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ABSTRACT 
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We apply the techniques of the Fourier-Bessel series to obtain a 

separable expansion of the (local) nuclear form factors in the momentum 

space~ The accuracy of the expansion is studied for a Woods-Saxon and a 

derivative Woods-saxon densi~y distributions. The technique will be useful 

in many nuclear scattering calculations. 
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I. INTRODUCTION 

In this short note, we shall discuss a technique to obtain a 

separable expansion for the nuclear form factors. The form factor 

+ + 
F(k',k), as a Fourier transform of the density distribution is, 

+ 
generally, for. a ·local density, a function of the momentum transfer q 

+ + 
where k' and k are two momenta. We shall show that a good approximation 

may be devised to represent such a form factor in terms of products of 

+ + 
functions depending on k arid k' separately. 

This separable expansion for the form factors will be useful in 

+ + 
k'-k, 

many applications associated with general scattering theory calculations. 

+ + + + + 
For example, the first order optical potential U t(k,~J = t(k,k') F(q) 

op 
+ + 

will be separable when a separable form of the two-body T-matrix t(k,k') 

. d 1 l.S use . The technique to be discussed below has already been found 

useful in calculating the rescattering corrections to the two-body T-matrix 

in the nuclear medium.
2 

Such corrections may be carried out exactly, in 

a closure approximation, by using a separable representation of the nuclear· 

form factor. We have also proposed its application in solving the coupled-

channel equations for pion-nucleus charge exchange reactions in a isobar-

d 
. . 3 oorway approxJ.matJ.on. The method is quite general, and is applicable 

in many other calculations.
4 

Here we shall, however, only report its 

numerical accuracy for a few typical nuclear form factors. 

Section II contains the mathematics. The numerical results are 

given in Section III. 
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II. SEPARABLE REPRESENTATION OF THE FORM FACTORS 

+ 
For a local density distribution p(r), we may define its form 

+ 
factor F(q) as 

+ 
F(q) = f e 

+ + + 
-i(k'-k).r + + 

p(r)dr 

+ + + + + 
where q- k'-k is the momentum transfer from momenta k to k'. We are 

+ 

( 1) 

interested. in a representation where F(q) may consist of factors depending 

on k and k' separately. For density distribution of interest, we may 

. 5 
wr1te 

+ 
p(r) = p (r) 

0 

I 

(2) 

where p
0

(r) is the spherical density and pi(r) are the multiple density 

+ 
distributions of order I. The form factors for p(r) of Eq. (2) may be 

written as 

F(~) = 1 
i,i' 
m,m' 
I,M 

(3) 

where, for simplicity, we have lumped all the angular momentum coefficients 

in the factor C; A~i' (k,k') is defined as 

AiR.• (k,k') 
I 

= !~ 
0 

(4) 

- 1-

! 

: ~ 

I· 
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6 
where j£(x) are the spherical Bessel functions of order£. From Eq. (3), 

note that the form factor will be separable ink and k', if the function 

££' 
AI (k,k') may be factorized in these variables. OUr main aim is, therefore, 

to introduce such factorization. 

We observe that the integral in Eq. (4) may be cut off at some 

radius, say R, where the radial density becomes negligibly small. Within 

such a finite domain, i.e. r ~ R, we introduce the Fourier-Bessel 

N 

j£ (kr) = 2: 
n=l 

for 0 ~. r ~ R , . (5) 

where a£R is the n-th zero of the spherical Bessel function of order £. 6 
·n 

In our calculation, we take N to be finite. The expansion coefficients 

At(k) are given as 
n 

( 6) 

These expansion coefficients A£(k) also satisfy the following orthogonality 
n 

condition 

cS 
ron 

(7) 

0 
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Using Eq. (5), we find the following separable form for·A~i' (k,k'): 

M,N 

= I R, R,• 5I, R,• 
A (k)A (k')KI(et ,Ct ) 

n m n m (8) 

m=l 
n=l 

where 

R, R,• 
K (et ,Ct ) = 

I n m !~ (9) 

0 

We note that this separable representation of Eq. (8) will be particularly 

useful if the number of terms needed in the sum are reasonably small. There 

is n6 apparent advantage of using Eq. (8) instead of Eq. (4) to evaluate 

the form factors. However, a separable form will be very convenient in 

the applications we described in the previous section. 

In the limit of a uniform density distribution for I= 0 (e.g., a 

spherical ground state), only m=n terms in,Eq. (8) contribute. For a 

R,R,• 
surface o-function density p(r) = O(r-R), the function AN (k,k') also 

factorizes as can be readily seen in Eq. (4). For a more general case,. 

we need to include all the terms in Eq. (8). In the next section, we shall 

present the numerical results for the following density distributions: 

(I) The spherical Woods-Saxon form 

p (r) = 
0 1 + exp [(r-r )/a] 

0 

(10) 

where r = the half radius, a - the diffuseness, and p(O) is the normalization. 
0 



r 
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(II) The spherical derivative Woods-Saxon form 

PI=O (r) = r ~~ (r)J 
0 

and (III) The vector derivative Woods-Saxon form 

~d:~ (r)~ A 

-+ 
PI=2(r) = r Y20(r) 

0 

we shall take r = 4 fm as our example. The convergence 
0 

LBL-2986 

(11) 

(12) 

properties do not sensitively depend on the parameters for the shape of 

the density distribution. We choose the above examples only to represent 

the general forms of the ground state density (case I) and of the inelastic 

transition density (cases II and III). The techniques shown here apply 

equally well to other shapes of the density distributions; the convergence 

properties will also be well represented by our numerical examples in the 

following section. 
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III. NUMERICAL RESULTS 

We shall compare our results obtained with a finite number of terms 

in Eq. (8) to the exact results from Eq. (4). The convergence is generally 

quite good. We find it convenient to tabulate our results for two values 

of k and k 1
• 

In Tables 1-2, we list the results for the spherical Woods-Saxon 

density distributions for r
0

=4 fm and a=O.l fm, 0.6 fm, and 1.0 fm. The 

values of k and k 1 are shown for each Table. We have calculated, for all 

cases, only the lower partial waves (small Jl, and Jl. 1
). However, there is 

no particular convergence problem associated with higher partial waves, as 

can be seen from these Tables. The results for a spherical derivative Woods-

Saxon form are shown in Tables 3-4. The parameters are the same as in 

Tables 1-2. For the quadrupole form factor (I=2, in Eq. (12)),we present 

the results in Tables 5 and 6 forthe case of a= 0.6 fm. The convergence 

properties are similar to the previous cases. 

In general, the expansion of Eq. (8) converges rapidly for a few 

terms (e.g. N ~ 6), and thEm less rapidly for a few more terms. As we 

have shown, in many cases, the exact result is reproduced with about ten 

terms in Eq. (5). 

It is important to point out that the values of the A.~JI, 
1 

(k, k 1 
) 

are large fork~ k 1
, and for angular momenta JI.,JI. 1 ~ kr. As we can 

0 

see from the Tables, for the dominant A.~J/,
1 

(k,k 1
), the sum of Eq. (8) 

converges fairly rapidly with about 6 terms. The convergence for Jl, >> kr 
0 

would be much slower but this feature is not detrimental since their contri-
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butions are generally negligible in actual applications. As a 

conclusion, we have found the techniques to be quite general and 

useful. Application to specific nuclear scattering calculations will 

be discussed elsewehre. 2 •3 
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.R..R.' 
Table I. The values of A (k,k') for I= 0, .R.=.R.' for .R-=0-4. The nuclear 
density distribution is t~e Woods-Saxon form of Eq. (10). The radius r is 
taken to be 4 fm and the three values of the diffuseness are a=O.l fm, 8.6 fm 
and 1.0 fm as shown in the Table. N is the order of expansion used in Eq. (5) 
The values given are calculated from Eq. (8) for N=M=6, 10, and 14. The 
exact values are obtained by numerical integration in Eq. (4). In this Table, 
k=l.O fm-1 and k'=l.O fm-1. · 

a(fm) .R, N=6 N=lO N=l4 Exact 

0 0.08487 0.08328 0.08250 0.08230 

1 0.09757 0.09744 0.09742 0.09743 

2 0.07721 0.07468 0.07398 0.07389 

0.1 3 0.03001 0.02808 0.02751 0.02738 

4 0.006676 0.006075 0.005892 0.005839 

0 0.07493 0.07493 0.07493 0.07492 

1 0.07318 0.07306 0.07301 0.07300 

2 0.05814 0.05813 0.05812 o. 05811 

0.6 3 0.03235 0.03230 0.03229 0.03228 

4 0.01295 0.01281 0.01277 0.01276 

0 0.05790 0.05777 0.05774 0.05774 

1 0.05364 0.05365 0.05365 0.05365 

1.0 2 0.04416 0.04406 0.04405 0.04405 

3 0.02982 0.02977 0.02976 0.02976 

4 0.01708 0.01708 0.01708 0.01708 



-10- LBL-2986 

. U, -1 1 -1 
Table II. The values of A (k,k') for k=l.O fm and k =2.0 fm • See 
the description for Table £. 

a(fm) R," N=6 N=lO N=l4 Exact 

0 -0.008261 -0.007251 -0.006895 -0.006850 

1 -0.008083 -0.008425 -0.008488 -0.008479 

2 -0.008359 -0.007549 -0.007385 -0.007400 

0.1 3 +0.003756 +0.004728 +0.005045 +0.005118 

4 +0.007110 +0. 007177 +0.007251 +0.007291 

0 -0.004218 -0.004244 -0.004244 -0.004244 

1 -0.003627 -0.003745 -0.003773 -0.003783 

0.6 2 -0.002471 -0.002524 -0.002529 -0.002531 

3 +0.00007531 +0.00005663 +0.00004752 +0.00004412 
.. 

4 +0.001485 +0.001442 +0.001425 +0.001420 

0 -0.001534 -0.001326 -0.001320 -0.001322 

1 -0.001188 -0.001225 -0.001229 -0.001229 

2 -0.0008856 -0.0007688 -0.0007636 -0.0007652 

1.0 3 -0.0002673 -0.0002762 -0.0002846 -0.0002829 

4 +0.0001187 +0.0001237 +0.0001254 +0.0001251 
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~~ -1 -1 
Table III. The values of A (k,k') for k=l.O fm and k'=l.O fm , for the 
derivative Woods-Saxon dens~ty distribution given by Eq. (11). The radius 
r is 4 fm, a is the diffuseness. N is the order of expansion in Eq. (8) 
w~th M=N. The exact values are obtained from Eq. (4). The density is 
normalized by 4njip1=

0
(r)r2dr=l. 

a(fm) ~ N=6 N=lO N=l4 Exact 

0 0.08924 0.08905 0.08905 0.08905 

1 0.08305 0.08354 0.08348 0.08368 

0.6 2 0.1402 0.1404 0.1403 0.1404 

3 0.1281 0.1280 0.1280 0.1280 

4 0.06622 0.06601 0.06600 0.06627 

0 0.07625 0.07664 0.07663 0.07680 

1 0.08221 0.08227 0.08227 0.08229 

2 0.09879 0.09867 0.09866 0.09879 

1.0 3 0.09310 0.09309 0.09310 0.09322 

4 0.06748 0.06746 0.06746 0.06747 
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~~ -1 -1 
Table IV. The values of A (k,k') for k=l.O fm and k'=2.0 fm , for 
derivative Woods-Saxon den~ity. See the description for Table v. 

' a(fm) ~ N=6 N=lO N=l4 Exact 

0 -0.01882 -0.01885 -0.01884 .:.o.Ol883 

1 -0.01690 -0.01809 -0.01813 -0.01803 

0.6 2 -0.02679 -0.02711 -0.02710 -0.02707 

3 -0.02476 -0.02482 -0.02484 -0.02480 

4 -0.01124 -0.01150 -0.01151 -0.01140 

0 -0.005080 -0.006686 -0.006719 -0.006750 

1 -0.007349 -0.007609 -0.007611 -0.007581 

1.0 2 -0.008387 -0.008004 -0.008005 -01008044 

3 -0.007685 -0.007745 -0.007748 -0.007694 

4 -0.005139 -0.005102 -0.005100 -0.005110 
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Table V. 
,Q,.Q,' -1 -1 

The values of AI=
2

{k,'k') for k=0.5 fm and k'=l.5 fm , for I=2 

(Quadrupole) derivative Woods-Saxon density of Eq. (11) with r = 4 fm and 
0 

a=0.6 fm. The density is not normalized, but is taken to be pi=
2

(r) (r
0
/p

0
) 

dp (r) 
o . The values of N are the order of. expansion in Eq. (8) with M=N. 

dr 
The exact values are obtained from Eq. {4) • 

.R, .R,• N=6 N=lO N=l4 Exact 

0 2 0.1999 0.1999 0.1998 0.1995 .. 

1 -1.842 .,.1. 857 -1.859 -1.853 

1 3 1. 537 1. 531 1.531 1.526 

0 0.3552 0.3761 0.3756 0.3738 

2 2 -0.7736 -0.7919 -0.7921 -0.7888 

4 1.513 1.514 1.513 1.505 

1 -0.2331 -0.2268 -0.2265 -0.2220 

3 3 0.01569 0.01116 0.01148 0.009036 

5 0.6825 0.6822 0.6820 0.6809 

2 -0.1071 -0.1069 -0.1068 -0.1059 

4 4 0.1072 0.1064 0.1064 0.1050 

3 -0.01179 -0.01200 -0.01204 -0.01243 

5 5 0.04218 0.04195 0.04193 0.04182 
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~~· -1 -1 
Table VI. The values of AI= (k,k') for k=l.O fm and k'=2.0 frn for I=2 
derivative Woods-Saxon density. See the description for Table IX. 

-

~ ~· N=6 N=lO N=l4 Exact 

0 2 0.2989 0.2987 0.2985 0.2982 

1 -0.3847 -0.4110 -0.4118 -0.4097 

1 3 0.1306 0.1475 0.1480 0.1457 

0 0.5886 0.5955 0.5950 0.5944 

2 2 -0.6087 -0.6160 -0.6157 -0.6150 

4 0.3183 0.3244 0.3242 0.3225 

1 0.3419 0.3424 0.3425 0.3411 

3 3 -0.5626 -0.5640 -0.5644 -0.5635 

5 0.6075 0.6044 0.6045 0.6044 

2 -0.01551 -0.005989 -0.006226 -0.007999 

4 4 -0.2553 -0.2612 -0.2615 -0.2590 

3 -0.1305 -0.1255 -0.1255 -0.1231 
/ 

5 5 -0.01458 -0.01743 -0.01729 -0.01756 
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