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Abstract 

Effective aupergravity theories auggested by superstrings can be ex­
plored to determine their potential for successfully describing both ob­
served pbysica at zero temperature and an inflationary cosmology. An 

important ingredient in this study is tbe dynamics of gaugino condensa­
tion, wblch has been tbe subject of recent activity. 
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INTRODUCTION 

We ace accustomed to the well,established Standard Model of particle 

physics, namely the SU(J). x SU(2)L x U(1) gauge theory whose three (scale 

dependent) gauge coupling constants apparently converge, when appropriately 

extrapolated, to a common .value at a momentum scale, Acur, that is a few 

orders oC magnitude below the Planck scale. Grand unified theories assumed 

that above that scale the theory would be (at least up to the Planck scale) a 

conventional, renormalizable quantum field theory (RQFT). The more modem 

view is that the theory above the GUT scale is a superstring theory (1), possibly 

in aa many as ten dimensions, and that just below it the effective theory is a 
supergravity theory that coincides with the standard model (or some RQFT 
extension of it) when the energy scale is low enough that nonrenormalizable 
couplings, that ace suppressed by inverse powers of the Pl.anck mass mpt 

(S~rGN)-i, can be ignored. 

The vacuum configuration that defines the effective renormalizable quan­

tum field theory is determined by the vacuum expectation values (vevs) of 
scalae fields VI of the effective supergravity theory that are generally of order 

< VI >~ mPI- Obviously, truncation to the effective renormalizable theory 

cannot be made without first determining these scalae vevs. These in tum 

determine: 

• the value of the cosmological constant; 

• the scales of supersymmetry (SUSY) and hence of gauge symmetry 

breaking-more specifically whether or not the possibility exists of generating a 

sufficiently large hierarchy between the observed scale of electroweak symmetry 

breaking and the fundamental scale mpti 

• the shape of the effective scalae potential at temperatures not far below 

the Planck temperature, which determines whether or not a successful inftation­

acy scenario is possible in the context of the theories considered. 

In this talk I will focus on work done mainly in collaboration with Pierre 

Binetruy that draws on features common to a broad class of effective supergrav­

ity theories obtained as classical vacua of the heterotic superstring theory (2). 

The idea is to use constraints from the presumed underlying superstring theory 



to determine the effective "low energy" supergravity theory, much as one uses 

constraints from the QCD theory of quarks and gluons to determine an effective 

low energy theory of hadrons. 

THE HETEROTIC STRING 

According to the presently moat popular hope for a fully unified theory, 

the Standard Model is an effective th~ry that is the low energy limit of the 

heterotic ~tring theory (2). Starting from a string ~heory in 10 dimensions with an 

Ea >< Ea gauge group, one ends up, at energies sufficiently below the Planck scale, 

with a supersymmetric field theory in 4 dimensions (3), with a generally smaller 

gauge group 'H >< 0. 'H describes a •hidden sector", that bas interacti0111 with 

observed matter of only gravitational. strength, and 0 ::> SU(3)c >< SU(2)L >< U(1) 

is the gauge group of observed matter. Part of the gauge symmetry may be 

broken (or additional gauge symmetries may ·be generated) by the 10 -+ 4 

dimensional compactification process itself, and part of it may be broken by the 

Hosotani mechanism (4), in which gauge Oux is trapped around apace-tubes in 

tbe compact manifold. There are now many more examples of effective theories 

from superstrings than one once thought could emerge. For illustrative purposes, 

I wiU stick to the original •conventional" scenario, in which the •observed" Ea 
is broken to Ee, long known to be the largest phenomenologically viable GUT, 

by the compactification process. Then the observed sector is a supersymmetric 

Yang-Mills theory, with gauge bosons and gauginoe in the adjoint representation 

of 0 C Ee, coupled to matter, i.e., to quarks, aquarks, leptons, sleptons, Higgs, 

Higgsinos, .... 

The hidden sector is assumed to be described by a pure SUSY Yang-Mills 

theory, 'H C Ea, which is asymptotically free, and therefore infrared enslaved. 

At some energy scale A., below the compactificati~n scale AGUT at which all the 

gauge couplings are equal, the hidden gauge multiplet& become confined and 

chiral symmetry is broken, as in QCD, by a fermion condensate. In this case 

the fermions are the gauginos (denoted by .X or g) of the hidden sector: 

< .\.X >hid - A~ I 0. (1) 

The condensate {l) breaks SUSY (5), and by itself would generate a positive 

C06mological constant. If a single gaugino condensate were the only source 
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of SUSY breaking, and of a c011mological constant, the condensate would be 

forced dynamically to vanish, due to the condition that the vacuum energy be 

minimized. 

Another source of SUSY breaking is the (quantized) vacuum expectation 

value of an antisymmetric tensor field Hum, that is present in 10-dimensional 

supergravity: 

HLMN=VLBMNo L,M,N=0, ... ,9, 

j dV1
"'" < H,,.." >= 2~rn I 0, l,m,n = 4, ... ,9. (2) 

The 11e11 (2) can arise if H-Oux is trapped around a 3-dimensional space-hole 

in the compact 6-dimensional manifold, in a manner analogous to the Hosotani 

mechanism for breaking the gauge symmetry. When ( 1) and (2) are both present, 

.X and HLMN couple in such a way (6) that the overall contribution to the classi­

cal C06mological constant vanishes. There· are other potential sources of SUSY 

breaking, such as a gravitino condensate (7), that might play a similar role. 

The particle spectrum of the effective four dimensional field theory in­

cludes the gauge supermultiplets w· = (.Xt, F;, - iF;:.,) (that is, gauginos 

g" = .X" and gauge bosons g") and the chiral supermultiplets c)' = ('f'',xD 
that contain the matter fields ( 'f'' = &quarks, sleptons, Higgs particles, ... , x' = 
quarks, .•. ). In the •conventional" scenario these are all remnants of the gauge 

supermultiplets in ten dimensions: 

AM-+ A,. +'f'.,., I'= 0, ... ,3, m = 4, ... ,9. (3) 

Thus for each gauge boson A.w in ten dimensions, there are potentiaUy one 

gauge boson A,. and six scalars 'f'm (and their superpartners) in four dimensions. 

However not all of these are massless. In the "conventional" picture (E8 -+ E6 

in the observed sector) the massless 4-vectors are in the adjoint of E6 , while the 

massless scalars are in (27 + Zf)'s that make up the difference: (adjoint)Ea -

(adjoint)Ea· 

In addition there is the supergravity multiplet containing the graviton 

G and the gravitino G, and a number of gauge singlet chiral supermultiplets. 

One of these, S = (s,x5 ), includes the •dilaton" Res, where sis the (complex) 
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scalar component of S, whose vev determines the inverse squared gauge coupling 

constant at the GUT scale: 

l(AGUT) =< (R.e.t)-1 > . (4) 

Among the other gauge singlet chiral multiplet& that may be present 

are the SG-called moduli T; = (l;,xf>, whose scalar component. I; correspond to 
quantum fluctuations in the topology of the compact manifold. One of these cor­

responds to fluctuations in the overall size of the manifold and itavev determines 

the compactification, or GUT, scale, that is, the inverse radius of compactifica-

. tion R: 

A~ = Ir1 = ml1 < (ReW1 >= m}., < (R.e.tR.eW' >, (~) 

where m!1 ia the string tension. The total number of moduli is equal to the 

number of matter generations (#27's- #'ff s) and ia determined by the detailed 

topology of the compact manifold. 

These gauge nonsinglet scalar fields and their axion auperpartners Ims, 

lml;, are important because classically their values are fiat directions in the ef­

fective potential. The quantum effectl that lift these degeneracies determine the 

overall vacuum configuration and therefore the scales of the elementary particle 

theory. For the same reason these fields are prime candidates for inflatons. 

EXAMPLES OF INFLATIONARY SCENARIOS 

Because the S field couples to all the Yang-MiUs fields and their su­

perpartners, condensation of the hidden gauginoa induces a potential for s (6). 

For illustrative purposes, Fig. 1 shows the potential in the effective theory ob­

tained by Dine et al. (6) for the field variable f = -lnRe(s)/v'2, which is the 
canonically normalized scalar field that rolls according the classical equations of 

motion. The shape of the potential depends on the ratio c = lc/hl, where 

c ex f dVImn < Hlmn >, ia"cx< .t\ >hido (6) 

are parameters of the effective theory that reflect the vevs of hidden dynamical 

variables. The potential has vanishing vacuum energy, and for c > 1.21 the only 
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global minimum ia the SUSY conserving one: m" = 0. For c < 1.21 the vacuum 
ia degenerate in the t direction and local SUSY breaking is possible~ It turns out 
(8,9) that slow rollover inflation with a suitable number of e-foldings can occur 

only for the potential of Fig. 1(e), with the parameter fine-tuned to the value 

c = .937 ± (3 x 10--4 ). For c just above thia value the field f would have to tunnel 

to the true vacuum, entailing the probleans of the old inflationary scenario, and 
fOI" values just below it there ia no plateau from which a slow rollover can start. 

In addition one must find a mechanism for atabilizing f at the required initial 

value; temperature corrections cannot do this (8). One suggested mechanism 

(9) ia to take into account that condensation does not occur instantaneously at 

a critical temperature T. - A.. Ellis et ol. (9) parameterized the tum-on of 

condensation by fa = fa(T) = lao( 1 - T /T.)n for temperatures T < T.. This 
effectively turns Fig. 1 into a moving picture with the potential evolving from 

l(a) to l(e); it then becomes plausible that the field ends up in the second 

minimum in 1(b) and 1(c) and evolves to the plateau in 1(e) from which it 

roDs to the true vacuum. Aside from the fine tuning problem, one needs to 

understand better the dynamics of gaugino condensation to see whether such 
a •moving picture• ia plausible. Gaugino condensation has been the subject of 

much recent work (1D-14) which I wiU describe below. 

Figure 1. The shape of the potential of Dine -~ J (a) 

et ol. (6) for the variable f = -ln(R.e.t)/v'2, t_/\_ J (b) 
plotted in the region -2.3 < f < 3.7, and for 

~_,___ (a) c = 1.21, (b) 1 < c < 1.21, (c) c = 1, (d) (c) 
.937 < c < 1, (e) c = .937, (f) c < .937. In 

~r-all cases the potential vanishes at the SUSY (d) 

conserving (m" = 0) configuration Res -+ 

~~ oo (f -+ -oo); this is the only zero of the (e) 

potential for c > 1.21. 
~~~ (f) 

The fine tuning problem could be evaded in a chaotic inflationary picture 

(15) as I will point out later. In addition to the scalar field ~ or Res there 
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ie its axion (peeudoecalar) superpartner. We found (8) that its potential as 
determined by the effective theory of Dine et al. does not aUow for sufficient 

inflation. A recent reexamination (16) of axion-induced inflation suggests that 

axions with characteristic scale parameter f of order of the Planck scale can 
lead to sufficient inflation; however the specific values (including the height of 

the potential, which here is proportional to the gravitino mas&) required in that 

analysis are not satisfied by the potential for lnu in this effective theory. 

The potential for the modulua field C ie flat at the tree level of the effective 
theory of Dine eC ol., and the degeneracy in Ret ie lifted at the one loop level. 
The earliest attempts (17-19) to evalu~ the one-loop corrections resulted in a 
potential with a negative (and even unbounded (17,19)) CI08mological constaitt. 
Maeda et al. (20) studied the case (18) of a bounded potential by simply adding 
a constant energy density to fix the global minimum at zero, and found that 

sufficient inflation could occur. Their key observation was that the C field ie 

driven to a value away from its true vacuum when (as in a chaotic early universe, 
for example) the other fields are not at their vacuum values. A problem with 

this analysie ie that one cannot simply simply add a constant energy density 
to the potential; in superstring theory everything is determined by the vevs of 

scalar fields. Another problem ie that their aneatz violates general results that 

ahow that the SUSY conserving vacuum ie alway& a (possibly degenerate) global 
minimum of the potential if it ia bounded from below. 

With Dawson and Hinchliffe we (21) subsequently ehowed that additional 
quantum corrections from loop momenta between the condensation and comp­
actification scales could restore the boundednesa of the effective one-loop po­

tential, and that local SUSY breaking could occiu for reasonable values of the 
relevant parameters, in which case the potential vanishes at its minimum which 

remains degenerate in one direction in parameter apace. The resulting potential, 

ahown in Fig. 2 in the (c,Ret) plane with the other vevs fixed at their ground 
alate values, does not yield sufficient inflation when the t field is considered in 
isolation. On the other hand aU observable SUSY breaking effects are found to 
vanish along the minimum, which ia good for phenomenology, since nonvanish· 

ing effects at this order would be much too large. The origin of this suppression 

of observable SUSY breaking has been identified (10); it is related to a classical 
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symmetry of the effective theory that I will display below. 

These last results rely on the assumption that the true vacuum is a 

minimum with respect to all vevs, including the parameter h that reflects the size 
of gaugino condensation. To determine whether such an assumption is justified 

requires a better understanding of the dynamics of gaugino condensation, as 

does a fuU exploration of possible inflationary scenarios. Gaugino condensation, 

wiD be the subject of the remainder of the talk, with the end result that, when 

constraints from string theory are fully implemented, the picture sketched above 
may be considerably altered. 

Figure 2. The one loop po­

tential (21) in the (Ret, c) 

plane, with the remaining 
pararnetera fixed at their 

ground etate values, for the 
effective theory or Dine et 
al. (6). The continuoua de­
generacy ia reduced to a die­

crete one when the quanti· 
zation condition (2,6) for c 
ie taken into account. 

vl 

CONSTRUCTION OF THE EFFECTIVE LAGRANGIAN 

The general eupergravity lagrangian was first given in its complete form 
by Cremmer et al. (22). Ita symmetry structure is most readily manifest in 
the superfield formulation later developed by Binetruy et al. (23), in which the 

Lagrangian can be expressed by just three terms: 

£ "7 LB +£poe +£YM· (7) 

The first term 

r.,. = -3 J tfeen + h.c. (8) 

is the generalized Einstein term. It contains the pure supergravity part as well 
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as the (noncanonical, i.e. including derivative couplings) kinetic energy terms 
for the chiral supennultiplets. The second term: 

£,... = J JlaeKIUlnw(~) + h.c., (9) 

contains the Yukawa couplings and the scalar potential, and the third term 

Cnt = i J Jlaf(ot)w;w: + h.c. (10) 

is the Yang-Mills lagrangian. Here a is a complex two-component fermionic 

variable in auperspace: z -+ z, a, e. Integration over the anticommuting vari­

able 9 is equivalent to differentiation. The expansion of the above expressions 

in terms of component fields includes derivatives that are covariant with respect 

to general coordinate, gauge and Kibler transformations. A Kibler transfor­

mation is a redefinition of the Kibler potential K(t,i) = K{t,i)f and of the 

superpotential W(<t) = W(i)f by a holomorphic function F(t) = F(i)f of the 

chiralaupennultiplets t = (~.x): 

K-+ K' = K + F + 1', W-+ W' = e-Fw, (11) 

Since this transformation changes eK13W by a phase that c&n be compensated 

by a phase transformation of the integration variable a, the theory defined 

above is classically invariant (22!23) under Kibler transformations provided one 

transforms the superfielda "R and w; by the same phase; for example 

w:-+ e-JmFnw:. (12) 

This last transformation, which implies a chiral rotation on the left-handed 

gaugino field ~1: 
~:-+ e-lmF/3~:. (13) 

is anomalous at the quantum level, a point that wiD be important in the discus­

sion below. (Here a is a gauge index and a is a Dirac index.). 

The theory is completely specified by the field content, the gauge group 

and the three functions K, W and f of the chiral superfields. One can fix the 

"Kibler gauge" by a specific choice of the function F. In particular, choosing 
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F = In W casts the lagrangian in a form (22) that depends on only two functions 

of the chiral superfields, f and (1 = K + In I Wl3 • The gauge coupling constant 
is determined by the ueu 

< Ref(~) >= 9-3
- (14) 

I wiD consider a prototype (24) supergravity model from supenitrings, 

with just one modulus T and one matter generation. The generalization to 

three moduli and three matter·generations is straightforward (14). The functions 

K, Wand fare given in terms of the superfields ~ = <t1, SandT by 

/ = S, (15a) 

K = -ln(S + S)- 31n(T + t -1•13
), ltl3 = L ...... (15b) 

; 

W(t) = ct;•t'ti~• +c. (15c) 

where the last term in the superpotential W parameterizes the nonperturba­

tive SUSY breaking induced by the ueu (2,6) of the antiaymmetric tensor .field 

•trength. Comparison of (USa) with (14) yields the relation (4), and using this 

with (5) gives for the veu of the Kibler potential ( < 1~'13 > < <Ret >) 

16 < eK >~< (Re.s)-1(Ret)-3 >= g-4A~/m~1 • (16) 

For c = 0, the supergravity theory defined above is classically invariant 

(25) under the nonlinear transformations 

T T' aT - ib t' t'' ot' 
-+ = icT+d' -+ = icT+d' s-+ S' = s, 

ad-be= I, a,b,c,d real, {17) 

that form the three-parameter group SU(I,1) or SL(2, "R) which is the non­

compact version of the rotation group SU{2) or 0(3). Eq.(I7) effects a Kibler 

transformation ( 11) with 

F = 3ln(icT +d), (18) 

under which the full lagrangian is invariant provided the gaugino fields undergo 

the chiral transformation (12,13). The group of transformations (17) includes a 

subset with a = d = 0, be = -1, under which: 

t-+ b1/t, (19) 
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where b is a finite, continuous, real parameter. From (5) we see that when the 

theory is expressed in string mass units ms., (19) corresponds to an inversion of 

the radius of compactification. For the special case of integer b, this is the weU 

known •duality" transformation that leaves the string spectrum invariant. 

When we allow c'" 0, the SU(1,1) symmetry can be form&Uy maintained 

by &Uowing this parameter to transform like t~e superpotential in (II): 

c-+ t = e-"c. (20) 

It can be shown (10) that (20) corresponds to the correct transformation prop­

ertyortheantisymmetrictensor field< HLMN >in (2). TheSU(1,1) symmetry 

has recently been shown (10) to be at the origin of the canceUation of observable 

SUSY breaking effects, found (21) previously by explicit calculation in pertur­

bation theory. 

Just as one can construct low energy effective Lagrangian& for paeu­

doscalac mesons that are qq bound states using the symmetries of QCD and 

the chiral and conformal anomaly, one can use (10) SU(l,1) and its anoma­

lies, together with supersymmetry (26), to construct an effective lagrangian for 

the lightest hidden-sector chiral su~rmultiplet, denoted H = (h, xH), that is 

a bound state, with mass mn, of the hidden gauge supennultiplet. Here tbe 

relevant classical symmetries are the chiral transformation (12,13) and the scale 

transformation 

Aaur = mpr(2g)l < eKte >-+ eReF/3Aaur, (21) 

which follows from (17), (18) and the identification (16) for the cut-off Aaur 

of the effective theory. Scale and chiral invariance are broken at the quantum 

level by anomalies. The variation of the one-loop quantum corrected SUSY 

Yang-Mills lagrangian is weU-known (26): 

.c~""' .... .c~""'- 2
: j JleF(T)W;w: + h.c., (22) 

where bo is the group theory number that determines the P-function for the 

Yang-Mills theo~. We wish to consiruct an effective potential for a composite 
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chiral multiple H that represents the lightest bound state of the confined hidden 

Yang-Mills sector. Thus we identify (27,10): 

.C~""' => .c;!J = j JleeK/22bo>.e-351,boH3 ln(H/p) + h.c. 

= j Jle(SU + Uln(4Ul(S)/A~r(<t)>.p3) + h.c.J, (23) 

where >. and p are constants of order unity, U is the interpolating field for the 

Yang-MiUa composite operator: 

1 
4w;w: => u = >.H3eKile-3Silbo, (25) 

and the factor 

< 2boln(H/p) >= ~ [1 + 2~92 1n(4 < U > g
2/Ab>.p3

)] 

= ~ [1 + 
2~92 ln(4e- 1A~/A~r)] (26) 

is the on&-loop Yang-MiUa field wave function renormalization from the comp­

actification scale to the condensation scale. The composite field (25) and the 

effective lagrangian defined by (23) transform according to (12) and (22), re-

spectively, provided we impose 

H-+ H' = e-F13H = _H __ 
icT+d 

(27) 

and take as Kihler potential (which determines the H-superfield kinetic energy) 

(10): 

K = -ln(S + S)- 3ln(T + f -loti, -IHI2
). 

We can now solve the effective theory for the condensate ueu: 

).h3 
< H >= ho = pe-113

, or <X>. >h;d= 4 < U >= - 0 A3
• 

. ~ c 

(28) 

(29) 

If we fix H at its ground state value, we obtain an effective theory for <ti, S, T 
and the observable-sector Yang-Mills fields that is defined by (15a,b) and the 

superpotential 

W(<t) = C;j~otiotiot~ + c+ he-3bo512 , 

11 
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which is precisely the theory of Dine et al. atudied previously. This is a rea­

sonable approximation because the (SUSY comerving) mass mH ...... A. > m., 

of the composite supermultiplet H is larger than the other masses generated at 

the classical level of the effective theory defined by (23). As mentioned earlier, 

the effective theory defined by (30) has the following properties at the classical 

level (6) and at the one-loop (21) level: the cosmological constant vanishes, the 
gravitino mass m., can be nonvanishing, so that local supersymmetry is broken, 

in which case the vacuum is degenerate, and there is no manifestation of SUSY 

breaking in the observable sector. Note that with h now determined by {29,30), 
minimization of the effective potential with respect to the parameter h is equiv­

alent to minimization with respect to the parameter p {or ~). The presence of 

an undetermined parameter reftects (10) an additional degree of freedom of the 

underlying theory, namely the gauge field strength F,..,, which does not appear 
explicitly as an independent propagating field in the composite supermultiplet 

formulation. 

Including loop correction from the H-sector, one finds that maases are 

generated for the gauginos of the observable sector that are of order (10) 

1 2 • 2 10-11 -2T V ml...., ( 2 2 )2mamH"c < mPI- e . 16>r mp1 

for m., < mn ~ A ....... 10-2mPI. {31) 

The factor (4>r)-4 appears in (31) because the effect arises first at two-loop order 

in the effective theory, the factor m() is the necessary signal of SUSY breaking, 

the factor m}, is the signal of SU(l,l) breaking, and A! is the effective cut-off. 

This last factor arises essentially for dimensional reasons: the couplings respon­

sible for transmitting the knowledge of symmetry breaking to the observable 
sector are nonrenormalizable interactions with dimensionful coupling constants 

proportional to m p:. Once gauginoe acquire masses, gauge nonsinglet scalars (in 
particular the Higgs particle, whose mass governs the scale of electroweak sym­

metry breaking and hence the gauge hierarchy) wiD acquire masses m,.. ...... !;m1 
at the next loop order in the renormalizable gauge interactions. 

This theory thus appears· capable of generating a plausible gauge hier­

archy, which in tum suggests that one should take seriously the study of its 
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posaible inftationary scenarios. Specifically, in the context of chaotic inftation 
(15), we should not set the gauge nonsinglet scalars V'i in (30) to zero at temper­

atures near the Planck temperature. We can parameterize their effect by letting 

il ..... il('{') = il + Cij• < V'i~~ >, which is temperature dependent. Then one 
.recovers the "moving picture" scenario for Fig. 1 (28). Moreover, one need not 

fine tune the zero-temperature parameter c, since the the desired exponential 

expansion wiD occur iC the field Ru sits for a sufficiently long time in, for ex­

ample, the second (false) minimum of Fig. 2d. No tunneling is required as the 

"graceful exit" is provided (29) by the potential changing ita shape due to the 

evolution of the V'i fields to their ground state values that are equal to zero(or 

nearly so with respect to the scales in question). This analysis has not been 

pursued further, because recent developments in understanding the symmetry 
of effective theories &om superstrings appear to change the picture appreciably. 

RESTORATION OF MODULAR INVARIANCE 

In the formalism presented above, the continuous classical symmetry 

SU{l,l) or SL(2, R) is broken by anomalies at the quantum level. However 

the discrete subgroup SL(2,Z) [a,b,c,d integers in (17)) of SL(2, R) is known 
(30) to be an exact symmetry to all orders in string perturbation theory. This 8()­

called "modular invariance" is restored by adopting, instead of (23), the effective 

lagrangian (12) 

c.~-=>!",!,{= j cfeeK/22bo~e-3SI'JboH3 1n(Hq2(T)/p) + h.c., (32) 

where 

q(T) = e-•T/12 fi (1- e-h•T) (33) 
m=l 

is the Dedekind q-function. This ia the unique function of the chiral superfields 

that has the required analyticity and S L(2, Z) transformation properties (12). 
This additional contribution to the Yang-Mills wave function renormalization 

was found independently (31) from the direct calculation of finite threshold cor­

rections to the leading log approximation that arise from heavy string mode 

loops. The result (32) has been generalized to the cases of several gaugino 

condensates (13,14) and of several moduli (14). 

The effective scalar potential (11,12) for the theory defined by (32) is 
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unbounded from below. IC one appeals to some unknown dynamica, such ae 

wonnholes, to restore poeitivity and e~aee the (infinitely negative) coamological 

constant, one l011e11 all predictive power becaUBe the aame dynainics can affect 

other features; specifically one can make no statements about the gauge hierar­

chy (which involves expanding in quantum Ouctuatione about the true vacuum) 

nor about inftation (which involves tracing the evolution of the field configura­

tion~ toward the true vacuum). 

A cure for thie disease hae recently been found (14). It suffices to reinter­

pret the above fonnalism, which is based on one-loop results for the Yang-Mills 

field ~onnalization in SUSY Yang-Mills theories. In the conetruction (23) or 
(32) the field renonnalization is incorporated into a redefinition of the superpo­

tential. We can inetead incorporate it into a redefinition of the Kihler potential, 

which is in fa.ct the interpretation that is supported by known renonnalization 

effects in supersymmetry and in supergravity (32,10). That is, inetead of (32) 
and (28), we define the effective compoeite theory by 

c.~-=> t.;!! = J tPeseKI2>.e-351»oH3 + h.c., (34o) 

K = -ln(S+S) 

-3ln(T + 1' - l<tl2 -IHI2(1 - llloi(S) In( H,2(T)/ p) + h.c.)). (34b) 

The two theories are identical (after appropriate redefinition~ of field variables) 

to first order in the loop expansion parameter llo; indeed it is a term of order ~ 

that drives < V >-+ -oo in the theory defined by (32). At its classical level, 

the theory defined by (34) hae once again a vanishing coamological conetant and 

(for c f:. 0) a degenerate vacuum with local SUSY breaking (me) f:. 0) po!ISible, 

and again no SUSY breaking appears in the observable sector at the classical 

level of this effective theory. {14) 

What remaine to be done is to reexamine the issues of quantum cor­

rectione and inflationary potentials for this modified theory. The analysis is 

considerably more complicated in this case, and one can expect some qualita­

tive differences from the scenarios described above. For example, one generally 

finds (33) a different hierarchy of masses, namely 

ms > mn- m", (35) 
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with SUSY-invariant masses for the S-supennultiplet up to tenns of order m". 
This means, for example, that it makes no sense to fix the H -supennultiplet at 

its vev and to study the effective potential for .s. 

It may also be the case that the theory defined by (34) is sufficiently 

complex that a realistic piCture wiU emerge only when all the moduli fields are 

included. For example, much of the degeneracy of the simple model defined by 

{15,23) is lifted by the appearance of the ,.function (33). On the other hand, 

including three moduli (and three matter generations) will increase the degree 

of degeneracy. The degeneracy in the moduli directions plays an important role 

In iuppressing observable SUSY breaking effects. Finally, in contrast with the 

simple model (15,23), which remains degenerate in the lmt direction to all orders 

in perturbation theory, the axion components of the moduli superfields may 

develop nontrivial potentials at the quantum level; this might provide additional 

interesting poesibilities for inflation (16). 
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