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Abstract 

Semiclassical and quantum mechanical transition state theory is reviewed and two new 

approaches described. One is a general implementation of a semiclassical rate expression [~1iller, 

Faraday Disc. Chern. Soc. ,62, 40 (1977)] that involves the 'good' action-angle variables 

associated with the saddle point (i.e., transition state) of a potential energy surface. The other is an 

evaluation of a formally exact quantum expression for the rate [Miller, Schwartz, and Tromp, J. 

Chern. Phys.7.!l, 4889 (1983)] in terms of Siegert eigenvalues associated with the transition state. 

Siegert eigenvalues are usually associated with scanering resonances, so their identification with 

the saddle point of a potential surface, and the expression for the reaction rate in terms of them, is 

quite an unexpected and novel development. 
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I. lnlroduction 

Transition state theory1 is without a doubt the most commonly used theory for describing 

chemical reaction rates (and also rate processes in many other fields), for both unimolecular and 

bimolecular reactions. The purpose of this paper is to suggest two new transition state-like 

theoretical approaches for determining such rates, the first a semiclassical one and the second fully 

quantum mechanical. In order to focus on the basic theoretical ideas which are the subject of the 

paper, all expressions below will be written explicitly for total angular momentum J=O; for 

applications to real molecular systems it is of course necessary to carry out the transition state 

calculation for each value of J separately and then combine them appropriately. The remainder of 

the Introduction su1nmaries the basic notions of transition state theory and earlier related work. 

The microcanonical and canonical rate constants are both conveniently expressed in terms 

of the cumulative reaction probabilicy N(E), 

(l.la) 

(1.1 b) 

where E is the total energy of the molecular system, T the temperature [~ = (kl)-1], pis the density 

of reactant states per unit energy, and Q,. is the reactant partition function. (k(E) is usually of more 

interest for unimolecular reactions, where it is known as RRKM theory, and k(l) typically of more 

interest for bimolecular reactions.) The cumulative reaction probability is in turn given by the sum 

of tunneling. or transmission probabilities over all states n = (n 1, ... ,nF-I) of the "activated 

complex" 

N(E) = L P0 (E) . 
D (1.2) 

The activated complex is the system of F-1 degrees of freedom (F is the total number of degrees of 

freedom of the molecular system) for motion in the dividin 1: surface normal to the reaction 
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coordinate (the Fth degree of freedom) which separates reactants from products. If for some states 

n, P0 were to equal 1, and for all other states equal to zero, then N(E) would simply be the number 

of states for which the transmission probability is unity. In general, therefore, one may think 

qualitatively of N(E) as the "number of quantum states that react", as a function of the total energy 

of the_ system. In the limit of classical mechanics N(E) is also proportional to the microcanonical 

average of the one-way flux through the dividing surface.2 

The transmission probabilities {P0 (E)} are thus the primary objects which must be 

calculated, and then Eqs. (1.2) and (1.1) give the reaction rates.3 The simplest approximation for 

them is obtained by assuming that the reaction coordinate (mode F) is separable from the (F-1) 

modes of the activated complex. In this limit 

(1.3a) 

where d' is the energy eigenvalue for state n of the activated complex, often approximated as 

hannonic, 

F-1 e: = L 1iro:(nk+1/2), 
k=l 

and Pld(Ep) is a one-dimensional tunneling probability, often approximated by the uniform 

semiclassical expression 

where 8(Ep) is the one-dimensional WKB barrier penetrating integral 

S(Ep) = Jb . dq~2m[V(qp)-Ep]/1i2 • 
arner 

(1.3b) 

(1.3c) 

(I. 3d) 

If the barrier potential V(qp) is furthermore assumed to be harmonic (i.e., a parabolic barrier), then 

S{Ep) = x(Vo-EF) , 
1ilroFI (1.3e) 
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where <Of'= -iiCOf-1 is the imaginary barrier frequency. (From Eqs. (1.3) one can readily see the 

general characteristic P0 (E) -+ 1 for Ep = E-Ei >> Vo.) The totally harmonic limit of the theory 

thus requires only a normal mode analysis at the transition state (saddle point of the potential 

surface) in order to determine the frequencies { ~}. k=1, ... , F, and also, of course, the barrier 

height v0. As simple as this totally harmonic result is, it is the general basis for describing the 

effects of dissapation on reaction rates (i.e., Krarners' theory).4 

A more rigorous expression for the transmission probabilities is given by the "instanton" 

model,5 i.e., a semiclassical theory that involves a periodic classical trajectory on the upside-down 

potential surface. In this case, 28(E) is the classical action integral (in pure imaginary time) for a 

complete cycle about the periodic orbit, and {~(E)}, k=l, ... , F-1 are the stability frequencies for 

an infinitesimal perturbation about the periodic orbit The major advantage of this theory is that 

one need not choose the reaction path, or even the dividing surface, in some ad hoc manner, but 

rather the full F-dimensional (classical) dynamics selects the reaction path (i.e., the periodic orbit). 

The transmission probabilities are given in this theory by 

I I F-1 ])-1 P0 (E) = \1 + ext28(E)-28'(E) ~ n(J%(E)(nk+ 1/2) , 
(1.4) 

which one sees is very similar in structure to the separable result given by Eq. (1.3a)- (1.3d), i.e., 

(1.5) 

The primary differences are, first of all, that 8(E) in Eq. (1.4) is computed along the periodic orbit 

and not along a separable one dimensional path as in Eq. (1.5). Also, the constant frequencies 

{cut) in Eq. ( 1.5) are replaced in ( 1.4) by the energy-dependent stability frequencies of the 
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periodic orbit. And finally, the periodic orbit result, Eq. (1.4), inherently assumes that the energy 

in the activated complex is small compared to the total energy, and the exponent in Eq. (1.4) is 

expanded to first order in this energy. If the action integral 8(E) were a linear function of E- i.e., 

if the barrier were assumed to be parabolic, as in Eq. (1.3e)- then this would not be an 

approximation, but in general it is. Thus the periodic orbit result, though clearly better in many 

ways than the separable approximation, has the defect that it is not correct in the separable limit if 

the barrier is anharmonic. 

II. Semiclassical Transmission Probabilities Including Anharmonicity 

A more rigorous way of including anhannonicity into the transition state transmission 

probabilities is based on the set of 'good' action-angle variables associated with the saddle point on .. 

· the potential surface.6 The good action variables about a saddle point are in complete analogy with 

those associated with a minimum on a potential surface. In the latter case one can compute 

classical trajectories, determine the invariant tori, calculate the topologically independent action 

integrals, etc., in order to determine them,7 but this is not possible for the case of a saddle point 

because the trajectories will "run away". It is necessary to express the classical Hamiltonian in 

terms of the good action variables by some analytic prescription.8 

The general result of this approach6 begins with the classical Hamiltonian expressed as a 

function of its 'good' (i.e., conserved) action variables, E(I 1, ••• , IF). One of these actions is 

identified with the reaction coordinate, IF say, and realized to be imaginary, 

(2.la) 

while the other (F-1) actions are quantized in the usual semiclassical fashion, 

(2.lb) 
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k= 1, ... , F-1. The equation 

E = E(n1, ... , nf.1.8) = E(n,e), (2.2) 

is then solved to express e = 8(n,E) as a function of E and the F-1 quantum number n. The 

transmission probability then has the semiclassical form 

(2.3) 

As an elementary example of this general prescription, consider a harmonic saddle point, 

for which 

F 

E(It. ... ,IF) = Vo + L roklk. 
k=l 

Making the replacementsin Eq. (2.1), with Ct>f=-iiO>pl, and solving Eq. (2.2) leads to 

9(n,E) = ......lL Vo+ L hwt(nk+1/2)- E , ( 

F-1 ) 

1iiWFI k= 1 

i.e., Eq. (1.3e), the harmonic result discussed above. 

(2.4a) 

(2.4b) 

A less trivial application of this general prescription Eq. (2.1 )-(2.3) was given recently9 by 

using perturbation theory to include the effects of cubic and quartic anharmonicities about a saddle . 

point. If { qx}, k=1, ... , F denote the usual mass-weighted normal mode coordinates at the saddle 

point (i.e., the harmonic potential is v0 + L 1/2WJ. 2qx 2), and 
k 

(2.5a) 

(2.5b) 

are the cubic and quartic force constants, then the classical energy is given in terms of the good 

i I 
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actions {Ik} by 

F F 

E(It •... ,IF)= Vo + L, Wiclk + L, xkk·lklk', 
k=l k:!;k'=l (2.6) 

where the anhannonic constants { xk,k'} are given in terms of the cubic and quartic force constants, 

(2.7a) 

(2.7b) 

fork ;ll!:l. With the replacements indicated by Eq. (2.1), Eq. (2.2) is a quadratic equation fore, 

which is readily solved to give 

8(n,E) = 1t~E ( 2 ) , 
1iQ F 1 +"' 1 +4xFF.1E/(1in F)

2 

where 

with 

f.J f.J £: = L, 1irok(nk+ 1/2) + L 1i2xkk·(nk+ 1/2)(nk·+ 1/2) , 
k=l kSk~l 

and 

with 

- . 
XkF = -lXkf' 

(2.8) 

(2.9a) 

(2.9b) 

(2.10a) 

(2.10b) 

(2.10c) 

<XkF is real). Eqs. (2.8)-(2.1 0) incorporate anhannonicity in the energy levels of the activated 

·'·~ 
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complex (cf. Eq. (2.9b)), anharmonicity in the reaction coordinate itself (via XfF), and coupling 

between the reaction coordinate and modes of the activated complex (i.e., reaction path curvature) 

through the anharmonic constants Xkf in Eq. (2.10a). 

It is useful to note that having the energy to quadratic order in the actions, Eq. (2.6), can 

describe anharmonic effects quite realistically. Morse oscillator vibrational eigenvalues, for 

example, are given exactly through second order in (n+ 1/2). Also, consider the popular Eckart 

potential barrier 

V(x) = Vo sech2 (ax) , (2.11a) 

which is often used to model anharmonic barriers. The one-dimensional WKB action integral for it 

is given by 

(2.11b) 

so that the energy as a function of e is 

E(8) = Vo- .6. ~a y2Vo + (.e.)2 t?a2 ; 
1t m 1t 2m, (2.11c) 

i.e., the energy is given exactly as a quadratic function of the action. One thus feels that Eq. (2.6), 

and the transmission probability that results from it, can have a useful range of validity for 

including the effects of anharmonicity of the transition state. 

Is it possible to apply the general semiclassical theory of Eq. (2.1) - (2.3) non-

perturhatively? The following procedure is one scenario. The idea is to use guantum mechanics to 

obtain the energy in terms of the quantum numbers (i.e., action variables) by diagonalizing a 

Hamiltonian matrix. 

Thus suppose that the potential is harmonic plus cubic and quartic anharmonic terms. One 

first imagines that All the frequencies { ~) k=1, ... ,Fare real and writes out the simple (analytic) 

matrix representation of the Hamiltonian, Hn,n'• in the harmonic oscillator basis (where here n and 

( 
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n' denote F quantum numbers). After the matrix elements are calculated, one makes the 

replacement 

OJF ~ -ilc.oFI , 

whereby the matrix Hn,n' becomes complex symmetric. Diagonalizing it thus gives complex 

eigenvalues, i.e., the complex energies that would result in the perturbation expression Eq. (2.6) if 

ill the actions were replaced by Ik = tnk+l/2)1i, k=l, ... , F. That is, when diagonalizing a. 

Hamiltonian matrix to obtain eigenvalues - the non-perturbative quantum mechanical procedure - all 

the actions have "automatically" been set to their quantum values, i.e., (half-integers)x1i. To apply 

Eqs. (2.1)- (2.3), therefore, it is necessary to fi1 these numerically obtained eigenvalues to an 

analytic function of the quantum numbers, such as Eq. (2.6) or possibly a more general function, 

e.g., a Pade approximant Once the analytic function E(n) is determined, one can ~en make the 

replacement Eq. (2.la), solve Eq. (2.2) and obtain the transmission probability via Eq. (2}). 

III. A Fully Quantum Rate Expression 

The discussion at the end of the previous section describes a guantum mechanical 

calculational procedure (diagonalizing a particular complex synunetric Hamiltonian matrix), the 

result of which is then used in a semiclassical theory. This seems wasteful; i.e., after one has done 

a quantum calculation, one would like to be able to determine the rate fully quantum mechanically. 

This is possible by realizing that the complex eigenvalues discussed at the end of Section II 

are the Siegert eigenvalues JO of the system. This is clear when one considers the boundary 

,.., .. 
J conditions satisfied by the corresponding eigenfunctions. For modes k=l, ... , F-1 the hannonic 

,j oscillator functions have real frequencies so that the eigenfunctions will decay in these coorclinates 

in the usual fashion. For mode F, though, with OJf = -il~l, the hannonic oscillator functions have 

the form 



1 0 

(3.1) 

where H is a polynomial in qp. This function is an outgoin2 wave in both directions qp ~ ±oo, 

i.e., the Siegert boundary condition. 

As has been used recently in quantum reactive scattering theory, 11 though, an outgoing 

wave basis set is what is necessary to construct a fmite basis set representation of the Green's 

function G+(E) (provided one is interested in matrix elements of G+ between short-range states). 

Thus if {E ..e}, {'V ,.e(q}, l=l, ... are the complex eigenvalues (lmE ,.e<O) and corresponding 

eigenfunctions that result from the calculation described at the end of Section II, then one has the 

approximation 11 

(3.2) 

which becomes exact in the limit of a complete basis. (Note that there is no complex conjugation 

of the wavefunction in the bra symbol.) The microcanonical density operator is then given by12 

o(E-H) = - l_ ImG+(E) 
1t 

Since the time evolution operator can be expressed as 

e·illf/11 = f dE e·ilif/11 5(E-H) , 

(3.3) 

(3.4a) 

use of Eq. (3.3) in (3.4a)- and noting that ImE ,.e<O, ImE /'>0- and evaluating the integral over E 
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1 1 

by closing the contour in the lower half plane, gives 

e-iHt/1i = L e-iE..tt/til\jf ..t><'lf ..tl . 
..t (3.4b) 

Eqs. (3.3) and (3.4) make it possible to carry out a direct evaluation of the exact quantum 

rate expressions given by Miller, Schwartz, and Tromp.l3 Thus the canonical rate constant is 

given by 

k(T) = o,-1 r dt Cj(t) • 
(3.5a) 

where the flux correlation function is 

(3.5b) 

where F is the flux-through-the-surface operator. Use of Eq. (3.4) in (3.5b) (and some straight-

forward manipulation) gives the flux correlation function as 

Cc(t) =- L (v /IFI'If ..t? e-~E..t+E ..t~}-2 ei~E ..t~-E..t Yli . 
..t,..t' (3.6) 

Since lm(E .t.•-E ,t)>O, this correlation function decays exponentially as t -+oo, the correct behavior 

(which has IlQ1 been obtained in previous basis set calculations of this correlation function13,14). 

With Eq. (3.6), the time integral in Eq. (3.5a) can be readily carried out, giving 

k(T) = ~ 1m L (('1' ..t;IFI'If..t))
2 

e- ~E..t~+E..tf2 ~E/ -E..t}. 
'.a ..t,..t' (3.7) 

One can similarly use Eq. (3.3) to evaluate the flux expression for the cumulative reaction 

"'') probability N(E), 

N(E) = ~2nn)2 tr [Fb(E-H)Fb(E-H)] . (3.8) 

The result of this calculation is 
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(3.9) 

It remains to apply Eqs. (3.7) and (3.9) and test their ease of use, generality, and efficiency 

(i.e., how rapidh· convergence is achieved with increasing size of basis set). It is nevertheless 

interesting to see how these fonnally exact quantum rate expression can be expressed in terms of 

the Siegert eigenvalues (and eigenfunctions) which are related to the transition state. Siegert 

eigenvalues usually are discussed only with regard to scattering resonances, 10 for which the 

imaginary pans of the eigenvalues are small. Here, on the other hand, the imaginary pans are large -

e.g., for a parabolic saddle point 

1m En = - ~IOlfl(nf+ ln.) 

np = 0, 1, 2, ... - and have nothing to do with resonances. This appears to be a totally new 

context for these quantities. 
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