traces. In addition, traces can be interleaved if stored in consecutive separate half-gathers.

The interleaving is performed by storing traces in memory - muc~ faster than using tem
porary disk space. Up to 700 traces per gather can be accommodated. The incoming gathers
should be divided into two equally-sized halfs.

Examples for padding or interleaving are given below.

PARAMETERS
Synopsis:

/INTRLEAV

Parameter
INIT KIP

FIRSTNX

FIRSTTRC

FIRSTINC

SECNDNX

SECNDTRC

SECNDINC

OUTNX

Ar ument
s ip

nxl

first/

incl

nx2

first2

inc2

outkntr

INITSKIP skipO
FIRSTNX nxl
FIRSTRC first/
FIRS INC inc 1
SECNDNX nx2
SECNDTRC first2
SECNDINC inc2
OUTNX outkntr

Fmt
mt

int Opt

int Opt

int Opt

int Opt

int Opt

int Opt

int Opt

KNTR/2

1

1

KNTR/2

1

1

none

Comment

Opt
Opt
Opt
Opt
Opt
Opt
Opt
Opt

number o traces m mcommg gather
to not use.
Number of traces in first half of
output gather.
Position of first output trace within
input gather.
Increment within input gather to
obtain next output trace.
Number of traces in second half of
output gather.
Position of first trace in second half
of output gather within input gather.
Increment within input gather to
obtain next output trace for second
half.
number of desired output traces if
not equal to input KNTR.

...

•

GLOBAL COMMON VARIABLES
GCV's are affected in following manner:

KFLDFN: presetved as is.
KFLDTN: presetved as is.
KSHOT: presetved as is.

135

KTRC: renumbered so that output traces are consecutive starting at 1.
KNTR: same as input KNTR unless OUTNX parameter is given.
KRECS: set to output KNTR value.
KTRECS: set to output KNTR * KNSHOT.
KMTRC: set to new KTRECS.

All other GCV's are presetved.

EXAMPLE or OTHER NOTES
To pad irregularly sized gathers:
/IN

DATA 1 6000 4 96 0
/GATHCNTR
!fRCOUNTR KSHOT
!INTRLEAV

FIRSTNX 48 FIRSTTRC 1 FIRSTINC 1
SECNDNX 48 SECNDTRC 49 SECNDINC 1

/IN will create uniform KSHOT/KTRC gathers using 96 traces per gather, even if the field
gathers do not necessarily have 96 traces/gather. /GATHCNTR will first properly set KSHOT
to change when KFLDFN changes. !fRCOUNTR will reset KTRC to begin recounting at one
whenever KSHOT changes. The sequence of routines will result in proper (irregularly-sized)
KSHOT-KTRC numbering.

The processor /INTRLEAV will detect and pad irregularly-sized gathers. The parameters
describe that each output gather is composed of two halves of 48 traces each. The first output
half is obtained from the input gather by choosing the first 48 consecutive traces beginning at
trace 1. The second output half is obtained by choosing the next 48 consecutive input traces
starting at trace 49. The KTRC headers are renumbered starting at 1.

To pad irregularly sized gathers which are nominally two traces too large:
/IN

DATA 1 6000 4 98 0
/GATHCNTR
!fRCOUNTR KSHOT
/INTRLEAV

INITSKIP 2
FIRSTNX 48 FIRSTTRC 3 FIRSTINC 1
SECNDNX 48 SECNDTRC 51 SECNDINC 1

In this case, due to magnetic tape irregularities (i.e., SEG-D format rather than SEG-Y format),
two file header records are read by /IN to be data traces (resulting in 98 traces/gather instead
of 96 traces/gather). The INITSKIP parameter allows us to skip these first two "traces", out
pulling the desired 96 traces in proper order.

To interleave traces:
/IN

DATA 1 6000 4 96 0
/INTRLEAV

FIRSTNX 48 FIRSTTRC 1 FIRSTINC 2
SECNDNX 48 SECNDTRC 2 SECNDINC 2

The first input trace is output trace 1. The second input trace is output trace 3. The 48th input

136

trace is output trace 95. The 49th input trace (first trace in second set of 48) is output trace 2.
The 50th input trace (second trace in second set of 48) is output trace 4.

SUBROUTINE NAMES
INIT subroutine: INRL VO.F
EXEC subroutine: INRL VX.F
DIRECfOR Y: ... /iris 13/seismic

REVISION HISTORY

19oct89
20nov89
23nov89
20jan90

D. Okaya
D. Okaya
D. Okaya
D. Okaya

Initial installation.
fix for EOD condition (partial gather release).
redo situation flagging.
modify to allow partial gather input with full gather output (input halves can be
less than desired output).

137

** IRIS ** IRIS-SEIS **

PROCESSOR: MONITOR User notes New XX Changes __ --
-

By: David Okaya Manual date: November 27, 1988

FUNCTION: Monitor the progress of a seismic job

MONITOR allows the user to externally monitor the status of a seismic job. The
emplacement of MONITOR in a job allows the user to identify the gather and trace that is
currently being processed by the seismic job.

MONITOR stores the gather and trace number of the current seismic trace into a tem
porary disk file which is either named "MONITOR.TMP" or is named by the user. This file
will contain the GCV names of the gather and trace and then the gather and trace numbers.

While a seismic job is running, the user can monitor the job by running an external pro
gram named "MONITOR" or 'monitor'. This job will read and display the contents of
MONITOR.TMP or whatever file the user has named.

PARAMETERS
Synopsis:

/MONITOR

Parameter Argument

FILENAME filename
GATHER GCVname
TRACE GCVname

Req/
Fmt Opt Default

Opt
Opt
Opt

Comment
FILENAME filename chr*40 Opt 'MONITOR.TMP' diskhle to store gather and

trace information. Enclose

GATHER GCVname chr*6 Opt 'KSHOT'
in single quotation marks.
GCV name of gather
grouping of traces.

TRACE GCVname chr*6 Opt 'KTRC' GCV name of trace group-
ing of traces.

GLOBAL COMMON VARIABLES
Gather and trace GCV's are stored in diskfile read by external program called 'MONI

TOR'.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/MONITOR
FILENAME '/scr/okaya/MONITOR.TMP'

GATHER'KSHOT'
TRACE 'RANGE'

138

While each trace is processed during this seismic job, the GCV values stored in KSHOT and
RANGE are stored in the diskfile MONITOR.TMP. The external program MONITOR will
read the disk file, printing the KSHOT and RANGE values. A screen update is printed each
time the KSHOT or RANGE value is changed.

SUBROUTINE NAMES
INIT subroutine: MONITO.F
EXEC subroutine: MONITX.F
DIRECTORY: .. ./irisl3/seismic

IDS TORY

25nov88 D. Okaya Initial installment

139

** IRIS ** IRIS-SEIS **

PROCESSOR:NULENGTH User notes New XX Changes __ -

By: David Okaya Manual date: August 24, 1988

FUNCTION: New Trace Length

NULENGTH changes trace lengths. Number of samples per trace (KNSAMP) changes
accordingly. Subsequent processors in both INIT and EXEC run-streams reflect the new sam
ple rate.

If the outgoing trace length is less than the incoming trace length, the trace is simply
truncated. If the outgoing trace is longer than the incoming trace, the padded portion is zero'd.

PARAMETERS

/NULENGTH
NEWTIME time

where time is the new trace length in millisec.

GLOBAL COMMON VARIABLES
KNSAMP is changed to the new number of samples/trace.

EXAMPLE or OTHER NOTES
/IN

DATA 1 6000. 4 96 0
/NULENGTH

NEWTIME 8000.

In this example, 6 sec traces within 96-trace shot gathers are lengthened to 8 sec.

A similar way to apply this processor is to use /PRMODCOM twice, one each for the INIT
and EXEC run streams.

/IN

/PRMODCOM
INITPR
MODIFY KNSAMP SET nsample

/PRMODCOM
MODIFY KNSAMP SET nsample

SUBROUTINE NAMES
INIT subroutine: NULENO.F
EXEC subroutine: NULENX.F

HISTORY

24aug88 D. Okaya Initial installment

140

** IRIS ** IRIS-SEIS **

PROCESSOR:N~TRFLO User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Count number of traces in trace flow

N~TRFLO determines the number of traces which pass through a specific portion of
the job's trace flow. The total number of traces which pass through NUMTRFLO is printed
into the .EPR file at the completion of the entire job. NUMTRFLO can be used to determine
the expected size of output tape or disk files or to monitor the correctness of trace flow
modified by /AUX or trace omitting.

N~TRFLO can be effectively used by simulating a large job using the /GENCSR or
/GENCDP routines. For example, to determine the number of traces flowing out of a COP
sort job, one can define very short dummy traces using /GENCSR, apply geometry, sort using ·
/GATHER, then run the traces through NUMTRFLO. The total number of output traces can
be then used for the real COP-sort job (i.e., /DOUT NTRACES parameter).

PARAMETERS
Synopsis:

I /NUMfRFLO

Parameter
None
T} .

Argument

[none]

GLOBAL COMMON VARIABLES
None are used.

EXAMPLE or OTHER NOTES

Req/
Fmt Opt Default Comment

/GENCSR BI 1 EI 100 KNTR 48 KNSAMP 10 SR 4
/GEOMETRY USE
/GATHER
/NUMTRFLO
$EOJ

Given the 100 48-channel shot gathers, NUMTRFLO will indicate the number of traces which
will be contained in the CDP gathers produced by /GATHER.

SUBROUTINE NAMES
!NIT subroutine: NUMTRO.F
EXEC subroutine: NUMTRX.F
DIRECTORY: .. ./irisl3/seismic

REVISION HISTORY

02may90 D. Okaya Initial installment

..

141

** IRIS ** IRIS-SEIS **

PROCESSOR: OKAGC User notes New XX Changes __ -

By: David Okaya Manual Date: November 27, 1988

FUNCTION: Automatic Gain Control

OKAGC applies an AGC function to seismic traces. The Sierra-provided AGC proces
sor can leave traces not balanced in the time direction. OKAGC applies an AGC function
which is more severe than /AGC but yields traces which are better balanced in the time direc
tion.

PARAMETERS
Synopsis:

I /OKAGC WINDOW length

Parameter
WINDOW length

GLOBAL COMMON VARIABLES
No GCV's are used or modified

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

/OKAGC
WINDOW 1000.

/DISPLAY

SUBROUTINE NAMES
INIT subroutine: OKAGCO.F
EXEC subroutine: OKAGCX.F
DIRECTORY: .. ./irisl3/seismic

HISTORY

11oct88 D. Okaya

Req/
Fmt Opt Default
float Req none

Initial installment

Req

Comment
Window length in milliseconds for
AGC moving gate.

142

**IRIS ** IRIS-SEIS **

PROCESSOR: OMIT User notes New XX Changes __ -

By: David Okaya Manual date: January 26, 1990

FUNCTION: Physically omit blocks of traces from the processing stream

OMIT removes traces from the processing stream. Traces which are omitted do not pass
through subsequent processors. Traces to omit are identified by a GCV value.

Trace selection for omitting is performed in one of two ways: either by specifying a
range of GCV values or by listing the GCV's of the traces to omit. One GCV type and one
type of trace selection can be specified per call to /OMIT.

If a range of header values is specified, the range can be used with either inclusive or
exclusive logic. To omit traces with CDP number between 400 and 500, inclusive logic will
omit traces between and equal to 400-500, while exclusive logic will omit traces between 400-
500 but will keep COP's at these boundary. values.

OMIT is best used to drop blocks of traces (i.e., entire gather or a consecutive range of a
particular GCV). For selective trace omitting, OMITTRAC may be a better routine to use.

PARAMETERS
Synopsis:

/OMIT

Parameter
HEADER
RANGE
LOGIC

LIST

Argument
GCVname

HEADER GCVname
RANGE minlimit maximit
LOGIC logictype
LIST valuel value2 ...

Req/
Fmt O~t
chr*6 Opt

minlimit maxlimit real Opt
logictype chr*8 Opt

value/ value2 ... real Opt

GLOBAL COMMON VARIABLES

Default
none
0,9999999.
INCLUSIV

none

Req
Opt
Opt
Opt

Comment
GCV name to key trace selection.
Range of header values to omit.
INCLUSIV or EXCLUSIV logic for
RANGE option.
Up to 100 GCV values for trace
selection.

A GCV is used to identify traces to omit. These traces are dropped from the processing
stream. While the number of traces in post-OMIT processing is decreased, the hidden GCV
values such as KRECS and NTRECS are not modified (as total number is not know until after
all traces are processed).

•r

EXAMPLE or OTHER NOTES
Example of usage:

/DIN FILENAME 'DATA'
/OMIT

HEADER KFLDFN
RANGE 900 999
LOGIC INCLUSIV

143

All traces with KFLDFN between 900-999 (including 900 and 999) are omitted. A true situa
tion, where 900-999 represent daily test field records before production collection.

SUBROUTINE NAMES
INIT subroutine: OMITIN.F
EXEC subroutine: OMITEX.F
DIRECTORY: .. ./iris 13/seismic

REVISION HISTORY

18dec89
2ljan90

D. Okaya
D. Okaya

Initial installment
Add LIST option.

144

** IRIS ** IRIS-SEIS **

PROCESSOR:OMUTTRAC User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Physically omit individual traces from a processing stream.

OMUTTRAC, like OMUT, will drop traces from a processing stream. OMUTTRAC will
allow for selection of particular traces while OMUT is intended to be used to drop blocks of
traces.

Trace omission is accomplished by selecting two GCV's as gather and trace keys, then
identifying each trace to omit by providing the "gather" and "trace" numbers. Within a given
gather, a range of traces can be omitted by providing the beginning and ending traces. One
may also select (inclusive or exclusive) trace logic to deal with the boundaries. Up to 100 sets
of gather/trace edits may be given per OMITTRAC call.

PARAMETERS
Synopsis:

/OMITIRAC

Parameter Argument

GATHNAME GCV gath
TRACNAME GCV-trace
LOGIC logic -
GATHER num gath
TRACE tracertrace2

Req/
Fmt Default

Req
Req
Opt
Req
Req

Comment O~t
GATHNAME GCV gath char*6 Opt none Name of GCV for gather keying.

GCVtrace TRACNAME char*6 Opt none Name of GCV for trace keying.
LOGIC logic- char*8 Opt INCLUSIV INCLUSIV or EXCLUSIV logic for

trace boundaries.
GATHER num_gath float Opt none Value of "gather" to drop traces.
TRACE trace] trace2 float Opt none Range of "traces" to drop. For sin-

gle trace, specify only trace 1. For a
range of consecutive traces, specify
both trace] and trace2.

GLOBAL COMMON VARIABLES

Two (integer or real) GCV's are to be used to identify traces. While the total number of
traces in the job flow will be reduced, the GCV's KTRECS, KMTRC are not reduced. These
may need to be externally reduced using /PRMODCOM or /HEADEQL.

•

EXAMPLE or OTHER NOTES

/IN
DATA 1 6000 4 48 0
BI 101 EI 150

145

/OMITIRAC
GATHNAME'KSHOT'TRACNAME'KTRC'
OATH 102 TRACE 15 28
OATH 120 TRACE 1 48
OATH 138 TRACE 2
OATH 138 TRACE 13

For the fifty 48-channel shot gathers, the following traces will be dropped: shot 102, traces
15-28; shot 120, traces 1-48; shot 138, traces 2 and 13. Trace logic by default is· inclusive.

/IN
DATA 1 6000 4 48 0
BI 101 EI 150

/OMITTRAC
GATHNAME 'KSHOT' TRACNAME 'RANGE'
OATH 102 TRACE 0. 330.

In this case, trace indexing is by KSHOT and offset distance (RANGE). The traces with inner
offset distances of 0-330 will be dropped.

SUBROUTINE NAMES
INIT subroutine: OMITRO.F
EXEC subroutine: OMITRX.F
DIRECTORY: .. ./iris13/seismic

REVISION HISTORY

01may90 D. Okaya Modified from /OMIT to allow for gather/trace selection .

146

**IRIS ** IRIS-SEIS **

PROCESSOR:PEAKVAL User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Print Mininum/Maximum Amplitude Per Trace

PEAKV AL will print the minimum and maximum amplitude encountered for each trace.
Traces are referenced according to the type of gather (KSORT) the data is sorted. Output
amplitudes are in exponential format.

By default, all samples of each trace is examined. To examine a window of data, use the
WINDOW parameter.

PARAMETERS
Synopsis:

I /PEAKVAL

Parameter
WINDOW

WINDOW timel time2

Req/
Argument Fmt Opt Default
time] time2 real Opt none

GLOBAL COMMON VARIABLES

Opt

Comment
start and end times of window (in
msec).

GCV's are used to reference traces according to the data sort type (KSORT). No
modification is performed.

EXAMPLE or OTHER NOTES

/IN
/PEAKVAL

For each trace passed by /IN, the minimum and maximum amplitude will be listed in the .EPR
file.

SUBROUTINE NAMES

INIT subroutine: PEAKVO.F
EXEC subroutine: PEAKVX.F
DIRECfORY: .. ./irisl3/seismic

REVISION HISTORY

Oljun88 D. Okaya Modified from SASTTO to print just peak amplitudes.

..

147

** IRIS ** IRIS-SEIS **

PROCESSOR: RMEAN User notes New XX Changes __ -

By: Jim Fowler Manual date: October 2, 1990

FUNCTION: Remove mean from REFTEK seismograms.

RMEAN removes mean from REFfEK data.

PARAMETERS
Synopsis:

I JRMEAN

Parameter Argument
none

GLOBAL COMMON VARIABLES
No changes.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN FILENAME 'SHOTS'
/RMEAN

SUBROUTINE NAMES
INIT subroutine: RMEANO.F
EXEC subroutine: RMEANX.F
DIRECTORY: .. ./irisl3/seismic

REVISION HISTORY

Req/
Fmt Opt Default Comment

21scp89
26jan90

J. Fowler
D. Okaya

Initial creation.
QC and installment into IRIS-SEIS.

148

** IRIS ** IRIS-SEIS **

PROCESSOR: RMSAMP User notes New Changes XX - -

By: David Okaya Manual date: November 26, 1989

FUNCTION: Compute Absolute or RMS-Amplitude for entire trace, set of traces

RMSAMP computes the RMS-amplitude for each seismic trace that enters the processor.
Also computed is a running RMS-amplitude for the set of traces up to the current trace. The
running RMS-amplitude computed for the last trace will represent the RMS-amplitude for the
entire set of traces (gather or section) passed into RMSAMP.

RMSAMP will list for each trace the trace and running RMS amplitudes in the .EPR file.
The identification of each trace is provided by gather and trace numbers; the user can specify
which two GCV's to use for trace identification (default is KSHOT and KTRC).

The user can also specify that only positive amplitudes be used for the RMS-amplitude;
negative numbers are internally set to zero before the RMS-amplitude computation. Normali
zation still counts these samples; that is, each trace's mean-square amplitude is normalized by
KNSAMP before the square root it taken. Traces released by RMSAMP do not have zero
amplitudes but contain the original incoming amplitudes.

As an alternative choice, the absolute value of the amplitudes can be examined instead of
the RMS-amplitude.

PARAMETERS
Synopsis:

/RMSAMP

Ar ument

NO NEG
GATHER GCVname
TRACE GCVname
ABSAMP

Req/
Fmt 0 t Default Comment

Opt
Opt
Opt
Opt

none pt not use pec1 1es negative amplitudes are
zero'd before computing the RMS
amplitudes.

GATHER GCVname C*6 Opt 'KSHOT' name of GCV to use for gather
indexing in .EPR file.

TRACE GCVname C*6 Opt 'KTRC' name of GCV to use for trace
indexing in .EPR file.

ABSAMP none Opt not used Use Absolute amplitude rather than
RMS-amplitude.

GLOBAL COMMON VARIABLES

Two GCV's are used for .EPR trace identification; no GCV values are modified.

EXAMPLE or OTHER NOTES
Example of usage:

/DIN
FILENAME 'DATA'

JRMSAMP
GATHER 'KCDP'
TRACE 'RANGE'
NO NEG

149

This example will read the disk file DAT A.DIO and compute the RMS-amplitude for each
trace. A running RMS-amplitude for all traces is also computed. The .EPR file will reference
each trace by printing its KCDP and RANGE values. No negative numbers are used in the
RMS-amplitude computation.

SUBROUTINE NAMES
INIT subroutine: RMSAMO.F
EXEC subroutine: RMSAMX.F
DIRECTORY: .. ./iris 13/seismic

HISTORY

25nov88 D. Okaya
17dec88 D. Okaya

Initial installment
Install examination of regular amplitudes.

150

** IRIS ** IRIS-SEIS **

PROCESSOR: ROT User notes New XX Changes __ -

By: Tom Daley Manual date: July, 1988

FUNCTION: Rotation of three component data

ROT rotates three component data into a new coordinate system defined by two rotation
angles. PHI is measured clockwise from component one and THETA is measured counter
clockwise from component three.

In normal use, each group of three traces input are assumed to be vertical, horizontal, and
horizontal. They will be output as radial, SV, and SH, respectively.

PARAMETERS
Synopsis:

/ROT

Parameter

LEVEL level num
PHI phi value
THETA -theta value

Req/
Fmt Default Comment

Req
Req
Req

LEVEL
Argument
level num real

O~t
Req each group of three traces has a

PHI phi_value real

THETA theta value real

GLOBAL COMMON VARIABLES
No common variables are changed.

EXAMPLE or OTHER NOTES
/JOB ACCT 'TEST TEST TRCROT CCS'
/DIN

FILENAME 'VSPSHOT' /ROT

Req

Req

LEVEL 1 PHI 80.561 THETA 110.134
LEVEL 2 PHI 82.399 THETA 113.403
LEVEL 3 PHI 84.047 THETA 111.484
LEVEL 4 PHI 86.123 THETA 109.921

SUBROUTINE NAMES
INIT subroutine: ROT AIN.F
EXEC subroutine: ROT AEX.F
DIRECTORY: .. ./iris13/scismic

REVISION HISTORY

level number. Maximum is 200.
angle from vertical to radial (in
degrees).
angle from horizontal to SH (in
degrees).

151

** IRIS ** IRIS-SEIS **

PROCESSOR:TRCOUNTR User notes New XX Changes __ -

By: David Okaya Manual date: November 26, 1989

FUNCTION: Trace Counter and Adjustment

TRCOUNTR examines the trace index GCV for continuity within the gather GCV.
When the gather GCV value changes, signifying a new gather, the trace index GCV is reset to
start at 1. The need for this ability comes from /IN's self-counting of traces from 1 to KNTR
regardless of a change in gather number. TRCOUNTR fixes the trace index GCV to
smoothly increment from 1 whenever a new gather is detected.

Three gather GCV's can be used for checking. The corresponding trace index GCV is
used: KFLDFN-KR..DTN, KSHOT-KTRC, KCDP-KTRACE.

Use IINTRLEAV to fill (pad) incomplete gathers after running /TRCOUNTR.

PARAMETERS
Synopsis:

trRCOUNTR

Parameter Argument
KFLDFN none

KSHOT none

KCDP none

KR..DFN
KSHOT
KCDP

Fmt

GLOBAL COMMON VARIABLES

Req/
Opt Default
Opt yes

Opt no

Opt no

Comment
Use KFLDFN
KFLDTN.
Use KSHOT
KTRC.

Opt (default)
Opt
Opt

to key changes

to key changes

Use KCDP to key changes
KTRACE.

KFLDTN, KTRC, or KTRACE is changed depending on which gather GCV is specified.
Usc /HEADEQL to set other GCV's accordingly.

EXAMPLE or OTHER NOTES
/IN

/TRCOUNTR KFLDFN
This job will check KFLDTN numbers with respect to KFLDFN, adjusting trace numbers

so that whenever a new KFLDFN number is reached, the KFLDTN numbers begin at 1.

in

in

in

152

/IN

(fRCOUNTR KFLDFN
/HEADEQL READIN KFLDTN READOUT KTRC /HEADEQL READIN KFLDFN
READOUT KSHOT

This job adjusts KFLDTN to be consistent with changes in KFLDFN. The value of
KTRC is set equal to KFLDTN; KSHOT is set equal to KFLDFN.

SUBROUTINE NAMES
!NIT subroutine: TRCNTO.F
EXEC subroutine: TRCNTX.F
DIRECTORY: .. Jiris13/seisrnic

HISTORY

25nov89 D. Okaya Initial installment

•

153

** IRIS ** IRIS-SEIS **

PROCESSOR:TRTAPER User notes New XX Changes __ -

By: David Okaya Manual date: June 24, 1990

FUNCTION: Taper data dropouts

Data dropouts in uncorrelated seismic traces create correlation artifacts which can be
removed by tapering the dropouts. TR TAPER applies a cosine-squared taper to the edges of
the dropout.

User parameters are the minimum length of a dropout in samples to taper (ZEROSMPL)
and the taper width as a percent of the overall trace length (T APERPCT).

Run-time documentation on any tapering can be obtained by using the DOC parameter.

PARAMETERS
Synopsis:

(fRTAPER

Parameter

ZEROSMPL num samp
TAPERPCT pet -
NODOC [none]
DOC [none]

Req/
Fmt Default Comment

Opt
Opt
Opt
Opt

Argument oet
ZEROSMPL

I

Opt 10 number of samples overwhich num_samp mt a

TAPERPCT pet

NO DOC none

DOC none

GLOBAL COMMON VARIABLES
GCV's are not affected .

EXAMPLE or OTHER NOTES
/IN
(fRTAPER

ZEROSMPL 50
TAPERPCT 15.

real Opt

Opt

Opt

dropout is tapered.
10% taper length as a percent of overall

trace length (KNSAMP).
none Do not print run-time documentation

into the .EPR file.
none Print run-time documentation into

the .EPR file.

Dropouts which are 50 samples or greater in width arc sampled. The taper width on either end
is 15% of the overall trace length.

SUBROUTINE NAMES
INIT subroutine: TRT APO.F
EXEC subroutine: TRT APX.F
DIRECTORY: .. ./iris13/seismic

REVISION HISTORY

13jan89 E. Karageorgi Initial installation.

154

25nov89 D. Okaya installed DOC/NODOC option.

•

•

155

** IRIS ** IRIS-SEIS **

PROCESSOR:~XIO User notes New_ Changes XX -

By: David Okaya Manual date: July 28, 1990

FUNCTION: Read or write seismic data using UNIX binary internal format

UNIXIO reads or writes seismic data to or from a UNIX binary file. A UNIX binary
file contains seismic traces in contiguous manner in either 32-bit floating point or 16-bit integer
format. If no trace headers (GCV's) are stored, the seismic data is stored essentially as a two
dimensional block of data (samples vs. arrays). This format is compatible with C language 1/0
routines.

The user can decide to save SierraSeis trace headers (GCV's) or to store the data with no
trace headers. If GCV's are stored, traces are contained in the disk file in contiguous header
trace, header-trace format.

File 110 is handled using the CREAD/CWRITE functions which is compatible with C
language file 1/0. Using this type of file 1/0 allows for faster 1/0 to be performed.

UNIXIO allows for the following I/0 combinations:

1/U operatiOn _ucv Presence Format

~~~ READ NO GCV s 
READ NO GCV's 

(C) READ 
(D) READ 
(E) WRITE NO GCV's 
(F) WRITE NO GCV's 
(G) WRITE 
(H) WRITE 

•To read data from disk, use the READ parameter. 
•To write data to disk, use the WRITE parameter. 

REAL*4 

GCV's REAL*4 
GCV's 

REAL*4 

GCV's REAL*4 
GCV's 

•To read or write GCV's along with data, use the USEGCV parameter. 
•To not read or write GCV's, use the NOGCV parameter. 
•To read or write data traces in 32-bit floating point, use FORMAT 32. 
•To read or write data traces in 16-bit integers, use FORMAT 16. 

INT*2 

INT*2 

INT*2 

INT*2 

A more complete description of the UNIXIO file format (with or without GCV's) is 
given below. 

The FILENAME parameter must be given. A filename suffix is not automatically 
attached (unlike the '.DIO' from /DOUT). A suggested suffix to use is '.UIO'. 

Writing data to disk 
For the WRITE option, all traces which enter UNIXIO are written to the requested disk 

file. The only parameters needed to write a diskfile are: FILENAME, WRITE, USEGCV or 
NOGCV, and FORMAT. By default, FORMAT assumes 4-byte (32-bit) floating point 
numbers. 

A diskfile written with the USEGCV parameter will contain a diskfile header and trace 
headers. This format is described below. To decode the GCV header information from a 
diskfile, use the stand-alone utility program "UIOlength". This external program will dump the 
number of GCV's, list any user-defined GCV names, and then indicate the trace sample length 
and number of traces stored in the file. 



156 

A diskfile written with the NOGCV parameter will have neither a diskfile header nor 
trace headers. The seismic traces will be written in sequential order so that the first sample of 
one trace directly follows the last sample of the previous trace. This format allows one to 
apply external processing to the data and feed it back in. Reading data with the NOGCV 
option also allows one to create uniform traces from continuously recorded data. 

Reading data from disk 
For the READ option, one must specify the FILENAME, READ, USEGCV or NOGCV, 

and FORMAT parameters. By default, the data format is 4-byte floating point numbers. 
Important parameters which describe the physical size of the data must be given. When a 

file which does not contain GCV's is to be read, key values such as data type, trace length, 
sample rate, and traces per gather must be given. Thus for the combination READ/NOGCV, a 
DATA parameter identical to that used by /IN must be provided. From this parameter, GCV's 
KSORT, KNSAMP, SR, KNTR, and KNAUX are determined. The data traces are read from 
disk using these dimensions. 

When a file which contains GCV's is to be read (USEGCV parameter), the key values 
are read from the first data trace in the disk file. Thus for the combination READIUSEGCV, 
no DATA card is needed. 

One additional piece of information which is needed to properly read data from disk is 
the amount of data to read. This information is provided by a combination of the Bl, El, 
NGATHERS, and NTRACES parameters. The interplay between these parameters is described 
in the below table. 

If data is read from disk using the USEGCV values, the values of BI and EI act as data 
limiters; that is, only traces within the BI-EI range will be read by UNIXIO. When not 
specified, BI is assumed to be the KSHOT or KCDP value of the first trace (depending on the 
KSORT data type). When EI is not given, it is calculated from BI and either NGATHERS or 
NTRACES (with the help of KNTR). 

A file without headers (i.e., the NOGCV parameter) will have GCV's calculated for the 
data. The BI (specified or defaulted to 1) and EI (either specified or calculated) will serve as 
the range of GCV's. All traces asked for will be read; BI and EI do not act as data limiters in 
this case. The total number of traces as computed from BI, EI, and NGATHERS or as 
specified by NTRACES determines the number of traces read by UNIXIO. 

The behavior of the BI, EI, NGATHERS, and NTRACES parameters is as follows. 
"total" is the total number of traces which UNIXIO will read. "nx" is the sum of the KNTR 
and KNA UX values (as specified in DATA card or read from first trace). 

BI 
BI 

BI NTRA E 

EI 
EI 

NTRA E 

For the READ/NOGCV combination, one may skip an initial set of traces prior to read
ing data using the SKIPTRCS parameter. The first data trace which is read will have the BI 
value as determined above. This feature is not available with READ/USEGCV; rather, the 
OMIT or OMITRAC processor should be used. 



.. 

PARAMETERS 
Synopsis: 

/UNIXIO 
FILENAME filename 

READ 
WRITE 

USEGCV 
NOGCV 

FORMAT bit code 

157 

Req 

} either 
} Req 

} either 
} Req 

Opt 

DATA sort_ type trace _length samp _rate trace _yer ..,.gather Req with READ I 
NOGCV. 

Parameter 
FILENAME 

READ 
WRITE 
USEGCV 

NOGCV 

FORMAT 

DATA 

BI 

EI 

NGATHERS 
NTRACES 

BI first gather 
EI last -gather 
NGATRERS num gathers 
NTRACES tot traces 

Ar ument 
ename 

none 
none 
none 

none 

bit code int 

sort type float 
trace _length float 
samp rate float 
trace yer _gather float 

first _gather int 

last _gather int 

num _gathers int 
tot traces int 

GLOBAL COMMON VARIABLES 

Opt 
Opt 
Opt 

Opt 

Opt 

req 
req 
req 
req 

opt 

opt 

opt 
opt 

Default 
none 

none 
none 
none 

none 

32 

none 
none 
none 
none 

none 

none 

none 
none 

Opt 
Opt 
Opt 
Opt 

Comment 
UNIX binary mtemal format 
filename. 
Specify to read data from-disk file. 
Specify to write data to disk file. 
Specify to read or write trace 
headers to/from the disk file. 
Specify to read or write trace 
headers with no GCV's involved. 
Data format (32= REAL*4, 16= 
INT*2). 
Required with READ/USEGCV 
option to specify trace format. 
Similar to DATA card used with 
fiN processor. 
sort type (KSORT). 
number of millisec per trace. 
sample rate in millisec. 
number of traces per gather 
(KNTR). 
number of the first gather (KSHOT 
or KCDP). 
number of the last gather (KSHOT 
or KCDP). 
number of gathers to read. 
total number of traces to read. 

If USEGCV option is used, then GCV's arc read from or written to disk. 

If NOGCV is selected with the READ option, t11en GCV values are computed to be con
sistent with the DATA card values. KSHOT or KCDP numbers are computed using the BI-EI 
or NGA THERS/NTRACES parameters. If NOGCV is selected with the write option, no 

'. ,_ 



158 

GCV's are written to disk (GCV infonnation is lost). 

EXAMPLE or OTHER NOTES 
Example of usage: 

To write a file with no GCV's: 
/DIN'· 

.Fll:;ENAME 'DATA' 
/UNIXIO 

FILENAME 'DATA.UIO' 
WRITE 
NOGCV 

To write a file with GCV's: 
/DIN 

FILENAME 'DATA' 
/UNIXIO 

FILENAME 'DATA.UIO' 
WRITE 
USEGCV 

To write a file with GCV's and 16-bit (2-byte) integer traces.: 
/DIN 

FILENAME 'DATA' 
/UNIXIO 

FILENAME 'DATA.UIO' 
WRITE 
USEGCV 
FORMAT 16 

To read a file without GCV's: 1000 CDP stacked traces (3001 samples per trace): 
/UNIXIO 

FILENAME 'DATA.UIO' 
READ 
NOGCV 
DATA 4 6000 2 1 
BI 101 EI 1100 

To read file with GCV's: 9600 traces in shot gathers (3001 samples/sec) (DATA values 
are read from first trace in file): 

/UNIXIO 
FILENAME 'DATA.UIO' 
READ 
USEGCV 
BI 1 EI 100 

To read file with GCV's: 55 traces in 10-trace shot gathers (3001 samples/sec): 
/UNIXIO 

FILENAME 'DATA.UIO' 
READ 
USEGCV 
NTRACES 55 



159 

UNIX DISKFILE FORMAT WHEN GCV's ARE STORED 
The UNIX binary internal diskfile has a file header and trace headers. The file header 

indicates the number of trace headers and the names of any user-defined headers. The GCV 
headers stored for each trace are mapped directly from the SSCOM.INC common block. 

This SSCOM.INC common block consists of four trace header arrays - one each for 
integer, real, character*8, and character*4 header values. These four arrays have the following 
characteristics: 

100 
25 
10 

MAl 
SSCMAR 
SSCMA8 
SSCMA4 

The undefined slots in these arrays are available to be filled with user-defined headers. 
The UNIX internal diskfile header keeps track of the number of GCV's defined for each 

trace arid also the names of user-defined GCV's. The first four four-byte words of the diskfile 
header contain the total number of integer, real, CHAR*8, and CHAR*4 GCV's which exist 
for the job. If the number of any header type is larger than that needed by SierraSeis, the 
difference is the number of user-defined headers. Following the four 4-byte numbers will be 
the names of any user-defined GCV's. These names are stored in CHAR*6 format in the 
order that they are indexed in the GCV common block. 

Immediately following the diskfile header will be the header values for the first trace fol
lowed by the first data trace. The size of the trace header is dependent on the values provided 
in the first four words of the file header. The order of the trace headers is integer, real, charac
ter*8, and character*4. 

Format ot UNIXIO tile 
File block Bytes Format Contents Example 
#headers 1 1-4 1*4 # mt UCV s 1::36 
#headers-2 5-8 1*4 #real GCV's 72 
#headers-3 9-12 1*4 # char*8 GCV's 10 
#headers -4 11-16 1*4 # char*4 GCV's 1 
user GCV 17-22 chr*6 1st user int GCV 'DEPTH' 
user GCV 23-28 chr*6 2nd user int GCV 'COMPON' 
user GCV 29-34 chr*6 1st user real GCV 'OFFSET' 

1st trace 35-578 1*4 136 GCV values 101 
header 579-866 real*4 72 GCV values .004 

" 867-946 chr*8 10 GCV values 'WM-3' 
" 947-950 chr*4 1 GCV value 'xxxx' 

1st trace 951-xxx real*4 1st data trace 

See also utility programs UIOiength, UIOminmax, UIOdump. 

SUBROUTINE NAMES 
INIT subroutines: UNIXIN.F, UNIXI2.F 
EXEC subroutines: UNIXEX.F, UNIXE2.F 
Utility subroutine: UIOLIB.F 
DIRECTORY: .. ./iris 13/seismic 

Note 
134 ~terra + 1. user 
71 Sierra + 1 user 
10 Sierra 
1 Sierra 

136 integer GCV's 
72 real GCV's 
10 char*8 (i.e., KLINE) 
1 char*4 (i.e., KSEQ) 
KNSAMP*4 byte words 



HISTORY 

18oct88 
llnov88 
30jan89 

25may90 

28jul90 

D. Okaya 
D. Okaya 
D. Okaya 
D. Okaya 

D. Okaya 

160 

Initial modification from /CONVEXIN to allow input and output. 
modified to allow read and write of GCV's. 
fixed KSEQ behavior. 
installed internal trace flow to allow the routine to be the first (trace 
driver) within a job. 
(a) READ/USEGCV does not need OAT A parameter; 
(b) use BI/EI as data limiters for READ/USEGCV; 
(c) allow initial input trace skipping for READ/NOGCV; 
(d) allow data storage in REAL *4 or INT*2 fonnat; 
(e) removed extraneous parameters, redefined run-time behavior of 
~~~~ . 


161

Appendix IT: FTOCIO Library

C-Language 110 for FORTRAN Programs:
FORTRAN Unformatted 110 Access of Seismic Data

using C-equivalent Routines

A useful library of C-derived 1/0 statements exists which makes the access of seismic
data files much easier. These C-equivalent statements replace FORTRAN statements such as
OPEN, WRITE, READ, and CLOSE. Values are stored in unformatted, internal binary for
mat. Their implementation and use can be far simpler than the FORTRAN statements.

The benefit of the ftocio (FORTRAN to C 1/0) library is that the byte-address access of
disk files found in the C language is made available to FORTRAN. This powerful I/O ability
is ideal for large size seismic data files when individual seismic traces are requested.

The use of C-compatible 1/0 statements in FORTRAN programs makes data files avail
able to both C and FORTRAN programs. One can intermix the application of C and FOR
TRAN programs to the same data files; the output from one program can be the input of
another without having to worry about disk file format.

Structure of FORTRAN and C unformatted records

A major form of FORTRAN unformatted READ/WRITE statements require that a stored
record in a disk file have a 4-byte integer record header which specifies the length of the
record. The statements:

OPEN(UNIT=ll,FILE=NAME,STATUS='OLD',FORM='UNFORMATTED')
READ(ll)(X(I),I=l,N)

require that a 4-byte integer precede the 4*N bytes which comprise the stored array X(i).
While the programmer only keeps track of the stored array, FORTRAN will acknowledge the
record header. In other words, the programmer or user may think that only 4*N bytes are in
the disk file when in reality 4*N + 4 bytes are stored.

If two successive FORTRAN records are stored, each record will have a 4 byte record
header. If the first record is read using less than the total record length, the next READ state
ment will skip to the start of the next record; the trailing data in the first record is ignored.

An array written in C will only contain the number of bytes needed to store the array
values. The statements

in =open(' name' ,2);
nout= write(in,x,4*N);

will write N samples of the array X(i) to disk. The disk file will contain only 4*N bytes; the
programmer must keep track of how many samples (bytes) to read back.

Two successive read statements using the C "open" function will read continuous data -
the second read statement will read the first value available after the last value from the first
read statement. ·

An additional advantage to C I/0 calls is the availability of the seek command. This
functionality allows the user to skip a desired number of bytes into a disk file in order to per
form an operation. A loop of READ statements is not needed to advance into the disk file.
While FORTRAN can provide a similar feature by specifying a desired record number, this
feature only works for files which are written with fixed record lengths. C allows for vari
able record lengths and immediate seek capability. In this form, the programmer can directly
access any particular data sample by knowing its true sample or byte position in the disk file.

162

FORTRAN I/0 functions in FTOCIO: C-equivalent I/0 statements

The C-equivalent I/0 statements allow the user to create, open, and close a data file and
to read, write, and seek data within the file. The FORTRAN functions are:

ccreat
copen
cclose
cread
cwrite
cseek

-e mvalent
create
open
close
read
write
I seek

If used, each of these functions must be declared as integer functions in the declaration level
of a main or subroutine program:

INTEGER copen, ccreat, copen, cclose, cwrite, cread, ccseek.

These functions are used as (integer) functions of the form

istatus =command (argl, arg2, ...)

where istatus is an integer variable, command is the I/0 statement to be performed, and the
arg's are function arguments which define things such as the file name, dimensioned array to
read or write, and number of bytes.

The variable istatus serves two useful purposes. When the command has been per
formed successfully, the value of istatus is a positive integer. If the command was not suc
cessful, then istatus= -1. By checking the value of istatus one can tell whether to proceed in
the program or stop to check why the command did not work.

For commands ccreat and copen, the positive integer value of istatus are significant.
For each file that is created or opened, a different number is returned. The istatus values
serve as file I.D. numbers (i.e,., logical device numbers) which are used to identify the files
within the program which are acted upon by the other I/0 commands.

Creating, opening, and closing files

An aside on File Permission Codes (mode of a file)
Upon executing the UNIX command "Is -1", a list of files within the current directory

will appear. The column of file attributes preceding the file names will consist of rows of r's,
w's, and x's such as

-rw-rw-r--
or

-rwxr-xr-x.
An 'r' stands for READ, 'w' stands for WRITE, and 'x' stands for executable; this shows "
what can be done with the file and by whom. The first 'rwx' means the person whose login
is listed as the file owner can read and write (change) the file and can run the program if it is
an executable or shell file. If any of the three letters are missing, that command cannot be
done to the file. The second set of 'rwx' shows what other people in the same user-group can
do; the last set of 'rwx' shows what all other users can do to the file.

The sequence of 'rwx' can be represented by a number code. Each of the three letters
can represet binary digits; the three letters together can represent both a three-digit binary
number (000 through 111) and a single-digit octal number (0-7). Since the file permission
code (or 'mode') is represented by three sets of 'rwx's, a numerical representation exists in
the form of three sets of three-digit binary numbers or, more easily, three octal digits:

163

-rw-rw-r-- = 0 110 110 110 (binary) = 0 6 6 4 (octal)
and

-rwxr-xr-x = 0 111 101 101 (binary) = 0 7 5 5 (octal)

The leading zero is set to one if the file name represents a directory; otherwise the named
item is some type of file.

A file's 'mode' can be reset using the UNIX command chmod. As will be seen below,
one can define a mode setting when creating a file.

Creating a file (CCREAT)
Creating a new file takes the following form:

ID = ccreat ('NEWNAME',IPERM)

where ID is the internal file J.D. number (logical device number), 'NEWNAME' is the exter
nal (actual) name of the file, and IPERM is the file's permission code (mode).

Using the octal representation for a file permission code, one can create a data file using
the following FORTRAN statements:

INTEGER ID,IPERM,ccreat
IPERM = 6*64 + 6*8 + 4 (representing -rw-rw-r--)
ID = ccreat('DATAFILE',IPERM).

A data file named 'DATAFILE' is created with the owner and group users having read/write
permission with all other owners having read-only permission. The internal file identification
number (logical unit number) is referenced by using ID; this value is returned from ccreat
upon valid execution of the function.

The data file name can be a character variable:

INTEGER ID,IPERM,ccreat
CHARACTER*20 CNAME
CNAME = 'DATAFILE'
!PERM = 6*64 + 6*8 + 4
ID = ccreat(CNAME,IPERM).

Closing a file (CCLOSE)
Now that the datafile 'DATAFILE' has been created, it will eventually have to be closed.

The FORTRAN statement

ICHK = cclose(ID)

will close the file. ICHK is an integer variable. ID is the internal file identification number
which came from the ccreat (or copen) command. This statement simply closes the file after
all accessing has been done; it is good to close all files before the program ends.

ICHK will equal -1 if the closing of the file was not possible.

Opening a pre-existing file (COPEN)
To open a pre-existing file, use

ID = copen('OLDFILE',ACCESS)

164

where ID is the internal file identification number, 'OLDFILE' is the name of a file which
already exists, and ACCESS is an integer which decides whether one can only read from or
write to the file or do both:

ID = copen('OLDFTI...E' ,0)
ID = copen('OLDFTI...E' ,1)
ID = copen('OLDFTI...E',2)

read only
write only
read and write

If you never want your data file to change, use ACCESS=O. Now that the file 'OLDFILE' is
opened, read and/or write operations are possible. Remember to close the file when done.

An example of opening and closing a file is as follows:

INTEGER ID,ICHK,copen, cclose
CHARACfER*20 CNAME

CNAME = 'DATAFILE'
ID = copen(CNAME,O)
IF (ID .EQ. -1) THEN [FATAL ERROR]

C perform read-only operations to data file, then
ICHK = cclose(ID)
END

.

Reading, writing, and skipping data arrays
When reading, writing, or skipping data values or arrays, one needs to think in terms of

the bytes used to store the data. Floating point or integer arrays (INTEGER *4) use four bytes
per number (32-bit format); INTEGER*2 integers use two bytes per number; and character
arrays use single bytes per character.

Reading an array of seismic data (CREAD)
Suppose we wish to read an array of seismic data which contains a thousand time sam

ples (number of samples = NT = 1000). Then, provided the data file 'DATAFILE' already
exists, the seismic data can be read into a dimensioned array using the following:

INTEGER NT, ID, NREAD, copen, cread
DIMENSION TRACE(lOOO)
ID = copen('DA T AFILE' ,0)
NREAD = cread(ID,TRACE,4*NT)

The variable NREAD is used only to check if the read operation was successful; if equal to
-1, the cread operation failed; otherwise it will equal the number ofbytes actually read. The
cread operation takes the first 4 *NT bytes stored in 'DA T AFTI...E' and stores them into the
single-subscripted floating point array TRACE. The values of TRACE are thus available for
subsequent manipulation.

If the statement below was used instead of the one above,

NREAD = cread(ID,TRACE,4*50)

then only the first 50 samples of the data would be stored in the array TRACE.
Based on these examples, we can see that the cread statement looks like:

NREAD = cread(ID,ARRAY,NBYTES)

where ID 1s the internal file identification number, ARRAY is the declared array (or single

w'

•·

165

variable) in which to store the read bytes, and NBYTES is the number of bytes to place into
ARRAY. NREAD is the number of bytes successfully read (or -1 if the operation failed).

The cread command will only map the specified number of bytes into the variable
ARRAY; the manner in which ARRAY is declared determines whether the bytes become
integers, real, or character data. In the following examples, the declaration statements define
the type of data which is read:

INTEGER ARRA Y(25)
NREAD = cread(ID,ARRAY,lOO)

REAL ARRA Y(25)
NREAD = cread(ID,ARRAY,lOO)

CHARACfER*1 ARRA Y(lOO)
NREAD = cread(ID,ARRA Y,100)

In the first example, ARRAY will contain 25 integers, in the second, ARRAY will contain 25
real values, in the last, ARRAY will contain 100 ASCII characters.

Writing an array of seismic data (CWRITE)
Writing data to a disk file is structured quite similar to the read statement:

NWRITE = cwrite(ID,ARRA Y,NBYTES)

where ID is the file identification number, ARRAY is the array or variable to output, and
NBYTES is the number of bytes to write. NWRITE will be returned from cwrite to contain
the actual number of bytes which were written (or equal -1 if the write failed). Examples of
the use of cwrite are given below.

Two consecutive calls to cwrite will place the written data in continuous byte order; the
bytes of the last value of the first write will be followed by the first set of bytes from the first
value of the second write. No record header bytes will exist between the two sets of data.

Seeking to specific byte locations (CSEEK)
We can skip over traces before reading or writing by using a seek command. Again, we

think in terms of bytes. The seek command allows us to actually skip through whole or par
tial data arrays if we want to obtain the value(s) of a specific data sample(s). Since the seek
command skips in units of single bytes, we need to make sure the seek command places us at
the start of a set of bytes, not, for example, in the middle of a (4-byte) number.

The seek command is:

NSEEK = cseek(ID, NBYTES, FROM_ WHERE).

The file in which to skip is indicated by ID; the total number of bytes to skip is given by
NBYTES. FROM WHERE indicates the reference point from where to skip from within the
file: -

nseek = cseek(id, nbytes, 0)
nseek = cseek(id, nbytes, 1)
nseek = cseek(id, nbytes, 2)

skip # bytes from the beginning of the file
skip # bytes from the current location in the file
skip # bytes backwards from the end of the file

NSEEK is an integer variable which behaves like NREAD or NWRITE in that it will equal -1
if the seek fails or will return the number of bytes which were skipped.

166

Suppose a data file exists which contains several seismograms of length NT=1000 sam
ples per seismogram. Then

NSEEK = cseek(ID, 3*4*NT,O)

will skip three seismograms worth of bytes from the beginning of the data file. Remember
that there are 4 bytes per sample and thus 4*NT bytes per seismogram. A subsequent

NSEEK = cseek(ID, 1000, 1)

will skip the next 1000 bytes (250 samples) from the end of the third seismogram (current
position after the first seek).

The notion of a pointer should be mentioned. When a file is created or opened, a pointer
is positioned at the beginning of the file. A read or write command will start from the
pointer, initially at the beginning of the file. Once an array (seismogram) is read, the pointer
gets moved to the end of the array and actually points to the start of the next array. So two
consecutive read commands will read two consecutive arrays. The write command behaves
similarly. The seek command will move the pointer around. The sequence

ID = copen('OLDNAME', 2)
NREAD = cread(ID, TRACE, 4*NT)
NSEEK = cseek(ID, 3*4*NT, 1)
NWRITE = cwrite(ID, TRACE, 4*NT)
ICHK = cclose(ID)

opens the file OLDNAME for reading and writing (ACCESS=2), reads the first array (seismo
gram), skips over the next three seismograms, then writes the array as the overall fifth array in
the file. The file is then closed.

Example 1: Copy a file containing several seismic traces
Suppose we need to copy a file of seismic traces (and we don't want to use the UNIX

copy command 'cp'). If we know that there are NT=1000 samples per trace, NX=20 seismic
traces in the file, and the data are stored in the file 'OLDNAME', we can proceed:

C COPYFILE: a program to copy one data file to another
dimension TRACE(lOOO)
integer copen,ccreat,cclose,cread,cwri te,cseek

NT=1000
NX=20
iperm= 6*64 + 6*8 + 4

C Open input, create output, seek to beginning of both
in = copen('OLDNAME', 2)
iout = ccreat('NEWNAME, iperm)
nseek = cseek(in, 0, 0)
nseek = cseek(iout, 0, 0)

C Now loop over traces
do 100 i= 1 ,NX
nread = cread(in, TRACE, 4*NT)
nwrite = cwrite(iout, TRACE, 4*NT)

100 continue

C now shut down
ichk=eclose(in)
ichk=eclose(iout)
END

167

This program copies file 'OLDNAME' into a new file 'NEWNAME'. No error checking was
conducted, but for each ftocio call, the return status could have been checked.

Additional Functionality: Command Line Arguments
The C language, unlike FORTRAN, has a provision to allow for the access of command

line arguments for executable programs. These command line arguments can be option flags
or run-time parameters which help influence how the program will function. The use of this
capability allows for a program to be written generically rather than for a specific application.
Unfortunately, FORTRAN does not provide for this capability.

The ftocio library contains functions which introduces this flexibility into FORTRAN.
These functions allow the programmer (and user) to obtain command line arguments for sub
sequent use within the programming code.

The command line arguments can be either integer, floating point, or character string
arguments. The following functions provide this capability:

name funcnon or subroutme
Iarl mteger argument, long" (get INT*4 value)
iars "integer argument, short" (get INT*2 value)
far "floating point ar_g_ument" (get REAL value)
getname subroutme to get character stnng
openr subroutine to open file given in command line
creatr subroutine to create file given in command line

Command line arguments are given for an executable program "main" in the following
form:

main arg 1 arg2 arg3 ...

The functions and subroutines named above are programmed to obtain a value from a specific
location in the command line. The locations are specified by the programmer within the
source code. The user must follow this order.

Command line functions: IARL, lARS, FAR
To obtain a 4-byte integer from the command line, the line

IV ARIABLE = iarl (LOCATION)

is used. LOCATION is the spot in the command line where the integer value is to be given
by the user when the program is run. IV ARIABLE is the integer variable to receive the
value. An example is given below.

To obtain a 2-byte integer, the line

IVARSHORT = iars (LOCATION)

is used. IV ARSHORT must be declared as an INTEGER *2 variable. Again, LOCATION is
the spot in the command line where the value is to be given.

A floating point value is obtained in a similar manner:

168

XVALUE =far (LOCATION).

The floating point value in the LOCA TIONth spot is placed into variable XV ALUE.

Example of command line functions
A program to compute the source-receiver distance for an evenly spaced refraction (or

reflection) receiver array is given below. First, an interactive program is given, followed by a
command line version.

Interactive version:

c Compute receiver array source-receiver offsets: INTERACTIVE
integer nrec
real drec,dO

C Get # receivers, receiver spacing, 1st receiver distance
write(*,10)

10 forrilat('Enter #receivers, receiver spacing, 1st receiver:')
read(* ,20)nrec,drec,d0

20 format(i5,2f10.3)

C Now compute offsets
do i = 1,nrec

offset=dO + drec * ftoat(i-1)
write(* ,30)i,offset

30 format(' receiver' ,i5,' is offset by' ,f10.3)
enddo
END

Command line version:

C Compute receiver array source-receiver offsets: COMMAND LINE
integer nrec
real drec,dO

C Get # receivers, receiver spacing, 1st receiver distance;
C User runs program as: (prompt) main nrec drec dO

nrec=iarl(1)
drec=far(2)
d0=far(3)

C Now compute offsets
do i = l,nrec

offset=dO + drec * ftoat(i-1)
write(* ,30)i,offset

30 format('receiver' ,i5,' is offset by' ,f10.3)
enddo
END

An example of the execution of the latter program would be:

main 48 100. 150.

where the number of receivers is 48, the receiver spacing is 100 m, and the first receiver is
150 m from the source.

l":

"

"

169

The latter program can be run from shell or batch files while the former program is
designed for user input (or with redirected input files).

Command line subroutines: GETNAME, OPENR, CREATR
The command line functions obtain numerical values from the command line. These

values are obtained by first extracting the character string for the argument and then convert
ing the string to the appropriate numerical value.

In order to obtain just the character string, the subroutine getname can be used. The
subroutine is called in the following manner:

CALL getname(LOCA TION,STRING)

where LOCATION is the position in the command line arguments and STRING is the
returned character string. A typical use for this subroutine is to obtain the name of a file to
open:

character*20 FILENAl\1E
integer copen, in

call getname(l, FILENAME)
in = copen(FILENAl\1E, 0)

In this example, the first command line argument after the executable program name is the
input file name. This name is obtained by getname; the file is subsequently opened by
copen.

Since much of the use of character string command line arguments is for file names
which are to be opened or created, subroutines are provided to obtain the character string
name and open or create the file. For example, the above four lines of FORTRAN code can
be replaced by a one line call to the subroutine openr:

call openr(l, 0, in).

This subroutine will obtain the first command line argument as a character string (file name),
invoke the copen function to open the file with read-only access (ACCESS=O), and return the
file identification number into the variable "in"). The range of ACCESS values (0-2) can be
used here. If the subroutine fails, IN will equal -1.

In a similar manner, one can create a filename given a command line file name using the
creatr subroutine:

call creatr(LOCATION, MODE, ACCESS, lOUT).

LOCATION is the location in the command line of the new file name. MODE is the permis
sion code (e.g., 6*64 + 6*8 + 4 = 0664 octal = rw-rw-r-- file permission) in which to create
the file. ACCESS is the resulting file access to be given the file for this program (a la
copen). The resulting file identification number is returned into variable lOUT. If the sub
routine cannot create the file with the given permission and access, lOUT will equal -1.

Example 2: A versatile data file copy program
Example 1 above described a program to copy a data file 'OLDNAl\1E' into a new file

'NEWNAME' .. The loop to copy twenty 1000-sample traces was hardwired into the program.
The same program can be constructed in a very generic manner using the command line func
tions and subroutines to create a program that will copy any number of traces of a user
specified length.

170.

C COPYFILE: a generic program to copy one data file to another.
C To run: (prompt) copyfile oldfile newfile nt nx
C where oldfile = file name to copy
C newfile = file name to create
C nt = number of samples/trace
C nx = number of traces to copy

dimension TRACE(1000)
integer cclose,cread,cwrite

iperm= 6*64 + 6*8 + 4

C Open input, create output, seek to beginning of both
call openr(1 ,O,in)
call creatr(2,iperm, 1 ,iout)

NT=iarl(3)
NX::iiarl(4)
if(NT .GT. 1000) then [fatal error]

C Now loop over traces
·do 100 i=1,NX
nread = cread(in, TRACE, 4*NT)
nwrite = cwrite(iout, TRACE, 4*NT)

100 continue

C now shut down
ichk=cclose(in)
ichk=cclose(iout)
END

As an example, this program could be run as:

copyfile OLDNAME NEWNAME 1000 50

Subroutine openr will open file 'OLDNAME' with read-only access. Subroutine creatr will
create file 'NEWNAME' with 'rw-rw-r--' file permission and will open the file with write
only access (ACCESS=1). Both subroutines will essentially place file pointers at the begin~
ning of the files (i.e., execute cseek(file,O,O) commands).

The dimensions of the data (number of traces, number of samples per trace) are not
hardwired, but are obtained from the third and fourth command line arguments. For this
example, fifty 1000-sample traces will be copied. The program, as written, will copy any file
containing any number of traces into another file provided the internal trace array dimension
(i.e., 1 000) is not exceeded.

Compiling FORTRAN Source Code When Using FTOCIO LIBRARY

The functions and subroutines are not part of the standard FORTRAN compiling library.
The archive library ftocio.a is found in the IRIS-SEIS directory .. ./irisl3/lib. This library
must be listed in the link list when compiling the original source code of a program:

f77 main.f .. ./irisl3/lib/ftocio.a [other flags, libraries] -o main.
IRIS-SEIS and LOCAL-SEIS shell and make files include this library in their link lists.

"

·•

171

Appendix Iffi: FfOCIO Library

C-Language I/0 for FORTRAN Programs:
FORTRAN Unformatted I/0 Access of Seismic Data

using C-equivalent Routines

Summary Table

NOTE: Always declare the I/0 functions as integers:

INTEGER *4 ccreat, copen, cclose, cread, cwrite, cseek

CCREAT

COPEN

m =copen(m
m =copen(m

character cmput, coutput
cinput = 'data'
coutput = 'results'
in = copen(cinput,O)
iout = co en(cout ut,2

ccrea creates a e name .
FNAME is a string or a character vari
able.
!PERM is the file's RWX mode in
octal.
ICREAT is the file identification
number, e ual to -1 if failed.
creates fi e named ou ut

open opens an ex1stmg e.
FILENAME is a string or a character vari
able.
ACCESS is a tem~or~ file access
(read/write); file permission (!PERM in
ccreat) must be compatible.
!OPEN is the file identification number, equal
to -1 if failed.

opens input file 'data' (read-only)
o ens existing ou ut file 'results'

CCLOSE

CREAD

1mens10n trace 1
nsample = 100
in = copen('input' ,0)
nread = cread(in,trace,4*nsam le)
d1mens10n trace(1)
integer nsample
in = copen('input' ,0)
nread = cread(in,nsample,4*1)
nread = cread(in,trace,4*nsam le)
1mens10n trace(1)

ntrace=10
nsample= 100
in = copen('input' ,0)
do iloop= 1 ,ntrace

nread = cread(in,trace,4*nsample)
enddo

CWRITE

dimension trace(l)
nsample= 100
iout=copen('output' ,2)
nwrite=cwrite(iout,trace,4*nsam le

172

or

rea s an array o ytes, trans atmg ytes
into proper format based on declaration of
ARRAY.
ID is file identification number defined by copen
or ccreat.
ARRAY can be real, integer, or character arrays.
NBYTES is total number of bytes to read.
NREAD is status fla , = -1 if read failed.

1 oatmg point

(1 rea s bytes, translates mto mteger number
stored in 'nsample'.
(2) reads 4*nsample bytes, translates into nsample
floating point numbers stored in array 'trace'.

cwn e wntes an array o ytes, trans aung
from ARRAY.
ID is file identification number defined by
copen or ccreat.
ARRAY can be floating point, integer, or
character array.
NBYTES is total number of bytes to write.
NWRITE is status flag, = -1 if write failed
(check read/write ermissions).

~·

..

CSEEK

m = copen(mput ,)
nsarnples= 1000
nbytes=4 *nsamples
nseek = cseek(in,nbytes,O)
nseek = cseek(in,nbytes,l)
nseek = cseek in,nb tes,2

173

Command line functions IARL, lARS, FAR

csee moves . ocat10n pomter to a new
byte position.
ID is file identification number defined
by copen or ccreat.
NBYTES is number of bytes to move to.
FROM WHERE is a position reference
location from which to move NB YTES
bytes.
NOTE: each cread or cwrite moves the
location pointer to the end of the bytes
read or written.

skip nbytes bytes from beginning of file.
skip nbytes from current pointer location.
ski nb tes back from end of file.

1St. .. .,

1St.

ar o tams va ue rom comman me argument 1St.
LOC is position in command line argument list.
XV AR is variable receivin REAL value.

'·
~- ~"' ·"
t
~

....)~

--ll•~ ··~-·
f

174

Command line subroutines GETNAME, OPENR, CREATR

!PERM= + +
call creatr(2,IPERM, 1 ,ID)

IP + +
call creatr(2,IPERM,2,ID)

ge name returns a c
command line.
LOC is the position in the command line argument
list.
CSTRING is a character string containing the
returned command line strin .

t e

crea r creates a e w ose name Is giVen m t e
command line argument list.
LOC is the position of the file name in the com
mand line argument list.
!PERM is the file permission (mode) to assign to
the new file.
ACCESS is the copen access code (0-2) in which
to open the file.
ID is the file identification number returned by
creatr

f.

~··~ .,

LAWRENCE BERKEt.EY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

' ;f ~ v;
-::

