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Convefgence of the Random Vortex Method in
Three Dimensions *

(Revised)

Ding-Gwo Long

Abstract

The convergence of the random vortex method in R3 is proved.
An almost optimal rate of convergence is obtained. The convergence
follows from the consistency and the stability of the method. Since
the motion of the vortices is random, the major task of the paper is to
incorporate appropriately the stochastic elements of the method in all
parts of the proof. The framework established earlier for proving the
convergence of the random vortex method in R? is adapted to treat
vortex stretching, a mechanism absent in two dimensional fluid flows.

. *1980 Mathematics Subject Classification (1985 Revision). Primary 60F10, 65M15;
Secondary 76C05.



1 Introd_qction

The random vortex method was introduced by Chorin [6] to simulate viscous
incompressible fluid flows governed by Navier-Stokes equations

%—?-}-(u-V)u = -Vp+vViu (1.1)

V.u = 0 : (2

where u is the velocity field, p is the pressure, and v is the kinematic viscosity.
By taking the curl of equation (1.1), the vorticity field w = V x u satisfies
the equation

ow

-a—t+ (u-Vw=(Va) w+rvViw (1.3)
and the velocity is determined by the vorticity through the Biot-Savart Law
ue,t)= [ K(@-y)-w(u0)dy (14)
where K is a matrix-valued kernel given by
1 =z
= ———X. 1.
K(a,1) = = or (1.5)

The terms (u-V)w, (Vu)-w, and V2w in (1.3) represent convection, stretch-
ing, and diffusion of the vorticity, respectively. In two dimensions w is per-
pendicular to u and there is no stretching of the vorticity. The random
vortex method uses finitely many particles called vortices each carrying a
vorticity vector to approximate the vorticity field. The vortices evolve ac-
cording to the approximate velocity field which in turn is determined by the
vortices through a discrete analogue of (1.4). The viscous diffusion is sim-
ulated by adding random perturbations to the motion of the vortices. The
random perturbations are independent Gaussian random walks or indepen-
dent Brownian motions (Wieher processes) depending on the time being
discrete or continuous. If the boundary is present, then the non-slip bound-
ary condition can be satisfied by creating vorticity on the boundary. For a
general introduction of the method, see [8]. The random vortex method is
particularly suitable for flows at high Reynolds number since in these flows
the vorticity is usually concentrated in regions which are much smaller com-
pared to the total fluid volume. Moreover, unlike the difference methods,
the step of simulating the viscous diffusion by random walks does not intro-
duce numerical viscosity which may swamp the effects of physical viscosity.



For numerical computations using the random vortex method, see €. g. [6],
(7, 191, (3], [25). | | |

Various partial results on the convergence of the vortex method have
been proved. For inviscid flows (i. e. » = 0) in two and three dimensions
without boundaries, the convergence results have been established by the
works of Hald [17], Beale and Majda [2, 3], Cottet [10, 11], Anderson and
Greengard [1], and Beale [5]. In this case the evolution of the vortices
is described by a finite system of ODE’s. There are two versions of the
inviscid vortex method in R3. Their difference lies in the updating of the
vortex stretching. Beale and Majda [2, 3] proposed and proved a version in
which the vortex stretching is incorporated through a Lagrangian update.
Later Anderson and Greengard [1] proposed the other version in which the
vortex stretching is obtained by differentiating the computed velocity field.
Its convergence was proved by Beale [5].

It is difficult to generalize the version in {2, 3] to a random vortex method
yet the version in [1] can be converted to a random vortex method simply by
adding independent Brownian motions to the motion of the vortices. Thus
the evolution of the vortices is described by a finite system of stochastic
differential equations (abbreviated as SDE’s). Esposito and Pulvirenti [12]
proved a “propagation of chaos” (law of large numbers) type of result on
the convergence in R3 which is similar to an earlier result by Marchioro
and Pulvirenti [23] in two dimensions. Their results are not satisfactory
from the point of view of numerical computation since there is no rate of
convergence. The satisfactory results should be of “large deviation” type.
Moreover, the analysis of the random vortex method should generalize that
~ of the inviscid vortex method since the former is a random perturbation
of the latter. Goodman [16] considered and proved the convergence of a
version of the random vortex method in which the initial positions of the
vortices are randomly chosen. This version is not used in actual compu-
tation and the approach in [16] is not generalized from the analysis of the
inviscid vortex method. As a consequence the rate of convergence obtained
in [16] is not optimal. Based on the works in the inviscid vortex method -
mentioned above, the author [20] constructed a unified framework to analyze
the random vortex method. He used a large deviation estimate (Bennett’s
inequality) to prove an almost optimal rate of convergence in R2.

In this paper we consider the random vortex method in R® with contin-
uous time and prove almost optimal results on the convergence. Aspects of
time discretization will be discussed in [21]. The approach in the present
paper is based on the framework in [20] and the analysis of the vortex



stretching in [5]. However, more advanced probability theory is required
to treat the random vortex stretching. In [5] and [20] the convergence fol-
lows immediately from the consistency and the stability. Here in the proof
of convergence one needs to use stochastic calculus and continuous martin-
gales to estimate the error of vorticity in the negative Sobolev space. The
main results are stated in Section 3 and they are uniform with respect to
the viscosity v € [0, 1] for arbitrary vo > 0.

The consistency error consists of three components: the moment error,
the discretization error, and the statistical error. They are of the order
6™, 8(h/8)L, and h(h/8)/?|1n h|, respectively. h is the lattice spacing and
it is proportional to N=1/3 where N is the number of vortices used in the
computation. § is required to be of the order h? with 0 < ¢ < 3/5. The
positive integers m and L will be defined in Section 2. For smooth flows
one can choose m and L to be large. Consequently the statistical error is
the dominant error in terms of order. It follows from central limit theorem
that the estimate for the statistical error is almost optimal—within a factor
of [Inh|. One expects that the statistical error decreases to zero as the
viscosity ¥ — 0. The detailed v-dependence of the statistical error will be
treated in [22].

The rest of the paper is organized as follows. Section 2 contains a brief
summary of the inviscid vortex method and its convergence results. In Sec-
tion 3 we formulate the random vortex method and state the main theorem
on the convergence. The theorem is proved in Section 7, following the proofs
of the consistency and the stability in Sections 5 and 6, respectively. Several
estimates frequently used in proving the consistency and the stability are
gathered in Section 4.



2 Inviscid Vortex Method
The vorticity-stream formulation of inviscid incompressible fluid flows in R3

is
6w

5t (v -Vw=(Vu) -w (2.6)

wwt)= [ K@) -w(nt)dy

where K is defined in (1.5). The evolution of the vorticity field expressed in
terms of Lagrangian coordinates is given by

2 150) = [Vu(z(t; ), 1] -w(ti) (27)
where the particle trajectory z(?;a) is the solution of the ODE
dz '
E(t;a) = u(z(t;a),t) (2.8)

with the initial data
z(0;a) = a.

By expressing v and Vu in terms of z(¢; @) and w(?; a), we have the particle
trajectory formulation

L) = [ KaGa)-ata) wita) e (29)

dzc:-(t; a)= [/ VK(z(t; @) — z(t; ) - w(t; ') da'] -w(t;e)  (2.10)

By discretizing (2.9) and (2. 10), Anderson and Greengard [1] proposed the
following vortex method

d%;

o = Elfs(f,' - Z;) -G')jhs (2.11)
J
dLTJ,' ~ ~ ~ 131 ~
w7l [ZVKs(:L‘,' - %;)- @k ] <& (2.12)
I

with the initial data

z:(0) = os, @i(0) = w(e,0)



where a; = h -i with i € Z3 are lattice points of spacing h > 0, K5 is a
smoothed kernel with

Ks=K+t5, sz) = 69(57), /R W@)dz=1, §>0,

and the initial vorticity w(-,0) is assumed to have bounded support. The
choice of the smoothing function ¢ is closely related to the accuracy of
the method. We denote that ¢y € ML™ if it satisfies the following three

conditions:
() /Rs ¥(z) dz = 1.
(ii) /R3 xﬁw(m) dz =0, for all multi-indices B with 1 < |8} <m-1.

(iii) ¥ € CL(R3) and 9 decreases rapidly at infinity.

Examples of ¢ can be found in [4] and [5].

The convergence of the method was proved by Beale [5]. The main result
in [5] is summarized in the rest of this section. Before stating the main result,
we need to introduce certain notations. The computed velocity is denoted
by :
i (z,t) =Y Ks(z — &:(1)) - @i(t)h>. (2.13)

To analyze the method, we introduce a reference velocity

uh(z,t) = ZKg(a: — z;(1)) - wi(t)h® ’ (2.14)

which is obtained from the exact particle paths |

dz;

7 (t) = u(zi(t),t), =zi(0)=Z;(0)="h-1
and the exact vorticity vectors

dw;
dt

(1) = [Vu(a:(t),0)] - wi(2).
The discrete velocities evaluated at Z;(t) and z;(¢) are denoted by

Bh() = @E),) | (2.15)
ul(t) = ul(zi(2),0), _ (2.16)



respectively. The gradients of the veloéity fields Vat, Vut, Vak, Vul are
defined as in (2.13), (2.14), (2.15), and (2.16) with Kj; replaced by VKj.
The error ; — z; is estimated in the discrete L}-norms defined by

I fillop,n = {Z Ifilph:’}l/p.

The error &; — w; is estimated in the discrete negative Sobolev space W, Lp

with the norm
| fill-1,pn = sup 1(fi> gi)n|

gewre 19illLpen

where
(firgdn =)_ figih®
i
and ' s
gl e = i1 + 3 1D alloge
is the norm of the discrete Sobolev space W,} ?" with Dy being ‘the forward-

difference operator in the /th coordinate direction and (1/p) + (1/p*) = 1.
The main results on the convergence are stated in the next theorem. -

Theorem 1 Assume that the velocity field u(z,t) is smooth enough, that
the initial vorticity is supported in a bounded domain Q, and that » € MEL™
with m > 4. Then for all sufficiently small h and 8, § = coh? with co, ¢
fized and 1/3 < q < 1, we have the following estimates

(1) Convergence of particle paths

B3 150 - 2:(Olloph < CI™ + (1/8)"]

(2) Convergence of discrete velocity

(3) Convergence of continuous velocity

22X, 3% (-,t) = u(-, | zrB(ROY) < C[6™ + (B/6)F]

where the constant C only depends on T, L, m, p, q, Ro, the diameter of
Q, and the bounds for a finite number of derivatives of the velocity field.



The convergence results follow from the following two lemmas.

Lemma 2.1 (Consistency Lemma) Under the same assumptions as in
Theorem 1, we have

(C1) |ut(z,t) — u(z,t)| < C[6™ + 6(h/6)L]
(C2) [Vulb(t) — Vu(zi(t),1)] < C[§™ + (h/6)]
untformly in z and t for || < Ry and 0 <t < T where the constant C only

depends on T, L, m, Ry, the diameter of suppwo, and the bounds for a finite
number of derivatives of u(z,t).

Lemma 2.2 (Stability Lemma) Under the same assumptions as in The-
orem 1, choose € and p so that 0 < € < q/2, 2¢ < 3¢ — 1, and p > 3/e.

If
n(t) = [12:() — zi(B)llop,n + [@:(2) — wi(D)]|-1,pp < AT

for some time t with 0 <t < T, then the following estimates

(81) 1@} (8) = uf(Dllopn < Cn(t)
(82) [|VaE! ()@:(t) - Vul (Hwi(®)il-1 < C(t)

hold where the constant C' is independent of t.

Remark One may ask the following two questions.

1. Can one use W, 1?_norms to estimate the consistency error in (C2)
instead of the pointwise estimate so that the discretization error can
be improved by a factor of 67

2. Is the constraint 1/3 < ¢ in Theorem 1 necessary?

The answer for the first question is yes and the answer for the second ques-
tion is no. More details can be found in Sections 3 and 7.



3 Random Vortex Method

The natural generalization of equation (2.8) for particle paths is the SDE
dX(t;0) = w(X(t;0),t) dt + V2 dW(t) (3.1)

with the initial data ,
X(0;0)=a

where W(t) is a standard Brownian motion in R3. W(t) is a stochastic
process characterized by the following properties: :

1. w(0)=0. .
2. For0<ty <t £:.-< 1y, the increments
W(tn) = W(tn-1), W(tn-1) = W(tn-2),..., W(t1) - W(to)
are independent.

3. The three components of the increment W (t) — W(s) are independent
Gaussian random variables with mean 0 and variance ¢ — s.

4. The sample paths of W (t) are continuous.

The equation for vorticity stretching remains in the same form:
dw
() = [Vu(X(t0),1)] - w(t; @) 3.2)

with the initial data
w(0;a) = w(a,0).

Since the diffusion coefficient v/2v is a constant, the SDE (3.1) is equivalent
to the integral equation

X(t;a)=a+ /0 t w(X(s;a),s)ds + V2oW(2). (3.3)

The integral equation (3.3) can be solved sample path by sample path.
Since each sample path of W(t) is continuous, the integral equation (3.3)
has a unique continuous solution by the method of successive approximation.
Since V-u = 0, the map a — X(t; @) is a volume preserving diffeomorphism
for each sample path w. ' '
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It turns out that the velocity can be expressed as
u(z,t) = /Ra K(z - y)-w(y,t) dy
./R3 E[K(z - X(;0)) -w(t;0)] do (3.4)

where E denotes the expectation with respect to the Wiener measure. (3.4)
is a generalized version of the Feynman-Kac formula. For the sake of com-
pleteness we give a derivation of (3.4). The derivation is based on the Trot-
ter product formula. It is sufficient to show that for any vector function
f € IA(R?) nL2(R?), |

(fyw) = /f(:z:) -w(z,t) d:v. = /E[f(X(t;a)) -c&(t;a)] da.

We can write the vorticity equation (1.3) as

ow
W = (A+B)w

where
A(z,t) = —[u(z,t) - V] + vV?

is the operator for convection and diffusion while
B(z,t) = Vu(z,t)
denotes the operator for stretching. The equation

w

%— = Aw | . : (3.5)
is both a backward and a forward equation since V - u = 0. Therefore the
solutions of (3.5) satisfy the maximum principle and the fundamental solu-
tion G(z,t;y,s) is the transition probability density of the diffusion process
X(t). Let X(to) = o be fixed. Then it follows from the Markov property
of X(t) that for t, > t,_y > --- > t; > to, the joint probability density of
X(tn), X(tn=1),...,X(t1) is

1 G(oks ti zao1, ten). ’ - (36)
k=1

Let S(t,s) denote the solution operator of equation (3.5). i. e.

w(z,t) = S(t,s)w(-,s) = /G(a:,t; Y, 8)w(y,s) dy.
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The equation
Ow
2(a,1) = Bla,0) - wlz,1) (3.7)
can be regarded as a system of ODE’s with z being parameters. Let ®(¢, s;z)

be the fundamental matrix of (3.7) with ®(s,s;z) = I. Let w(x) = w(z,1).
By the Trotter product formula,

(f’wt) = nlLIrgo(f, [ ﬁ Ska] * wO)
k=1

where Sy = S(tk,tk-1), ®x = ®(tk,th_1;2), tx = kAL, 0 < k < n, and
At = t/n. It follows from (3.6) that

(fs l_n[ Sk®k] - wo)
k=1

/...//f(mn)[HG(xk,tk;zk_l,tk-l)q’(tkytk—l;xk—l)]
k=1
'wo(:vo) dwodIE] see dxn

[ EUF(X (@) - @a(X(tn1)) - 81(X(t0))lwo(zo) dao.

Therefore

(f’wt)

Jim / E[f(X(tn; @)) ﬁ ®(t;,ti1; X (13 @) - w(a,0)] da

=1
= [ BUX(0)-w(t;e)] de.
Equations (3.1), (3.2), and (3.4) lead to the random vortex method
dXi(t) = [Y Ks(Xi(t) - X;(t) - @;()h®] dt + V2v dWi(t) (3.8)
J

Bl [ E(Rilt) - Ko() - 5508 - () (39)
with the initial data |
Xi0)=a; =h-i, &(0)=w(ey,0) (3.10)

where W;(t) are independent standard Brownian motions in R3. There are
three stages of approximation in (3.8) and (3.9):
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1. the kernel K being replaced by a mollified one Kj,
- 2. the integral (3.4) being approximated by the discrete sum in (3.8),

3. using the summation of the random vectors to approximate the sum-
mation of their expectations provided that the number of the random
vectors is large enough.

Accordingly the error committed in each approximation is called the moment
error, the discretization error, and the statistical error, respectively. They
are the three components of the consistency error.

To analyze the method we follow the strategy in the inviscid case by
introducing the auxiliary processes

dXi(t) = u(Xi(t),t)dt + V20 dW;(2) (3.1
dwT;t(Q [Vu(Xi(2),t)] - wil?) (3.12)

with the same initial data (3.10). Notice that equations (3.8) and (3.9) are
coupled while equations (3.11) and (3.12) are not. Moreover, the motion
and the stretching of different vortices in (3.11) and (3.12) are independent
of one another. The main results are stated in the following theorem.

Theorem 2 Assume that the velocity field u(z,t) is smooth enough, that
the initial vorticity is supported in a bounded domain Q, and that ¢ € ML™
with m > 4. Then for all sufficiently small h and 8, § = coh? with co, ¢
fized and 0 < q < 3/5, we have the following estimates

(1) Convergence of particle paths

25 1K(2) = Xi(W)logs < CL8™ + h(n/8)"? In ]

(2) Convergence of discrete velocity

oD% () — w(Xi(2), Ollopn < C6™ + h(R/6)*/|In h]

(3) Convergence of continuous velocity

2%, @ (-,1) — (-, )l|Le(BRo)) < CL6™ + h(R/6)/?|Inh|]

ezcept for an event of probability less than hC"C provided that C > C' where
the constants C', C" > 0 only depend on T, L, m, p, q, Ro, the diameter
of Q, and the bounds for a finite number of derivatives of the velocity field.
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Notation Following the notation in [20], we will use the symbol a <X b
to denote that @ < b except for an event of probability approaching to zero
faster than any polynomial rate by choosing the constant C sufficiently large.

The convergence follows from the consistency and the stability which are
stated in Lemmas 3.1 and 3.2. Before stating the lemmas, we need to define
certain quantities. Let

ei(t) Xi(t) - Xi(2)
g(t) = @i(t) —wi(?)

be the errors in positions and vorticities, respectively. e; will be estimated
in the space LZ as in [20]. In the inviscid case ¢; was estimated in the
space W~ 1P which is defined on a Lagrangian lattice with spacing h. This
approach does not work for the random vortex method since X;(t) and X;(t)
are random. It is the same problem encountered in proving the stability
lemma in two dimensions. We follow the approach in [20] by averaging the
relevant quantities in Eulerian coordinates. Let ¢ be a radially symmetric
C function with compact support in the unit ball and

/¢>(w) dr = 1. (3.13)

For example, we may choose

#(z) ={ a-exp{1/(Jz]2 -=1)} if|z|<1 (3.14)

0 otherwise
with the constant a determined by (3.13). We define
e(z,t) = Zgb,\(z - Xi(t))ei(t) B3

where
_ $a(z) = A7¢(Aa)

with A = h?, 0 < ¢ < ¢’ < 3/5. In the proof of convergence it is more
convenient to estimate the continuous error ¢(z,t) in the potential space

L~1? which is equivalent to the negative Sobolev space W~1P. The £L~1*-
norm is defined by

llellc-1p = 1H * el
where H is the Bessel potential with its Fourier transform

" 1
H(z) = (1+ 42|12
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H has a singularity at 0 with
H(z) = calz| + o(||™?) as |z] >0
and H decreases rapidly at infinity with
H(z)=0(e™"l) as|z| » o0

for some constants ¢; and cz. See e. g. [27]. We will also need to estimate
the error ¢; in the discrete space L}. The £~1'? and L? norms of any other
quantity f; associated with X; are defined in the same fashion. i. e.

| fill -1, I E oa(z — Xi(2)) fil®|| g1
I fillo,p I Z oz~ Xi(1)) fih%|| .

For example, f; = Vul(t)w;(t) — Vu(X;(t), t)wi(t) in (C3) of Lemma 3.1.

Lemma 3.1 (Consistency) Under the same assumptions as in Theorem
2, we have

(C1) |ut(z,t) — u(z,t)| X C[6™ + h(h/6)'/2|1n A] |
(C2) |8Put(z,t) — 0Pu(z,t)| < C[6™ + 6~1PlA(h/6)1/?|1n ]
(C3) [[Vul(t)wi(t) - Vu(Xi(t), hwi(t)]|-1p 2 ClE™ + h(h/6)'/|1n h|]

for C > C' where the constant C' only depends on the same parameters as
in Theorem 2.

Remark In [5] only the consistency estimate (C2) was used. One can .

afford to lose a power of é in the inviscid case since it can be compensated
by large value of L. For the random vortex method, however, one has to do
more refined analysis like (C3) in order to obtain optimal results.

Lemma 3.2 (Stability) Let

() = llei®)llopn + lle(@; Oll-15 + Allei(®)llop.p-

In addition to the assumptions in Theorem 2, if

(1)) < A2 :
OréltaéxT mtaxle,(t)l <A ‘ (3.15)
Olsnt;ms)%m?x lei(t)] 2 A, (3.16)

then the following estimates

a
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(S1) l[@() ~ wt(®)llopn = Cn(?)
(52) [10°Tk(t) — %ul(llopn <X CEPl[lles(®llopn + bllei)llopnl, 181> 1

(83) IVaR(t)@i(t) ~ Vul ()wi(t)l| -1, < Cn(t)

 hold where the constant C only depends on the same parameters as in The-
orem 2 excluding m and Ry. In particular, C is independent of T'.
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4 .Basic Estimates

We list several estimates which will be applied throughout the rest of the pa-
per. Lemma 4.1 was used to estimate the discretization error of the inviscid
vortex method. Lemma 4.2, a generalization of Lemma 4.1, will be needed
to estimate the discretization error of the random vortex method. It turns
out that Lemma 4.2 is also needed in estimating the variances occuring in
the statistical error and in the stability estimate.

Lemma 4.1 If F € C§(R?) with L > d + 1, then the following estimate

| Y Fh-i)h? ~ [ F(a)da] < CH* - max(IOF Fllzs, - |OF Fllzr)
i€z

for the gquadrature error holds and the constant C only depends on d.

See [1] for a proof by using Poisson’s summation formula. When applied to
the inviscid vortex method in computing the velocity field the function F is
of the form _

F(a) = Ks(z — z(t; ) - w(t; a)

where t, z are fixed and « is the Lagrangian coordinates. For random vortex
method the function F' is the expectation of the functional

1

F(alw) = Ks(z — X(t;a)) -w(t; ). (4.1)

where X (t; @) is determined by the integral equation
¢
X(te)=a+ / u(X(s;a),8)ds + V2uw(t) (4.2)
0

with w(t) € C[0,T] being sample paths of a standard Brownian motion.
Notice that w(t;a) is a smooth function of the initial position a and a
functional of the sample path w. The form of the functional F leads to the
formulation of the following lemma.

Lemma 4.2 Let X(t; ) be the solution of the SDE
dX(t;0) = u(X(t;a),t) dt + V2v dW ()

in R® with the initial data X(0;a)=a€ R¢ whereV.-u =0, u € C’L(Rd X
[0,T), L > d+ 1, and all the spatial derivatives of u(-,t) up to the order L
are uniformly bounded. Let F(a,t) be the expectation of the functional

Flo,tlw) = f(X(t;a)) - g(a|w)
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where f € CL(RY), L > d+1, and g as a function of o is supported in a
bounded domain Q. Then we have the following estimate for the quadrature
error

. d—
e | ;eiz:a F(h-i,t)h /Rd F(a,1) daf

< Chmpxllglie Y {f

10° f(2)| dz + sup |0° ()]}
oglpicL IeIS lel>R

where R > 0 is arbitrary and the constant C only depends on d, T, L, the
diameter of Q, and max;<ig<L HaﬂuHLoo(Rdx[om).

Proof: After applying Lemma 4.1 with respect to each sample path and
then taking the expectation, we have

|3 Bl i) - . BlF(alw)] dal < ChE - sup max |0F F(-{u)lz

where the constant C only depends on d. We then estimate ||0FF||: for
[ =1,.--,d. By direct differentiation we know that 8,LF are sums of finite
terms of the form

E(0°f)(X(ta). JI (X)) - 04g(t; )] (4.3)
1<hI<L

where 8,7, &k, are multiple indices with 0 < ||, |v], ], |¢] < L. To apply
lemma 4.1 we need to show that all the partial derivatives 37X (t;a) up to
order L are uniformly bounded with respect to w. By differentiating (4.2)
with respect to a, the first order partial derivatives of X(t; a) satisfy the
integral equations

t
é-i—lX(t;a) =9+ /0 [Vu(X (s;0), )] - [aia’X(s;a)] ds (4.4)
where #; is the unit vector in the /th coordinate direction with [ =1,---,d.

By repeated differentiation of (4.4), the integral equations for higher order
derivatives are

PX(t;a) = /:Y(.ﬂ ds + /Ot [Vu(X(s;a),s)] -0 X(s;a)ds  (4.5)



18

where Y (s) only contains the derivatives of 4 and X of orders lower than
|B]. Notice that (4.4) and (4.5) do not have explicit dependence on w. By
applying Gronwall’s inequality to (4.4), we have

|pe X (ta)| < explt- [ Vullu]

By induction and Gronwall’s inequality,

G
Jax max [0°X(t;0)] < C (4.6)

where C only depends on L, T, and max;<|gi<L |0 u||Leo. It follows from
(4.3) and (4.6) that

0Pl = [ oy f(a)lda
Ball o g
< cogllﬁ%na - 3 > [ 105X ()l da
and .
J 101X (8 ) de (4.7)
_ 3
- /X O | (4.8)
< / 167 £(z)] do + Area(®) - sup 16°f(z)|. (4.9)
lzI<R lz|>R

where (4.8) follows from the map a — X(¢;a) being a volume preserving
diffeomorphism and (4.9) is obtained by splitting the domain X(¢; Q) into
two parts: inside and outside the sphere |z| = R. This finishes the proof of
the lemma. '

Since the Navier-Stokes equations are nonlinear, we need a uniform
bound on the velocities u with respect to the viscosity v ranging in a com-
pact set (say, 0 < v < 1p) so that in later sections we can apply Lemma
4.2 to obtain estimates uniform in [0, 9]. The next lemma from Kato [19]
provides the bound.

Lemma 4.3 Let u¥ denote a family of solutions of the Navier-Stokes equa-

tions with the same initial data uo € H*(R3), |juollgs < M, and s suf-

ficiently large. Then the solution ezists in C([0,To); H*(R3)) for Tp <

(CsM)™Y with :
(- Ollge < M(1 - CaMt)™!
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where Cy depends on s but not on v.

By Lemma 4.3 and Sobolev’s lemma, max; <<z “aﬁU”Loo(RSX[O,T']) is uni-
formly bounded with respect to the viscosity v if the initial data is smooth
enough.

We also need the following estimates about K5 and its derivatives.

Lemma 4.4
(i) |8°Ks(z)| < C6~2-1, vz € R3.
(ii) 10°Ks(z)| < Cla|~2- W, V|z| > 6.

See Lemma 5.1 on p.21 of [2].

Lemma 4.5

@) / |Ks(z)| dz < CR, V6 < 1.
lel<R
(i) /l AP Ke(z)| d= < CIn(R/8), for 18] =1, 8 <1
z|< :
(iii) /I I Ks(2)] dz < Cre P, for |B] > 1, 6 < 1.
sl<

Lemma 4.5 follows from Lemma 4.4 by applying the pointwise estimates (i)
and (ii) to the regions |z| < § and § < |z| < R, respectively. Notice that H
satisfies the same inequalities in Lemmas 4.4 and 4.5 with 6 replaced by A
since H and K has the same order of singularity at 0.

Lemma 4.6 (Generalized Young’s Inequality) Let(U,u) and(V,v) be
two measure spaces and J be a measurable function on the product space
(Ux V,uxv). Let '

1) = [ I, )9() dv(w) (4.10)

where g is a measurable function on (V,v) such that the integral (4. 10) erists
a. e. p. For1<p< o, define

1l = max{ sup ( [ 17 9P du(@))", sup ( [ 17,0} ()"}
Then we have

@ £l < 111 Nlglle
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(i) 11£lly < 111l flgll
(i) 1Al < 11l Nglle with =1 = p= 4671 — 1.

Proof: The proofs of (i) and (ii) are similar. See Section 0.C in [14] for a
proof of (i). Here we give a proof of (ii). We have

@ < [1IG@lsw)dw) |
([WEwrawlaw)” - ( [lswiaw)”

by Hélder’s inequality where (1/p) + (1/p*) = 1. Therefore

IA

FAN

1l < ([ [ 19 0PIl ave) du) " - 1ol

111 Ngllx

by Fubini’s theorem. It follows from Holder’s inequality that

I flleo < M5 Nlglp=- (4.11)

(iii) follows from (ii), (4.11), and Riesz’s convexity theorem. See e. g. Section
V.1 in [26].

IA

Lemma 4.7 (Calderén-Zygmund Inequality) Let ® € C*(R) be ho-
mogeneous of degree zero. Assume that ® satisfy the cancellation property

/S _ ®(z)do = 0.

For g € IP(R%), 1 < p < oo, define

— ®(z —y)
o= /Iylze Te g W) -

Then lim._,o fe = f exists in L? and

11l < Cllgll

where the constant C only depends on ® and p.

See [27] for a proof. The next lemma is useful in estimating the statistical
error. It is also needed in proving the stability lemma.
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Lemma 4.8 (Bennett’s Inequality) Let S = };Y; be the sum of in-
dependent bounded random variables Y; with mean zero and variance a?.
Assume that |Y;| < M and ;02 < V. Then for alln > 0,

P{IS]2 7} < 2exp[ - 5PV B(M7V )] (4.12)

where B(A) = 2272[(1 + A)In(1 + A) — A}, A > 0, limy_¢+ B(\) = 1, and
B(A)~2X"1ln )X as A — oo.

For random vectors Y; in R3, we have
P{1812 1} < 6exp[ — PV B(MAV )]

by applying (4.12) to the three components.
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5 Consistency

The proof of (C1) is almost the same as that in two dimensions. We decom-
pose the error into

|uh(x,t) - u(z’t)l
= | Kile - X()wi(Oh - [ K@ - p)w(w,1) dy

< 120 Ks(z = Xi(®) wi(t)h® ~ > ElKs(z - X)) wi(t)] h°] +
|3 BlKs(z ~ Xi())wi()] b - /RS E[Ks(z - X(t; @) w(t; )] da| +

| o Kol = nwwt)dy - [ Ko - )lst) dyl

= statistical error + discretization error + moment error

where [ E[Ks(z — X (t;a)) -w(t;a)]da = [ Ks(z —y)-w(y,t) dy follows from
the generalized Feynman-Kac formula derived in Section 3. The moment
error is bounded by Cé™ by the same argument as in the inviscid case. It
follows from Lemmas 4.2, 4.3, 4.4, and 4.5 that the discretization error is
bounded by C(h/6)L6. We begin to estimate the statistical error. Let

Y. = hs[Ifg((l: - X,'(t)) . w,-(t) — EK,s(.'E - Xi(t)) . w,-(_t)].
We have EY; = 0, |Y;| < Ch36-2 = M, and |
Z VarY; '
i

= WY {BIKs(z - Xi(t) - wi(t)]? ~ |EKs(z ~ Xi(t)) - wi(t)]*} h°

IA

h3 Y {E|Ks(z — Xi(t)) - wi(t)|?} B3 (5.1)
The summation in (5.1) can be approximated by the integral
/ E|Ks(z — X.(t; a).) ‘w(t;)? da

Q

with an error less than C6~1(h/6)L by the eéua]ity |K(2)|> = |[V2K(z)| and
Lemmas 4.2, 4.4, and 4.5. Since w(t; ) is bounded, :

/Q E|Ks(z - X(t;0)) -w(t;0)|? da
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< /ﬂE|K5(x - X(t;0))? da
= /Q./R3 |K5(z - 9)|2G(y, t; @, 0) dy de
= [ 1Koz = )P, 0) dy

where G is the fundamental solution of (3.5) and w(y,t) is the solution of
(3.5) with the initial data

1 ifla|] €
0 otherwise.

w(a,0) = {
Since |w(y,t)| < 1 and [ w(y,t)dy = Area(Q),
Joo VEs(@ = 0)Pw(y,1) dy

/ |K5(2)|2 dz + Area(R) - sup |Ks(2)]?
|2|I<R lzZ|>R

IA

< C§!

by Lemmas 4.4 and 4.5. Therefore V = 3, VarY; < Ch3§~!. By Bennett’s
inequality, we have

P{|2_Yil 2 Ch(h/6)/*|In |}

6exp { — -(1—5C'2h36“1|1n h|2V-1B[MCh(h/6)*|In h|V 1]}

exp { — C1C?|In h|2B[C2C(h/6)>?|In h|]}

exp { — C3C|In h|? }
thCllnhl

INIANIA A

This completes the proof of (C1). The proof of (C2) is the same as (C1)
except that K is replaced By 0P K5. Therefore, the right hand side loses a
factor of 6!°! in both the discretization error and the statistical error.

(C1) and (C2) are estimates for a fixed point . It follows from (Cl) and
(C2) that for lattice points zx = h? - k in any ball B(R),

mf.x|uh(zk,t) — u(zx,t)| < C[6™ + h(h/6)/?|In hl] (5.2)

max |0Puh (2, 8) — BPu(zk, t)| <X C[6™ + 6P B(R/8)/?|Inh|). (5.3)
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. In Section 6 we will use (5.2) and (5.3) combining with the stability estimates
"(S1) and (S2) to obtain the L? estimates:
lw*(2:2) = u(zs)llop % CLE™ + h(R/8)"/*|In A (5.4)
|10%uh(z,t) — %u(z,t)||o, = C[6™ + 6~ 1Pla(h/6)1/?|1n A]]. (5.5)

In the convergence proof we will also need the following consistency estimates
at the locales of the vortices:

max [uf(t) - w(Xi(2), )] 3 C[6™ + h(h/6)/*|Inhl]  (5.6)

max [Vl (1) - Vu(Xi(2),1)] < C[6™ + (h/6|nh]].  (5.7)

To justify (5.6) and (5.7), we introduce an independent copy X/ of X;. By
(C1), (C2), K5(0) =0, and VK;(0) = 0, we have

|ul(2) + Ks(Xi(t) - X{(t)) - wih® — u(Xi(2), 1) (58)

< C[6™ + h(h/6)/*|In h|]

and v
[Vul(t) + VEs(Xi(t) — X{(2)) - wih® — Vu(Xi(2),1)| (5.9)

< C[6™ + (h/8)%/?|1n hj].

Since |Ks(z)| € C6-? and |VKs(z)| < C6-3, (5.6) and (5 7) follow from
(5.8) and (5.9), respectively.
By definition the left hand side of (C3) is

I Z da(z — X)[Vul(t) = Vu(Xi, )]wih®||-1,p- (5.10)

We expand Vul(t) and Vu(X;,t) around z:
Vul(X;,t) = Vub(z,t) + [(Xi - z) - V]Vu(z,1)
+1[ X;-z)- VI*Vuh(z,t)
-+ '[(X- - z) ﬁ V"Vl (z + Y, t)

— “(0) + :9‘(1 +---4+ 3 “(")

1
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Vu(Xit) = Vu(z,1)+[(Xi - 2) - V]Vu(z,?)
+'21'[(Xi -z)- V]ZVu(z,t)
1 n
tooot ;{!'[(Xi —z)-V]"Vu(z + Y/, 1)
= 3$°)+s$1)+...+3(") .

where [(X; — z) - V]I = ¥|p=i(Xi — z)P0P and we ignore the fact that ¥;
and Y/ may depend on the components. The I-th order term (3" — s{)w;,
!l=0,---,n —1,in (5.10) is the summation over |3] = ! of the terms

PV [uh(z,t) — u(z,1)) -Zaﬁ,\(m - X)) - (Xi - z)Puwih®.

We need the following lemma.

Lemma 5.1 For multi-indices 3, let

wPh(z,t) = E oz - Xi(1)) - (Xi(t) — z)Puwi(t)R3. (5.11)

Then ||w?*]|1,00 < CAIPL

The proof of Lemma 5.1 will be given at the end of the section. It follows
from Lemma 5.1 and (5.5) that

I3 = il < 30 10°V[u? —u] - Py

18=1

< 2 MMl - 10° VI - ulll-1p
I81=1

< CoPL 188 1ut — u]llo,

< CXP[6™ + 6~ VPla(R /&) /2| In ]

< C[6™ + h(Rh/8)"/?|1n k|

The n-th order term will be estimated in LP-norm. We consider the decom-
position
WMz +Yi,1) - u(z + Y7, 1)
= [uh(z + Y1) — u(e + Vi, )] + [u(z + Yy 1) — u(z + Y/, 1)].
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Since ¢ is supported in |z| < 1, only those X; with |X; — z| < A have
contribution. For those X;’s we have |Y; — Y}/| < 2) and it follows from the
smoothness of u that

I[(Xi = 2) - V]" - V[u(z + Y, t) — u(a + ¥/, 0)] - will o, < CA™H

By (5.5),
(X = 2) - VI* - V[uh(z + ;1) — u(z + Y, 1)] - i,
< CA™[6™ 4+ 6~"(h/6)3?|Inh|]
< Cl6™ + h(h/8)'/?|In h]]
and hence

I(E = s will-1p < NE = s)willop < CIE™ + b(R/6)/?|In A]

provided that we choose n large enough such that A"+! < §™+h(h/8)1/?|1n A,
and A"67™ < h. This completes the proof of (C3).

The proof of Lemma 5.1 requires the following lemma and Lemma 6.2.
Lemma 5.2 asserts that the number density of the vortices is uniformly
bounded with high probability. It turns out that Lemma 5.2 is also essential
to the proof of the stability.

Lemma 5.2 Let N(z,r,t) be the number of vortices X;(t) in the ball B(z,T)
at time t. Then
B3 N(z,r,t) < Cr3

provided that r > hlln‘h|.
Proof. Define the function I € C§°(R?) by

1 ify € B(z,r)
I(y) = ¢(]_[y A1) fr<|ly—z|<2r
otherwise

where ¢(z) = exp {|z|?/(|z|* — 1)}. It is clear that the partial derivatives
OPI of order |8| = L are bounded by Cr~L where the constant C depends
only on L. We have :

R? - N(z,r,t) < hSZI(X(t))

h3ZEI(X t))+h3Z{I(X,(t)) EI(X(1))}

expectatlon + ﬂuctuatlon.
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By applying Lemma 4.2 with f(y) = I(y), g(a) = 1, we can approximate
the expectation A3 Y"; EI(X:(t)) by the integral f, EI(X(; @))da within an
error

L
Cihl . %27”.3 S ort < Cyr*ht{L - [min(1,7)]7*} < Cr3
=0

provided that h < r. Moreover,
32
EIX(se)das [ [ G ta0)dydas [ dy=Trr
/n (X a)_) @ Q JB(z,2r) (vt;,0) dy dar < B(z,2r) =3

where G is the fundamental solution of (3.5). Therefore the expectation is
less than Cr3 if + > h.
We use Bennett’s inequality to estimate the fluctuation. Let

Y; = B*[I(Xi(t)) - EI(Xi(1)))-
We have EY; = 0, |Y;| < A3, and
> VarYi <h®) E[I(X:(1))%.

We apply Lemma 4.2 with f(y) = E[I(Xi(t))}’, g(a) = 1, to approximate
h3S; E[I(Xi(1))]? by the integral [, E[I(X(t;@))]’ da within an error

L
Ciht . 3—321”‘327‘—1 < Cor®hE{L . [min(1,7)] "} < €13
1=0
provided that h < r. Furthermore
/ E[I(X(t;0))) da < / / G(y,t;,0)dy da < / dy = 32,
0 Q JB(z,2r) B(z,2r) 3
Therefore ¥, VarY; < Cr3h3 if r > h. According to Bennett’s inequality,

P{|>_Yi| > Cr?h|Inh|}

< 2exp{ - -;—(Crzhﬂn h|)? - Cir=3h~2. B[h*Cr2h|In h|C1r 3R 73]}
< exp{—C2C?*Inh|* B[CoCr'h|lnhl]}
< exp{ - C3C|Inhf?}

},CaClInh|
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provided that r—'h|ln h| stays bounded. Hence the fluctuation
Y Yi| 2 Cr?h|lnk| < Cr®
if h|Inh| < r. This completes the proof of the lemma.

~ We begin to prove Lemma 5.1 by decomposing WP into the expectation
EwP"® and the fluctuation wP* — EwPh, It suffices to show that

|8, EwPh(z,1)] < CAPI (5.12)

and
|61[wP(2,1) — EwPh(z,t)}| 2 CAII (5.13)

EwPh is a discrete approximation of the integral
WP(z,t) = /R3 E[#x(z — X(t;@)) - (X (t;a) — 2)° - w(t; )] da

/RS oz —y)-(y - :L‘)ﬁ -w(y,t) dy : (5.14)

where (5.14) follows from the generalized Feynman-Kac formula. let

f(@) = di[pa(x) - (—2)].

f is supported in |z] < A and |87 f| < CA—*-PI*181, 1t follows from Lemma
4.2 that the discretization error

| EwPh(z,t) — 8P (2, 1)) < CREA—EHDNBL < CAIAL,

Moreover, we have

01 [ éx(z =) (v~ 2)° -w(a1) ]

| [ex@ -9 (-2 -ty ) dy]

< A w00
< c )8l

I

since the flow is assumed to be smooth enough. Therefore

||Ewﬁ’h||1,oo < C 8l
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We apply Bennett’s inequality to estimate the fluctuation which is the sum
of the random vectors :

Y; = k*{f(z - Xi) - wi - E[f(z - Xi) - wi]}.

We have |Y;| < CyAPI=4h3 and

S Var ¥i < b3 B{[f( - X’ - w?}A°. (5.15)

The summation on the right hand side of (5.15) can be approximated by the
integral

/;2 E{[f(z - X(t; a))]2 - wi(t;0)} da
with an error less than ChLA2PI=(L+5)  Gince w(t;a) is bounded,
/n E{[f(z ~ X(t )" - &*(t; )} da
‘o 2 o
s C /Q E[f(z — X(t;e))] d
/;1 R3 [f(x - y)] G(y’t;a, 0) dy da

Joo e — vl dy
< Cx-s,

IA

Therefore V = 3°; VarY; < C2h3A01-5 By Bennett’s inequality,

P{Y v >cafl} < 6exp{—%C2C{1h’3/\5B(CC1C’{1/\)}

IN

exp { - CoC2(35/h))

which goes to zero faster than polynomial rate since A = Rt with 0 < ¢’ <
3/5. This proves (5.13) for a fixed point z. For the lattice points zx = h%-k
in any ball B(R), we have

m,?x|01wﬁ'h(zk,t)| < CAlA,

If the radius R is sufficiently large (say, R = co|In hi), then it follows from
Lemma 6.2 that max; |X;(t)] < R — 1. We have wP*(2,t) = 0 for |z| > R
under the event max; | X;(t)] < R — 1 since ¢, is supported in |z| < A. For
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z € B(R), let z; be the lattice point closest to z. By the Mean Value
Theorem, v :

31wﬁ’h($;t) — QWP (2, t)

V(0w (2 + ye, 1)) - (2 — )
V[E f(z + Yie — Xo)wib®] - (2 — z)

(5.16)
where we ignore the fact that Y;x may depend on the components. Since
f is supported in |z| < A, only those X;’s with |zx + Yix — X;| < A has
contribution to the summation in (5.16). It follows that these X;’s satisfy
|z — Xi| <2k + Yie — Xi| + |Yig| < 2.
By Lemma 5.2, h® - M(2x,2),t) < CA3 which implies that

IV[Zf(Zk + Y — Xi)wik®] - (2 — 21)| < C(h/A)2AIAL,

This completes the proof of Lemma 5.1.
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6 Stability

The following lemma can be regarded as the discrete analogue of Lemma
4.5. The proof of Lemma 6.1 is based on Lemma 5.2. These two lemmas
are fundamental in the proof of the stability.

L 8.1 Let M) = BKs(Xi — X; +y)|. Th
emma i Iyrlréaggsllgﬁ__)g [0 K s( i+ )l en

)13 Cllné| ifl=1
;Miih j{ ce-t dfl> 2.

Proof. We prove the case [ = 1 and Cp = 1 in detail. The proofs for
general Co and ! > 2 are almost the same. We write

SMPr = S MPr+ Y MP®+ 3 MR
J |X;—-X;|<26 26<|X;—X{<2 1X;—Xi{>2
=M 4 =23 4 =),

EM < Cy - (26)3 - Ce6~3 < C, by Lemmas 4.4 and 5.2.
In order to estimate =® and =, we notice that |X; — X;| > 26 implies
that

1
1X; = Xi+yl > 1X; - Xi| - |y] > '2-|Xj - Xil.
It follows that

< Y, IXi-XiTRi<e, ). Am<cC
|X;-Xi|>2 IX;~Xi|>2

and
EP<Cc > |Xi— X%l . (6.1)
26<|X;-Xi|<2 :

To estimate (6.1) we decompose the shell S = {z : 26 < |z — X;| < 2}
into N —2 concentric shells S, = {z : (n+1)§ < [z—X;| < (n+2)é}, 1< n <
N —2 where N = [2/6] is the least integer greater or equal to 2/8. Let a, =
N(X;,(n + 1)4,t) be the number of the vortices in the ball B(X;,(n + 1)§).

=2 < ¢ Z |Xj,— X,’l_sha
X;es
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N-2 |
= C1 ), Y. IX;—Xi|™3h3

n=1 X;€S,
N-1
< C2 ) (n8) 3(an — an_1)h®
n=2
N~ Ty e S AV QTP
N3§3 43 =~ (n+1)36 n363 n
N-1 2
1 (3n°+3n+1) 3.3
< —_———— 7 .
< C{C3+ ; [53 Y Ci(n+1)36%]}  (6.3)
N-1,4 '
< -
< Cz{Cs+05§=:l n}
< Cs(l14+1InN)
< Cllné|

where (6.2) is obtained through summation by parts and (6.3) follows from
Lemma 5.2. This completes the proof of the lemma.
We begin to prove (S1) for a fixed time. Consider the decomposition

i -l = Y [Ke(Xi - X;) - Ko(Xi — X;)] - wih® +
i

ZKg(X,' - X;)- 6jh3 +
J

Y IKs(X: - X;) - Ks(X; — X;)] - £;h°
j .

o 4ol 4o,

v{" can be estimated by the same arguments as in two dimensions. v{** can

be further decomposed into _
o = D [Ks(Xi - X;) - Ks(Xi — X;)] - wih® +
j .
2 Es(Xi - Xj) - Ko(Xi — X;)] - wyh®

j
— ,vgu) + ,0212).
By the Mean Value Theorem,

o = Z VKs(Xi - X; +Yy5) - ejwih®
J
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where we ignore the fact that Y;; may depend on the components. Let
Z; € X - Z3 be the lattice point nearest to X;. Then '

o = Z VKs(Z: - Z;) - ejwih® + r{P
2

where

i = STVEs(Xi - X; + Yi) - VEs(Zi — Z;)] - ejw;h.
7

For each k € Z3, let Q} be the cube centered at z; and with side length A.
We define fj to be the average of all e;w; with X; € Q. i. e.

fr = A3 Z ejwjhs.

X;€Qk
It follows from Lemma 5.2 that |
I fellopn = Cllesw;llo.p,h (6.4)
and ]
I Z:VKJ(Zi - Z;) - ejwih®llopn 2 C|| kZVKs(Zk = 2kr) - feXlopa- (6.5)
; ]

See [20] for detailed proofs. Let g = Y"1 VK52 — zir) fir A3. To show

llgkllops < Cllfillops (6.6)

we express the sum gi as the integral

o) = [, K@, e f(a") do’
where f and g are piecewise constant functions defined by

f(z) = fe

g(m) ZVK&(Z]C - Zkl) fk;As
kl .

for z € @ and

lC(:l},.’l:I) = VKg(Zk - zk/), z € Qp, '€ Q.
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Since ||fllop = |l fillop,x 2nd [igllo, = l|gkllop, (6-6) is equivalent to |lgljo, <
C||fllop- We write :

K(z,z') = VKs(z — ') + R(z,z')

with R = K — VK. By the Mean Value Theorem,
R(z,z') = [(zr — z) + (2’ — 2p)] - V2K s(2k — 200 + Ypar)-
By Ca.lderén-Zyginund inequality and Young’s inequality,
IVKs * fllop < Cll fllop-

Furthermore, Lemma 6.1 is applicable to V2 Kjs(zx — 25/ + yxx’) since the only
property of X; used in the proof of the lemma is about the density of the
points (Lemma 5.2). Hence it follows from generalized Young’s inequality
and Lemma 6.1 that :

| [ RG,205) de'llg,, < € fllon < Clflos-
This proves (6.6). By (6.4), (6.5), and (6.6), we have

1Y VEKs(Zi — Z;) - ejwih®[lopn = C'llejwillopn < Cllesliop,a-
F

To estimate rf-’) we apply the Mean Value Theorem to write

r) =Y [VEKs(Xi — X; + Y])) - Y]] - ejwih®
J .

where Y}; = Yij + (Xi — Zi) - (X; — Z;). Since |[Y};]'< 2) and [Yf}] <3), it

follows from generalized Young’s inequality and Lemma 6.1 that
7 llopn X €A lejwillopn < Clieilloph-
To estimate v{'> we appply the'Mean Value Theorem to write

of? = [ VEs(Xi = X; + i) -w;h®] - (Xi = X))

J

We will show that

max | 5" VEs(Xi - X; + Vi) -wih®| < C (6.7)
J
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which implies that
1% llops 2 Clleillo,p,n-

By the Mean Value Theorem,

S VEs(Xi - X+ i) - wik® = Y VEs(Xi — Xj) - wih® + r{®
7 j

where
1 =Y (Y- V)[VKs(Xi - X; + Y5)] - w;h®
J
with |¥;;| < 2)? and |Y};| X 22 by the assumption (3.15). It follows from
generalized Young’s inequality and Lemma 6.1 that |r{®| < CA%/§. More-
over, since

| VEs(Xi - X;) - wih® - Vu(Xi,1)| 2 C[6™ + (h/8)°/*|In k)]

J

by (C2) and we assume that Vu(z,t) is bounded,
o XY w:h3
m?.x|zj:VK5(X, X;)-w;h?| < C.

This proves (6.7).

To estimate v, we write

v22) = ZI(g(X,’ - Xj) -€jh3
J

= /R3 Ks(X; - y)[Zm(y - X;)-€; B dy +

> [Ks(Xi = X;) — Koa(Xi = X;)] - €54

J
) 4,02
= vty

where K5 = K5 * ¢». To show that
19 llop,h X Clleill-1,5» (6.8)

we follow a dualization procedure as in [5]. Let f; be any element in L’,’;‘
and

b(y) = 3 Ks(Xi - y) fib®.
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Since

(v, fin = Z_/Rs K5(Xi - y)e(y,t) dyfih® = (e,b)

and _ .
(05, fi)ul < llell-1,pllbll1,p0,

the estimate (6.8) follows from
bll1p+ X Cllfillope,n- | (6.9)

By applying Calderén-Zygmund inequality in a similar fashion as for v!") |
we obtain :

I Zasz(Xi —y) fil®|lops = Cllfillop* -

Thus
195 llopn =% Clleill-1,p-

(22)

For v;*” we will show that

Z II(g(X,' - X;)— Ksx(Xi— XJ)| h2<CA

2

so that by generalized Young’s inequality,
15 llopun < CMleilloph-
By Taylor’s expansion, we have
Ksa(z) = /Ks(y)du(m - y)dy
[ {Ks(@)+ (v~ 2) - VIKs(2) + Rz, )} r(z — ) dy

Ko=)+ [ R(z,9)éa(z - 9) dy

by [ ¢(z)dz = 1 and ¢ being symmetric, where the remainder

1 2
Rz,9) = [ (1= 9w —2)- VP Ks(a + sy - 2)) s

Let
¥(e) = Ksa(2) - Ks(@) = [ Rz, 9)r(z - v) dy.
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It is clear that ¥ behaves like A2V2Kj;. In paItlcular, it follows from (i) of
Lemma 4.4 that

@) < [IR@ DA - ) dy SO, Ve

since ¢, is a non-negative function supported in |z] < A. Moreover, by (ii)
of Lemma 4.4, we have for |z| > 26,

[¥(2)|

IA

9A2max max |6°K / r—u)d
Iﬂl=2|y-x|5,\| sl [ oz —y)dy

C12%(Jz| - X))~
CA|z|

IN A

since |z] — A > |z| — & > |z|/2 > 6. Therefore A\~2¥ satisfies the same
estimates in Lemma 4.4 with |3| = 2. Since the proof of Lemma 6.1 is based
on Lemma 4.4, the estimate in Lemma 6.1 with || = 2 is also apphcable to
A~2¥, Hence

Y IU(Xi - X;)| k8 2 CA267 < O

3
This finishes the estimate of v{*.
We write v( ) a

o =) [VEs(Xi = X;j + Yij) - (e — €j)] - €
J
Since |e;| < A, it follows from generalized Young’s inequality and Lemma
6.1 that
0 llop. = Clleillo,h-
This finishes the stability estimate (S1) for a fixed time.

For (52) we will prove the case || = 1. The proof for |3| > 1 is similar.
We consider the decomposition

Vit - vut = Y [VEs(X: - X;) - VKs(Xi - X;)] - wih® +
j .
E VKsg(X; - Xj) . Ejh3 +
i
Z [VI(,;(X,' - j(:]) - VKs(X; - X])] . Ejh3
J
= x4 x@ 4 X(s)
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We write

)

)

Y (VEs(X: - K;) - VES(X: = X)) - wih® +

J

Z [VEs(X: - X;) — VEs(Xi — X;)] - wih®

7

D VPKs(Xi — X; + V) - ejwih® +
7 .

€Y V2 Ks(Xi — Xj + Zij) - w;h®
J ,

11 >12
= X"+

By Lemma 6.1 and generalized Young’s inequality, we have

1 oy 11X llop,e = CE7|eillop,h-

For x? it follows from the same argument for v{'" that

X2 llop,h X Clleillos,h-
Finally we write

X£.3) = Z [sz(g(X,' -—'Xj + Yz]) ' (ei - ej)] : €jh3.

J

Since |g;| < A, it follows from generalized Young’s inequality and Lemma
6.1 that

X lopn < CA8 Hleillopn < Clleillops-

This completes the proof of (S2) with || = 1 for a fixed time. In the proof
of the convergence we will need the following variation of (S2):

IV&Eta; — Valwillopn 2 Cl~ eillop,h + lleillop,n]- (6.10)
To show (6.10) we write |
Vild; — Vube; = (Vak — Vul) - @; + Vab - ¢,

It follows from the assumption (3.16) and the consistency estimate (C2) that
|&;| < C and |Vul| < C, respectively. Therefroe (6.10) follows from (S2)
with |8| = 1.
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To prove (53), we consider the following decomposition

Vﬁ?&?g - Vuf‘w,-
= {Y_[VKs(Xi — X;) - VKs(Xi — X;)] - wih®} - wi +
J .
Z VKg(X,' - Xj) . ((T)j&'),' - ijg) R+
J

Z [VKs(X; - X;) = VE5(X; — X;)] - (&;@; — wjwi) h®

M
= 0 +p” + 9.

1
pi)

can be written as
{>[VEs(Xi - X;) - VEs(Xi — X;)] - wh®} - wi +
J

{3 [VI(s()?; - X;) - VEs(X; — X;)] - wih®} - wi

1
PV

e (11) + p(_lz)
;.
We begin to estimate

16801 = || Zdh\(z - X)) p{VR|_y - (6.11)

By the Mean Value Theorem,
A = [DVPKs(Xi - Xj +Yy) - ejwih®] - w;
3

= [D_VEKs(Xi - X;) - ejw;h’] -wi
J
+{Y_[V2Ks(Xi — X; +Yy5) - VIKs(X; — X;)] - ejw;h®} - w;
J
9511) + rsll)
with |¥;;] X A%, Since ¢y is supported in |z] < A, only those X;’s with
| X; — z] < A have contribution to the summation in (6.11). We use Taylor’s
expansion to obtain
n--1 :
1 v
VIKs(Xi - X;) = Y 5l(Xi-2)- V|'V2K;s(z - X;)
: =0 "

1 n
+;;§[(Xi ~z)-V|"V2Ks(z — X; + YY)
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and write g{'” = {"'" +o{""" +. .. + "' accordingly. Notice that [Y};| < A

T )
110)

since | X; — z| < A. For g}

161 = I V2K — X;) - ejwih® - ]|,
: J

we have

where W% = ¥, #r(z — X;) - w;h® as defined in (5.11). Since ||w®*||; 00 < C
by Lemma 5.1, it is sufficient to estimate

ol Z:V2K5(z - X;) - ewib®||_,

J

or equivalently, || ¥, VKs(z — X;) - ejw;h®|lop. We have

| 32 VEs(=z - X5) - e0i1%||,, % Clleillopun
j
by applying Calderén-Zygmund inequality in the same fashion as for vV,
For the higher order terms ¢V, [ = 1,...,n — 1, we apply Lemma 5.1,
generalized Young’s inequality, and Lemma 6.1 to obtain

1681 % CIN|| SV Es(z - X;) - ejwsh®||_,
;

< CN|| S VIHEs(z - X;) - ejwih®]|
J

< C(M/6) |leillo,n

S C”einovpvh'

‘We can estimate the last term g™ in LP-norm for n large enough. By
Lemma 6.1 and generalized Young’s inequality,

168" Nlop % CA*6™" M lellopn < Cllellopn

provided that A® < 6"l i. e. n > ¢/(¢’ — q). To estimate r{'" we apply
Mean Value Theorem to write

i = D VEKs(Xi — Xj + Zij) - Vi - ejwih®] - w;
J
with |Z;;] < |Y;;] < A2, It follows from the generalized Young’s inequality
and Lemma 6.1 that

™10 < Cullr™llop % C(A/6lleilloph < Cllesllop,h-
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This finishes the estimate for p(*¥).
To estimate pﬁ-”) we apply the Mean Value Theorem to obtain

PP = [ VIKs(Xi — X +Yy5) - wih®] - exw;
;

with |Y;;] < 2A? by the assumption (3.15). By following a similar argument
as that for v(?),

max |y VZKs(X; - X; + Yij) -wih® < C. (6.12)
J

Therefore
”Ps'n)”O,p,h = C”einom.h'

To estimate pﬁz), we consider the decomposition
Wil — wijw; = gjw; + wjgi + €5€;
and write
p0 = [DoVEs(Xi - X;)-£;h%) - wi + 3] VEs(Xi - X;) -w;h?] &

2 7
+[)_ VEs(Xi - X;)-€;h%) - &

j
— P?l) + P£22) + ps_za).

To estimate p®!), we follow the strategy for p'V by considering the Taylor’s

expansion

n—1
3 3l(X: - 2) - V]'VE(z - X;)
=0 "’

) VI(&(X, - XJ) =
1 n
+m[(Xi —2)-V|"VKs(z - X; + Yy;)

with |Y;;| < A and write p{®) = p*'? 4 p®'V 4 ... 4 p{®™ accordingly. For
(219 we have

P;
161N -1,

It

||[ZVK6(3«‘ - X;)-eh%) |
2

Gl Y VEs(z - X5)-6,0°||_,,
;

IA

IA

' Cz” E Ks(z — X;) - 5jh3||0,p
f
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by Lemma 5.1. It follows from a similar argument for v that

| 3" Ks(z - X;) -€5h°||o, 2 Clledll-1-
2

For p{*'") we can use Lemma 5.1 and the argument for v to obtain

1p# P N1p 2 CAlY V2Ks(z - X;) ;0% ,
i
< O Y. VEs(z - X)) -sjh3||0'p
i
2 CHleillop,n-

For the higher order terms p®*9, [ = 2,...,n — 1, we can apply Lemma 5.1,
generalized Young’s inequality, and Lemma 6.1 to obtain

17 N1 2 N[ VM Es(z - X5) |,
7

< CN|| S VEs(z - X;) - €503,
1

< COO Neillopon

< CAllellop,n-

The last term p(*'™) can be estimated in LP-norm for n large enough. It
follows from the generalized Young’s inequality and Lemma 6.1 that

165 Jlop X CA™6 " ||eillopn < CAllEillop.n

provided that n > ¢'/(¢’ — ¢q).
To estimate p{** we again consider the Taylor’s expansion

t

n-1 1

VE(X:i-X;) = Y3
=0 "’

1 n
+=[(Xi —2) - VI"VKs(z - X; +Yiy)

[(Xi - 2)- V]'VKs(z - X;)

with |Y;;| < A and write p{*? = p{®*” 4+ p{*) 4 ... 4 o) For p{*** we have

16 N0 = 113 VEs(z = X5)-wib®) - (e, 0|y,
J
< [ VEs(z - %) - w0ib|l, o llell-1
J
< Cllell-1p
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provided that :
| S"V2Ks(z - X;) - wih®| < C. (6.13)
;

(6.13) is the continuous version of (6.12). We know that (6.13) holds on the
lattice points zx = A% - k in any ball B(R). If the radius R is large enough,
then (6.13) is true for any z outside B(R) by Lemma 6.2. For any z € B(R),
let 2 be the closest lattice point. We have

| ST ViKs(z - X;) - wih® = 3" V2Ks(zk — X;) - wih?|
i i
o — zil - | 3 VP Ks(zk — X + V) - w;h®|
7

Il

1A

C(h/6)?

by the generalized Young’s inequality and Lemma 6.1. This justifies (6.13).
It follows from a similar argument that

| 3" V'Ks(z - X;) - wih®| < C6% (6.14)
J

for I > 2. For the higher order terms p©®?*, 1 =1,.--,n — 1, we have

1% < Calld™]lop

Co)[| -V Ks(2 - X;) - wib||, o lleillopn
J

C(M8) " Mleillopn

CMéillopn

IA IA

IN 1A

(22n)

by the generalized Young’s inequality and (6.14). For the last term p;"*"’ we
can apply the generalized Young’s inequality and Lemma 6.1 to obtain

16 llog < CA/8)ellogn < Clleilloss

(23)

provided that n > ¢'/(¢’ — q). For p;*” we have
16 lop 2 CLll[ VES(X: - X;) €55 il
i

< C| Y. VEs(Xi — X;) - €h%|opn
J

IA

CAlgillo,p,n
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by the generalized Young’s inequality, the assumption (3.16), and the argu-
ment for vV,
By the Mean Value Theorem,

’,,g.é’) = Y VIKs(Xi- X; +Y;)- eiriih® —
: J
D VIKs(X; - X; +Yy;) - ejrijh®
i

(31) (32)
1

= pi =P

where r;; = &;0; — w;w; with |r;;} X CA. We have

WPsh

1p°llop = Cilll3° V2ES(X: — X+ Yig) - 145b°) - i
;

IA

Crmax |3 V2Ks(Xi = X; + Yig) - righ?| - el
;

C(A/8)leillop,n
Clleillop,n

IN 1A

by the generalized Young’s inequality and Lemma 6.1. Finally,

16 os 2 Coll X2 V2Ks(Xi = X; + i) - ejriih®l,

J
Cill 32 P leslirs 7],

J
C(A/6)l€illop,n
Clleillop,n

1A

INTA

by the generalized Young’s inequality and Lemma 6.1. This finishes the the
proof of (S3) for a fixed time.

To extend the stability estimates for a fixed time to all time ¢t € [0,T], we
divide the interval [0, T'] into N subintervals [t,,t,41], 7 = 0,---, N —1 with
At =tpp1—1tn = O(h4). Since the stability estimates hold for any fixed time
except for an event of probability less than AC1CInhl they hold on t,, n=
0,---, N --1 except for an event of probability less than CohC1CImhl~4 which
goes to zero faster than any polynomial rate by choosing the constant C large
enough. We can extend the stability estimates at ¢,, to the stability estimates
at any t € [t,,tn4+1). Notice that the proof of the stability estimates for a
fixed time is based on Lemmas 5.2 and 6.1. The only statistics of X; that
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is required in the proofs of Lemma 6.1 and the stability lemma is about
the density of the vortices (Lemma 5.2), X is treated as small perturbation
from X;. If At is small, then we can regard X;(t) as small perturbation from
Xi(tn), too. Hence in the proof of the stability lemma for any ¢ € [tn, tnt1]
- we can follow exactly the same argument for ¢,. With the help of Lemma
6.1, whenever we need to estimate a term involving X;(t), we can write X;(¢)
as Xi(t.) + Yi(t) with Yi(t) = X;(t) — X;(¢») and transform the estimate to
time t,, provided that

X B2, X0~ Xl 28 (6.15)

as required by Lemma 6.1. To prove (6.15), we need the following elementary
property of Brownian motion.

Lemma 6.2 Let W(t) be a standard Brownian motion in R?. Then

P{ (R [W(s) — W(t)] > b} < e1(VAt/b) exp(—cab?/ At)

where b > 0 and the positive constants cy,c; only depend ond.

See p.18 in Freedman [7] for a proof in R.. Since
t
Xi{t) - Xi(s) = [ w(Xu(r), ) dr +VBAW () - W(s)},

it follows that for all ¢t € [tn,tn+1]

| Xi(2) — Xi(ta)l Cilt = ta| + V2V |W (1) - W(20)|

<
< CR + Vo |W(t) - W(t,)|

By Lemma 6.2
P{ max |W(t)—W(t,)| > h*?} < C1h*?exp [ - C3h)

tn<t<tny4y
which implies that

P{max max |W(t)—W(t,)|>h} <Csh~?exp{-C2h71} =0
" n<t<ingr

faster than any polynomial in h as b — 0. Therefore

max max |Xi(t) - Xi(ta)| X Ch* + v'/2h3/2 (6.16)
7 tn<t<tnt1
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which is more than enough to guarantee (6.15). This completes the proof of
stability lemma for all time. -

We can extend the consistency estimates to all time by combining the
consistency estimates for t,, n = 0,---, N — 1, and the stability estimates
for all time. For each t € [t,,%,41], we have

lluf(£) — w(X(2), t)llo,p,h

< k() = wl(tn)lloph + luf () — w(Xi(tn), tn)lloph
Hlu(Xi(tn), tn) — u(Xi(t),t)llo,p,n

2 Co[IIXi(t) = Xi(ta)lloph + wilt) — wilta)ll-1,p
+Mwilt) — wiltn)llop,n] + C2l6™ + h(h/6)*/?|1n h]]
< C[6™ + h(h/6)/?|1n ] (6.17)

by (6.16) and the assumption that u has bounded derivatives. Therefore

max [[uf(2) — u(Xi(t), Dllops X CI6™ + h(h/6)/* IRl (6.18)

By the same argument we can justify
10%ul(t) — BPu(Xi(2), )llopn X CL6™ + 6~ VPlR(R/8)/?[In k]  (6.19)

and (C3) for all time ¢ € [0, 7).

The stability lemma can also be used to pass the pointwise consistency
estimates (5.2) and (5.3) to the L? estimates (5.4) and (5.5). If the radius R
of the ball B(R) is sufficiently large, then (5.4) and (5.5) are equivalent to
the L? estimates on B(R) since v € LP(R?) and |X;(¢)| < R/2 by Lemma
6.2. For any = € B(R), let z; = h% - k be the lattice point closest to z. We
write

[uh(z,t) - uh(zk,t)] + [uh(zk,t) - u(zk’t)] +

[u(zk’t) - U(.’l:,t)]
= o + u® + u®,

ut(z,t) - u(z,t)

We have |u®| < Ch? and {u®] < C[6™ + h(h/6)/?|1n h|]. For u® we write
ut(z,1) — ub(2r,t) = Z [Ks(z — X;) — Ks(2 — Xi)] - wih®

= (z—2k)- Z VKs(ze — Xi + Yik) w;h3.
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By the same argument as for (6.7),

max | E VKs(2 — Xi + Yig) -wih®| < C. (6.20)

Hence :
llwh(2,t) — u(@, t)l| Lo(ry) = C[6™ + h(R/6)/*|In Al].

(5.5) can be proved in the same way. Finally, both L? estimates can be ex-
tended to all time ¢t € [0,T] by following the argument for the corresponding
discrete estimates.
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7 Convergence

" To prove the convergence we need to assume that

_ 5/25-3/2 '
Oréxtaéme?x|s,(t)| < A4g (7.1)
and ' ) '/
3/251/2 -1
orélt%He(m,t)”_l,p < hIEE AN, (7.2)

(7.1) is stronger than the condition (3.16) in the stability lemma. The
assumptions (7.1) and (7.2) will be justified later. Let

() = llei®llopn + lle(z, Dll-1,5 + Mled(Wllop.n-
We will show that 7(t) < C[6™ + h(h/8)1/?|In h|]. For e; we have

de;

N ul(t) — u(Xi(2),1)

[@" (Xi(2), 1) - w(Xu(2), )] + [u(Xu(2), 1) — u(X:(2), ).
By applying (6.17) and (S1), we obtain

il

Idei/dtllo . % Cln(t) + 8™ + h(h/8)"2] In ] (73)
For ¢; we have
T M) - V(K. Deilt)

= [VERO(t) - Ve i) + [Vl (wi(t) - Va(Xi(t), thi(t)].
It follows from (6.19) and (6.10) that
A|dei/dtllop,h X Clu(t) + 6™ + h(h/6)/*|1n hi). (7.4)

Let 0 = H xe. To compute the differential dl|el|_1, = d||oljop, We
need to use Itd’s formula (chain rule in stochastic calculus) for continuous
semimartingales. A continuous semimartingale is the sum of a continuous
martingale and a process of bounded variation. Brownian motion W(?) is
the canonical example of continuous martingales. The diffusion process X(t)
is a semimartingale since by (3.3) it is the sum of a differentiable process
and a Brownian motion. A smooth function of a continuous semimartingale
is again a continuous semimartingale and its differential is given in the next
lemma.
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Lemma 7.1 (Ité’s Formula) Let f € C*(R?) and Y(t) be a continuous
semimartingale. Then

F¥ () = FEOMY (1) + 5V LY. (75)
where (Y')(t) is the quadratic variation of Y (t).

The formal relation
d(Y)(2) = [dY (2))°

is a convenient device in computing the differentials. See e. g. [18] for a
proof of Itd’s formula and precise definitions of continuous martingales, semi-
martingales, and quadratic variations. Since o is a smooth function of the
diffusion processes X;, o is a semimartingale. By 1t6’s formula,

dloll3, = pllollg5 dlollos + 52(p - Dol oo 1"
Thus we have

dllollos = = lolls;"dlol,, + 51~ p)lolsldlollo, 1
Oﬁ the other hand,

dlol, = [ dio(a, 0 da
with
dlo(z, ) = plo(z, )P-20(z, t)do(z,t)
+58(p— Dlo(z, Ol ?[do(z,0)]"

Therefore

oo, = llelliz? [ lo(a, OlPo(a, 0o (a,t) do

+3(p = Dllolls;” [ lote, OP2{do(z, ] de

1 -
+5(L=Dllels;[dlollo,)”
= 0 4 @D 4 @), o (7.6)
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Notice that 8 < 0. We begin to estimate §V). Let Hy = H x ¢,. It follows
from I1t6’s formula that

do(z,1) = [3 Haz - Xi(1))- % h?) dt
—E > [w(Xi(2),t) - VIHA(z — Xi(2)) - €i(t) h°} dt
+[v Z VZIH\(z — X:(t))e:(t) k] dt
—V# 2 [VHN= = Xi(t)) - dWi(1)]ei(t) b°

= oWdt + oPdt + 0®dt + o

where 0V, 0, o, o are the terms representing stretching, convection,
diffusion, and the statistical error due to the finite number of vortices, re-
spectively. For the stretching term involving oV, it follows from Hélder’s
inequality that

| [1o(a, 0F2(2,0)09 (e 1) da| < [Pl oo = ol oo
where (1/p) + (1/p*) = 1. We have ||o®||op = ||dei/dt]|-1,, With

2 | abymi) - VuXa(t), Hwi(t)

dt
= [V@&"(X:i(1), 1) @i(t) — Vul(Xa(2), ) wi(0)] +
[Vur(Xi(2),t) wi(t) - Va(Xi(®), ) wi(®)].

By (C3) and (S3), |
o llop < Cla(t) + 8™ + h(h/8)/?|In hi]. (7.7)

In the convection term o(? we can replace u(X;,t) by u(X;,t) — u(z,?)
without changing the integral 6 since

Jo (@002, )(u(2,1) - Vo (e, 1) d
- /Rs(u(:v, 1) - V)o(z, )| dz

/Rs V- [lo(e, O - u(z, )] dz
= 0. |
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by V.u = 0 and Gauss’ theorem. We redefine o(®(z,t) = 3°; I'(z, X;(t);1) -
£i(t) h® where o
[(2,9:t) = [(u(2,2) - u(y,1)) - VIHr(z - ).

By Holder’s inequality,

| [ 1o, 00P20(z,1) - (2, 1) da| < o185 oIl
We will show that

lle®Tlo.p = Clllell-1,5 + Mleillop,nl- (7.8)

The proof of (7.8) is quite similar to the estimate of v{” in the stability
lemma. The difference is that I' contains the term u(z,t) — u(y,t) so that
o® is not the convolution of ¢; with certain function. Since we consider
[le®(-,t)|lop for each fixed time, the variable ¢t in T will be dropped for
simplicity. We can write

o) (z,1)

/F(m, y)[z a(y — Xi(1))es(t) %] dy
+ 3 [0(, Xi(1) - Ta(e Xe@)lei() 12

o) 4 g2

where I'\(z,y) = [T(z,2)¢r(y — 2) dz.
We begin to show that -

llo®llop < Cllell-1,- (7.9)

Let f be any element in L?"(R3). By the dualization procedure as in esti-
mating v{*", (7.9) follows from

| [ 2 )1(z) o]l < Clfllose- @10

Since T is anti-symmetric, (7.10) is equivalent to

I [ v )5@) doll - < Clllos.
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Let 0; denote the partial derivative with respect to z;, [ = 1, 2, 3. We have

v 3
A(z,y) = 3 [Oum(z)0mHr(z ~9)+

m=1

Z [um(zat) - um(y’t)]alamH/\(z - y)
m=1

= ®9(z,y) + 29z, y).

Notice that H) is a radial function which implies that 0, H) is an odd
function. Since u is bounded, it follows from Calderén-Zygmund inequality
that

I [ 2, 0)5w) dllo,- < Cll Ao
For &) we consider the expansion
u(z,t) — u(y,t) = [(z - y) - V]u(z,t) + R(z,y)

where R(z,y) = — [1(1 - s)[(y — z) - V]zu(z + s(y — z),t) ds. We write

®@(z,y) = Y, {l(z-9)- Vium(z,)}00m Hr(z - y) +

m=1

3
Z Rm(x,y)azamﬂ,\(m - y)
m=1

= ®@(z,y) + ) (z,y).

Since Vu is bounded and z,0,0,, Hy is an odd function, it follows from
Calderén-Zygmund inequality that

Il [ ™ ,9)5) dyllo, < Cllfllon-

Since |R(z,y)| < Clz — y|%, ®*? is integrable with respect to the variable z
or y. Therefore by generalized Young’s inequality, '

I [ (@) dulloe < Cllfllop-

This finishes the proof of (7.9).
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For 0(*® we consider the expansion

L@y) = [T -2z
= /{I‘(z, y)+ [(Z -¥)- V]r(x’y) + R(z, y,z)}¢,\(y —-2)dz
= F@w%+/R@mJWAy—ﬂdz
where

R(ma yiz) = /01(1 - 8)[(2 - y) ' V]2r(z1y + S(Z - y)) ds.

Let
¥(z,y) =Ia(z,y) - I(z,y) = /R(:c,y, 2)pa(y — 2) dz.

Let 0; denote the partial derivative with respect to y;, { = 1, 2, 3. We have

3 v
aIamr(z) y) = - E [alamun(y, t)]anH,\(m - y)
n=1
3
- E {alun(yat)am + amun(y,t)al]anH)\(z - y)
n=1
+ 3 [(un(2,t) = un(y,1)]010mOn HA(z — v).

Since H) and its derivatives satisfy Lemma 4.4 with é replaced by A, we
have

1010mT (2, y)|
|010m (2, y)]

Cx™*, Vz,y

<
< Clz-y|™, lz-y|l>x

Therefore
2@, < [ 1R, 2)iéay - 2)dz S CA2, Vo, g
~and for |z — y| > 2A,

< 2. 3 / -
(o)l < OV max max, 190, 2)] [ ealy—=) d:
CiA%(jz —y| - 2™

<
< CXz—y|™
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since |z — 2| 2 |z —y| - |z—y| > |z — y|/2 > A. The result in Lemma 6.1
with |8| = 2 and § replaced by A is applicable and we have

6" lo.» < CAlleillop,h-

This ﬁnishes"bhe proof of (7.8).
The diffusion term ¢{® has negative contribution since

/R3 |a(z,t)Ip'za(m,t)V2a(z,i) dzx
= —/V[la(a:,t)lp”zo(:c,vt)] -Vo(z,t) dz

-1 [ lo@, 0P Vo(z, ) da
0

IA

with
Vilol?~%0] = |o|P~*Vo 4 oV|a|P~?
= |o|P"2Vo + o[(p — 2)|0|P"*a Vo]
~ (p- DloP?Vo.

For the statistical error term involving o), we consider the stochastic
integral

&) = Y&()

I

t
VY [Nl f) e@r (1
, B v .
where the (vector) stochastic differential

£t = [ lo(@, 0P a(e, 0]V Hr(a - Xi(8)) - dW] da.

We will show that

max |60 < Ch(h/8)/?|In h. (7.12)

§ is a continuous martingale since each summand §; is. The quadratic vari-
ation of £(t) is

(€0 = 200 [ 1018 PLE gf(s) -eH(s) %) ds
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with g(t) = Ty m [gia,m(2)]* where

gitm(®) = [ lo(a,)P~01(a,8)0m Hx(z — Xi(2)) do.

It has been shown that any continuous martingale can be transformed into
a Brownian motion by a (random) change of time accordmg to its quadratlc
variation. More specifically, we have

£(t) = W) (7.13)

almost surely for a suitably defined Brownian motion W. See Theorem 4.6
in [18] for more details and a proof. By utilizing (7.13), one can prove the
next lemma which generalizes Lemma 6.2 to continuous martingales.

Lemma 7.2 Let M(t) be a continuous martingale. If the quadratic varia-
tion (M)(t) < at for certain constant a > 0, then for fired T > 0,

P{ oréltaé"lM(t)l > b} < ¢1(VaT /b)exp(—cyb?/aT).

See p. 232 in [18] for a proof. We need to estimate the quadratic variation
(€)(t). By Holder’s inequality,

2 2
zJ’ﬁwsw’miwuﬁmu-mﬂmiwnmw

12

Moreover, it follows from the generalized Young’s inequality (iii) in Lemma
4.6 that

2 2
“gi;l,mllo ;Lz,h = “gi;l,m”(),%’h
_ 2
IV E= = Xl - [[lo1P~0l; e,

NIV Ha(z = X|IIZ - [lo]| 227D,

0,p

IA

it

Since [|[VH,|3; < C1A72 and ¥, |[VH(z ~ X;)|2 b3 < C2A73,
2 — 2(p—
190,250 < CA=2llellog ™.
Therefore by (7.1)

t
(€)(t) < Cyvh3A~3 /0 lei()ll3,n ds < Cvh3A2673t < Cwh36~ . (7.14)
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Notice that the event of (7.14) being violated has extremly small but positive
probability since it is possible that

lei(t)] > A(A/8)!/? . (7.15)

for some ¢ and . In Lemma 7.2 the quadratic variation is assumed to be
bounded by a constant times ¢. Therefore we need to modify the process
&(t) before applying Lemma 7.2. To remove the undesired feature (7.15), we
use the stopping time

r = inf {t > 0;|ei(8)] = A(V/6)Y/2}
to define the truncated process

~n ) E(t); 0Lt<m,
&) = { en); m<t<T

and the martingale
- t
0 =—vr'y [ lolls? () - &is)

The quadratic variation (£)(t) of the martingale £(t) satisfies
(E)(t) < Cvh36~1t.
Let b = Ch(h/6)'/?|1n h|. By Lemma 7.2,
P{ gax JE0) > )

< Ci(Coh36 1T 20 Y exp [ — Cab*h=36T 1)
< Ci(CT)Y?exp| - C3T~1C?|1In h)? (7.16)

which goes to zero faster than any polynomial rate by choosing C large
enough or h small enough. Furthermore,

P{ mmax 16(t)] > Ch(h/8)"/*|In hl}
< P{ max |E(t)| > Ch(h/6)"/*|ln hi} +

P{le:(t)] > A(A/8)/?, for some i and t}.
Hence (7.12) follows from (7.16) and (7.1).
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For 8 it follows Holder’s inequality and generalized Young’s inequality
that

50— Dllol5? [ loPP~(do)? do
v(p ~ DRIl [ loP{ T (VHA(z ~ Xo['e? 5°) d Y

1 -
v(p — DR3||ollo;” - llolib;” - IV HN(z — Xl - lleFllo,g ndt

CE*A~3|lollos - lleill3 p.ndt

Clioligy - A leills p,nt

IA it

IA A

since A = kY with ¢’ < 3/5. By combining (7.6), (7.7), (7.8), and (7.12), we
obtain

oG, t)llon = C{6™+ h(h/6)/*|1n k|
+ [ 16) + Ve pallo i3] ds} (7.17)
There is an undesirable term |lo||g, in (7.17). It is quite plausible that
Meillop < Cllollzh (7.18)

However, (7.18) is difficult to prove even if it is true. A simple way to get
around this difficulty is to consider the sum of the squares:

() = N5 o0 + lle(z, )11, + A¥lles(OE 5, -
Let k = 6™ + h(h/6)1/?|In h|. We have
d
S Nei®6pn < 2llei(®llopnlldei/dtllopn % Cls? +((1)] (7.19)
and
oy _
N llei®llpn < 2X%llei®llop hlldei/dtllopn 2 Cla® + (1)) (7.20)
by (7.3) and (7.4). It follows from It&’s formula and (7.6) that

dlle(z, |21, = dllo(z, )3,
2|lollopdllollop + [dllollop)?
2o llop (6P + 6?) + (2 - p)(dllollop)?  (7-21)
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We assume that p > 2 so that the last term in (7.21) can be ignored. By
integrating (7.21) we obtain

le(z, )P4, < C{x? + / C(s) ds}. (122)

The only thing that requires some justification in obtaining (7.22) is about e
the statistical error term involving o). There is an extra factor ||o|lo, in

the stochastic integral (7.11). We follow the same argument as before except

that the quadratic variation is now bounded by

t
Civh*A~? / llo(z, )2, lles(s)I2,p ds < CwhS6~2

by the assumptions (7.1) and (7.2). Combining (7.19), (7. 20), and (7.22),
we have

coyzofe+ [} (7.23)
By Gronwall’s inequality, ((t) < Ck2. Hence '
(t) < Cl6™ + h(/5)2|In A] (7.24)

for0<t<T.

To complete the proof, we need to justify the assumptions (3.15), (7.1),
and (7.2) for 0 <t < T. (7.2) is an immediate consequnce of (7.24). Since
h® - max; ;[P < |lei[g, 5, we have

max |e;] < h=%7||eillopn < Ch3 ™33]I Rl < M

provided that m > 2¢’/q with ¢’ sufficiently close to g. By (C2) and (6.10),

lldei/dtllopn = C1l6"lei®llopn + llei®)llopn + (h/6)*/2|In Al]
< Clllei®llopn + 6™ + (h/6)*/?|1n &]).

Hence by Gronwall’s inequality,
llellopn < CLE™ " + (B/8)%*|In hl]
and

max [e;] < h=YP|leillo pn < Ch™7(h/8)%2|In h| < A/25-3/2

fort < T by choosing p, m large enough and h small enough. This completes
the proof for the convergence of particle paths.
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Remark The constraint 1/3 < ¢ in Theorem 1 follows from the condition
2¢ < 3¢—1 in the stability lemma 2.2 since the proof in [5] used the estimate

leillopn < 287 ||eill—1,p,

which loses a factor of h. Here we estimate ||&;||op,» directly from the con-
“sistency and the stability lemmas so that the correct factor 6~! is obtained.
This removes the constraint 1/3 < q.
For the convergence of discrete velocity we have

|E2(t) — w(Xi(2), lo,p,k
< J1E () = wt(@llopn + lu(2) - w(Xi(t),D)llopn
< Cln(t) + 6™ + h(h/6)/*|1n ]
< C[6™ + h(h/6)/*|In b))

by (C1), (S1), and (7.24). For the convergence of the continuous velocity,
we again consider the lattice points of spacing h? inside the ball B(R,) and
write

[@*(z,t) — @ (zk, 1)) + [@*(2k, 1) — u" (2, 1))
+[uP (2, ) = u(zk, 1)) + [u(2k, ) - u(z,1)]
= o 4 4@ 4 y® @

it (z,1) — u(z,t)

where z; = h? .k is the lattice point closest to z. The set of all points
z closest to z is the square centered at z; with side length h2. We have
|u®| < Ch? and [u®| < C[6™ + h(h/8)1/?|1n h|]. For u we write

@ (z,t) - W(2k,t) = Y [Ks(z — X)) — Ks(2x — X)) - wih®
= (z-2)- EVKg(zk - X,’ + Yir) -w;h3

= (z—2)- ZVK;;(Z]C - Xi+ Zix) - w;ih3

with |Z;| < |X; — Xi| 4 |Yix| < 6. Hence |u®| < Ch? by (6.20). For u® we
write :

'Eh(zk,t) - uh(zk,t) = Z [I(g(zk - X,) - Kg(z - X,)] . w;h3

Z VI(&(Z[c - X; + Y,k) . e;w;ha.
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It follows from the argument for »" in (S1) that

| ZVKS(zk — Xi + Yig) - 6iwih3”o,p,h2 X Cllesliop,n:

Notice that VKs(2x — X; + Yix) is approximated by VKs(zx — Z;) where
Z; is the closest lattice point in A - Z3, not in h% . Z3. This justifies the
convergence of continuous velocity.
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