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Abstract 
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The vibrational relaxation of iodine in liquid xenon was 

studied to understand what processes are important in 

determining the density dependence of the vibrational 

relaxation. This examination will be accomplished by taking 

simple models and comparing the results to both experimental 

outcomes and the predictions of molecular dynamics 

simulations. The vibration relaxation of·iodine is extremely 

sensitive to the iodine potential. The anharmonici ty of 

iodine causes vibrational relaxation to be much faster at the 

top of the iodine well compared to the vibrational relaxation 

at the bottom. For this reason, models that use theories such 

as Schwartz, Slawsky, and Herzfeld equation to describe 

vibrational relaxation can not be expected to describe the 

relaxation in the top of the iodine well. Models that 

incorporate the anharmonicity by actually calculating the 

probability of · relaxation vs. vibrational level ·are 

qtialitatively insensitive to the actual potential used and 

reproduce the actual experimental results faithfully. 

A number of models are used in order to test the ability 

of the Isolated Binary Collision theory's ability to predict 

the density dependence of the vibrational relaxation of iodine 
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in liqUid xenon. The models tested vary from the simplest 

incorporating only the fact that the solvent occupies volume 

to models that incorporate the short range structure of the 

liquid in the radial distribution function. None of the 

models tested do a good job of predicting. the actual 

relaxation rate for a given density. This may be ·due to a 

possible error in the choice of potentials to model the 

system. The models tested do a reasonable job predicting the 

density_ dependence given the relaxation rate at one' density. 

The reason for this discrepancy between the error in 

predicting the actual rate vs the positive results in 

predicting density dependencies suggests that the rate depends 

strongly on potentials while density dependence is determined 

by the st~cture of the liquid, which for high densities is 

only sensitive to the size of the solvent. 
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I. Introduction 

Chemistry has been divided into many subfields of 

interest from biochemistry to physical chemistry. Although 

the specific areas of interest are different, the bond between 

all of the subfields is the direct or indirect study of 

chemical reactions. Physical chemistry is more the study of 

how or why certain reactions occur, and not the inventory of 

the reactions. Since the advent of spectroscopy there have 

been many advances in the realization of many static 

properties of molecules, from the electronic states it 

possesses, to the relative coordinates of the nuclei. This 

allows one to predict the products of reactions using 

thermodynamics. However this does not provide enough 

information at this time to predict reaction rates or how to 

control which products are produced. 

The introduction of lasers that produced very short laser 

pulses allowed physical chemists to trace the actual reaction 

and through what states the molecule went. With the 

information of how the molecule moves along a reaction 

coordinate it may be possible to change the final outcome of 

the reaction by perturbing the path of the wave packet or 

which potential a wave packet is on. This will only be 

possible, if it is possible at all, by investigating the time 



2 

scale of these processes and understanding the mechanisms that 

determine the pathways. 

II. Review of Isolated Binary Collision Theory and 

Iodine Geminate Recombination 

A. Introduction 

The photodissociation and geminate recombination of 

iodine in a liquid has been studied since Rabinowitch and Wood 

in 1936. 1•2•3 In the photodissociation of iodine the molecule 

is electronically excited from the ground state to mainly the 

bound B state. The molecule then collisionally 

predissociates, at this poi~t the atoms may lose energy and 

/ recombine geminately or they may diffuse away. After geminate 

recombination, vibrational relaxation returns the molecule to 

it's initial. equilibrium state. This simple reaction 

incorporates three relatively fast processes that are not well 

understood. The three processes are curve crossing, geminate 

recombination, and vibrational relaxation. These processes 

are not well understood for a number of reasons. Because of 

the fast time scale for geminate recombination, experiments 

could not be performed until laser technology had produced 

lasers which probed this time scale with picosecond or shorter 

pulses. Secondly only with the advent of supercomputers, 

could.Reople model liquids on the short time,scales that were 
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needed to describe geminate recombination. Before 

supercomputers most people used hydrodynamic models which 

treat the liquid as a continuum. However, on very short time 

scales a liquid does not behave as a continuum and the 

frequency dependent behavior of the liquid becomes important. 

This would make a big difference in predicting · geminate 

recombination rates. The process of curve crossing presents 

the difficult problem of trying to describe. a quantum system 

coupled, sometimes strongly, to a bath with many degrees of 

freedom. Also the curve crossing process can vary by an o_rder

of magnitude in it's rate in the same molecule depending on 

the states coupled. The problem of vibrational relaxation on 

the other hand has been studied for many years. The systems 

studied were usually polyatomics in polyatomic solvents using 

ultr9sound. This allowed people to make qualitative 

validations of their expectations, but predictions were out of 

the question due to the complexity of the systems. Only 

recently have simpler molecules in simple solvents been 

studied showing that the time scale for relaxation varies over 

an enormous range. The question of simple models for iodine's 

vibrational relaxation is the main topic of the following 

text. 

B. Iodine Recombination 

The study of geminate recombination yields of iodine 
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was begun in the 1950's and 1960's by Noyes and co-workers. 4 

' 

The attempts to model the geminate recombination yields as two 

iodine atoms in a continuum liquid,, using Brownian motion 

models or hydrodynamic systems, were not very successful. The 

first time dependent studies of the geminate recombination of 

iodine in a liquid., CC14 were performed by Eisenthal.J They 
I 

excited the iodine with 532 nm light to the bound B state and 

watched the transient bleach decay in 150 ps approximately. 

The data were interpreted in terms of the dissociated iodine 

atoms diffusing in the solvent and then geminately 

recombining. curve crossing from the excited electronic state 

to the ground state and vibrational relaxation were considered 

to be very ... fast. This interpretation was questioned when 
' 

early molecular dynamics results predicted that recombination 

did not behave like a diffusional process and should be very 

fast, less than 5 ps. rather than the 150 ps proposed. 6• 7 

Nesbitt and Hynes advanced that the 150 ps. time scale was not 

geminate recombination but the time scale for vibrational 

relaxation of the newly recombined iodine. 8 They based there 

proposal on the calculation that for a bleach at 532 nm., as 

Eisenthal had performed, that. the recombined iodine molecules 

would absorb light at 532 only after the iodine molecule had 

vibrationally relaxed. Secondly Nesbitt and Hynes made an 

order of magnitude calculation of what the time scale of the 

vibrational relaxation should be, they found that vibrational 

relaxation could be the time scale associated with the bleach. 

• 
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To perform their calculation of the vibrational relaxation 

rate, the.assumptions of the Isolated Binary Collision theory 

were employed. Using the calculation of vibrational 

relaxation rates and Frank Condon factors, Nesbitt and Hynes 

predicted that probing at longer wavelengths should probe 

higher vibrational states, and if the 150 ps. time scale was 

due to vibrational relaxation, the transient absorptions at 

longer wavelength would appear sooner and decay faster. 

The prediction of fast geminate recombination is 

consistent with experiments performed by Smith, which are most 

simply interpreted as a recombination time of less than 1 ps. 9-

The prediction of slow vibrational relaxation was confirmed by 

Harris et al, 10•11 •12 however a clear understanding of 

vibrational relaxation was not forthcoming. No clear trends 

could be observed that would predict vibr~tional relaxation 

rates. The solvents studied at the time were molecular 

solvents, and there were three possible contributions to the 

relaxation, vibration to translation, vibration to vibration, 

and vibration to rotation. Nesbitt and Hynes had to invoke a 

large rate of iodine vibrational energy relaxing into the 

vibrational modes of CCL4 to explain the vibrational 

relaxation times of iodine in CC14 • 8 Justifying this by noting 

the lowest frequency vibrational mode for CC1
4 

is 217 cm· 1 and 

close enough to iodine's 214 cm· 1 vibrational mode to couple 

significantly. Unfortunately this does not seem to be 

emulated in other chlorinated solvents. 
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the lowest vibrational frequencies are 261 cm" 1 and 282 cm· 1 

yet CC14 has the slowest relaxation time while the vibrational 

frequency is closest, and Ch2Cl2 is the fastest where 

vibrational coupling arguments indicate it should be ·the 

slowest. In order- to come to a firmer understanding of 

vibrational energy transfer this group undertook a three phase 

study of the relaxation of iodine in liquid xenon, a simple 

monatomic solvent. A simple monatomic solvent was chosen to 

eliminate any difficulties due to vibration to vibration. 

coupling. The first phase was the actual experiment, 13 for 

which Nesbitt and Hynes had predicted approximately one 

nanosecond for vibrational relaxation due to the lack of 

vibrational modes in the solvent to couple to. The second.:_ 

phase was a classical molecular dynamics simulation of iodine 

photodissociating and vibrationally relaxing in liquid 

xenon. 14 And finally the application of simpler models to 

try and understand the vibrational relaxation process. 

The experimental study of iodine in liquid xenon had been 

reported by Kelly, 15 but the results were on the same time 

scale as relaxation in CCL4 • At the time the results were 

reported it was not surprising, considering the then current 

interpretation that this was the recombination time. However, 

after Nesbitt and Hynes' interpretation became the consensus, 

these results were considered too fast to be vibrational 
. -

relaxation and therefore surprising. Paige et al reexamined 

the iodine photodissociation and recombination in liquid xenon 

. .. 

.. 
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with a laser system that had lower noise and better time 

resolution, and found the vibrational relaxation to be on the 

time scale of approximately 5 ns. This was the same order of 

magnitude as the predictions of Nesbitt and Hynes. 13 The 

molecular dynamics simulations however gave a time scale of 

relaxation more in line with· Kelly's experimental 

observations, if interpreted as vibrational relaxation. 

However the molecular dynamics simulations are sensitive to 

the interaction potential used for iodine and xenon. If the 

slope of the potential between iodine and xenon is in reality 

smaller than the slope of the potential in the simulation the 

results would be comparable to experiments. This problem can 

also be seen by the fact that real Xe does not solidify until 

p* = .94 even though a Lennard-Jones system solidifies at p* 

= . 9 Another problem with the molecular dynamics being. 

compared to the experiment is that the system studied by 

molecular dynamics is not at constant temperature, being a 

finite volume with periodic boundary conditions, and the 

temperature rises as the iodine molecule vibrationally· 

relaxes. The temperature of the sistem has been shown to be 

a sensitive variable in vibrational relaxation. In order to 

test a less computationally intensive model a generalized 

~angevin.Equation was also used to model the relaxation, and 

performed quite well in modeling the classical simulation of 

the relaxation. 16• 17 

Because of the problems described above with regards to 
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temperature, all the implementations of the IBC models 

discussed here will be compared primarily with the molecular 

dynamics simulations and only secondarily with the actual 

experiments. 

c. Isolated Binary Collision Theory 

It has been 30 years since the Isolated Binary Collision 

(IBC) theory was proposed to describe vibrational relaxation 

in liquid~. 18• 19 Ultrasonic absorption experiments on 

various liquids were performed and the results were related to 

the vibrational relaxation of an oscillator. Experimentally 

it was found in many cases that the relaxation rate increased 

linearly with density at low density. As the density 

increased how~ver, the rate increased -nonlinearly with 

density. Litovitz believed that the results could be 

explained by making two assumptions. The first assumption was 

that the relaxation could be explained by the gas phase 

relaxation equation 

K ( p , T) ij = P ( T) ij * Z ( p , T) (1) 

Where Kij is the rate of relaxation from vibrational state i 

to j. P.. is the gas phase probability of changing from 
I J 

vibrational state i to j given a collision with one molecule 

averaged over oscillator phase, impact parameter and a Maxwell 

Boltzmann distribution of velocity. Z · is the collision 

frequency. Notice that Pij is only temperature dependent and 

.. 
--' 
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Z is density and temperature dependent. The second assumption 

Litovitz made was that z is not given by the ideal gas 

collision rate in the dense phase, but that the volume the 

molecules take up must be taken into account in calculating 

the collision -rate. An example of one of the collision rate 

formulas used at the time is 

v Z=--- (2) 

Note that this is the average velocity (V) divided by the mean 

free path of a molecule in a moving wall cage. One problem 

with this formulation is that the mean ~ree path should be 

proportional to p _, as p .... 0, but where this transition occurs 

is not defined. 18 

According to early IBC proponents one only had to 

correctly calculate the collision frequency in ·order to 

predict the density dependence of vibrational relaxation. 

However there .were more assumptions than Litovitz and 

Madigosky stated in the original papers. Fixman and Zwanzig 

objected that IBC neglected the constant collective random 

force on the vibration, the possibility that in the liquid the 

collisions may not be independent due to a non random phase of 

the oscillator during collisions, and that collisions may 
\ 

overlap in time. 2°,21 Fixman modeled the collective random 

force due to the solvent as a force with a white noise 

frequency spectrum. His calculation showed that the white_ 

noise random force is very efficient at relaxing the 
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oscillator. However the white noise random force 

overestimates the high frequency random forces in a liquid, as 

Fixman noted, and the model's criticism of IBC was rebuffed by 

Herzfeld. 22 Zwanzig approached the problem from a time 

correlation function perspective where the rate should be 

proportional to 

f d t . exp ( i (A) t) < F ( t) F ( 0 ) > (3) 

where ~·is the frequency of the oscillator and F(t) is the 

total force on the oscillator at time t. _Zwanzig then assumed 

that. the force on the oscillator could be decomposed into 

isolated events at some time tk. 

<F(t) F(t+'t)> = LL <f(t-tJc) f(t+'t-tJ>+ 
j bj 

:E <f( t-tlc) f( t+'t-tlc) > 
k 

Where f (t-tk) is the force during the kth event. 

(4) 

(5) 

Zwanzig 

defined the second part of the equation as the binary part of 

the force on the oscillator. He found that the binary part 

dominates relaxation when 

(6) 

where ~ is the oscillator frequency and rc is the time between 

events. Herzfeld convinced Zwanzig that this was consistent 

with IBC if rc is the time between effective events.n 
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According to Herzfeld, the molecules that were studied were 

high frequency oscillators and relaxed very slowly, therefore 

the time between effective events was very long. 

agreed that IBC was internally consistent. 24 

Zwanzig 

IBC remained stable until 1971, when Davis and Oppenheim 

used a master equation approach to describe vibrational 

relaxation in a liquid in the w.eak coupling limit. 25 •26 

Again their theory, as in earlier ones, applies only to high 
' 

frequency oscillators. Even though they assumed weak 

coupling, they pointed out that using weak coupling theories 

may not be appropriate, because even though relaxation is 

slow, the forces that cause the relaxation are strong. They 

derived an equation that was forced into a binary form and 

found that 

K1 = ( P 1) gl (R•) 
Kg Pg gg(R•) 

(7) 

KL is the .rate for the liquid where the ij subscript has been 

dropped, K
9 

is the gas rate, pl is the liquid density, p 9 is 

the gas density, gl (R*) is the radial distribution function for 

that liquid density evaluated at some R*, and g
9

(R*) is the gas 

radial distribution function evaluated at R*. R* is the 

turning point for the most effective collisions and it is 

assumed that this region is small. This is only valid for 

sp~erical molecules with small amplitude vibrations. Equation 

7 could have been derived by incorporating into IBC, Einwohner 

and Alders' models for collision rates in a liquid. 27 A very 
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intuitive development of this is given by Delalande and 

Gale. 28 Notice that unlike the earlier equation for the rate 

by Litovitz, this incorporates the structure of the liquid. 

At this point experimentalists had started to look at 

vibrational relaxation with more specific techniques than 

ultrasound. Unlike the ultrasound studies, the use of lasers 

allowed experimentalists to study the relaxation of diatomics. 

The first experiments by Calaway and Ewing of the vibration to 

translat"ion relaxation of N2 in liquid N2 served not only as 

a simple system to test the above ideas but showed the 

enormous range over which vibrational relaxation takes 

place. 29
•
30 

After ·1984 IBC was applied to . the relaxation of ~many 

simple molecules, however most of the experiments were 

vibration to vibration relaxations and not as simple to model 

as vibration to translation relaxations. In many experiments, 

IBC was used to explain the data and the basic theory was 
/ 

usually not questioned, only the effect of anisotropy, how 

hard or soft potentials affected the relaxation, how to 

calculate g(R*) and what R* to use. One major change was a 

paper by Chesney and Weis31 studying the density dependence 

of relaxation times. They performed a molecular dynamics 
. . 

simulation of a Lennard-Jones fluid and calculated two force 

autocorrelations functions as a function of density 

F(t) = <,E f(rb(t)) L f(rc(O))> (8) 
b c 



Fb(t) = <:E f(rb(t)) .f(rb(O))> 
b 

13 

(9) 

Where F(t) is the total force autocorrelation, Fb(t) is the 

binary force autocorrelation and f(t) is the coupling from the 

Lennard-Janes ~iquid to the oscillator at time t. From these 

correlation functions and the Golden Rule they calculated the 

relaxation rate 

(10) 

Basically the component of the force autocorrelation spectrum 

at the oscillator frequency determines relaxation. They found 

that the binary force autocorrelation function frequency 

spectrum was very similar to the total force autocorrelation 

function frequency spectrum, all the way to frequencies of ~ 

10 cm· 1 • This would extend the validity of IBC calculations 

to near resonant vibration to vibration relaxation and perhaps 

to dephasing. 

The most recent theoretical consideration of IBC was by 

Dardi and Cukier. 32,33,34 They calculated the relaxation of 

a dilute diatomic in a structureless fluid and discuss 

explicitly all approximations in their calculations and an rBc 

approach. They examine interference effects as other authors 

have and assumed again that for high frequency oscillations 

this is not a problem. Another assumption is that dynamically 

correlated collisions are not important. Dynamic correlation's 

are the correlations between successive elastic collisions. 
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The nondynamic effects of correlated elastic collisions should 

be taken into account by the radial distribution function. No 

one has examined the effects of dynamic correlations on 

vibrational relaxation, although by it's very definition it 

shouldn't be important, since they are elastic collisions and 

may only contribute to a change in the equilibrium vibrational 

frequency. Another assumption implicit in all IBC models is 

that vibrational relaxation is a Markov process. Finally· they 

propose that a weak coupling assumption can be made, unlike 

Davis and Oppenheim. Gas phase calculations have shown the 

weak coupling approximation to work well, if the inelastic 

cross section is much smaller than the elastic cross section, 

and the elastic and inelastic potentials are ·chosen 

correctly. 35 •36 Cukier et al 's final paper attacks the 

scaling of vibrati.onal relaxation by the radial distribution 

function. They calculate the relaxation of an oscillator in 

a dilute gas using their formalism and show that the result is 

the standard dilute gas rate constant. They perform the same 

calculations for a liquid and find that to do the correct 

averaging the R* of g(R*) must be chosen so large that g(R*) ~ 

1. They believe that there is no basis for using the ratio of 

gl (R*) to g
9

(R*) to explain the nonlinearity of relaxation vs. 

density. One possible criticism of their calculation is that 

they must assign a transition probability R, as a function of 

P(momentum) and b(impact_ parameter), R(P,b). Unfortunately 

they approximate R(P,b) as a constant in b up to b~x' where it 
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drops to zero. This functional form -is highly unlikely for 

vibrational relaxation and most previous authors have assumed 

that R{p,b) is sharply peaked at b = o. It is generally 

accepted that hard direct collisions are responsible for the 

majority of relaxation. 

At this point _in time Isolated Binary Collision theory is 

still in use even though the attack on the premise continues. 

Most of the more current studies are not on simple systems 

although Knudtson et al and Chesney have both studied HCl in 

liquid Xe, and Chesney has had good results interpreting the 

data in terms of the Isolated Binary Collision theory. 37•38 

For this reason and the fact that the experimental and 

molecular dynamics· data was available for iodine relaxing in 

xenon, the theory was put to a quantitative test, in order to 
-

find out if it would apply to such a low frequency oscillator 

{214 cm- 1) and if it could ·reproduce a system where the 

potential was known. 
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III. Application of Isolated Binary' Collision Theory to the 

Vibrational Relaxation of Iodine in Liquid Xenon 

A. Calculation of Relaxation Probabilities using SSH. 

The first calculation of Pij performed is one of the 

simplest approximations that could be made. The Schwartz, 

Slawsky, and Herzfeld (SSH) theory is the quantum mechanical 

successor to Landau theory. 39•40 The theoretical derivation 

has been performed by a number of people to different degrees 

of exactness. 41 •42 •43 The theory assumes an exponential 

potential, a harmonic oscillator and spherical symmetry. A 

good discussion of the calculation of relaxation probabilities 

can be found in Lambert's book or the review paper by Rapp and 

Kassal. 44 •45 The calculation using SSH was performed more as 

an exercise to prove that it would not work and to check the 

results given by Kelly et al. Kelly et al proposed that SSH 

theory reproduced their experimental results quite well for 

the vibrational relaxation of iodine in weakly interacting 

sol vents such as CFC13 , c 2cl3F 3 and CC14 • 46 This was quite 

surprising since a theory for a harmonic oscillator should not 

be accurate for iodine, which is fairly anharmonic especially 

high in th~ vibrational well. The calculation used the same 

formulas as Kelly et al, but the implementation must have been 

different due to the different conclusions reached. The 

calculation of Pij was performed as follows. 

.. 



(n+l) (n+2) ... (n+j) 

(j I) 2 
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(11) 

The matrix must obey two constraints, population conservation 

_and the Onsager equations of detailed balance that define the 

temperature of the system. 

1 = E PiJ for all i 
j 

(12) 

(13) 

where E;j is the energy of state i minus the energy of state 

j. 

The first test was to see if Kelly's results could be 

reproduced. Kelly stated that 1/P10 = 550 was a good fit for 
. ~ 

their experimental data for CC14 and was very close to the 

value determined by ultrasound data. In this group Harris et 

al had performed basically the same experiment with a shorter -

pulse laser with lower noise, and using the Frank Condon 

principle inverted the data to get the vibrational population 

as a function of time (see figure 1). 12 In order to compare to 

the experimental data the above equations were implemented in 

the following way. The iodine well was assumed to consist of 

58 harmonic vibrational levels with 214 cm" 1 frequency. Using 

l/P10 = 550, the half above the diagonal of the matrix was 

calculated using equation 11. Next the half below the 

diagonal of the matrix was calculated using · equation 13-. 

Finally the diagonal was calculated using ~quation 12. This 
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gave the probability matrix, one could now apply this matrix· 

to an initial vector and find out the time dependence of the 

vibrational relaxation. Only an initial population vector is 

now needed. At the time this work was originally completed it 

was thought that the iodine only geminately recombined after 

predissociation from the bound B state occurred and only then 

could vibrational relaxation begin. Predissociation was 

thought to take 15 ps., and the calculation was perfor;med that 

way. This was implemented by having vibrational state 58 of 

the art'ificially harmonic iodine molecule populated with a 

time constant of 15 ps. Then a time step is taken every .1 ps 

(that is a collision rate.of 10/ps was assumed, as in Kelly et 

al 's paper) and the transition matrix is applied and more 

population is put in state 58 to simulate the time· for 

predissociation. The complete relaxation is shown in figure 

2 as a three dimensional plot of the population as function of 

energy and time. 

Since that time work by Smith et al has shown that the 

predissociation takes place in less than 1 ps. 9 The same 

calculation is repeated as in figure 3 except that the 

recombination time is 1 ps instead of 15 ps. This changes the 

early time distribution of the relaxation but does not change 

the conclusion that SSH is not a cor~ect theory for predicting 

the relaxation of iodine. There are two possible reasons for 

the discrepancy. The real iodine relaxation occurs much 

faster in the high energy part of the well. The SSH model does 
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not reproduce this. This may be due to a relaxation channel· 

that is open in the higher part of the well that is not open 

in the lower part of the well. For example perhaps the iodine 

molecule couples better to the vibrational and rotational 

modes of CC14 in the upper part of the well. This discrepancy 

may also be due to the fact that the SSH theory assumes a 

harmonic oscillator and iodine is certainly not that. The 

first poss~bility can be tested by seeing if SSH theory can 

predict the vibrational relaxation of iodine in liquid xenon 

modeled by Brown et al. 14 In this system there are no 

vibrational modes for the iodine to couple to. There are two 

parameters to fit, the collision frequency which is about 5 

collisionsjps __ for iodine in liquid xenon at 1. 8 gjcm3 , 14 and 

the value for P10 • In figure 4 a value of 1/735 was us~d for 

P10 • ~lso because of the way Brown et al created their plots 

of time dependence it is-assumed that the recombination in 

this simulation is immediate or .1 ps. In Brown et al's plots 

they plotted the average vibrational energy loss where all 

trajectories started at 2000 cm"1 , below the dissociation 

limit. In other words there is no recombination dynamics in 

those plots. This was not to be- a test of quantitative 

predictions but a test of qualitative usefulness. Figure 4 

shows the same problems in fitting the vibrational relaxation 

as figure 2, and 3. If a value of P10 is chosen to simulate 
-

the relaxation in the lower part of the vibrational well, the 

upper part is too slow, and if a P10 is picked that gives fast 
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relaxation at the top of the well the relaxation predicted by 

SSH theory is much too fast. This is because SSH theory 

implemented this way gives very exponential decays and the 

decay produced from molecular dynamics is not exponential. In 

figure 5 an exponential fit to the SSH data from figure 2 is 

performed. It does a very good job. Surprisingly the 

Molecular Dynamics data cari also be fit with an exponential 

for the last 4000 cm·1 • This may be due to the relative 

harmonicity. in the lower part of the well or the relative 

insensitivity of fitting the data. 

In conclusion the application of SSH theory to the 

vibrational relaxation of iodine from the top of the well to 

the bottom is inappropriate. Iodine is a very anharmonic 

oscillator and the Pij in _the upper part of the well should be 

/ much larger than the Pij in the lower part of the well. This 

can be seen by examining figure 7 which is the average energy 

loss from each state i for SSH theory. The average energy 

loss is linear as a function of vibration level. Note also 

that the large increase of energy loss at the vibrational 

energy ::::: 12000 cm" 1 is an artifact of the calculation. The 

calculation did not allow for the upward transitions to 

dissociative states above the dissociation limit, and therefor 

the highest vibrational level can only relax or remain at the 

same energy. 

B. Taking account_of anharmonicity. 
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The SSH calculation failed to model the vibrational 

relaxation of iodine even qualitatively, due to the neglect of 

anharmonicity. In this section a discussion of a simple model 

which includes anharmonicity is discussed. The calculation of 

Pij performed for iodine and xenon is a one dimensional 

classical calculation of energy loss. The system can be 

treated classically because the de Broglie wavelength of both 

xenon a·nd iodine is smaller than the length scale of 

interaction. Calculations were.done in one dimension for two 

reasons. If three dimensional calculations were required the 

calculation w.ould have become more time consuming and more 

complex. Secor:_dly studies have shown that the one dimensional 

calculation is a reasonable substitute for three dimensions.if 

the constraints described in paper by McKenzie are 

realized. 47 

The calculation of Pij follows closely the calculations 

of Nesbitt and Hynes. There are changes from the potentials 

that they use in order to check how sensitive the calculations 

are to interaction,potentials, and to compare more closely to 

the molecular dynamics simulations of Brown et al. The 

iodine-iodine potential used is the RKR surface of LeRoy. 

This potential is slightly steeper in the upper part of the 

well than the morse potential used by Nesbitt and Hynes. The 

potential be~ween iodine and xenon is a Weeks Chandler 

Anderson {WCA) decomposition of a Lennard-Jones potential. 48 
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Note that the WCA decomposition was originally intended to 

explain liquid structures for reduced densities greater that 

0. 6 Even though most of the comparisons to molecular 

dynamics will be in this range, WCA was not chosen for this 

reason. The WCA decomposition was chosen for three reasons. 

When a gas liquifies, energy is released, the heat of 

vapor~zation, due to the solvent atoms spending most.of their 

time in· the bottom of the well where the potential is 

repulsive. The attractive part of the potential is defined as. 

the part of the potential where the· accelerations are 

negative. Note that in the Lennard-Janes potential, the 

potential energy may be negative for r < a 2116 , but the 

accelerations are not negative. Since the liquid samples the 

attractive part of the potential, but this part of the 

potential does not contribute strongly to relaxation, it was 

thought that the IBC simulation would be more realistic if it 

also did not sample that part of the potential. The turning 

point in the gas phase will also be on average at a smaller 

radius than in the liquid due to the heat of vaporization, 

however the one D model's turning point should be comparable 

tq the molecular dynamics simulation due to the use of the WCA 

potential. Secondly not having an attractive section of the 

potential makes the integration of the trajectory much quicker 

since there is less distance to integrate over and there is no 

possibility of forming a long lived complex. Thirdly the 
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molecular dynamics trajectory simulation that the trajectories 

where 

V(r) =0. where r>rc 

( .!) 
r =2 6 o c 

(14) 

would be compared to used a Lennard-Jones potential and the 

WCA decomposition is the closest approximation to the Lennard-

Jones potential within the above constraints. This potential 

is steeper than the exponential potential used by Nesbitt and 

Hynes. 

A one dimensional trajectory is calculated where the 

xenon collides with the iodine collinearly, this is averaged 

100 times over iodine's vibrational phase at 15 different 

velocities chosen from a Maxwell distribution at 300 K. This 

is done for 82 vibrational levels of the RKR potential. The 

higher levels where dissociation is significant, were not 

studied because the purpose of the calculation was to try and 

understand the slow vibrational relaxation and not the fast 

recombination dynamics. 

The actual code used to calculate the trajectories are 

very similar to Brown's code (see program listing I2IBC). 

Beeman's method was used for the integrator. 50 This was the 

same integrator used in/the •olecular dynamics simulations of 

Brown. This is a second order integrator. For the one 

dimensional trajectories a time step of .1 fs was used. This 

is a smaller time step than used in the molecular dynamics 
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simulations. This was due to the fact that at low vibrational 

energies, iodine lost very little enerqy and- the energy 

conservation should be at least an order of magnitude better 

than the enerqy lost. The code was run on a Cray X-MP at the 

University of San Diego Supercomputer Center. Since there 

were only three bodies interacting in this model the code 

would not take advantage of the speed gains from vectorization 

without modification. This was accomplished by running 15 

trajectories simultaneously, which could be written as vector 

code with vectors long enough to vectorize efficiently. 

The trajectories show qualitatively what you would expect 

keeping in mind iodine's anharmonicity. Vibrational energy 

transfer increases non linearly as a function of v, the 

.vibrational energy quantum number (see figure 8). This is at 

variance to Landau Teller· theory, which predicts a linear 

increase in v, and the SSH results which show a 1 inear 

increase as a function of v. Of course Landau Teller theory 

is based on a harmonic . oscillator and iodine is most 

definitely not a harmonic oscillator. The shape of the curve 

is qualitatively the same as that which Nesbitt and Hynes 

found and even follows their power law dependence (see figure 

9). Nesbitt and Hynes found that 

ln[ w~;)] vs ln[v] (15) 

is linear with a slope of 4.3 • The results for the WCA 

potential are also linear for the above function, although the 
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slope was only 3.9. This is probably due to the steeper 

interaction potential between iodine and xenon in this study. 

Nesbitt and Hynes studied the dependence of equation 15 as a 

function of the steepness of the interaction potential. They 

found that the slope of the above equation decreased as a 

function of increasing interaction. Most interesting is that 

the current study follows the same power law even though the 

interaction ,potential is a completely different functional 

form. This seems to indicate that the most important physical 

aspects of vibrational relaxation fo+ this system are 

explained by Nesbitt and Hynes 1 s hard sphere model 

description. They assumed that since the iodine molecule in 

the upper part of the well spends most of its 1 time at the 

outer turning point, where the potential is flat, the dynamics 

11 ought to resemble unbound particles 11
, and therefore can be 

approximated in the hard sphere impulsive limit. The second 

important consideration in their model is which parts of the 

oscillator phase may be accessed by the colliding ?Cenon. 

Using only these two assumptions they were able to reproduce 

their results for an exponential interaction with a very steep 

potential. The phase of the oscillator that is sampled in· 

their model is determined by the oscillator potential, which 

is approximately the same for both studies, and the relative 

speed of the' iodine and xenon, which is determined by the 

temperature, which is the same for both studies. The dynamics 

of collision are not exactly the same, due to the different 
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interaction potentials, however the slope of the potential 

seems to determine the slope of the power law dependence and 

not the functional form. 

Given the similarity between the results of the two 

models, Nesbitt and Hynes and this calculation, it seems to be 

a good_ assumption that the Pij are qualitative good 

approximations for the energy loss given their relative 

insensitivity to potential changes. The problem of using the 

r~ght potential to map the potential that iodine feels from 

the xenon in the liquid to some appropriate gas phase 

potential is not resolved. Within the framework of IBC theory 

though, it must be a small effect or IBC theory will be 

essentially invalid. If there is a way -to map the average 

forces the iodine feels in liquid xenon to the gas, the result 

will certainly be density dependent. For example -if the 

density of xenon is increased, the xenon spend more time on 

average at a smaller distance from the iodine molecule, and 

therefore will sample on average a different part of the 

potential than a less dense liquid xenon atom would. If the 
-

average interaction is density independent, the Pij will also 

be density independent and that is the main foundation of IBC 

theory. 

- Assuming that the WCA potential is a good approximation 

to the average potential of interaction for the iodine-xenon 

system, the next question is what the vibrational energy as a 

function of time is. This calculation was performed two ways 
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to make sure that the approximations used were valid. First 

the iodine molecule was placed in vibrational state 82 and 

randomly one of the 1500 energy losses for the 82nd 

vibrational level was chosen (see program IBCENE). If it was 

an increase in energy the iodine molecule remained at level 

82. If it was a decrease in energy the iodine molecule lost 

that amount of energy. If the energy of the iodine molecule 

was in between vibrational levels at this step, a ·linear 

combination of two randomly chosen energy losses from the 

level above and below the iodine's current energy were chosen. 

The two randomly chosen energy losses were weighted according 

to their distance from the iodine's current energy. This 

would provide a new energy loss. This was repeated until the 

iodine relaxed. The whole process was repeated 100 times for 

good.statistics. 

Another calculation of the energy vs time was performed 

by modeling the distribution of energy losses-for each Pij as 

a gaussian. The distributions of energy losses for each Pij 

was very . close to a gaussian and this allowed for a very 

efficient calculation. Basically the same program as above 

was used, except that the random energy losses chosen were 

picked from a gaussian distribution that modeled the energy 

loss distribution. If the energy of the iodine molecule was 

in between vibrational levels a linear combination of the 

gaussian parameters was used weighted by proximity to the 

iodine energy. This gave results that were indistinguishable 
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from the first calculation. 

The more important question for IBC is the calculation of 

Z. If IBC theory is an appropriate theory, the value of Pij 

could be found experimentally, although it is not really 

needed to test the theory because if P .. was not known, IBC 
• 1 J 

could still be tested by it's prediction of the density 

dependence of the relaxation. Because the relaxation of 

iodine by xenon is affected quantitatively by the potentials 

used, the calculation of Z will be made with respect· to 

molecular dynamics simulations and only qualitatively to the 

experiments of Paige et al. 

In the molecular dynamics simulation of Brown et al the 

relaxation of the iodine at the densities of 1.8 gjcc and 3.0 

gjcc could be overlapped on top of each other by scaling the 

time axis of the decays. Brown et al found that the 3.0 gjcc 

relaxation was approximately 4 times faster than the 1.8 gjcc. 

This seemed to indicate that the relaxation may be described 

by IBC. This was not expected to occur although work by 

Chesney seems to indicate that it might be possible. 31 From 

the calculation of Pij and the calculation of energy vs time 

described above, the vibrational relaxation of iodine vs time 

can be calculated assuming a collision frequency. For a 

collision frequency of 4.5 per ps. the one, dimensional 

calculation does a very good job reproducing the energy 

relaxation (see figure 10) . , 
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C. Calculations of the Density Dependence. 

The one dimensional calculation performed very well with 

respect to qualitative aspects of modelling the vibrational 

· relaxation, especially at incorporating the anharmonicity of 

iodine. It also seems that the choice of the WCA 

decomposition of the potential may be appropriate. Since the 

trajectory calculations were one dimensional there must be 

some weighting factor to take into account that some 

collisions are not collinear. 'rt is not clear what that 

factor should be, for example Nesbitt and Hynes selected 1/2 

for their calculation. 8 The value for the. steric factor could · 

range from all the way from one to less than 1/3. 51 •52 In 

fact Shin has calculated steric factors for iodine-argon and 

found 1/8 to be appropriate. However, if there are any three 

dimensional effects that were missing they are effects that 

are constant throughout the 82 vibrational levels. If the 

steric factor was dependent on the vibrational levels, the one 

dimensional calculation probably would not have fit the three 

dimensional MD simulation. 

In order for IBC theory to be a useful theory . it must 

also. be able to make quantitative predictions of the 

relaxation for a particular density and predictions of the ~ 

density dependence. The collision rate of 4.5 per ps. is a 

quite reasonable first order guess of what the collision rate 

should be for xenon at 1. 8 gjcc3 • An estimate of the 
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collision frequency can be found using equation 2. This is 

the simples treatment for finding the collision frequency, 

given the non-linear increase in relaxation with increasing 

solvent. The average velocity is 

where ~ is the reduced mass of the I 2- Xe system. The value 

to use .for a is unclear due to it's ambiguous definition. 

From the one dimensional calculation, the turning point for 

the most effective collisions was 3.7 - 3.8 A. This number 

comes can come from qualitatively considering that Pij is an 

increasing function of velocity and the magnitude of the 
--

velocity distribution is rapidly dec~easing for high 

velocities. Therefore, the turning point of the most 

effective collisions will be a trade off between high 

velocities for large P1j and the fact that for a given 

temperature the number of particles with a high velocity 

decreases with increasing velocity. This is the R* that is · 

defined in equation 7 earlier. If this value is used for a in 

equation 2, the collision ra.te is calculated to be :::: 2 ps· 1 • 

Unfortunately, to have any faith in this equation it would 

have to predict a larger collision rate than 4. 5 ps" 1 to be 

acceptable. If equation 2 had predicted a collision frequency 

higher than 4. 5 ps" 1 , the steric factor could be used to 

explain the discrepancy. 

The problem of predicting the correct collision frequency 
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to reproduce the MD or the experimental result is probably 

intractable. The mapping of the potential that is sampled in 

the liquid phase to the gas phase is probably not 

quantitatively correct. It is close enough to reproduce the 

relaxation qualitatively, but any shifts up or down on the 

potential will probably change the _rate. over all. Comparisons 

to the experimental results also suffer the same problems 

along with uncertainty_ in potential parameters. -The 

uncertainty in potential parameters may cause only 

quantitative problems and not_ qualitative problems if the 

basic shape of the potential is correct and only a linear 

change in the slope is needed. For example from the Golden 

Rule, the relaxation rate is 

t1} = 
2

'h1t ~ ~ P.l V1•,Jill 2 a (E1 -Ej+E~ -Ep) (17) 

where Pa is the probability of the bath being·in state a, and 

V is the part of the hamiltonian which couples the vibrator to 

the bath. Suppose for example couplin~ is due to the Lennard

Janes potential, and~ is the parameter that has the most' 

error in going from the one dimensional simulation to the real 

potential. Then e2 can be pulled out of equation 17 and the 

qualitative shape of the relaxation vs time will not change 

and only the time scale will change. The change will be 

proportional to e2 • For these reasons the rest of the 

comparisons will be made to density dependencies and not 

actual collision frequencies. 
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In figure 11 the density dependence of equation 2 is 

plotted. All the rates are scaled relative to the relaxation 

in Xe at density 1.8 gjcc. The a chosen for the plots are 

3. 7 A and 3.8 A. The results are quite encouraging with 

regards to the good agreement with the experimental results. 

The comparison to the molecular dynamics is not good and this 

is quite disconcerting. Since the molecular dynamics relaxes 

10 times as fast as the actual experiment, it should be closer

to a model which treats the system as hard spheres. There is 

one more reason why ~quation 2 should fail to model the 

molecular dynamics correctly. Equation 2 does not take into 

account the short range structure of the liquid. Equation 2 

treats the liquid as a system where the particles are evenly 

distributed and for dense fluids this is not true. 

Equation 7 does include the liquid structure in it's 

calculation of relaxation rates, although the use of this 

equation has many severe restraints. The molecule must be 

nearly spherical because there is no way to incorporate simply 

any angle dependent relaxation rate. Secondly the 

trajectories that lead to most of the relaxation must have a 

narrow distribution in velocity space or equation 7 will not 

be valid. The final problem-of equation 7 is calculating the 

radial distribution function. It is only fairly recently that 

the computer power needed for this calculation was distributed 

widely enough for it to be used on problems such as this. 

Before that, approximations to the radial distribution 
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function were used, sometimes correctly and sometimes without 

a clue. 

One approach to this problem was to use the attractive 

hard spheres pair distribution model by Delalande and Gale. 53 

This model assumes that the collision rate should be 

calculated at the hard sphere radius. One then assumes the 

radial distribution function at R• can be approximated by the 

Carnahan and Starling approximation, 54 

(1-..!1.) 
2 • 

( 1-T)) 3 , 

(18) 

where a is the hard sphere contact distance and p is the 

number density. The problem with this approximation is that 

the ·hard sphere radius which provides the best model for the 

radial distribution is not necessaril~ the correct radius at 

which to evaluate R• (see figure 12). A more sophisticated 

version of this theory was employed by Madden and van Swol. 55 

They used WCA theory to calculate the cavity distribution 

function, which was then related to the ratio of vibrational ' 

relaxation rates in a dilute gas and a dense liquid. This 

assumed that g(R) could be approximated by a properly chosen 

hard sphere fluid of the same density. They did not equate R* 

with the hard sphere diameter used to calculate the radial 

distribution function. 

We calculated the radial distribution of an iodine atom 

in liquid Xe directly. Again this makes the approximation 

that the iodine molecule is spherical and the additional 
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approximation that the radial distribution around the iodine. 

molecule can be approximated by the radial distribution around 

an iodine atom. Both of the assumptio~s are not true, 

although the differences may not be consequential. Due to the 

assumption that all forces in the liquid were pair wise 

additive and Lennard-Jones potentials, there is a large 

potential well between the two iodine atoms that causes the 

radial distribution to be higher there than on the ends of the 

iodine molecule. This can be seen in the MD calculations of 

Brown et al. This may not be a problem because it is not 

expected that the trajectories of the xenon atoms between the 

two iodine atoms will contribute significantly to vibrational 

relaxation. 

The radial distribution function is calculated in the 

program IIBC. The simulation puts one iodine atom in a liquid 

of 107 xenon atoms with periodic boundary conditions. The 

question to be asked now is what potential to use in the 

density comparison? The MD was run using a Lennard-Jones 

potential but the one D trajectories used a WCA decomposition. 

For high density, where the WCA potential provides a good 

substitute for the Lennard-Jones potential, there is no 

discernable difference between the radial distribution 

functions produced (see figure 13). However, at 1.8 gjcc the 

differences are quite obvious (see figure 14). Since the 

quantity needed is the flux of xenon atoms that is colliding 

with the iodine molecule in .the MD, it seems that the best 
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potential to use would be the Lennard-Jones potential used in 

.the MD. Figure 15 shows the radial distribution functions 

using Lennard-Jones potentials for all 4 densities studied by 

the molecular dynamics. The highest density (3. 4 gjcc) 

studied experimentally can not be. studied this way due to the 

fact that .it is a Lennard-Jones solid at that density even 

though in reality xenon is still a fluid at that density. 

Note that the area of interest in the radial distribution 

functions is the radii between 3. 7 A and 3. 8 A where the 

ra_dial -distribution is changing quite rapidly. That region is 

of most interest due to the calculation that showed that 3.7 

A to 3. 8 A is the region where the most efficient trajectories 

have their turning point. Figures 16-18 show that using th~ 

R* calculated from the one dimensional trajectories, 3.7-3.8 

A, good agreement was found for the scale factors given by 

equation 19 for the different densities. 

Scale Factor = (~) gl(R*) 
Pz g 2 (R*) 

(19) 

In figures 16-18 equation 19 is plotted for the densities 3.0 

gjcc, 2.6 gjcc and 2.2 gjcc scaled by the density 1.8 gjcc. 

The straight solid line is the prediction of the MD 

calculations with the dashed line indicating . a standard 

deviation of the MD calculated scale factors. The only major 

di'sagreement comes at the density of 2. 6 gjcc. However this 

density had the fewest trajectories averaged and there may be 

a systematic error for this trajectory. In figures 19-21 the 
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same calculation is plotted, except the comparison is made to 

experimental results. There is even better agreement with the 

experimental results. All the scale factors were within the 

error of the measurement. This was unexpected due to the 

difference in the potentials that are used and the real 

potentials which a~e unknown. 

The scale factors could also have been calculated using 

continuum theories. As pointed out earlier, the vibrational 

relaxat.ion rate is affected by 

F( t) = <!: f(Ib( t)) L f(Ic(O)) > 
b c 

Fb(t) = <!: f(Ib(t)) f(Ib(O))> 
b 

(20) 

(21) 

. Where F (t) is the total force autocorrelation, Fb(t) is the 

binary force autocorrelatio~ and f (t) is the coupling from the 

liquid to the oscillator at time t. Oxtoby has also 

considered this type of division of the forces. 56 From these 

correlation functions and the Golden Rule, the relaxation rate 

is 

..l. =JdteiwtF( t) T . 
l 

(22) 

Basically, the magnitude of the force autocorrelation spectrum 
\ 

at the oscillator frequency determines the relaxation rate. 

Figure 22 shows the total force autocorrelation and the binary 

force autocorrelation functions for an Iodine atom in liquid 

Xe at 1.8gjcc. This was calculated in the program IIBC. The 
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early time components of the two autocorrelations are very 

similar. In figure 23 the power spectrum of the total force 

autocorrelation and the binary autocorrelation function are 

plotted. As . Chesney had found, the binary force 

autocorrelation function frequency spectrum was very similar 

to the total force autocorrelation function frequency 

spectrum, in this case down to frequencies of · =:: so cm· 1 • 31 

Chesney found that the .spectrums were the same down to == 10 

cm" 1
• The results are slightly different in part probably due 

to the use of different potentials. This is evidence for the 

appropriateness for using IBC theory to model the vibrational 

relaxation even though I 2 has such a low vibrational 

frequency. The implication being that the many body forces 

are unimportant, if the magnitudes of the frequency spectrum 

for the total and isolated force spectrum are the same. 

In figures 24-29 the force autocorrelation functions and 

power spectrums for densities 2 • 2 , 2 • 6 and 3 • o g/ cc are shown. 

Unfortunately equation 22 does not do a good job predicting 

relaxation rates. In figures 30-35 predictions for scale 

factors for equation 22 vs both experimental and MD results 

are plotted. The straight line across is the experimental or 

MD result for the scale factor with the dotted line showing a 

standard deviation on the prediction. Unlike the scaling , 

results from the radial distribution function, both the 

experimental and MD results are not predicted well by the 

spectrum of the force autocorrelation function. The 
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Piqura 24 Force Autocorrelations for an Iodine Atom in Xenon 
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experimental values are comparable but the agreement is not 

good at 3.0 gjcc. 

There is one factor that is not taken into account in 

equation 22. There is a phase factor that will influence the 

enerqy dissipation. For example, if the iodine molecule is 

vibrating while the xenon atoms are at rest there will be a 
.. 

component of force at the vibrational frequency. However, 

there will be no dissipation of enerqy due to this elastic 

int'eraction. Brown et al calculated the phase factors for the 

four densities studied and there was a trend for the phase 

factor to be more dissipative for the lower density systems. 

If the phase factors are applied to equation 22, the MD and 

experimental results compare much better (see table 2).14This 

see~s to imply that the phase factors- must be included as a 

function of density for the real experiment and the MD. This 

leaves the results in.the_ambiquous state of being partially 

correct, neither proven nor disprovede If phase factors must 

be include to describe the relaxation the first assumption of 

IBC theory is disproved. A density dependent phase 

relationship is equivalent to a density dependent Pij. 
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Density MD Exp. Scale Phase14 Scale 
' 

Scale Scale 
~ 

Factor 1.8. qjcc Factor 

Factors Factors Eq. 22 phase= with 

26. Phase 

± 3. 

2.2 1.3 1.8 1.4 22. 1.2 

qjcc ± • 15 ± .22 ± . 3 ± 3 • 

2.6 3.8 1.9 2.5 19° 1.9 

qjcc ± .5 ± .2 ± • 5 ± 3 • 

3.0 4.0 3.0 5.2 18° 3.7 

qjcc ± .5 ± .35 ± 1 ± 4. 

Table 2 
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IV. Summary and Conclusions 

The state of the theory of vibrational relaxation at this 

point must be driven by experiments. Due to the observation 

that relaxation is very sensitive to the potentials, all the 

applications of IBC examined in this paper are useful only in 

predicting the density and temperature dependence of 

relaxation. Unfortunately, there have been very fe~ 

experiments that provide this information in a system that can 

be easily modeled. It seems that the probability of 

relaxation, P1j, is fairly independent of potential over a 

realistic range. In comparisons to liquid relaxation the 

steric factor seems to have a. quantitative effect on the 

relaxation rate. However, the steric factor seems independent 

of density and not a problem with respect to predicting 

density dependencies. In the classical regime I 2 in liquid Xe 

has been studied extensively in theory and experiment. This 

system has been modeled by most of the theories examined. The 

most successful model of the relaxation was based on the 

generalized Langevin equation due to the inclusion of many 

body effects. However the generalized Langevin model has only 

been applied to the densities of·l.S gjcc and 3.0 gjcc. This 

is unfortunate, because IBC does a good job on the MD results 

for 1.8 gjcc, 2.2 gjcc, and 3.0 gjcc but not at 2.6 gjcc using 
' 

both- the radial distribution function as a scale factor and 

using the frequency spectrum of the force autocorrelation 
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function. The failureat 2.6 gjcc may be due to a failure of 

IBC or a problem with bad statistics on the MD calculations 

due to the small number of runs completed. The interpretation 

may have been clearer if the generalized Langevin model had 

been tried at these densities to see if it would work for all 

densities. This would not have proved IBC's correctness for 

this system, but if the generalized Langevin equations' 

results disagreed with MD then perhaps there- is something 

wrong with either the MD or there is something peculiar about 

2. 6gjcc Xe that does not allow either the generalized Langevin 

equation or IBC to model the relaxation. IBC has reproduced 

the density trends seen in the ·relaxation of I 2 in Xe 

experiments, using the radial distribution function as a 

scaling factor, but not using the power spectrum of the force 

autocorrelation function. This may not be too disconcerting 

considering the possibility of the I-Xe Lennard-Jones may not 

be a good representation of the real potential, and would have 

more effect on the power spectrum than the radial distribution 

function. 

Both the IBC and Langevin approaches will fail if the 

coupling between the bath and oscillator is strong. IBC 

theory will also fail if the binary force autocorrelation 

function power spectrum at the appropriate frequency is not 

the same as the total force autocorrelation. The most 

probable reason for the two force autocorrelation functions 

not being the same is if many body effects become more 
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important and provide damping at the oscillators frequency. 

The final reason for failure for either of the above models is 

the lack of phase information. If the iodine molecule is 

driving the collisions, there may be a different average phase 

relationship for the real system and the two model systems. 

The IBC calculation assumes a random phase approximation, and 

the average phase relationship is determined by the xenon and 

iodine velocities. This is incorporated - in the · Pij and is 

density independent. The generalized Langevin equations phase 

vs force or collision may also be different than the MD or 

real system,- and may be density dependent. Brown et al have 

seen an average phase shift over the various densities studied 

that may affect the vibrational relaxation, and these can be 

incorporated, but IBC is a failure if in reality they are

density dependent. 

IBC theories have been somewhat successful in modeling 

quantum systems. The ease in applying IBC has m~de it most 

prevalent, however it has been applied in detail differently 

in many experiments. This difference in application from 

experiment to experiment is partially due to the lack of a 

firm theoretical foundation for IBC. This weakness causes the 

theory to still be attacked theoretically. This work does not 

prove· IBC, on the other hand considering the approximations 

made in implementation the results are not ~iscouraging. It 

has done a surprisingly good -job describing the density 

dependence. Other theori~s to model quantum systems have been 
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confined to semiclassical calculations, however few of these 

calculations have been made because of their relative 

difficulty·. Until the relaxation of simple oscillators in 

simple solvents are understood it seems that relaxation 

mechanisms and dynamics of chemical relaxation in larger 

molecules in molecular solvents will still. be a major 

challenge to experimentalist and theorist alike. 
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V. APPENDIX 

A. PROGRAM LISTING I2IBC 

c Program "I2IBC" 
c Daniel Russell 
c Auqust 2 1990 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 

This program calculates a one dimensional trajectory 
for one Iodlne molecule and one Xenon atom. The 
energy before and after a collision occurred were 
calculated giving the relative gain or loss of 
energy after a collision. This was done for 15 
maxwell boltzman distributed relative velocities of 
the Iodine molecule and xenon atom and 100 phases of 
the iddine atom. This gives 1500 trajectories for 
every Iodine vibrational level that was run. 

integer ntm3, i, stop 
parameter(ntm3=45) 

ntm3 is 3 * the number of particles. In this 
calculation 15 trajectories are run simultaneously. 

double precision vxyz·(ntm3) , rxyz (ntmJ) , axyz (ntmJ) 

vxyz, rxyz, and axyz are the velocity, position, and 
the acceleration respectively. vxyz(1) is the 
velocity of the first iodine atom, vxyz(2) is the 
velocity of the second iodine atom, and vxyz(J) is 
the velocity of the xenon atom that will collide 
with that particular iodine molecule. vxyz(4) is 
the velocity of the first iodine atom that will be 
running a parallel trajectory although it will have 
a different phase and xenon velocity than the first 
trajectory. 

double precision axyz2(ntm3) 

axyz2 is a space for storing the accelerations at 
the time step before for Beeman's integrator. 

/ 

double precision rxyz2(ntm3) 

rxyz2 is a space for storing the positions at the 
time step before for Beeman's integrator. 

double precision sig, eps 



c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 

c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
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siq is the Iodine - Xenon sigma for a Lennard-Jones 
potential, and eps is epsilon. Note a Lennard-Jones 
interaction is not used. A Weeks Chandler Anderson 
decomposition of a Lennard-Jones is used. 
eps=225. 0000*1.196265744 in the units of atomic mass 
units* anqstroms2 per picosecond2 

siq=3.94 · 

double precision masi, masx, masi2, masx2 

masx=131.3 Is the mass of Xenon 
masi=126.90 Is the mass of Iodine 
masi2=masij2. 
masx2=masxj2. 

These are various constants that are calculated 
once and used during the rest of the program. 

double precision cst5 
double precision cst6, cst7, cst9, cst10 
double precision cst12 
double precision cst13, cst14, cst15, cst16 

h is the time step, h2 is h squared, h26 is h2/6 and 
hi is one over h 

double precision h, h2, h26, hi · 

the array ep stores the potential energy's of the 
15 separate trajectories at every third index 
starting at one. The -array ek stores kinetic 
energy. sum.stores the total energy in both iodine 
and xenon. sumi2i is iodine's initial energy 
includinq center of mass motion. 

double precision ep(45), ek(45), sum(45), sumi2i(45) 

sumi2 is the iodine's · total energy, including 
center of mass motion, calculated for every call to 
energy. 

double precision sumi2(45) 

plnk is Plank's constant. ri is a dummy constant 
used in reading in a dummy constant. 'the array v is 
the initial relative velocities for the iodine xenon 
collision that are chosen from a Maxwell Boltzman 
distribution. sumi2f is the final iodine kinetic 
energy includinq center of mass velocity. 

double precision plnk, ri, v(15), sumi2f(45) 
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The array rel is calculated in the subroutine energy 
and contains the relative kinetic energy in the 
iodine's vibrational motion and it's potential 
energy. Note this does not include center of mass 
motion of the iodine molecule. The array reli 
contains the initial relative energy in the iodine 
molecule. 

double precision rel(45), reli(45) 

w is the iodine 1 s initial vibrational frequency that 
is used in generating a random phase. rcount is a 
flag that indicates if a collision has occurred and 
should really be an integer. The array relf is the 
final relative energy. 

double precision w, rcount, relf(45) 

The array r.contains the distance between the two 
iodine atoms, the distance between the second iodine 
atom and the xenon atom, and the distance between 
the second iodine atom and the xenon atom to the 
inverse sixth power for all 15 trajectories. rmax 
contains the largest distance between two iodine 
atoms for a particular vibrational energy. This is 
to make sure that the xenon atom starts out at a 
distance where it will not be interacting with the 
iodine molecule until it has had a chance to begin 
it • s trajectory. The array viben contains the first 
100 vibration energies for the iodine molecule. 

. double precision r(45), rmax, viben(100) 

common ;eng/ ek, ep, sumi2, rel, rmax, w, sum, rcount, 
$cst15, cst16 · 

common /blk2/ h, h2, h26, hi 
common /blk4/ vxyz 
common /blkS/ rxyz, rxyz2, axyz, axyz2 
common /blk9/ natom, natoml, natom3 
common /lang/ masi, masx, masi2, masx2 
common ;stuff/ csts, cst6, cst7, sig, cst9, eps 
common ;stuff2/ cstlO, cst12, cst13, cstl4 
common /last/ r, xseed 

This open statement was used on the Cray X-MP when 
it was running CTSS. 

call link("unitl=(open, xe, text), unit7=(da, 
create, text), unit9=(rk, open, text), unit2=(fc, 
open, text)//") 

The following open statements can be used on most 
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Unix operating systems including UNICOS on the cray 
Y-MP at San Diego. The file xe contains the initial 
starting velocities of the xenon atoms, fcfkb.out 
contains the vibrational energies of the iodine 
molecule,· rold stores the energy lost from the 
iodine molecules for each trajectory, and rkr 
contains the rkr potential for the iodine molecule. 

open(1, status='old', file•'xe') 
open(2, status='old', file•'fcfkb.out') 
open(7, status='new•, file='rold') 
open(9, status='old', file='rkr') 

The random number generator you use depends on the 
operating system you are on and how well it works~ 
gOccf initializes a random number sequence that 
gives a· non-repeatable sequence. This is from the 
NAG library. .This was used so that there would be 
a different random number sequence for each 
vibrational level. 

call g05ccf 

xseed is a dummy argument used by g05caf which 
generates the pseudo random numbers in a 
distribution from o to 1. 

xseed=15344 

In this section anything that is independent of 
vibrational level is initialized. 

call inrkr 

do 22 i=1, 15 
read(1,3) ri,v(i) 

22 continue 

3 format(2e15.5) 

c The variables is and if are the vibrational levels 
c over which this calculation will be performed. 

c 
c 

read(1,*)is,if 

Read in the vibrational levels for iodine. The 
variables rjunk etc are junk dummy variables. 

do 43 i=1,100 
read(2,*)rjunk,viben(i),rjunk1,rjunk2,rjunk3 

43 continue 



.. 

c. 
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c 
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c 
c 

·. b=l. 0/.52290 
xe=2.66680 
siq=3.94 
masx=l31.3 
masi=l26.90 
masi2=masij2. 
masx2=masx;2. 
eps=225.0000*l.l96265744 
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ktm is a counter for the number of times · an 
integration step has occurred. 

ktm=O 
plnk=39.903130050 

cst5=4.*eps*(sig**6) 
cst6=sig**6 
cst7=cst5*(6.0)/masx 
cst9=masx;masi 
cstlO=l./masi*l.l962657440 
cstl2=2.*cst6 
cstl3=2.0**(1./6.)*sig 
cstl4=1.1962657440 
cstl5=cst13+100.0 
rcount=O.O 
natom=l5 
natom3=3*natom 

In this section anything that is vibrational level 
dependent but independent of phase is considered 

do 111 id=is,if 

ip=O 
stop=99 
rxyz(2)=1.332950 
rxyz(1)=-1.332950 

write(7,*)id 

w=(viben(id+1)-viben(id))/plnk*cstl4 
cstl6=sqrt(4.*viben(id)*cst14/masi)*.50 

At this point the loop for taking the average over 
phase begins. First initph1 is called to find rmaxx 

call initphl 
goto 999 



997 call initph 
ip=ip+1 

999 do 2444 i=1,natom3,3 
r(i)=rxyz(i+1)-rxyz(i) 
r(i+1)=rxyz(i+2)-rxyz(i+1) 

2444 r(i+2)·==r(i+1) **(-6) 

call enerqy(rxyz,vxyz) 
do 28 i=1,ntm3,3 
reli(i)=rel(i) 

28 sumi2i(i)=sumi2(i) 

c sumi2i is the initial i2. energy 
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c Start the xenon atoms moving toward the iodine 
c molecules now that the phase has been randomized and 
c the initial energy is known. 

do 222 k= 1,15 
222 vxyz(3*k)=-v(k) 

c Th~ time step h is .0001 picoseconds 

c 
c 

h=.00010 
h2=h*h 
h26=h2/6.0 
hi=1. 0/h 

do 100 i=1,260000 

checks to see if the collision partner is far enough 
away to stop the trajectory 

if(rxyz(3)-rxyz(2).gt.cst15.and.rcount.eq.1.0) goto 
$150 

if(rxyz(3)-rxyz(2).lt.cst15)rcount=1.0 

c calls the integrator remember integrator takes two 
c steps for every one call 

do 120 j=1,100 
120 call integ(ktm) 

100 continue 

150 call enerqy(rxyz,vxyz) 
do 29 k=1,ntm3,3 
sum(k)=ek(k)+ep(k) 
relf(k)=rel{k) 

29 sumi2f{k)=sumi2{k) 



" 
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c sumi2f is final i2 energy 
c Write the energy lost or gained after the collision. 
c The energy written out is in wavenumbers. 

do 27 k=1,ntmJ,J 
27 write(7,246) (relf(k)-reli(k))/cst14 
246 format(Je17.7) 

111 

c 

c 
c 
c 
c 
c 
c 

if(ip.ne.stop)goto 997 

continue 

call exit(O) 
end 

The subroutine initphl calculates the maximum 
distance between two iodine atoms for a particular 
vibrational energy. It then randomizes the iodine 
vibrational phase and puts the xenon atom far enough 
away that it is not immediately interaction with 
the iodine molecule. 

subroutine initphl 

integer n~mJ, i 
parameter(ntm3=45) 

double precision vxyz(ntmJ), rxyz(ntmJ), axyz(ntmJ) 
double precision axyz2(ntm3) 
double precision rxyz2(ntmJ) 
double precision sig, eps 
double precision cstS 
double precision cst6, cst7, cst9, cstlO 
double precision cstl2 
double precision cstlJ, cstl4, cstlS, cstl6 
double precision h, h2, h26, hi 
double precision masi, masx, masi2, masx2 
double precision ep(45), ek(45), sum{45), sumi2(45) 
double precislon rel(45) 
double precision w, rx, rstop, rcount 
double precision r(45), rmaxx, rmax 

common jeng/ ek, ep, sumi2, rel, rmax, w, sum, rcount, 
$cstl5, cstl6 

common /blk2/ h, h2, h26, hi 
common /blk4/ vxyz 
common /blkS/ rxyz, rxyz2, axyz, axyz2 
common /blk9/ natom, natoml, natomJ 
common /lang/ masi, masx, masi2, masx2 
common ;stuff/ cstS, cst6, cst7, sig, cst9, eps 
common jstuff2/ cstlO, cstl2, cstlJ, cstl4 
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c 

·common /last/ r, xseed 

h=-.00010 
h2=h*h 
h26=h2/6.0 
hi=1.0/h 
ktm=O 

rcount=O. 
do 10 i=1,ntm3 
axyz(i)=O.O 
axyz2(i)=O.O 
vxyz(i)=O.O 
rxyz2(i)=O.O 
rxyz(i)=O.O 
sum(i)=O.OO 
ek(i)=O.OO 
ep(i)=O.OO 

initializes with random phase 

xseed=qOcaf(xseed) 
rx=xseed 
rstop=1.00/w*rx+1.00/W 

nstep=int(rstop/h) 

do 21 i=1,ntmJ,J 
vxyz(i+1)=cst16 
vxyz(i)=-cst16 
rxyz(i+1)=1.332950 
rxyz(i)=-1.332950 

21 rxyz(i+2)=cstl5 -

do 140 i=l,nstep 
rmax=rxyz(2)-rxyz(l) . 
if(rmax.qt.rmaxx)rmaxx=rmax 

140 call inteq(ktm) 

cstl5=cst1J+rmaxx/2. 
do 211 i=l,ntmJ,J 

211 rxyz(i+2)=cstl5 

return 
end 
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c 
c 

ini tph does everything ini tphl but calculate the 
maximum distance between the two iodine atoms. 
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c 

subroutine initph 

inteqer ntmJ, i 
parameter(ntm3=45) 
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' . 
double precision vxyz(ntmJ), rxyz(ntmJ), axyz(ntmJ) 
double precision axyz2(ntm3) 
double precision rxyz2(ntm3) 
double precision siq, eps 
double precision csts 
double precision cst6, cst7, cst9, cst10 
double precision cst12 
double precision cst13, cst14, cst15, cst16 
double precision h, h2, h26, hi - · 
double precision masi, masx, masi2, masx2 
double precision ep(45), ek(45), sum(45), sumi2(45) 
double precision rel(45), w, rcount 
double precision r(45), rmax 

common jenq/ ek, ep, sumi2, rel, rmax, w, sum, rcount, 
$cst15, cst16 

common /blk2/ h, h2, h26, hi 
common /blk4/ vxyz 
common /b1k5/ rxyz, rxyz2, axyz, axyz2 
common /blk9/ natom, natom1, natomJ 
common /lanq/ masi, masx, masi2, masx2 
common ;stuff/ cstS, cst6, cst7, siq, cst9, eps 
common ;·stuff2/ cst10, cst12, cst13, cst14 
common /last/ r, xseed 

h=.00010 
h2=h*h 
h26=h2/6.0 
hi=1.0/h 
ktm=O 
rcount=O. 

do 10 i=-1,ntm3 
axyz(i)=O.O 
axyz2(i)=O.O 
vxyz(i)=O.O 
rxyz2(i)=O.O 
rxyz(i)=O.o 
sum(i)=O.OO 
ek(i)=O.OO 
ep(i)=O.OO 

initializes with random phase 



xseed=qOcaf(xseed) 

rx=xseed 
rstop=1.00/W*rx+1.00/W 

nstep=int(rstop/h) 

do 21 i=1,ntm3,3 
vxyz(i+1)=cst16 
vxyz(i)=-cst16 
rxyz(i+l)=1.332950 
rxyz(i)=-1.332950 
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21 rxyz(i+2)=cst15 

do 140 i=1,nstep 
140 call inteq(ktm) 

c 
c 
c 
c 
c 
c 

return 
end 

subroutine inteq(kstep) 

This subroutine integrates Newton's equations for 
the particles whose positions and velocities are 
specified by the arrays rxyz and vxyz respectively. 
The force;mass are in the arrays axyz and axyz2 for 
the times i and i-1. the integration is done by 
Beeman's method. 

parameter (ntm=15,- ntm1=ntm-1, ntm3=3*ntm) 

double precision vxyz(ntm3), rxyz(ntm3), axyz(ntm3) 
double precision axyz2(ntm3) 
double precision rxyz2(ntm3) 
double precision eps, sig 
double precision cst5 
double precision cst6, cst7, cst9, cst10 
double precision cst12 
double precision cst13, cstl4 
double precision h, h2, h26, hi 
double precision r(45) 

common /blk4/ vxyz 
common /blk5/ rxyz, rxyz2, axyz, axyz2 
common /blk2/ h,- h2, h26, hi 
common /blk9/ natom, natoml, natomJ 
common /stuff/ cst5, cst6, cst7, sig, cst9, eps 
common /stuff2/ cst10, cst12, cst13, cst14 
common /last/ r, xseed 

kstep=kstep+2 
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do 100 i=1,natom3 
rxyz2(i)=rxyz(i)+h*vxyz(i)+h26*(4.0*axyz(i)-axyz2(i)) 

100 axyz2(i)=O.O 

call accel(axyz2,rxyz2,kstep-2) 

do 110 i=1,natom3 
rxyz(i) = (rxyz2(i)-rxyz(i) + h26 * (2.00 * axyz2(i) 

$+ axyz(i))) *hi 
rxyz(i) = rxyz2(i) + h * rxyz(i) + h26 * (4.00 * 

$axyz2(i) - axyz(i)) 
110 axyz(i)=o.oo 

call accel(axyz,rxyz,kstep-1) 

do 120 i=1,natom3 
120 vxyz(i) = (rxyz(i) - rxyz2(i) + h26 * (2.00 * axyz(i) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

$+ axyz2(i))) *hi 

return 
end 

subroutine accel(axyz,rxyz,ktm) 

The subroutine accel calculates the accelerations 
for each of the particles. The first iodine atom, 
the one farthest away from the xenon atom only feels 
the force due to the iodine atom next to it. The 
second iodine atom feels the force due to the iodine 
atom next to it and the xenon atom. The xenon atom 
only feels the force due to the iodine atom closest 
to it. The two iodine atoms feel a force derived 
from the rkr potential, and the xenon feels the 
force derived from a Weeks Chandler Anderson 
decomposition. 

parameter(natom3=45) 

double 
double 
double 
double 
double 
double 
double 
double 
double 

precision 
precision 
precision 
precision 
precision 
precision 
precision 
precision 
precision 

rxyz(natom3), axyz(natom3) 
sig, eps 

cst5 
cst6, cst7, cst9, cst10 
cst12 
cst13, cst14 . 
masi, masx, masi2, masx2 
r( 45) 
rkrf 

common jlang/ masi, masx, masi2, masx2 
common ;stuff/ cst5, cst6, cst7, sig, cst9, eps 
common ;stuff2/ cst10, cst12, cst13, cst14 
common /last; r, xseed 
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c -Calculate the interatomic distances, and inverse 
c sixth power of the distance between the iodine and 
c xenon. This will be used in calculations of the 
c acceleration due to the WCA potential. This 
c probably should be done after the if statement which 
c checks to see if the xenon is close enough to feel 
c the iodine atom. 

d9 244 i=1,natom3,3 
r(i)=rxyz(i+1)-rxyz(i) 
r(i+1)=rxyz(i+2)-rxyz(i+1) 

244 r(i+2)=r(i+1)**(-6) 

c Calculate the acceleration the first iodine atom 
c feels due to the second iodine atom. 

do 24 i=1,natom3,3 
24 axyz(i)=-rkrf(r(i))*cst10 

c Both if statements are left in for the user. The 
c first if statement checks to see if the xenon is 
c close enough to feel any acceleration due to the 
c iodine atom. The second one is a vectorizable if 
c statement for the Cray X-MP. At the time compiler 
c development had not reached the stage such that an 
c if statement would vectorize. The call to cvmgt- is 
c basically a vectorizable if statement. 

do 19 i=1,natom3,3 
19 if(r(i+1).gt.cst13)r(i+1)=cst13 
c19 r(i+1)=cvmgt(cst13,r(i+1),r(i+1).gt.cst13) 

do 20 i=1,natom3,3 
axyz(i+2)=cst7*(cst12*r(i+1)**(-13)-r(i+1)**(-7)) 

20 axyz(i+1)=-axyz(i)-axyz(i+2)*cst9 

c 
c 
c 
c 
c 
c 

return 
end 

subroutine energy(rxyz,vxyz) 

This subroutine calculates the energy of the total 
system, for checking energy conservation, and then 
calculates the energy in the iodine molecule. Note 
rel, the energy in the iodine molecule does not the 
contain center of mass energy for the iodine 
molecule. sumi2 does contain center of mass motion. 

parameter(ntm3=45) 

double precision vxyz(ntm3), rxyz(ntm3) 
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double precision sig, eps 
double precision cst5 
double precision cst6, cst7, cst9, cstlO 
double precision cst12 
double precision cstl3, cst14, cst15, cst16 
double precision masi, masx, masi2, masx2 
double precision ep(45), ek(45), sumi22(45) 
double precision sumi2(45), rel(45) 
double precision r(45), rkrv, w, rcount 
double precision sum(45), rmax 

common /lang/ masi, masx, masi2, masx2 
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common jengj ek, ep, sumi2, rel, rmax, w, sum, rcount, 
$cst15, cst16 

common ;stuff/ cst5, cst6, cst7, sig, cst9, eps 
common jstuff2/ cstld, cst12, cstlJ, cst14 
common /last/ r, xseed 

c ek = kinetic energy ep = potential energy 

do 25 i=l,ntm3,3 
r(i+l)=rxyz(i+2)-rxyz(i+l) 
r(i)=rxyz(i+l)-rxyz(i) 
r(i+2)=r(i+l)**(-6) 
ek(i)=O.OO 
rel(i)=O.OO 
ek(i)=ek(i)+vxyz(i)**2*masi2 
ek(i)=ek(i)+vxyz(i+l)**2*masi2 
sumi2(i)=ek(i) 
rel(i)=(vxyz(i+l)-vxyz(i))**2*masi2/2.00 

25 ek(i)=ek(i)+vxyz(i+2)**2*masx2 

do 26 i=l,ntm3,3 
ep(i)=O.OO 
if(r(i+l).gt.cstlJ)goto 26 
ep(i)=ep(i)+cst5*((r(i+2)**2)*cst6-r(i+2))+eps 

26 continue · 

c 
c 

do 27 i=l,ntm3,3 

Note rkrv returns energy in wavenumbers, and must be 
converted to the units used in this program • 

sumi22(i)=rkrv(r(i))*l.l962657440 
rel(i)=rel(i)+sumi22(i) 
ep(i)=ep(i)+sumi22(i) 

27 sumi2(i)=sumi2(i)+sumi22(i) 

return 
end 

subroutine inrkr 
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This subroutine reads,in the·RKR data and puts it in 
form that can be used by the spline subroutine. 

double precision e(200), ri(200), ro(200) 
double precision b(200), cl(200), dl(200) 

common jkbl/ e, ri, ro, b, cl, dl, n 

n=O 
5 n=n+l 

read(9,*) e(n),ri(n),ro(n) 
if (e(n).lt.l2000.) goto 5 
m=n 
n=n+l 
e (n) =o-. o 
ri(n)=2.66570 
do 6 i=l,m 
n=n+l 
e(n)=e(i) 

6 ri(n)=ro(i) 

do 7 i=l,m/2 
tl=ri ( i) 
t2=e ( i) 
j=m+l-i 
ri(i)=ri(j) 
e(i)=e(j) 
ri(j)=tl 

7 e(j)=t2 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

call spline(n,ri,e,b,cl,dl) 

return 
end 

double precision function rkrf(r) 

This calculates the force on an iodine atom due to 
the other iodine atom. The force is either a one 
over radius to the thirteenth if r less than or 
equal to 2.3138, one over. ~adius to the 9.4 if r i~ 
greater or equal to 4. 4060 and finally if the radius 
is between these two .values a spline of the force 
table generated from the rkr table is used. Note 
that in the molecular dynamics calculations a look 
up table was used for the force and potential for 
the iodine molecule.- A spline had to be used here 
because energy conservation constraints are tighter. 

double precision e(200), ri(200), ro(200), b(200) 



c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

double precision cl(200), dl(200) 
double precision.r, f, dseval 

common /kbl/ e, ri, ro, b, cl, dl, n 

f=O.O 
if (r.le.2.31380) f=-12.*2.9255766d8/r**l3 
if (r.ge.4.4060) f=8.4*1.28477d8/r**9.4 
if -(f.eq.O.) f=dseval(n,r,ri,e,b,cl,dl) 
rkrf=-f 

return 
end 

double precision function rkrv(r) 
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This calculates the potential energy of the iodine 
atoms due to the other iodine atom. Again a spline 
and not a look up table were used due to the fact 
that energy conservation had to be much better for 
this' calculation than the molecular dynamics in a 
liquid calculation. 

double precision e(200), ri(200), ro(200), b(200) 
double precision cl(200), dl(200) 
double' precision r, v, seval 

common /kbl/ e, ri, ro, b, cl, dl, n 

v=O. 
if (r.le.2.31380) v = 2.9255766d8 1 r**l2 -3456.4670 

$-12540.260 
· if (r.ge.4.4060) v=-1.28477d8/r**8.4 

if (v.eq.O.) v=seval(n,r,ri,e,b,cl,dl)-12540.260 
rkrv=v 

return 

end 

subroutine spline(n,x,y,b,c,d) 

This subroutine is a cubic interpolating spline 
taken from Computer Methods for Mathematical 
Computations, by Forsythe, et al., p. 76. 

S(X) = y(I) + b(I) * (X - X(I)) + c(I) * (X -
x(I)**2 + d(I) * (x- x(I))**3 

for x(I) less than or equal to x and x is less than 



c 
c 
c 
c 
c 

or equal to x(I+1) 

n = the number of data points (n.ge.2) 
x= the abscissa in strictly increasing order 
y = the ordinate 

integer n 
integer nm1, ib, i 

double precision x(n),y(n),b(n),c(n),d(n) 
double precision t 

nm1=n-1 
if (n.lt.2) return 
if (n.lt.3) goto 50 

d(1)=x(2)-x(1) 
c(2)=(y(2)-y(1))/d(1) 

do 10 i=2,nm1 
d(i)=x(i+1)-x(i) 
b(i)=2.*(d(i-1)+d(i)) 
c(i+1)=(y(i+1)-y(i))/d(i) 
c(i)=c(i+1)-c(i) 

10 continue 

b(1)=-d(1) 
b(n)=-d(n-1) 
c(1)=0. 
c(n)=o: 
if (n.eq.3) goto 15 
c(1)=c(3)/(x(4)-x(2))-c(2)/(x(3)-x(1)) 
c(n)=c(n-1)/(x(n)-x(n-2))-c(n-2)/(x(n-1)-x(n-3)) 
c(1)=c(1)*d(1)**2/(X(4)-x(1)) · 
c(n)=-c(n)*d(n-1)**2/(x(n)-x(n-3)) 

15 do 20 i=2,n 
t=d ( i-1) /b ( i-1) 
b(i)=b(i)-t*d(i-1) 
c(i)=c(i)-t*c(i-1) 

20 continue 

c(n)=c(n)/b(n) 

do 30 ib=1,nm1 
i=n-ib 
c(i)=(c(i)-d(i)*c(i+l))/b(i) 

30 continue 

b(n)=(y(n)-y(nm1))/d(nm1)+d(nm1)*(c(nm1)+2.*c(n)) 

do 40 i=1,nm1 
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b(i)=(y(i+1)-y(i))/d(i)-d(i)*(c(i+1)+2.*c(i)) 
d(i)=(c(i+1)-c(i))/d(i) 
c(i)=3.*c(i) 
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40 continue 

50 

c 
c 
c 
c 
c 
c 

c(n)=3.*c(n) 
d(n)=d(n-1) 
return 

b(1)=(y(2)-y(1))/(X(2)-x(1)) 
c(1)=0. 
d(1)=0. 
b ( 2) =b ( 1) 
c(2)=0. 
d(2)=0. 
return 

end 

double precision function seval(n,u,x,y,b,c,d) 

This subroutine evaluates the spline function once 
the coefficients have been calculated by spline. 
cubic interpolating spline taken from Computer 
Methods for Mathematical Computations, by Forsythe, 
et al., p. 76. This subroutine calculates the 
spline interpolation for the potential. 

integer n 
integer i, j, k 

double precision u, x(n), y(n), b(n), c(n), d(n) 
double precision dx 

data i/1/ 

if (i.ge.n) i=1 
if (u.lt.x(i)) goto 10 
if (u.le.x(i+1)) goto 30 

10 i=1 
j=n+l 

20 k=(i+j)/2 
if (u.lt.x(k)) j=k
if (u.ge.x(k)) i=k 
if (j.gt.i+1) goto 20. 

30 dx=u-x(i) 
seval=y{i)+dx*(b(i)+dx*(c(i)+dx*d(i))) 
return 



c 
c 
c 
c 
c 
c 
c 
c 
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end 

double precision function dseval(n,u,x,y,b,c,d) 

This subroutine evaluates the spline function once 
the coefficients have been calculated by spline. 
cubic interpolating spline taken from Computer 
Methods for Mathematical Computations, by Forsythe, 
et al., p. 76. This subroutine calculates the 
spline interpolation for the force. Note that the 
return is just the derivative of the cubic 
interpolation. 

integer n 
integer i, j, k 

.double precision u, x(n), y(n), b(n), c(n), d(n) 
double precision dx 

data i/1/ 

if (i.ge.n) i=1 
if (u.lt.x(i)) goto 10 
if (u.le.x(i+1)) goto 30 

10 i=1-

j=n+1 
20 k=(i+j)/2 

if (u.lt.x(k)) j=k 
if (u.ge.x(k)) i=k 
if (j.gt.i+1) goto 20 

30 dx=u-x(i) 
dseval=b(i)+dx*(2.*c(i)+dx*3.*d(i)) 
return 

end 
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B. PROGRAM LISTING IBCENE 

c Program 11 IBCENE 11 

c Daniel Russell 
c Aug. 6, 1990 

c This program reads in the energy losses for the 1500 
c trajectories run the program 11 I2IBC" and calculates 
c the average energy loss as a function of number of 
c collisions. 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 

c 
c 

The matrix dis contains the 1500 energy losses for 
the 82 vibrational levels. vel is vector that will 
store a velocity distribution for the energy loss. 
newe keeps track of the energy. The array tot keeps 
track of the energy as a function of collisions. 

real dis(l500,82) ,vel(15) ,viben(82) ,newe,tot(10000) 
common /data/ dis 

Because the data files are quite large they are 
stored on a TK-50 tape. The tar command retrieves 
the data file from tape. The file xl-20 contains 
the data for the vibrational level 1 through 20. 

if(system(-'tar -x x1-20').ne~O)write(6,*)"tar err" 

The subroutine dread() reads in the data. 

call dread(1,1,20) 

The data file is removed so space is available for 
the next file. 

if(system('rm xl-20').ne.O)write(6,*)"rm err" 

if(system('tar -x x21-40') .ne.O)write(6,*)"tar err" 

call dread(2,21,40) 

if(system('rm x21-40').ne.O)write(6,*)"rm err" 

if(system('tar -x x41-60').ne.O)write(6,*)"tar err" 

call dread(J,41,60) 

if(system('rm x41-60').ne.O)write(6,*)"rm err" 

if(system('tar -x x61-82 ').ne.O)write(6,*)"tar err" 



call dread(4,61,82) 

if(system('rm x61-82').ne.O)write(6,*)"rm err" 

open(4,status='new',file='ene.dep') 
open(5,status='new',file='vel.dep') 
open(J,status='old',file='fcfkb.out') 

c Read in the-vibrational energy levels. 

do 1 i=1,100 
read(3,*)rjunk,viben(i),rjunk1,rjunk2,rjunk3 

1 continue 

iy=165335 
times=100 

do 12 i=1,10000 
12 tot(i)=O. 

do 2 i=1,times 

5 rnd=urand(iy) 
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c Get a random number uniformly distributed between 
c o and 1. / 

c 
c 

k=int(1500.*rnd)+1 

Change it to a random number between 1 and 1500 
which then gives an energy loss for this step 

newe=viben(82)+dis(k,82) 
jj=O 
kk=O 

6 do 3 j=82i2,-1 

3 if(newe.gt.viben(j))goto 4 
goto 2 

4 if(j.eq.82)newe=newe+dis(int(1500.*urand(iy))+1,82) 
jj=jj+1 

c Store the energy every 10 collisions 

if(jj.eq.10)kk=kk+1 
if(jj.eq.10)tot(kk)=newe+tot(kk) · 



if(jj.eq.lO)jj=O 
if(j.eq.82)goto 6 
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c For energies in between vibrational levels choose an 
c energy loss which is a function of the two energy 
c levels. 

ri=(viben(j+1)-newe)/(viben(j+l)-viben(j)) 
rf=1.-ri 

- ryl=urand(iy) 
ry2=urand(iy) 
newe = newe + ri * dis( int(.lSOO. * ry1 ) + 1, j ) + rf 
$* dis( int( 1500. * ry2 ) + 1, j + 1) 
goto 6 

2 continue 

do 8 i=1,82 
jj=O 

do 9 k=1,15 
9 vel(k)=O. 

c Calculate the energy. loss as a function of the 
c velocities. 

do 7 j=l,lSOO 
jj=jj+1 
vel(jj)=vel(jj)+dis(j,i) 

7 if(jj.eq.15)jj=O 

do 8 k=1,15 
8 write(S,*)vel(k) 

do 10 i=1,10000 
if(tot(i).eq.O.)goto 11 

10 write(4,*)tot(i) 
11 continue 

end 

subroutine dread(i,j,k) 
real dis(1500,82) 
character*20 a 
common /data/ dis 
open(1,status="old",file="list") 
do 1 ii=1,i 

1 read(1,*)a 
open(2,status="old",file=a) 
do 2 ii=1,k-j+1 
read(2,*)rj 
do 2 jj=1,1500 

2 read(2,*)dis(jj,j+ii-l) 
close(1) 



close(2) 
return 
end 
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C. PROGRAM LISTING IIBC 

c Program "IIBC" 
c Daniel Russell 
c August 6 1990 
c 
c This program calculates the average properties of an 
c iodine atom in a bath of 107 xenon atoms. The 
c system is first carefully thermalized. Then the 
c calculation is then run long enough to get good 
c statistics on the radial distribution function and 
c the various force autocorrelation functions. Some 
c of the subroutines are taken from Keenan Brown's 
c molecular dynamics program "I2XENON" and slightly 
c modified for this system. 

program xenon 

parameter (natom=108, natom1=natom-1, natom3=3*natom) 
parameter (ignum=lOOO, ivacf=256) 
parameter(n~=natom, nc=2*natom) 

c natom is the number of atoms in the system. ignum 
c times three is the length of the array that will 
c store the radial distribution function. ivacf is 
c the length of the array that will store the force 
c autocorrelation functions. Note that there are 
c three dimensions, so that the size of the array 
c will actually be three times ivacf. 

c If run on the Cray the following line sho~ld making 
c the. real variables double precision should be 
c commented out. The Cray has enough precision to run 
c accura_tely enough with single precision. If this is 
c being run on the Digital Microvax or the Silicon 
c Graphics· 3130 the reals should be double precision 

c implicit double precision (a-h, o-z) 

c The matrix acceli temporarily stores the individual 
c forces between the iodine atom and each xenon atom. 
c This is stored for all three dimensions even though 
c the iodine atom is sphericalty symmetric. The 
c matrix dfibc actually stores the Isolated Binary 
c force autocorrelation that is described earlier in 
c the text. The array g contains the radial 
c distribution function. The matrix atot stores the 
c accelerations used in calculating the total force 
c . autocorrelation. The matrix dftot contains the 
c total force autocorrelation. 

·dimension acceli(natom3, ivacf), dfibc(ivacf, 3) 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 

c 
c 
c 
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dimension g(3*ignum), atot(ivacf, 3), dftot(ivacf, 3) 

alxyz is the length of the cube used in periodic 
boundary conditions. smass is the mass of the 
solvent, xenon, in atomic mass units. r2max is the 
square of the maximum radius where the potential is 
felt between xenon atoms. vzero is the constant 
that is added to the potential in order to have the 
potential between xenon atoms go to zero at the 
radius squared of r2max. This make sure that the 
potential and derivative of the potential are 
continuous. r2maxi and vzeroi are the corresponding 
values for iodine. 

common /blkl/ alxyz, cl, c2, smass, cld, c2d, r2max 

common /blkll/ vzero, vzeroi, r2maxi 

h is the time step, h2 is h squared, h26 is h2/6 and 
hi is one over h 

common jblk2/ h, h2, h26, hi 

si.mass is the iodine mass ( amu) • eps is the 
Lennard-Jones well depth for iodine-xenon. The 
actual potential is a Weeks- Chandler Anderson 
decomposition of the Lennard-Jones potential. 

common jblk3/ cldi, c2di, eli, c2i, simass, eps 
common jcacl2/ acc~li, dfibc, dftot, iq, atot, g, scale 

vxyz, rxyz, and axyz' are the velocity, position. 
They are stored all the x coordinates for the 108 
atoms first, all the y coordinates next etc. 

common jblkS/ rxyz(natom3), vkyz(natom3), axyz(natom3) 

common /blk51/ axyz2(natom3) 

c This text was saved as an example of how to open a 
c file on the Cray X;_MP using the CTSS operating 
c system. 
c 
c call link( 11unit6=(eng, create, text), unit8=(vacf, 
c $create,text), unitl=(start, open, text), unit2=(flow, 
c $CREATE, TEXT), PRINT2/ / 11

) 

open(l, file='final2', status='new') 
open(2, file='axyz', form='unformatted', status='new') 
open(l, file='infinal', status='old') 
open(8, file='fforce', status='new') 
open(2, file='jforce', status='new') 



c 
c 
c 
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The subroutine init initializes all the variables 
and reads in a FCC lattice which is the starting 
point for the iodine atom and the xenon solvent. 

call init 

. scale=float(4*ignum)jalxyzjalxyz 

c zero arrays for start-up 

do 40 i=l,natom3 
axyz2(i)=O.O 

40 axyz(i)=O.O 

do 43 i=l;3. 
do 43 il=l,ivacf 
dftot(il,i)=O. 

43 dfibc(il,i)=O. 

do 45 i=1,3*ignum 
45 . g ( i) =0 0 

c tke is the kinetic energy of the system given the 
c temperature of 280 Kelvin. 

c 
c 
c 
c 

c 
c 
c 

~c 

c 
c 
c 

c 

tke=1.50*natom*.8310*280.0 

ktm is incremented by two on every integration step. 
the following integration loop is for equilibration, 
only energy data is stored. 

ktm=O 
dtemp=O. 

The subroutine tempe calculates the kinetic energy 
of the system and also removes any center of mass 
motion. 

call tempe(ek,ep,etot,cek) 

do 999 i=l,25 

The subroutine tempa() is very similar to tempe() 
except it does not remove center of mass moti~:m. By 
this time all the center of mass motion should be 
removed from the system. 

call tempa(ek,ep,etot,cek) 
ff2=sqrt(tkejek) 

ff2 is the scale factor to cool the system to the 
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c appropriate temperature. 

do 762 iw=l,natom3 
762 vxyz(iw)=vxyz(iw)*ff2 

999 call integ(ktm) 

dtemp=O. 

c 
c 
c 

In this do loop the system is run somewhat hot to 
randomize it. Therefore cooling is also done 
slower. 

do 482 il=1,256 

call integ(ktm) 

call tempa(ek,ep,etot,cek) 
dtemp=dtemp+ek 

482 continue 
ff2=sqrt(tkejdtemp*256.) 

do 763 iw=l,natom3 
763 vxyz(iw)=vxyz(iw)*ff2 

w.rite(6,*)dtempjl.5/.83l/natom/256. 

dtemp=O. 

do 764 i2=1,3 

do 483 il=l,2500 
call integ(ktm) 

. call tempa(ek,ep,etot,cek) 
dtemp=dtemp+ek 

483 continue 

ff2=sqrt(tke/dtemp*2500.) 
write(6,*)dtempjl.5/.83l/natom/2500. 
dtemp=O. 

do 764 iw=l,natom3 
764 vxyz(iw)=vxyz(iw)*ff2 

c The following loop is the final cooling loop to get 
c the system as close as possible to the appropriate 
c temperature. 

dtemp=O.· 
do 484 il=l,5000 



call inteq(ktm) 

call tempa(ek,ep,etot,cek) 
dtemp=dtemp+ek 
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484 continue 

ff2=sqrt(tke/dtemp*5000.) 
write(6,*)dtempj1.5/.831jnatom/5000. 

do 765 iw=1,natom3 
765 vxyz(iw)=vxyz(iw)*ff2 

c 
c 
c 

c 
c 
c 

dtemp=O. 
iq=1 

Run a do loop of 256 iterations in order to 
initialize the matrix dfibc and acceli for 
calculation of force autocorrelations. 

do 485 i1=1,256 

The subroutine dinteq performs two inteqration loops 
per call. On the second loop it stores information 
for calculatinq the force autocorrelations. 

call dinteq(ktm) 

c The variable iq keeps track of time o in the force 
c autocorrelation matrices. 

iq=iq+1 
call tempa(ek,ep,etot,cek) 

485 dtemp=dtemp+ek 

c 
c 

c 
c 
c 
c 

iq=1 

The subroutine dfrc actually calculates the force 
autocorrelations. 

call dfrc 
call enerqy(ek,ep,etot) 
write(6,*)ek,ep,etot 

do 21 i2=1,50000 

The subroutine tempa() is called at this point not 
to equilibrate the system but in order to find out 
what the averaqe temperature of the system was 
durinq the calculation. 



c 

21 

c 

10 

c 
c 

call tempa(ek,ep,etot,cek) 
dtemp=dtemp+ek 
call dinteq(ktm) 

Note that iq is updated here. 

iq=l+mod(iq,ivacf) 
call dfrc 

write(6,*)dtemp/1.5/.831/natomj50256. 
call enerqy(ek,ep,etot) 

Write out the final temperature. 

write(6,*)ek,ep,etot 

format(el0.4,6fl0.4,i5) 
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'Write out the Isolated Binary Collision Force 
autocorrelation function. 

do 64 i=l,J 
do 64 il=l,ivacf 

64 write(S,*)dfibc(il,i) 

c Write out the total force autocorrelation function·-

do 65 i=l,J 
do 65 il=l,ivacf 

65 write(S,*)dftot(il,i) 

c Write out the radial distribution function 

do 55 i=l,J*iqnum 
55 write(S,*)q(i) 

stop 
call exit 
end 

subroutine tempe ( ek, ep-, etot, cek) -

parameter(natom=lOS, natoml=natom-1, natomJ=J*natom) 
parameter(nbl=l, nb2=natom+l, nb)=2*natom+l) 
parameter(nb=natom, nc=2*natom) 

c implicit double precision (a-h, o-z) 

common /blkl/ alxyz, cl, c2, smass, cld, c2d, r2max 

common /blkll/ vzero, vzeroi, r2maxi 
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common /blk3/ cldi, c2di, eli, c2i, simass, eps 
common /blkS/ rxyz(natom3), vxyz(natom3), axyz(natom3) 

common /blkSl/ axyz2(natom3) 

qimension rx(natom), ry(natom), rz(natom) 

equivalence (rxyz(nbl), rx), (rxyz(nb2), ry), 
$(rxyz(nb3), rz) 

ek = 0.0 
cmassx=O.O 
cmassy=O.O 
cmassz=O.O 

c Calculate the center of mass velocity for_the xenon 
c atoms. 

do 11 i=2,natom 
'cmassy=cmassy+vxyz(i+nb) 
cmassz=cmassz+vxyz(i+nc) 

11 cmassx=cmassx+vxyz(i) 

c Calculate the center of mass momentum for the xenon 
c atoms. 

c 

cmassx=cmassx*smass 
cmassy=cmassy*smass 
cmassz=cmassz*smass 

Add center of mass momentum for the iodine atom. 

cmassx=cmassx+vxyz(l)*simass 
cmassy=cmassy+vxyz(l+nb)*simass 
cmassz=cmassz+vxyz(l+nc)*simass 

tempx=cmassxj(natoml*smass+simass) 
tempy=cmassy/(natoml*smass+simass) 
tempz=cmassz/(natoml*smass+simass) 

cek=.50*(cmassx**2 + cmassy**2. + cmassz**2) 1 (natoml * 

$smass + simass) 

c Remove Center of mass motion. 

do 13 i=l,natom 
vxyz(i)=vxyz(i)-tempx 
vxyz(i+nb)=vxyz(i+nb)-tempy 

13 vxyz(i+nc)=vxyz(i+nc)-tempz 

c Calculate kinetic energy, used in assigning 
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c temperature. 

do 10 i=2,natom 
·ek=ek+vxyz(i+nb)*vxyz(i+nb) 
ek=ek+vxyz(i+nc)•vxyz(i+nc) 

10 ek=ek+vxyz(i)•vxyz(i) 

c 
c 
c 

ek = .50 * smass * ek 
ek=ek+vxyz(1)*vxyz(l)*.50*simass 
ek=ek+vxyz(l+nb)*vxyz(l+nb)*.SO*simass 
ek=ek+vxyz(l+nc)•vxyz(l+nc)*.SO*simass 

return 
end 

subroutine tempa(ek,ep,etot,cek) 

This subroutine is the same as tempe () 1 except there . 
is no calculation or subtraction of center of mass 
motion. 

parameter(natom=l08, natom1=natom-1, natom3=3*natom) 
parameter(nbl=l, nb2=natom+l, nb3=2*natom+l) 
parameter(nb=natom 1 nc=2*natom) 

c implicit double precision (a-h, o-z) 

common jblkl/ alxyz, cl, c2, smass, c1d 1 c2d 1 r2max 

common /blk11/ vzero, vzeroi, r2maxi 
common jblk3/ c1di 1 c2di, eli, c2i, simass 1 eps 
common jblk5/ rxyz(natom3), vxyz(natom3), axyz(natom3) 

common jblk51/ axyz2(natom3) 

dimension rx(natom), ry(natom), rz(natom) 

equivalence (rxyz(nb1) 1 rx), (rxyz(nb2) 1 ry) I 

$(rxyz(nb3) 1 rz) 

ek = o.o 

do 10 i=2,natom 
ek=ek+vxyz(i+nb)*vxyz(i+nb) 
ek=ek+vxyz(i+nc)•vxyz(i+nc) 

10 ek=ek+vxyz(i)•vxyz(i) 

ek = .50 * smass * ek 
ek=ek+vxyz(l)*vxyz(l)*.SO*simass 
ek=ek+vxyz{l+nb)*vxyz(l+nb)*.SO*siinass 



c 
c 
c 
c 
c 
c 
c 
c 

ek=ek+vxyz(1+nc)*vxyz(i+nc)•.so•simass 

return 
~d . 

subroutine integ(kstep) 
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This subroutine integrates Newton's equations for 
the particles whose positions and velocities are 
specified by the arrays rxyz and vxyz respectively. 
The forcesjmass are in the arrays axyz and axyz2 for 
the times i and i-1. The integration is done by 
Beeman's method. This is identical to the 
subroutine used in the molecular dynamics 
simulations of J. K. Brown. 

parameter(natom=108, natom1=natom-1, natom3=3*natom) 

c implicit double precision (a-h, o-z) 

common jblk2/ h, h2, h26, hi 
common /blkS/ rxyz(natomJ), vxyz(natomJ), axyz(natomJ) 

common /blk51/ axyz2(natom3) 

dimension rxyz2(natom3) 

kstep=kstep+2 

do 100 i=1,natom3 
rxyz2(i)=rxyz(i)+h*vxyz(i)+h26*(4.•axyz(i)-axyz2(i)) 

100 axyz2(i)=O.O 

call accel(axyz2,rxyz2) 

do 110 i=1,natom3 
rxyz(i)=(rxyz2(i)-rxyz(i)+h26*(2.*axyz2(i)+axyz(i)))*hi 
rxyz(i)=rxyz2(i)+h*rxyz(i)+h26*(4.*axyz2(i)-axyz(i)) 

110 axyz(i)=O.O 

call accel(axyz,rxyz) 

do 120 i=1,natom3 
120 vxyz(i)=(rxyz(i)-rxyz2(i)+h26*(2.•axyz(i)+axyz2(i)))*hi 

return 



c 
c 
c 
c 
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end 

subroutine dinteq(kstep) 

This subroutine is identical to the subroutine 
inteq(), except that in stead of calling the 
subroutine accel () twice accel () is called once and 
daccel() is called once. 

parameter(natom=1,08; natom1=natom-1, natom3=3*natom) 

c implicit double precision (a-h, o-z) 

common /blk2/ h, h2, h26, hi 
common /blkS/ rxyz(natom3), vxyz(natom3), axyz(natom3) 

common /blk51/ axyz2(natom3) 

dimension rxyz2(natom3) 

kstep=kstep+2 

do 100 i=1,natom3 
rxyz2(i)=rxyz(i}+h*vxyz(i}+h26*(4.*axyz(i)-axyz2(i)) 

100 axyz2(i)=O.O 

call accel(axyz2,rxyz2) 

do 110 i=1,natom3 
rxyz(i)=(rxyz2(i)-rxyz(i)+h26*(2.*axyz2(i)+axyz(i)))*hi 
rxyz(i}=rxyz2(i)+h*rxyz(i)+h26*(4.*axyz2(i)-axyz{i)) 

110 axyz(i)=O.O 

call daccel(axyz,rxyz) 

do 120 i=1,natom3 
120 vxyz(i)=(rxyz(i)-rxyz2(i)+h26*(2.*axyz(i)+axyz2(i)))*hi 

return 
end 

subroutine accel(a,r) 

parameter(natom=108, natom1=natom-1, natom3=3*natom) 
_parameter(nb=natom, nc=2*natom}" 
parameter (iqnum=1000, ivacf=256) 

c implicit doubleprecision (a-h, o-z) 



c 
c 
c 
c 
c 
c 
c 
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The subroutine accel() calculates the x, y, and z 
components of the acceleration between atoms. 
CUrrently a Weeks Chandler Anderson force function 
is assumed. Although this code has been used for a 
Lennard-Jones fluid and where changes are needed to 
do this will be indicated in the comments. 

common /blkl/ alxyz, c1, c2, smass, cld, c2d, r2max 
common /blkll/ vzero, vzeroi, r2maxi 
common /blk3/ cldi, c2di, eli, c2i, simass, eps 

dimension dvr(natom), dx(natom), dy(natom), dz(natom) 
dimension a(natom3), r(natom3), r2(natom) 
dimension num(natom) 

i=l 
i1 = i+l 

c In this loop the relative distances are calculated 
c and scaled in order to take account of periodic 
c boundary conditions. 

do 220 j=i1,natom 
dx(j) = r(i) - r(j) 
dy(j) = r(i+nb)- - r(j+nb) 
dz(j) = r(i+nc) - r(j+nc) 
dx(j) = dx(j) - alxyz*anint(dx(j)/alxyz) 
dy(j) = dy(j) - alxyz•anint(dy(j)/alxyz) 
dz (j) = dz (j) - alxyz•·anint(dz (j )/alxyz) 

220 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2 

do 440 j=i1,natom 
if (r2(j) .qt. r2maxi) qoto 441 
dvr(j) = (1.0 1 r2(j))**4 
dvr(j) = dvr(j) * (c1di*dvr(j)*r2(j) - c2di) 
dx{j) = dx(j) * dvr{j) 
dy{j) = dy(j) * dvr{j) 
dz(j) = dz{j) * dvr(j) 
a{i) = a(i) + dx(j) 
a{i+nb) = a(i+nb) + dy(j). 
a{i+nc) = a(i+nc) + dz{j) 
qoto 440· 

441 dx(j)=O.O 
dy(j)=O.O 
dz(j)=O.O 

440 continue 

n = o 



do 330 j=il,natom 
if (r2(j) .gt. r2maxi) goto 330 
n=n+.1 
num(n) = j 
dx(n) = dx(j) 
dy(n) = dy(j) 

· dz ( n) = dz ( j ) 
r2(n) = r2(j) 

330 continue 
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c 
c 

This next loop makes sure to put the opposite force 
on·the appropriate xenon atom. 

do 550. j=1,n 
i1=num(j) 
a(i1) = a·(i1) - dx(j) 
a(i1+nb) = a(i1+nb) - dy(j) 

550 a(i1+nc) = a(i1+nc) - dz(j) 

c If the Calculation is to be a pseudo gas phase 
c calculation, uncomment th~ goto 11 line. 
c goto 11 

c The above loops calculated the accelerations for all 
c iodine xenon pairs. The followinq loops do the same 
c for all xenon xenon pairs. 

do 10 i=2,natom1 
i1 = i+1 

do 20 j=i1,natom 
dx(j) = r(i) - r(j) 
dy(j) = r(i+nb) - r(j+nb) 
dz(j) = r(i+nc) - r(j+nc) 
dx(j) = dx(j) - alxyz*anint(dx(j)jalxyz) 
dy(j) = dy(j) - alxyz*anint(dy(j)jalxyz) 
dz(j) = dz(j) - alxyz*anint(dz(j)jalxyz) 

20 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2 

n = o 

do 30 j=i1,natom 

if· (r2 (j) .gt. r2max) goto 30 
n = n + 1 
num(n) = j 
dx(n) = dx(j) 
dy(n) = dy(j) 
dz(n) = dz(j) 
r2(n) = r2(j) 

30 continue 

"· 

.. 



do 40 j=1,n 

dvr(j) = (1.0 I r2(j))**4 
dvr(j) = dvr(j) * (c1d*dvr(j)*r2(j) - c2d) 
dx(j) = dx(j) * dvr(j) 
dy(j) = dy(j) * dvr(j) 
dz(j) = dz(j) * dvr(j) 
a(i) = a(i) + dx(j) 
a(i+nb) = a(i+nb) + dy(j) 
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40 a(i+nc) = a(i+nc) + dz(j) 

50 

do 50 j=1,n 
i1 = num(j) 
a(i1) = a(i1) - dx(j) 
a(i1+nb) = a(i1+nb) 
a(i1+nc) = a(i1+nc) -

dy(j) 
dz(j) 

10 continue 

c 
c 

The following loops turn . the forces 
accelerations by dividing by the mass. 

into 

11 do 60 i=2,natom 
a(i+nb) = a(i+nb) I smass 
a(i+nc) = a(i+nc) 1 smass 

60 a(i) = a(i) I smass 

c 
c 
c 
c 
c 
c 
c 
c 
c 

a(1) = a(1) 1 simass 
a(1+nb) = a(1+nb) 1 simass 
a(1+nc) = a(1+nc) 1 simass 

return 

end 

subroutine daccel(a,r) 

parameter(natom=108, natom1=natom-1, natom3=3*natom) 
parameter(nb=natom, nc=2*natom) 
parameter (ignum=1000, ivacf=256) 

implicit double precision (a-h, o-z) 
The subroutine daccel() is the same as the 
subroutine accel(), except that the data needed for 
force autocorrelations are calculated here. It is 
done here because this subroutine must do some of 
the calculations needed for the force 
autocorrelations as it calculates accelerations. 
This subroutine also does the radial distribution 
calculation. 
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dimension acceli(natom3, ivacf), dfibc(ivacf, 3) 
dimension dftot(ivacf, 3), q(3*iqnum), atot(ivacf, 3) 

common /blk1/ alxyz, c1, c2, smass; cld, c2d, r2max 
common /blk11/ vzero, vzeroi, r2maxi 
common /blk3/ c1di, c2di, eli, c2i, simass, eps 
common jcacl2/ acceli, dfibc, dftot, iq,. atot, q, scale 

dimension dvr(natom), dx(natom), dy(natom), dz(natom) 
dimension a(natom3), r(natom3), r2(natom) 
dimension num(natom), inc(natom) 

i=1 
i1 = i+1 

do 220 j=i1,natom 
dx(j) = r(i) - r(j) 
dy(j) = r(i+nb) - r(j+nb) 
dz(j) = r(i+nc) - r(j+nc) 
dx(j) = dx(j) - alxyz•anint(dx(j)jalxyz) 
dy(j) = dy(j) - alxyz•anint(dy(j)jalxyz) 
dz(j) = dz(j) - alxyz•anint(dz(j)jalxyz) 

220 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2 

do 1 i3=2,108 
1 inc(i3)=anint(scale*r2(i3)+.5) 

do 2 i3=2,108 
2 q(inc(i3))=q(inc(i3))+1. 

c 
c 
c 

c 
c 

do 440 j=i1,natom 
if (r2(j) .qt. r2maxi) qoto 441 
dvr(j) = (1.0 1 r2(j))**4 
dvr(j) = dvr(j) * (c1di*dvr(j)*r2(j) - c2di) 
dx(j) = dx(j) * dvr(j) 
dy(j) = dy(j). * dvr(j) 
dz(j) = dz(j) * dvr(j) 

Store the forces on the iodine atom due to each 
xenon atom in the followinq steps. This is used for 
the Isolated Binary Collision force autocorrelation. 

acceli(j-1,iq)=dx(j) 
acceli(j-1+nb,iq)=dy(j) 
acceli(j-1+nc,iq)=dz(j) 

For the total force autocorrelation only the total · 
acceleration on the iodine atom is needed. 

a(i) = a(i) + dx(j) 
a(i+nb) = a(i+nb) + dy(j) 
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- a(i+nc) = a(i+nc) + dz(j) 

qoto_440 

441 dx(j)=O.O 
dy(j)=O.O 
dz(j)=O.O 
acceli(j-1,iq)=dx(j) 
acceli(j-1+nb,iq)=dy(j) 
acceli(j-1+nc,iq)=dz(j) 

440 continue 

atot(iq,1)=a(i) 
atot(iq,2)=a(i+nb) 
atot(iq,3)=a(i+nc) 

n = o 
do 330 j=i1,natom 

if (r2(j) .qt. r2maxi) qoto 330 
n = n ·+ 1 -
num(n) = j 
dx(n) = dx(j) 
dy(n) = dy(j) 
dz(n) = dz(j) 
r2(n) = r2(j) 

330 continue 

do 550 j=1,n 

i1=num(j) 
a(i1) = a(i1) - dx(j) 
a(i1+nb) = a(i1+nb) - dy(j) 

550 a(i1+nc) = a(i1+nc) - dz(j) 
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c 
c 
c 

If a pseudo qas phase calculation is needed 
uncomment the followinq line. 
qoto 11 

do 10 i=2,natom1 

i1 = i+1 

do 20 j=i1,natom 

dx(j) = r(i) - r(j) 
dy(j) ~ r(i+nb) - r(j+nb) 
dz(j) = r(i+nc) - r(j+nc) 
dx(j) = dx(j) alxyz•anint(dx(j)/alxyz) 
dy(j) = dy(j) - alxyz•anint(dy(j)/alxyz) 



dz(j) = dz(j) - alxyz•anint(dz(j)lalxyz) 
20 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2 

n = o 

do 30 j=il,natom 

if (r2(j) .qt. r2max) goto 30 
n = n + 1 
num(n) = j 
dx(n) = dx(j) 
dy(n) = dy(j) 
dz(n) = dz(j) 
r2(n) = r2(j) 

30 continue 

do 40 j=l,n 
dvr(j) = (1.0 1 r2(j))**4 
dvr(j) = dvr(j) * (c1d*dvr(j)*r2(j) - c2d) 
dx(j) = dx(j) * dvr(j) 
dy(j) = dy(j) * dvr(j) 
dz(j) = dz(j) * dvr(j) 
a(i) = a(i) + dx(j) 
a ( i+nb) = a ( i+nb) + dy(j )· 

40 a(i+nc) = a(i+nc) + dz(j) 

do 50 j=1,n 
il = num(j) 
a(i1) = a(il) - dx(j) 
a(i1+nb) = a(i1+nb) - dy(j) 

50 a(il+nc) = a(i1+nc) - dz(j) 

10 continue 

11 do 60 i=2,natom 
a(i+nb) = a(i+nb) 1 smass 
a(i+nc) = a(i+nc) 1 smass 

60 a(i) = a(i) 1 smass 

a(1) = a(1) 1 simass 
a(1+nb) = a(1+nb) 1 simass 
a(1+nc) = a(1+nc) 1 simass 
return 

end 

subroutine energy(ek,ep,etot) 
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c 
c 
c 

The subroutine calculates kinetic energy (ek), 
potential energy {ep) and the total energy (etot) 
for the system of particles whose velocities and 
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c posi.tions are qiven by the arrays vxyz and rxyz 
c respectively. . A Weeks Chandler Anderson 
c decomposition of a Lennard-Janes 6-12 potential 
c shifted to zero at rzero is assumed. 

parameter(natom=lOS, natoml=natom-1, natom3=3*natom) 
parame~er(nbl=l, nb2=natom+l, nb3=2*natom+l) 
parameter(nb=natom, nc=2*natom) 

c implicit double precision (a-h, o-z) 

c 
c 
c 

common /blkl/ alxyz, cl, c2, smass, cld, c2d,.r2max 

common /blkll/ vzero, vzeroi, r2maxi 
common /blk3/ cldi, c2di, eli, c2i, simass, eps 
common /blk5/ rxyz(natom3), vxyz(natom3), axyz(natom3) 

common /blk51/ axyz2(natom3.) 

dimension r2(natom), rx(natom), ry(natom), rz(natom) 

inteqer num(natom) 

equivalence (rxyz(nbl), rx), (rxyz(nb2), ry), 
$(rxyz(nb3), rz) 

Calculate the kinetic enerqy. 

ek = o.o 

do 10 i=2,natom 
ek=ek+vxyz(i+nb)*vxyz(i+nb) 
ek=ek+vxyz(i+nc)*vxyz(i+nc) 

10 ek=ek+vxyz(i)*vxyz(i) 

c 
c 

ek = .50 * smass * ek 
ek=ek+vxyz(l)*vxyz(l)*.SO*simass · 
ek=ek+vxyz(l+nb)*vxyz(l+nb)*.SO*simass 
ek=ek+vxyz(l+nc)*vxyz(l+nc)*.SO*simass 

ep=O. 
i=l 

i! = i + 1 

Calculate the potential enerqy of all the xenon 1 

atoms interactinq with the iodine atom. 

do 220 j=il,natom 
dx = rx(i) - rx(j) 
dy = ry(i) - ry(j) 
dz = rz(i) - rz(j) 
dx = dx - alxyz•anint(dxjalxyz) 



dy = dy - alxyz•anint(dyjalxyz) 
dz = dz - alxyz*anint(dzjalxyz) 

220 r2(j) = dx**2 + dy**2 + dz**2 

n = 0 
do 330 j=i1,natom 
if (r2(j) .gt. r2maxi) goto 330 
n = n + 1 
num(n) = j 
r2(n) = r2(j) 

330 continue 

do 440 j=1,n 
vr = (1.0 1 r2(j))**3 
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c _ The following line should add vzeroi instead of'eps 
c if a Lennard-Jones potential is to be used. 

440 ep = ep + vr * (c1i*vr - c2i)+eps 

c For a pseudo gas uncomment the following line. 

c goto 11 

c calculate the potential energy of all the xenon 
c atoms interacting with the other xenon atoms. 

-

20 

-

do 15 i=2,natom1 

i1 = i + 1 

do 20 j=i1,natom 
dx = rx(i) - rx(j) 
dy = ry(i) - ry(j) 
dz = rz(i) - rz(j) 
dx = dx - alxyz•anint(dx/alxyz) 
dy = dy - alxyz•anint(dyjalxyz) 
dz = dz - alxyz•anint(dzjalxyz) 
r2(j) = dx**2 + dy**2 + dz**2 

n = o 
do 30 j=i1,natom 
if (r2(j) .gt. r2max) goto 30 
n = n + 1 
num(n) = j 
r2(n) = r2(j) 

30 continue 

do 40 j=1,n 
vr = (1.0 1 r2(j))**3 
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40 ep = ep + vr * (cl*vr - c2) 

c This line adds the amount of energy that the Weeks 
c Chandler Anderson potential was shifted up relative 
c to the Lennard-Jones potential. 

ep = ep + n*vzero 

15 continue 

11 etot = ek + ep 

return 
end 

subroutine init 

parameter(natom=l08, natoml=natom-1, natom3=3*natom) 
parameter(nb=natom, nc=2*natom) 

c implicit double precision (a-h, o-z) 

c 

c 

common lblkll al'xyz, cl, ·c2, smass, cld, c2d, r2max 

common lblklll vzero, vzeroi, r2maxi 
common lblk21 h, h2, h26, hi 
common lblk31 cldi, c2di, eli, c2i, simass, eps 
common lblk51 rxyz(natom3), vxyz(natom3), axyz(natom3) 

common lblk5ll axyz2(natom3) 

rzero = 10.0 
elj = 4.0 * 154.0 
sigma = 4.10 
smass = 131.30 

The following line is for the density 1.8 gmlcc. 

alxyz = (108.0 * smass 1 .60230 1 1.80)**(1.013.0) 

c calculate v~rious other quantities needed for execution 
c 

read(l,lO) h,rzero,rmax,elj,sigma,smass,alxyz,ndatom 

h = .0050 

c Iodine mass (amu) 



simass=l26.9 

c Iodine - Xenon well depth 

elji=225.*4.*1.196 

c Iodine - Xenon sigma 

sigi=3.94 

h2=h*h 
h26=h216.0 
hi=l.Oih 
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c The following line should be used for a Lennard- -
c Jones potential, and the two lines after should be 
c commented out. 
c r2max = rzero**2 

r2maxi= (2.0 **(l.l6.)*sigi}**2 
r2max= (2.0 **(l.l6.)*siqma)**2 
eps= eljil4. 

elj=l.l9610*elj 

c2 = siq.ma**6 
cl = elj * c2 * c2 
cld = 12.0 * cl 
c2 = cl 1 c2 
c2d = 6.0 * c2 

c2i=sigi**6 
eli= elji *c2i *c2i 
cldi=l2.0 * eli 
c2i=cli I c2i 
c2di = 6.0 * c2i 

c The following two lines should be used for a 
c Lennard-Jones potential, and the line after should 
c be commented out. 

c vzero=l.Oir~~ro**6 
c vzero = -vzero*(cl*vzero-c2) 

vzero = eljl4. 

c The following two lines should be used for a 
c Lennard-Janes potential, and the line after should 
c be commented out. 
c vzeroi=l.Oirzero**6 . 
c vzeroi = -vzeroi*(cli*vzeroi-c2i) 

c 
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c 

20 

c 
c 
c 

Read in initial positions and velocities 

do 20 i=l,natom 
read(l,*) rxyz(i),rxyz(i+nb),rxyz(i+nc) 
read(l,*) vxyz(i),vxyz(i+nb),vxyz(i+nc) 
continue 
close(l) 

return 
end 

subroutine dfrc 
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The subroutine dfrc calculates the Isolated force 
autocorrelation function and the total force 
autocorrelation function. 

parameter (natom=lOS, natoml=natom-1, natom3=3*natom) 
parameter (iqnum=lOOO, ivacf=256) 
parameter(nb=natom, nc=2*natom) 

c implicit double precision (a-h, o-z) 

dimension acceli(natom3, ivacf), dfibc(ivacf, 3) 
dimension dftot(ivacf, .J), g(3*iqnum), atot(ivacf, 3) 

common jblkl/ alxyz, cl, c2, smass, cld, c2d, r2max 

common /blkll/ vzero, vzeroi, r2maxi 
common ;cacl2/ acceli, dfibc, dftot, iq, atot, q, scale 

d6 11 il=iq-1,1,-1 

it=ivacf-iq+il+l 
dftot(it,l)=atot(iq,l)*atot(il,l)+dftot(it,l) 
dftot(it,2)=atot(iq,2)*atot(il,2)+dftot(it,2) 
dftot(it,3)=atot(iq,3)*atot(il,3)+dftot(it,3) 

do 1 i=l,natoml 

dfibc(it,l)=acceli(i,iq)*acceli(i,il)+dfibc(it,l) 
dfibc(it,2)=acceli(i+nb,iq)*acceli(i+nb,il)+dfibc(it,2) 

1 dfibc(it,J)=acceli(i+nc,iq)*acceli(i+nc,il)+dfibc(it,J) 

11 continue 

do 12 il=iq,ivacf 

it=l- iq + il 
dftot(it~l)~atot(iq,l)*atot(il,l)+dftot(it,l) 



dftot(it,2)=atot(iq,2)*atot(i1,2)+dftot(it,2) 
dftot(it,J)=atot(iq,J)*atot(il,J)+dftot(it,J) 

do 2 t=l,natoml 
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dfibc(it,l)=acceli(i,iq)*acceli(i,il)+dfibc(it,l) 
dfibc(it,2)=acceli(i+nb,iq)*acceli(i+nb,il)+dfibc(it,2) 

2 dfibc(it,J)=acceli(i+nc,iq)*acceli(i+nc,il)+dfibc(it,J) 

12 continue 

return 
end 
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PROGRAM LISTING MAIN 

Program "MAIN" 
Daniel Russell 
Aug. 6, 1990 
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The following program is a data acquisition program 
written specifically for a 80386 computer with 80387 
coprocessor. The program takes data on a _CAMAC based 
system using the following. A LeCroy model 2323A Dual 
Gate and Delay Generator, A LeCroy model 4300 Fast 
Encoding and Readout Gated ADC, a LeCroy model 4 3 01 
Driver Module, and finally a DSP Technologies Model 6001 
CAMAC crate controller and PC004 IBM-PC interface. The 
DSP _equipment also ~ame with sample code that was 
modified to take at advantage of the 80836 and the 80837 
for speed. Speed was needed . because the data is 
collected and normalized at 8 kHz, this is at the limits 
of the 80386's ability. That assembly code will not be 
presented here because of DSP's copywrite. The software 
also communicates with a Klinger Scientific MC-4 Stepping 
Motor Controller Driver which controls a stepping stage • 
The last piece of hardware that the software can 
communicate with is a Stanford Research Systems Model 
DG535 Digital Delay 1 Pulse Generator that is no longer 
needs to communicate to the software • 

The file Main.c contains the following subroutines . 

·.main() 
void readfile () 
void setupfile() 
void p_scan() 
void s_step () 
void p step () 
void stage_start() 
void gate() 
void read_ped () 
void read comment() 
void display () 
void channel_display() 
void store file () 
void ddg_ check ( ) 

#include <process.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <ctype.h> 



#include <malloc.h> 
#include <dos.h> 
#include <decl.h> 
#include <process.h> 
#include <conio.h> 
#include "dan.h" 
#include <setjmp.h> 
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I* These variables are system dependent and are based 
* the graphics coordinate system defined in the Microsoft 
* C 5 • 1 graphics 1 ibrary. The variables rect xmin, 
* rect_ymin rect_xmax, and rect_ymax are dependent on what . 
* type of videoboard, although the values in this program 
* will work on a Hercules video card, EGA, and VGA although 
* the VGA will be running in EGA mode. 
*I 
struct rccoord rcoord; 
struct videoconfig vc; 

I* These variables are dependent on where the CAMAC A to D 
* and gate and delay generator are physically located in 
* the CAMAC crate. AD=S signifies that the A to D is in 
* slot 8. GATE=16 signifies that the gate and delay 
* generator is in slot 16. 
*I 
int AD=8; 
int GATE=16; 

I~ 

* 
* *I 

The 
determine 
displayed. 

variables 
which of 

channel dis1 and channel dis2 
the three data variables are 

int channel_dis1, channel_dis2; 

I* The variables channel color1, channel color2, and 
* box~color define the color of the two channels displayed 
* and the color of the box. 
*I 
int channel_color1, chann~l_color2,box_color; 

I* The variables gate_chan_a and gate_chan_b are the 
* variables that store the data that is actually sent to 
* the gate and delay generator (LeCroy model 2323A). The 
* format of the data is described on page 11 of the manual 
* for the 2323A. Note also that the value of o for these 
* variables is invalid. 
*I 



• 

int 

I* 
* 
* 
* 
* 
* 
* 
* *I 
int 

I* 
* 
* 
* 
* 
* 
* 
* 
* *I 
int 

I* 
* 
* *I 
int 

int 

I* 
* 
* 
* 
* 
* 
* 
* *I 
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gate_chan_a = o, gate_chan:._b = 0; 

The variables points_scan and stage_step describe 
the number of points .the stage is going to scan( 
basically the time base of the experiment) and the number 
of stage steps between these points. 0 is an inval.id 
value for points_scan and for stage_step since the user 
may wish to move 0 stage steps per data point the author 
of the program used his birthday to be an invalid value 
assum~ng it would be an unusual value to chose. 

points_scan = o, stage_step = -1003; 

The array pedestal is an array of the three values 
that will be subtracted off data channel o, and 15. This 
also leaves room for one more pedestal. This is to allow 
the subtraction of background current in the A to D. See 
LeCroy's CAMAC model 43008 manual pg 1-5. If 

. pedestal(0]=-1 the data is declared invalid. -1 was 
chosen to allow the user to input 
0 for a pedestal so that the user can find out what the 
pedestal value is. 

pedestal(3] : 

The variables low and high determine what is the 
highest and lowest acceptable data. 0 is an invalid value 
for both low and high 

low=O-, high=O: 

multi_count = o, reverse_flag,scan: 

multi 'count is the number of times that the stage 
should be scanned, reverse_flag is 1 if data is taken in 
only one direction of stage movement and 2 if data is to 
be taken in both directions. Taking data in both 
directions is more efficient and will also help cancel 
any long term drift in time of the concentration of the 
molecule that you are studying if .the drift is small. 
scan is the actual number of scans taken. 

long int shots_step = 0, stage_beg = -100362: 

I* shots_step is the number of laser shots taken for 
* each data point. - Any value less than or equal to two is 
* invalid at this time due to need for speed in the 
* ~ssembly code. stage_beg is the variable that stores 
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* where the stage should begin taking data. Note that both 
* of these variables are long integers to allow for values 
* that can be greater that 65000. The invalid data values 
* are 0 and -100362 respectively. 
*I 
char file_name[7], file_num[3], data_file[12]; 

I* These three character arrays store the file name, 
* for example "dan", the file number, for example 11 1 11 , and 
* data_file stores the total file name, using _the above 
* data as an example data_file="dan.1" • The data is 
* stored this way to ·allow multiple scans to be store 
* easily in succession. 
*I 
char comment[1000]; 

I* The array comment stores the users comment for a 
* particular data file. It can store up to 998. characters 
* and ends with the character .. - .. to indicate the user has 
~ finished the comment. The .. - .. is not displayed bT the 
* program except whe~ the user enters it. 
*I 
int delay_a, delay_b, gwidth_a, gwidth_b; 

/* delay _a and delay _b are the delays for the gate 
* pulses that come out of the LeCroy 2323A gate and delay 
* generator for channel A and B respectively. They are 
* stored in nanoseconds and ·must be less than 1000 
* nanoseconds and greater that 0 nanoseconds. gwidth_a and 
* gwidth_b are the widths for channel A and B respectively. 
* The value of gwidth_a and gwidth_b must be 01 1, 21 or 3. 
* see the LeCroy 2323A manual pg 11 for more information. 
*I 
double *d_norm[4]; 

/* This an array of pointers to arrays where the data 
* is stored. The arrays are dynamically allocated in the 
* program. The number of arrays is 4 due to the fact that 
* at a later point in time someone may want to also collect 
* the actual laser power as a function of time. 
*I 

int tcolor=7, ecolor=4; 

/* tcolor and ecolor are the color of normal text 
* strings and error text used in the program. 
*I 
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int ddg, trig_chec-k=1; 

I* ddg is the variable associated by the GPIB-PC 
* software with the digital delay generator. trig_check is 
* a flag to see if user wants to check that the digital 
* delay is being triggered by the CPM. The default 
* trig_check=O is no checking, trig_check=1 check_ing is 
* enabled while the software is waiting for keystrokes. 
*I 

jmp_buf mark; 

I* mark is used by setjmp (mark) and longjmp (mark, -1) to 
* set up where the program should jump to if a triggering 
* error is det~cted. First check() informs the user that 
* the DOG is on internal and then jumps back to the main 
* menu. 
*I 

int main() 
{ 

char 
int 

inputs[J]; 
n = 1, is_set = o,trig,sresult; 

char •input; 
channel dis1=2; 
channel::dis2=3; 
channel_color1=10; 
channel_color2=13; 
box color=11; 
ddg;;ibfind("ddg"); 
comment[O]=•-•; 
pedestal[O] = -1; 

/ 

setjmp(mark); 

I* Program will jump here if the DOG does not get 
* triggered properly 
*I 

setvideomode( DEFAULTMODE); 
while (n != 6 r { 

settextcolor(tcolor); 
::settextposition(10, 15); 
rcoord = _gettextposition(); 

/* This next loop writes out the main menu. The 
* strings output are found in the file const.c. Although 
* reading the program is a little harder due to the fact 
* the strings are not in this file, it-saves space this 
* way. 
*I 



for 

' 
}· 

(n = 1; n < 7; n++) { 
_outtext(main_strinq(n)); 
rcoord.row++; 
_settextposition(rcoord.row, 

if (trig check==O) 
{ 

triq=O; 

rcoord.col); 

sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check() ;. 
ibloc(ddq); 

} 

sresult=system("mode spe auto"); 
if (trig==-i) 

longjmp(mark,-1); 

input= gets(inputs); 

n = atoi(inputs); 

if (n == 1) 
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I* Read in a setup file that contains all the , 
* parameters needed for data collection 
*I 

readfile () ; 
else if (n == 2) 

setup file() ; 
else if (n == 4){ 

I* The space allocated for d_norm is freed here so that 
* other data files can be looked at that may or may not 
* have different data lengths. 
*I 

if(d_norm[O]!= NULL) 
free (d_norm[O]); 

if(d_norm[l] != NULL) · 
free (d_norm[l]); 

if(d_norm[2]!= NULL) 
free (d_norm(2]); 

if(d_norm(J]!= NULL) 
free (d_norm[J]); 

look_ data() ; 
if (points_scan != o ) { 

I* If points_scan is defined the space is reallocated 
*I. 

d_norm(O] = (double *)calloc(points_scan, 
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- sizeof(aouble)); 
d_norm[l] = (double *)calloc(points scan, 

sizeof(double)); -
d_norm[2] = (double *)calloc(points scan, 

sizeof(double)); -
d_norm[3] = (double *)calloc(points scan, 

sizeof(double)); -
} 

} 

else if (n == 3) { 
is set = O; -

/* Check for valid data parameters before allowing data 
* to be taken 
*I 

_setvideomode(_DEFAULTMODE); 
_settextposition(2, 15); 
rcoord = _gettextposition(); 
_settextcolor(ecolor); 
if (gate_chan_a == O) { 

is set = 1; 
outtext(error string(!)); - -} 

if {stage_step == -1003 && stage_beg == -1003621 && 

} 

points~scan == O) { 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
is set = 1; 
_outtext(error_string(2)); 

if (shots_step == 2) { 

} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
is set = 1; 
_outtext{error_string(3)); 

if (pedestal[O] == -1) { 

} 

rcoord.row++; 
_settextposition{rcoord.row, rcoord.col); 
is set = 1; 
_outtext{error_string{4)); 

if (high == o I I low == 0 ) { 

} 

rcoord.row++; 
_settextposition{rcoord.row, 
is set = 1; 
_outtext(error_string(6)); 

if ( is set == 0) { 

rcoord.col); 
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I* At this point all data points are found to be valid 
* and data collection can begin. 
*I 

setupcamac(); 

take_data_menu(); 
} 

} 
else if(n==5) 
di:lg_check(); 
else if (n==6) 
exl.t(O); 
else if (n < 1 I I n > 6) { 

_setvideomode(~DEFAULTMODE); 
_settextposition(9, 15); 
_settextcolor(ecolor); 
_outtext( main_string(O)); 
_settextcolor(tcolor); 

} . 

} 

exit(-1); 
} 

I* Read in a setup file that contains all the 
* parameters needed for data collection 
*I 

void readfile(void) 

{ 

FILE * stream; 
char inputs(10], inputs2(2], testf4]; 
char •input, •input2; 

int i, ch,trig,sresult; 
inputs2(0] = 'y'; 
stream = NULL; 

I* On basically all user questions the user is asked 
* for information. If the information is not usable or a 
* file is not found this section loops around until the 
* user gives up. That is why inputs2 is defined Y 



*I 

I* 
*I 
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while ( (inputs2[0] == 'Y' II inputs2[0] = 'Y') && stream 
= NULL) { 

_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
rcoord = _gettextposi tion () ; 
_settextcolor(tcolor); 
_outtext( prompt_string(l)); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system{"mode spe auto"); 
if {trig==-1) 

longjmp(mark,-1); 

input= gets(inputs); 

Attempt to open the file. 

if ((stream= fopen(input, "rb")) ==NULL) { 
rcoord.row++; 
settextcolor(ecolor); 

:settextposition(rcoord.row, rcoord.~ol); 
_outtext(prompt_string{4)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(prompt_string(5)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(7)); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

input2 = gets(inputs2); 
if (inputs2(0] != 'Y' && inputs2(0] -- 'Y') { 



I* 
*I 

I* 
*I 

} 

} 
} 

_setvideomode(_DEFAULTMODE); 
return; 

If the file exists read the data in 

if (stream != NULL) { 
for (i = o; i != 3; i++) ·{ 

ch = fgetc(stream); 
test[i] =(char) ch; 

} 

test ( i ]_ = 1 \ o 1 ; 

All setup files begin with djr 

if (strcmp(test 1 "djr") != 0) 
printf("not setup file"); 
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I* Probably should exit this gracefully if it really is 
* not a setup file as opposed to reading blindly 
*I 

} 

fscanf(stream 1 "%i" 1 &gate_chan_a); 
fscanf(stream 1 "%i" 1 &gate_chan_b); 
fscanf(stream 1 "%i" 1 &points_scan); 
fsc--anf(stream 1 "%i" 1 &stage_step); 
fscanf(stream 1 "%i" 1 &high); 
fscanf(stream 1 "%i" 1 &low); 

fscanf(stream 1 "%li" 1 &shots_step); 
fscanf(stream 1 "%1i" 1 &stage_beg); 
fscanf(stream 1 "%i" 1 &pedestal(O]); 
fscanf(stream 1 "%i" 1 &pedestal[l]); 
fscanf(stream 1 "%i" 1 &pedestal(2]); 
for (i = o; (i < 999) && (ch = fgetc(stream)) != 

.-1; i++) 
comment(i] =(char) ch; 

comment[i] =(char) ch; 
i++; 
ch = fgetc(stream); 
comment[i] ={char) ch; 
fclose(stream); 
_setvideomode{~OEFAULTMODE); 

return; 
} 
_setvideomode(_DEFAULTMODE); 

I. I 
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void setupfile(void) 

{ 
char *input; 
char inputs(3]; 
char buffer[10]; 
int triq,sresult; 
int is_set,n,i; 

_setvideomode(_DEFAULTMODE); 
n=O; 
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/* This section of code qives prompts for the setup 
* data values and loops around until 14 or quit is chosen. 
*I 

while (n != 14) { 
settextcolor(tcolor); 

:settextposition(10, 15); 
record= _qettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext( setup_strinq(1}); 
if (points_scan != O} { 

rcoord.col = rcoord.col.+ 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, " %i", points_scan); 
settextcolor(ecolor); 

:outtext(buffer}; 
settextcolor(tcolor}; 

rcoord.col = rcoord.col - 40; 
} 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

:outtext( setup_strinq(2)); 
if (staqe_step != -1003} { 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%i", staqe_step}; 
settextcolor(ecolor); 

-outtext(buffer); 
:settextcolor(tcolor); 

rcoord.col = rcoord.col - 40; 
} 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

-outtext( setup strinq(3)); 
If (shots_step T= 0) { 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, " %li", shots_step); 
_settextcolor(ecolor); 



} 

_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row,, rcoord.col); 
_outtext( setup_strinq(4)); 
if (staqe~beq != -100362) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%li", staqe_beq); 
_settextcolor(ecolor); 
_outtext(buffer); 
_settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 

for (i=S;i<14;i++){ 

} 

reoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( setup_strinq(i)); 

if (high != 0 && low != O) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%i, %i", low,hiqh); 
settextcolor(ecolor); 

-outtext(buffer); 
-settextcolor(tcolor); 
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( setup_strinq(14)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

triq=check () ; 
ibloc{ddq); 
sresult=system("mode spe auto"); 
if (trig==-1) 

lorigjmp(mark,-1); 

input= gets(inputs); 
n = atoi(inputs); 
if (n < 1 ll n > 14 ) { 
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') I 



_setvideomode(_DEFAULTMODE); 
_settexteolor(eeolor); 
_settextposition(9, 15); 
record= _gettextposition(); 
_settextposition(reoord.row, reoord.eol); 

_outtext( main_string(O)); 
} else if (n == 1) { 

p_sean(1); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 2) { 
s_step(1); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 3) { 
p_step(1); 
_setvideo~ode(_DEFAULTMODE); 

} else if (n == 4) { 
stage_start(1); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 5) { 
gate(1); 

· _setvideomode(_DEFAULTMODE); 
} else if (n == 6) { 

read_ped(1); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 7) { 
read_eomment(); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 8 ) { 
display(); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 9) { 
store file() ; 
_setvideomode(_DEFAULTMODE); 

} else if (n == 10) { 
ehannel_display(); 
_setvideomode(_DEFAULTMODE); 

} else if (n == 11) { 
is set = O; 
setvideomode( DEFAULTMODE); 

:settextposition(2, 15); 
record = _gettextposition(); 
_settexteolor(eeolor); 
if (gate chan a == 0) { 

is set =-1; 
outtext(error string(1)); - - ' 

} 
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·if (stage_step == -1003 && stage_beg -
-1003621 && points_sean == 0) { 
record. row++; 
_settextposition(rcoord.row,rcoord.col); 



) 

is_set = 1; 
_outtext(error_strinq(2)); 

if (shots_step == 2) { 
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record. row++; 
_settextposition(reoord.row,reoord.eol); 
is set = 1; 1->:J 
_outtext(error_strinq(3)); 

) 
if .(pedestal [ 0] == -1) { 

record. row++; 

) 

_settextposi tion (record. row, record. col') ; 
is set = 1; 
_outtext(error_strinq(4)); 

if (is set == 0) { 

) 

setupcamac(); 
take data(); 
_setvideomode(_DEFAULTMODE); 

) else if (n == 12) { 
is set = o; 
_setvideomode(_DEFAULTMODE); 
_settextposition(2, 15); 
record= _qettextposition(); 
_settextcolor(ecolor); 
if (qate_chan_a·== 0) { 

} 

is set = 1; · 
_outtext(error ... strinq(1)); 

if (staqe_step == -1003 &&. stage_beg --

) 

-1003621 && points_scan == O) { 
reoord.row++; 
_settextposition(rcoord.row,rcoord.col); 
is set = 1; 
_outtext(error_strinq(2)); 

if (shots_step == 2) { 

} 

rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 
is set = 1t. 
_outt~xt(error_string(3)); 

if {pedestal(O] ==·-1) { 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.qol); 
is set = 1; 
_outtext(error_strinq(4)); 

) -
if ( is_set == 0) ·{ 

setupcamac(); 
norm(); 



.. 

} 

_setvideomode(_DEFAULTMODE); 
) 

) else if (n == 13) { 

) 

'bound(1); 
_setvideomode(_DEFAULTMODE); 

) 
_setvideomode(_DEFAULTMODE); 
return: 
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void.p scan{n) 
int - n; 
{ 

int trig,sresult: 
int i; 
char numbers[10]; 
char buffer(JO]; 
char •result, •stage_string{); 

if{d_norm(O]t= NULL) 
free {d_norm(O]); 

if(d_norm[1]t= NULL) 
free {d_norm(1]); 

-- if(d_norm(2.] t= NULL) 
free ( d_norm ( 2] ) ·; 

if(d_norm(J]t= NULL) 
free {d_norm(J]); 

/* If n== 0 and points~scan is defined allocate space 
* for the data 
*I 

if {points_scan t= o && n == 0) { 
d_norm[O] = (double *)calloc{points_scan, 

sizeof{double)); 
d_norm(1] = (double .*)calloc{points_scan, 

sizeof(double)); 
d_norm(2] = (double *)calloc{points_scan, 

siz.eof{double)); 
d_norm(J] = {double *)calloc{points_scan, 

sizeof{double)); 
for {i = O; i < 4; i++) { 

if {d_norm(i] ==NULL){ 
points_scan=O; 

setvideomode{ DEFAULTMODE); - -
_settextposition{10, 15); 
rcoord = _gettextposition{); 
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sprintf(buffer,"calloc failed on %i",i); 
_outtext(buffer); 

} 

} 
} 
return; 

rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 

_outtext("hit a key to continue"); 
while (i = 0) 

l = kbhit(); 
i = qetche () ; 

setvideomode( DEFAULTMODE); 
-settextcolor(tcolor); 
-settextposition(10, 15); 
record~ _qettextposition(); 
_outtext(staqe_strinq(1)); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

if (triq_check==O) · 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,-1); 

-
result= qets(numbers); 
points_scan = atoi (number.s); 

/* Prompt for the # of points per scan and only accept 
* positive values 
*I 

while (points_scan == o I I points_scan < O) { 
setvideomode( DEFAULTMODE); 

-settextcolor(ecolor); 
-settextposition(lO, 15); 
record= _qettextposition(); 
_outtext(error_strinq(5)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 



.. 

} 

_settextcolor(tcolor); 
_outtext(stage_string(l)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig=-O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

result= gets(numbers); 
points_scan = atoi(numbers); 

d_norm(O] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm[l] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(2] = (double.•)calloc(points_scan,' 
sizeof(double)); 

d_norm(3] = (double *)calloc(points_scan, 
sizeof(double)); 

for ( i = o; i < 4; i++) { 
if (d_norm(i] ==NULL){ 

} 

} 

void s_step(n) 
int n; 

points_scan=O; 
_settextposition(10, 15); 
record= _gettextposition(); 

sprintf(buffer,"calloc failed on %i",i); 
outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

_outtext("hit a key to continue"); 
while (i == 0) 

i = kbhit(); 
i = getche () ; 
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{ 

I* 
* 
*I 
I* 
*I 

int trig,sresult: 
char numbers[10]: 
char *result, •stage_string(): 
if (stage_step != -1003 && n == 0) 

This was left here is case there was stage setup 
required at the current time there is not 

put in stage setup stuff 

return: 

_setvideomode(~DEFAULTMODE): 
settextcolor(tcolor): 

-settextposition(10, 15): 
rcoord = ~gettextposition(); 
_outtext(stage_string(2)): 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) 
{ 

} 

trig=o; 
sresult=system("mode spe com"): 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg): 
sresult=system("mode spe auto"): 
if (trig==-1) 

longjmp(mark,-1): 

result= gets(numbers): 
stage_step = atoi(numbers); 
if (test_num(numbers) == -1) 

stage_step = -1003: 
while (stage_step == -1003) ( 

setvideomode( DEFAULTMODE); 
-settextcolor(ecolor): 
:settextposition(10, 15); 
rcoord = gettextposition(); 
_outtext(error_string(5)); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

-settextcolor(tcolor); 
:outtext(stage_string(2)): 
rcoord.row++: 
settextposition(rcoord.row, rcoord.col); 

if (trig_check==O) 
( 

.. 



.. 

I* 
*I 
} 

} 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check() ; 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

result= gets(numbers); 
stage_step = atoi(numbers); 
if (test_num(numbers) == -1) 

stage_step = -1003; 

put in st~ge setup stuff 

void p_step(n) 
int n; 
{ 

int trig,sresult; 
char n~rs(10J; 
char *result, •stage_string(); 
if (shots_step != 0 && n == O) 
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I* This was left here is case there was # of shots 
* setup required; at the current time there is not 
*I 

return; 

_setvideomode(_DEFAULTMODE); 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
outtext(stage string(3)); 

record. row++ ; - -
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 



} 

result= gets(numbers); 
shots_step = atol(numbers); 
while (shots_step <= 1 I I shots_step ==·o) { 

_setvideomode(_DEFAULTMODE); 
_settextcolor(ecolor); 
_settextposition(10, 15); 

} 

rcoord = _qettextposition(); 
_outtext(error_string(5)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col): 
_settextcolor(tcolor); 
_outtext(stage.._string(J)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

· trig=check () ; 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (triq==-1) 

longjmp(mark,-1); 

result= gets(numbers); 
shots_step = atoi(numbers); 

void stage_start(n) 
int n; 
{ 

int trig,sresult; 
char numbers(10]; 
char •result, •stage_string(); 
if (stage_beg != o && n == O) 

return; 

setvideomode( DEFAULTMODE); 
:settextcolor(tcolor); 
_settextposition(10, 15); 
record= _gettextposition(); 
outtext(stage string(4)); 

rcoord.row++; -
_settextposition(rcoord.row, rcoord.col): 
if (triq_check==O) 
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.. 

I* 
*I 

} 

{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"}; 
if (triq==-1) 

lonqjmp(mark,-1); 

result= qets(numbers); 
staqe_beq = atol(numbers); 
if (test_num(numbers) == -1) 

staqe_beq = -100362; 
while (staqe_beq == -100362) { 

} 

setvideomode( DEFAULTMODE); 
:settextcolor(ecolor); 
_settextposition(10, 15); 
record= _qettextposition(); 
_outtext(error_strinq(S)); 
rcoord.row++; 
_settextposi tion (record. row, record. col) .; 
settextcolor (tcolor) : ·o 

:outtext(staqe_strinq(4)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) -

lonqjmp(mark,-1); 

result = gets(numbers): 
staqe_beq = atoi(numbers); 
if (test_num(numbers) == -1) 

stage_beq = -100362; 

put in stage setup stuff 
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void qate(n) 
int n; 
{ 

int triq,sresult; 
unsiqned int DATA, qwidth, delay, qate_temp; 
unsiqned int c, fun, A, X, Q,i; 
char delays(20], qwidths(J]; 
char *result; 

if (qate_chan_a != 0 && qate_chan_b != o && n -- O) { 

} 

A = O; 
fun= 17; 
c = camo(&GATE, &fun, &A, &qate_chan_a, &Q, &X); 
if(Q!=1 II X!=1) { 

camerr(GATE,fun,A,qate_chan_a,Q,X); 
return; · 

} 

A = 1; 
c = camo(&GATE, &fun, &A, &qate~chan_b, &Q, &X); 
if(Q!=1: I X!=1){ 

} 

camerr(GATE,fun,A,qate_chan_b,Q,X); 
return; 

return; 

_setvideomode(_DEFAULTMODE); 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _qettextposition(); 
for(i=1;i<7;i++){ 

} 

_out~ext(qate_strinq(i)); 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 

if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,-1); 



result= gets(qwidths); 
qwidth = atoi(qwidths); 
if (test_num(qwidths) == -1) { 

qwidth = 5; . 

} 

while (qwidth < 0 l l qwidth > 3) { 
_setvideomode(_DEFAULTMODE); 
_settextposition(lO, 15); 

} 

rcoord = _gettextposition(); 
_outtext(gate_string(1)); 
rcoord.row++; 
_settextposition(rcoord~row, rcoord.col); 
_settextcolor(6); 
_outtext(gate_string(lO)); 
_settextcolor(tcolor); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
for (i=3;i<7;i++){ 

} 

_outtext(gate_string(i)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

if (trig_check==O) 
( 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

result= gets(gwidths); 
gwidth = atoi(gwidths); 
if (test_num(gwidths) == -1) { 

gwidth = 5; 

} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(gate_string(7)); 
if (trig check==O) 
{ 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 
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} 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig=-1) 

longjmp(mark,-1); 

result= gets(delays); 
delay= atoi(delays); 
while (delay >= 1000 I I delay <= O) { 

_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 

} 

rcoord = _gettextposition(); 

_settextposition(rcoord.row, rcoord~col); 
_outtext(gate_string(9)); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

:outtext(gate_string(7)); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc (ddg) ; -
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

result= gets(delays); 
delay= atoi(delays); 

DATA = qwidth << 4; 
gate_temp = DATA; 
DATA = gate_temp << 10; 
gate_temp = DATA + delay; 
DATA = gate_temp; 
gate chan a = DATA; - -
_setvideomode(_DEFAULTMODE); 

\ 

settextposition(10, 15); 
rcoord = _gettextposition(); 
DATA = O; 
_outtext(gate_string(8)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
for (i=2;i<7;i++){ 
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} 

_outtext(qate_strinq(i)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

if (triq_check==O) 
( 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check () ; 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) · · 

lonqjmp(mark,-1); 

result = qets(qwidths); 
qwidth = atoi(qwidths); 
if (test_num(qwidths) == -1) ( 

qwidth = 5; 
} 
while (qwidth < o I I qwidth > 3) ( 

_setvideomode(~DEFAULTMODE); 
_settextposition(10, 15); 
record= _qettextposition(); 
_outtext(qate_strinq(S)); 
rcoord.row++; 
_settextposi tion (record .• row, record. col) ; 
_settextcolor(6); 
_outtext(qate_strinq(lO)) ·; 
_settextcolor(tcolor) ; 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(qate_strinq(3)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col): 
_outtext(qate_strinq(4)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(qate_strinq(5));. 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(qate_strinq(6)); 
record. row++; 
_sett'extposi tion (record. row, record. col) ; 
if (triq_check==O) 
( 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check () : 
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} 

} 

ibloc(ddg); 
sresult=system("mode spe auto") ; 
if (trig==-1) 

longjmp(mark,-1); 

result = gets(qwidths); 
qwidth = atoi(qwidths); 
if (test....:_num(qwidths) == -1) { 

qwidth = 5; 
} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(gate_string(7)); 
if (trig_check==O) 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

result= gets(delays); 
delay = atoi(delays); 
while (delay >= 1000 : : delay <= 0) { 

_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
record = gettextposition(); 
_settextposition(rcoord.row, rcoord.col); 
_outtext(gate_string(9)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(gate_string(7)); 
if (trig_check~=O) 
{ 

} 

trig=O; 
sresult=system("mode spe com") ; 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system( 11mode spe auto") ; 
if (trig==-1) 

longjmp(mark,-1); 
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} 

} 

result= gets(delays); 
delay= atoi(delays); 

DATA = qwidth << 4; 
gate_temp = DATA; 
DATA = gate_temp << 10; 
gate_temp = DATA + delay; 
DATA = gate_temp; · 
gate_chan_b = DATA; 

void read_ped(n) 
int n; 
{ . 

int trig,sresult; 
int i,c,fun2; 
int fun,X,Q,junk=100; 
char numbers(10]; 
char *result, *stage_string(); 

fun = 17; 
fun2=1; 

if (pedestal(O] != -1 && n == 0) { 
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I* The pedestal values are sent to the gate and delay 
* generator here. See the DSP manual and the LeCroy gate 
* and delay manual 
*I 

} 

for (i = O; i != 3; i++) { 
c = camo(&AD, &fun, &i,&pedestal[i] , &Q, &X); 

} 
for (i = 1; i != 15; i++) { 

} 
i=15; 

c = c·amo(&AD, &fun, &i,&junk , &Q, &X); 

c = camo(&AD, &fun, &i,&pedestal[1] , &Q, &X); 

return; 

_settextcolor(tcolor); 
for (i = O; i != 3; i++) { 

setvideomode( DEFAULTMODE); 
:settextpositi0n(10, 15); 
record= _gettextposition(); 
printf("Input pedestal %i", i); 



} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (triq_check==O) 
( 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,-1); 

result= gets(numbers); 
pedestal[i] = atoi(numbers); 
if (test_num(numbers) == -1) 

pedestal[i] = -1003; 
while (pedestal(i] < o l l pedestal[i] > 100) { 

} 

. setvideomode( DEFAULTMODE); 
-settextposition(10, 15); 
·record= _gettextposition(); 

settextcolor(ecolor); 
-outtext(error string(S)); 
rcoord.row++; -
settextposition(rcoord.row,-rcoord.col); 

-settextcolor(tcolor); 
printf("Input pedestal %i", i); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) · 
{ 

} 

trig=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (trig==-1) 

lonqjmp(mark,-1); 

result = gets(numbers); 
pedestal[i] = atoi(numbers); 
if (test_num(numbers) == -1) 

pedestal(i] = -1003; 
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} 

void read_comment() 

{ 

int i, ch; 

int triq,sresult; 
setvideomode( DEFAULTMODE); 

:settextcolor(tcolor); 
_settextposition(10, 15): 
rcoord = _qettextposition(); 
_settextposition(rcoord.row, rcoord.col): 
_outtext(staqe_strinq(5)); 
rcoord.row++; 
_settextposition(rcoord.row, O); 
if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,-1); 
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for (i = O; (i < 999) && (ch = qetchar()) != •-•; i++) 

} 

· comment [ i] = (char) ch: 
comment[i] =(char) ch; 
i++: 
ch = qetchar(); 
comment[i] =(char) ch; 
i++; 
comment[i] = '\O': 
return; 

void display (voidf 

int real_width[4]; 
int i = o; 
unsigned int qate_temp; 
char buffer(JO]; 



156 

/* This chanqes the binary variables as described in 
* the LeCroy qate and delay manual into a more 
* understandable form 
*I 

if (qate_chan_a != 0) { 

} 

delay a = qate chan a & 01777; 
qate_temp = qate_chan_a >> 14; 
qwidth_a = qate_temp & 03; 
delay_b = qate_chan_b & 01777; 
qate_temp = qate_chan_b >> 14; 
qwidth_b = qate_temp & 03; 

real_width[O] = 10; 
real_width[1] = 30; 
real_width[2] = 100; 
real_width[3] = 300; 
_setvideomode(_DEFAULTMODE); 
_settextcolor(tcolor); 
_settextposition(10, 15); 
record= _qettextposition(); 
_outtext( set_strinq(1)); 
if (points_scan != 0) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer," ti", points scan); 
_outtext(buffer); -
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col): 
_outtext( set_strinq(2)); 
if (staqe.:_step != O) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer," ti", staqe_step); 
_outtext(buffer); 
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col): 
_outtext( set_strinq(3)); 
if (shots_step != O) { 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, 11 %li", shots_s.tep); 
outtext(buffer); 

rcoord.col = rcoord.col - 40; 
} 
rcoord.row++; 



_settextposition(rcoord.row, rcoord.col); 
_outtext( set_strinq(4)); 
if (staqe_beg != 0) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer," %li", staqe_beq); 
_outtext(buffer); 
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( set_string(S)): 
if (delay_a != O) { 
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rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "%ins, %ins", real_width(qwidth_a), 

} 

delay_a); 
_outtext(buffer); 
rcoord.col = rcoord.col - 40; 

rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
_outtext( set_string(6)); 
if (delay_a != O) { 

} 

rcoord.col = rcoord.col + 40; 
settextposition(rcoord.row, rcoord.col); 

sprintf(buffer, "%ins, tins", real_width(qwidth_b], 
delay_b); 

_outtext(buffer); 
rcoord.col = rcoord.col - 40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( set_string(7)); 
if (pedestal(O] != -1) { 

} 

rcoord.col = rcoord.col + 40; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer,"ti , %i , ti", pedestal[O], 

pedestal(1], pedestal[2]); 
_outtext(buffer); 
rcoord.col = rcoord.col -.40; 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( set_string(S)); 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, O); 
if(comment(O]!=•·•) 

outtext(comment); 
record= _gettextposition(); 



} 

rcoord.row++; 
_settextcolor(tcolor); 
_settextposition(rcoord.row, 10); 
_outtext( set_strinq(9)); 
while (i = 0) 

i = kbhit(): 
i = qetche () ; 
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void channel_display(void) 

{ 

int triq,sresult; 
char inputs2(3]; 
char *input2; 
.setvideomode( DEFAULTMODE); 
:settextcolor(ecolor); 
_settextposition(lO, 15); 
record = _qettextposi tion.() ; 

_outtext("Input the first channel to be displayed"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("either 0, 1, 2, or 3"); 
rcoorc;l.row++; 
_sette~tposition(rcoord.row, rcoord.col); 
if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check(); 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,~1); 

input2 = qets(inputs2); 
channel_disl = atoi(input2); 

setvideomode( DEFAULTMODE); 
-settextcolor(ecolor); 
:settextposition(10, 15); 
record= ~qettextposition(); 
_outtext("Input the second channel to be displayed"); 
record. row++: 
_settextposition(rcoord.row, rcoord.col); 
_outtext("either o, 1, 2, or 3"); 
record. row++; 
_settextposi tion (record. row, r.coord. col) : 



} 

if (triq_check==O) 
( 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (triq==-1) 

lonqjmp(mark,-1); 

input2 = qets(inputs2); 
channel_dis2 = atoi(input2); 
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void storefile(void) 

{ 
FILE * stream; 
int triq,sresult; 
char inputs[10], inputs2[2]; 
char *input, •input2, *prompt_strinq(); 
inputs2[0] = 'n'; 
while ((inputs2[0J == 'n' l l inputs2[0] -- 'N') && stream 

!= NULL) { 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
rcoord = _qettextposition(); 

_outtext(prompt_strinq(1)); 
if (triq_check==O) 
{ 

} 

triq=O; 
sresult=system("mode spe com"); 
while(kbhit()==O&&triq==O) 

triq=check () ; 
ibloc(ddq); 
sresult=system("mode spe auto"); 
if (trig='=-1) 

lonqjmp(mark,-1); 

input= gets(inputs); 
if ((stream= fopen(input, "rb")) !=NULL) { 

fclose(stream); 
rcoord.row++; 
settextcolor(ecolor); 



} 

_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(2)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(J)); 
rcoord.row++; 
_settextposition(rcoord.row, record. col); 
_outtext( prompt_string(6)); 
if (trig_check==O) 
{ 

}. 

triq=O; 
sresult=system("mode spe com"); 
while (kbhit () ==O&&triq==o) 

trig=check(); 
ibloc(ddg); 
sresult=system("mo<;le spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

input2 = gets(inputs2); 
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if (inputs2(0] == 'Q' I I inputs2(0] -- 'q') { 
_setvideomode(_DEFAULTMODE); 
return; 

} 
} 

} 
stream = fopen(input, "wb"); 
fprintf( stream,"djr"); 
fprintf(stream, "%i %i ", gate_chan_a, gate_chan_b); 
fprintf (stream, ''%i %i ", points_scan, stage_step) ; 
fprintf(stream, 11 %i %i ", high,low): 
fprintf(stream, "%li %li 11 , shots_step, stage_beg); 
fpri.ntf(s.tream, 11 %i %i %i 11

, pedestal(O], pedestal[1], 
pedestal ( 2] ) ; / 

fprintf(stream, 11 %s", comment): 
fclose(stream); 
setvideomode( DEFAULTMODE): 

return; -

void ddg_ch~ck(void) 
{ 

int trig,sresult; 
char inputs2[3]; 
char *input2; 

setvideomode( DEFAULTMODE); 
:settextcolor(tcolor): 
_settextposition(10, 15); 
record = _gettextposition(): 
if (trig_check==O) 



} 
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_ _out text ("Trigger checking is enabled now") ; 
if (trig_check==1) 

_outtext("Trigger checking is not enabled now"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Input a 0 for trigger checking or a 1 ,"); 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
.::_outtext(" for no trigger checking"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check==O) 
{ 

} 

sresult=system("mode spe com"); 
while(kbhit()==O&&trig==O) 

trig=check(); 
ibloc(ddg); 
sresult=system("mode spe auto"); 
if (trig==-1) 

longjmp(mark,-1); 

input2 = gets(inputs2): 
trig_check = atoi(input2); 
_setvideomqde(_DEFAULTMOOE); 



E. PROGRAM LISTING MULTI 

I* Program "MULTI" 
* Daniel Russell 
* Aug. 6 1 1990 
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* 
* 
* 
* 
* 
* 
* 
*I 

The file Multi. c contains the following subroutines. 

void set_multi() 
void open_data_file() 
void take_data() 
void top() 

#include <string.h> 
#include <conio.h> 
#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include·<graph.h> 
#include <time.h> 
#include <math.h> 
#include <float.h> 
#include "dan.h" 
#include <setjmp.h> 

extern int 
extern~int 

extern int 
extern char 
extern int 
extern int 
extern long 
extern int 
extern char 
extern char 
extern long 
rect_ymax; 
extern int 
extern int 

channel disl 1 channel dis2; 
channel-colorl 1 channel color2 1 box_color; 
time t ltime; -
multi_count 1 reverse_flag 1 scan; 
file_name(7] 1 file_num[3]; 
gate_chan_a 1 gate_chan~b; 
points_scan 1 stage_step; 

int shots:_step 1 stage_beg; , 
pedestal[3] 1 multi_flag; 
file_name[7] 1 file_num(3] 1 data_file[l2]; 
comment(lOOO]; 

int rect_xmin 1 rect_ymin 1 rect_xmax, 

tcolor; 
ecolor; 

extern struct videoconfig vc; 
extern struct rccoord rcoord; 
extern int ddg 1 trig_check; 
extern jmp_buf mark; 

I* This sets·up the variables for taking multiple scans 
*I 

void set_multi(void) 



{ . 

.. 

char inputs(4]; 
char *input; 
int trig, sresult; 
multi count = O; 
reverse_flag = O; 
while (multi_count == 0 I I multi~count 1= 1) { 

_setvideomode(_DEFAULTMODE); 

} 

settextcolor(tcolor); 
-settextposition(lO, 15); 
record = _gettextposition(); 
_outtext(multi_string(9)); 
record. row++; 
settextposition(rcoord.row, rcoord.col); 

·:outtext(multi_string(lO)); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

If (trig_check == O) { 
trig = o; 

} 

sresult = system("mode spe com"); 
while (kbhit() == o && trig == 0) 

trig= check(); 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 

input= gets(inputs); 
multi count= atoi(inputs); 
if (multi_count == 2) {. 

} 

multi_count = O; 
return; 

setvideomode( DEFAULTMODE}; 
-settextcolor(tcolor); 
:settextposition(lO, 15); 
record= _gettextposition(); 
outtext(multi string(!)); 

rcoord.row++; -
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == O) { 

trig = O; 
sresult = system("mode spe com"); 
while (kbhit() ==_0 && trig== 0) 

trig= check(); 
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} 

ibloc(ddq); 
sresult = system("mode spe auto"); 
if (triq == -1) 

lonqjmp(mark, -1); 

input= qets(inputs); 
multi_count = atoi(inputs); 

while (mul ti_count % 2 ! = o Ll multi count -- o) { 
setvideomode( DEFAULTMODE); 

-settextposition(10, 15); 
rcoord = _gettextposition(); 
settextcolor(ecolor); 

} 

:outtext(multi_strinq(2)); 
rcoord.row++; 
settextcolor(tcolor); 

:settextposition{rcoord.row, rcoord.col); 

_outtext(multi_strinq(1)); 

rcoord.row++; 
_settextposition{rcoord.row, rcoord.col); 
if {triq_check == 0) { 

} 

triq = O; 
sresult = system{"mode spe com"); 
while (kbhit() == o && trig == 0) 

tr iq = check() ; 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp{mark, -1); 

input= qets(inputs); 
multi_count = atoi{inputs); 

setvideomode( DEFAULTMODE); 
:settextposition(10, 15); 

settextcolor{tcolor); 
record= _gettextposition(); 
_outtext{multi_string{3)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

outtext{multi string(4)); 
rcoord.row++; - ' 
_settextposition(rcoord.row, rcoord.col); 
if (triq_check ==·0) { 
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} 

} 

trig = O; 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == 0) 

trig =~~check(); 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 

input= gets(inputs); 
reverse_flag = atoi(inputs); 
while (reverse_flag != 2 && reverse_flag != 1) { 

setvideomode( DEFAULTMODE); 
-settextposition(10, 15); 
record = _gettextposition(); 
settextcolor(ecolor); 

} 

-outtext(multi string(5)); 
rcoord.row++; -
settextposition(rcoord.row, rcoord.col); 

-settextcolor(tcolor); 
:outtext(multi_string(3)); 
rcoord.row++; 
_settextposit~on(rcoord.row~- rcoord.col); 

_outtext(multi_string(4)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == O) { 

} 

trig = o; 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == O) 

trig= check(); 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 

input= gets(inputs); 
reverse_flag = atoi(inputs); 

void open_data_file(void) 
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/* 
* 
* 
*I 

{ 
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This subroutine makes sure that the file name you 
want to store the data in doesn't already exist on 
the disk before you take the data. 

char inputs2[2]; 

int trig, sresult; 
char *input, •input2; 
FILE * stream; 

inputs2[0] = 'n'; ' 
stream == o: 
while ((inputs2[0] == 'n' I I inputs2[0] -- 'N') && stream 

!= NULL) { 
_setvideomode(_DEFAULTMODE); 
settextcolor(tcolor); 

-settextposition(10, 15); 
record= gettextposition(); 
_outtext(multi_string(7)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == O) { 

} 

trig = o; 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == 0) 

trig = check(): 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig = -1) 

longjmp (mark, -1)·; 

input= gets(file_name); 
strcpy(data_file, file_name); 
strcat(data_file, "."); 

setvideomode( DEFAULTMODE); 
:settextposition(10, 15); 
record= _gettextposition(); 
outtext(multi string(S)); 

rcoord.row++; -
settextposition(rcoord.row, rcoord.col); 

if (trig_check == O) { 
trig = O; 
sresult = system("mode spe com"); 
while -(kbhit() == o && trig == 0) 

.. 



} 
} 

} 

triq = check(): 
ibloc(ddq); 
sresult = system("mode spe auto"); 
if (triq == -1) 

1onqjmp(mark, -1); 
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input= qets(file_num); 
strcat(data_file, file_num); 
if ((stream= fopen(data_file, "rb")) !=NuLL) { 

fclose(stream); 

} 

rcoord.row++; 
settextcolor(ecolor); 

:settextposition(rcoord.row, rcoord.col); 
~outtext( prompt_strinq(2)): 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col): 
_outtext( prompt_strinq(3)); 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_strinq(7)); 
if (triq_check == O) { 

} 

triq = O; 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == 0) 

trig = check(); 
ibloc(ddg); 
sresult = system("mode spe auto") ; 
if (trig == -1) 

lonqjmp(mark, -1); 

input2 = gets(inputs2); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
outtext(data file); 

rcoord.row++;-

void take_data(void) 

{ 
float ymin = (float) -1., ymax = (float)1., xmin = 
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(float)O., xmax = (float)1000.; 

} 

I* 
* 
* 
* 
* 
*I 

screen(); 

This subroutine plots the information at the top of 
the screen. The variable n is the number of scans 
taken in multi mode. This allows top() to print 
the right file name for that scan (n starts counting 
at 0). 

void top(n) 
int n: 
{ 

char *window_string(), *p, file_numt[J]; 
char buffer(50]; 

float ymin = (float) -1., ymax = (float)1., xmin = 
(float)O., xmax = (float)1000.; 

int numl, i; 
strcpy{data_file, file_name); 
strcat(data_file, "."); 
num1 = atoi(file num); 
num1 = num1 + n; 
p = itoa(numl, file_numt, 10); 
strcat(data_file, file_numt); 
if. (_setvideomode(_ERESCOLOR)) . , 
else if ( setvideomode( HERCMONO)) - -· / -. , 
else { 

_out text ("Graphics not supported, is msherc. com 
loaded if here"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit a key to continue"); 
while (i == 0) 

i = kbhit (); 
i = getche () ; 
return; 

} 
_getvideoconf~g(&vc); 
_settextcolor(tcolor); 
settextposition(l, 1); 

record = _gettextposition(); 
_outtext(window_string(1)); 



} 

_outtext(data_file); 
rcoord.col = rcoord.col + 25; 
_settextposition(rcoord.row, rcoord.col); 

time(&ltime); 
_outtext((ctime(&ltime))); 
rcoord.col = rcoord.col + 35; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "display %i ", channel dis1); 
_settextcolor(channel_color1); -
outtext(buffer); 

-settextcolor(tcolor); 
-settextposition(2, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(J)): 
sprintf(buffer, "%li", shots_step); 
outtext(buffer); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(4)); 
sprintf(buffer, "%li", stage_beg); 
_outtext(buffer); 
rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(5)); 
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sprintf(buffer, "%li", (long int) stage_beg + (long int) 
_ points~scan * (long int)stage_step); 

outtext(buffer); 
If (multi count != 1) { 

_settextposition(J, 1); 

} 

rcoord = gettextposition(); 
_outtext(window_string(6)); 
rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 

outtext(window string(7)); 
sprintf(buffer,-"%i", multi_count); 
outtext(buffer); 

if (reverse_flag == 2) { 

} 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(S)); 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
spr-intf (buffer, "display %i ", channel_dis2) ; 
_settextcolor(channel_color2); 
outtext(buffer); 

-settextcolor(tcolor); 
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F. PROGRAM LISTING CAMAC 

I* Program "CAMAC" 
* Daniel Russell 
* Aug. 6, 1990 

* 
* 
* 
* *I 

The file Camac. c contains the following subroutines. 

void setupcamac() 

#include "dan.h" 

void setupcamac(void) 
{' 

I* 
* 
* 
* 
*I 

I* 
* 
* 
* 
* 
* 
*' 
* 
* 

int Q, X, 1, A[16], crate, c, bytes, ads, QBL, fun; 
unsigned int DATA[16]; 

extern int low, high; 
extern long int shots_step; 
extern int AD; 

Q = 0; 
X = O; 

All the subroutines in this file are described in 
the DSP manual. .The Assembler was modified for all 
these subroutines to follow c language calling 
conventions. 

fun = O; 
1 = 64; 
A[O] = O; 
crate = 1; 
crateset(&crate); 
c = camcl(&l); 
1 = 4; 
c = camcl(&l); 
c = cami(&AD, &fun, A, DATA, &Q, &X); 

This next camo sets . up the A to D in the 
appropriate way. See pg 1-5 in the LeCroy A to D 
manual. Basically, bit 12 is high meaning pedestal 
subtraction is done by the A to D, bit 13 is high 
and Camac data_compression is enabled, bit 14 is 
high so sequential readout occurs, bit 15 is high 
so a LAM is set as soon as data is ready to be 
read, and bit 16 is set telling the A to D to 
suppress O's and overflows on CAMAC readout. 



... 

*I 

/* 
* 
* 
* 
*I 

DATA[O] = 0174000; 
fun = 16; 
c = camo(&AD, &fun, A, DATA, &Q, &X); 

fun = o: 
c = cami(&AD, &fun, A, DATA, &Q, &X); 
if (DATA[O] != 064000 && Q != 1 && X != 1) { 

camerr(AD, fun, A(O] ,_ DATA[O], Q, X); 
return; 

} 

DATA[O] = OxOOO; 
bytes = 2; 
ads = 17; 
QBL = 1; 

171 

This subroutine is slightly different than the one 
described in the DSP manual. It also passes to the 
assembler code the low and high for bounds 
checking, and the number of shots per step. 

dmaset(&crate, 
shots_step); 

&bytes, &QBL, &ads, &low, &high, 

} 

p_scan(O); 
p_step(O); 
stage start(O); 
gate(O); 
read_ped ( 0) ; 

1 = O; 
c =camel(&!); 
return; 
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G. PROGRAM LISTING CONST 

I* Proqram "CONST" 
* Daniel Russell 
* Auq. 6, 1990 
* The file Const.c contains the following 
subroutines. * 
* char •multi_strinq() 
* char •window_strinq() 
* ·char •error_strinq () 
* char •qate_strinq () 
* char *main_strinq () 
* char •setup_strinq () 
* char *prompt_strinq() 
* char *look_strinq() 
*' char •staqe_strinq() 
* char *data_strinq () 
* char •set_strinq () 
* char *odd_strinq () 
*I 

#include "dan.h" 

I* This file contains most of the strinq constants 
used * in the proqram. This was done for two reasons: it 
saves * data space for strinqs that are used more than 
once, and * also allows some menus to be output with for 
loops * instea~ of havinq one line for each output. 
Basically, * these are subroutines that return a string. 
The first * part is the definition of the static char 
which is * basically an array of character strings. In 
* mul ti_strinq[ o], strinq ( o] is equal to "ill strng". 
That * was put in there so that in the development phase 
errors * could be caught easily. Also for formatting for 
the * thesis some constant strings would not fit on one 
line * and a newline character was put in. This is not 
allowed * and the source file generated from the thesis must 
be * changed to one line constants 
*I 

char •multi_strinq(n) 
int n; 
{ 

static char •string(] = { \ 
"ill strng", 
" Input number of scans (must be even number)", 
" Must be an even number", 
" 1: stage takes data in one direction", 
" 2: Stage takes data in both directions", 
" Input 2 or 1 ", ' 
" 5: Return to Main Menu", 
"Input Data File name", 



} ; 

"Input Data File number", 
" 1: Turn multi on", 
" 2: Turn multi off", 
"Input Ascii data file name•• 
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I* The return line should be interpreted to say if n 
is* less than 1 or greater than 11 return string[O], else 
* return string[n] 
*I 

return( (n· < 1 II n > 11) ? string[O] : string[n]); 
} 

char •window_string(n) 
int n; 
{ I 

static char •string[] = { 
"ill strng", 
"File Name ••, 
'' Date '', 
"Shots ", 
"Begin ", 
"End " , 
"Multi is on", 
" Scans ", 
"Reverse", 
"Input Y if you wish to continue,", 

·"InputS it' you wish to save,and quit", 
"Input Q if you wish to quit without saving", 
"remember if you quit to put the stage back to 

origin" 
} ; 
return((n < 1 I I n > 12 ) ? string(O] : string[n]); 

} 

char •error_string(n) 
int n; 
{ 

} 

static char •string[] = { 
"ill strng·", 
"gate not set", 
"stage not set", 
"shots not set", 
"pedestal not set", 
"not an acceptable number", 
"bounds not set", 
"write error occurred " 

}; ' 

return((n < 1 I I n > 7) ? string(O] : string(n]); 



char *gate_string(n) 
int n; 
{ 

} 

static char *string(] = { 

} ; 

"ill strng", 
"Set up Channel A", 
"choose a gate width ", 
"O: 10 nsec " 
"1: 30·nsec ", 
"2: 100 nsec ", 
"3: 300 nsec ", 
"input delay in nsec ", 
"Set up Channel B", 
"delay < 1000 nsec & delay > 0 ", 
"Choice must be between o, 1, 2 or 3" 

return( (n < 1 .ll n > 10) ? string(O] : string[n]); 

char *main string(n) 
int n; 
{ 

} 

static char *string[] = { 

} ; 

twill strng", 
" 1: Read in Setup File", 
" 2: create Setup File ", 
" 3: Take DATA", 
" 4: Look at DATA", 
/* " 5: Add DATA files", */ 
" 5: To check trigger, -on not to check trigger 
" 6: Quit'!, 
"this video mode is not supported" 

return((n < 1 l l n > 6) ? string(O] : string(n]); 

char *setup_string(n) 
int n; 
{ 

static char *string[] = { 
. "ill strng", 

" 1: # of Points in Scan ", 
11 · 2: # of Stage steps between points ", 
"-3: #of Shots/Step.", 
" 4: Stage Starting Position", 
" 5: Set Gate & Delay", 
" 6: Set Pedestals", 
" 7: Comment of 5 sentences or less ", 
" 8: Display All ", 
" 9: Save setup", 
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.. 

.. 

} 

} ; 

11 10: Choose which channels to display", 
11 11: Take data for setup without saving", 
"12: Run Norm", 
11 13:· set Bounds", 
1114: Quit" 

return((n < 1 II n > 14) ? string(O] string[n]); 

char *prompt_string(n) 
int n; 
{ 

) 

static char •string(] = { 

} ; 

"ill strng", 
"Type File Name ", 
"File Already Exists !!!", 
11 Do you Want to overwrite ?", 
"File Doesn't Exists!!!", 
" Do you Want Try Another ?", 
"Answer Y or Nor Q ", 
"Answer Y or N " 

return((n < 1 I I n > 7) ? string(O] : string(n]); 

char •look_string(n) 
int n; 
{ 

static char •string(] = { 
"ill strng", 
"Input Channel 0,1;2, or 3 (norm)" 

} ; 
return((n < 1 I I n > 2) ? string[O] : string[n]); 

} 

char •stage_string(n) 
int n; 
{ 

static char •string(] = { 
"ill strng", 
"Input Total points in scan", 
"Input # of Stage Steps Between Points", 
"Input Shots per Step", 
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"Input Stage position where Scan should begin", 
"Input Comment of 5 sentences or less and end with 

a - .. 
} ; 
return((n < 1 I I n > 5) ? string(O] : string(n]); 

} 



char *data_string(n) 
·int n; 
{ 

static char •string(] = { 
"ill strng", 
" 1: Change Comment" , 
" 2: Set up Multi", 
" 3: Open Data Files", 
" 4: Set which channel to display", 
" 5: Take Data", 

} 

} ; 

" 6: Look at Data.", 
" 7: Run.Norm", 
" 8: Return to Main Menu" 

return( en· < 1 II n > 8) ? string(O] 

char •set_string(n) 
int n; 
{ 

} 

static char •string(] = { 

} : 

"ill strng", 
"Points in scan", 
"Stage Steps Between points", 
"Shots per step ", 
"Stage Start", 
"Gate A width and'delay", 
''"Gate B width and delay", 
"Pedestal o, 1 , and 2", 
"Comment" , 
"Hit a key to return" 

return((n < 1 I I n > 9) ? string(OJ 

char •odd_string(n) 
int n; 
{ 

static char •string(] = { 
"ill strng", 
"Trigger is n6w on internal", 
"Hit a key to continue", 
"Camac Error", 

string(n]); 

string[n]); 

"Ibfind ~rror; does device or board", 
"name given match configuration name?", 
"GPIB function call error:", 
"Device error", 
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here?", 

} ; 
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"Graphics not supported, is msherc.com loaded if 

"Input q to quit y for another", 
"Input number of files to add", 
"Input the first channel to be displayed", 
"either o, ·1, 2, or 3", 
"Input the second channel to be displayed", 
"Trigger checking is enabled now", 
"Trigger checking is not enabled now",
"Input a o for trigger checking or a 1,", 
"for no trigger checking", 
"Camac is not giving a LAM", 
"DOG is now on internal", 
"Input a y to c9ntinue or a q to quit", 
"No LAM, DOG now on internal", 
"hit q to quit", 
"Input Low", 
"input High", 
"mode spe com", 
"mode spe auto" 

return((n < 1 I I n > 26) ? string[O] : string[n]); 
} 



H. PROGRAM LISTING ERROR 
I* Program "ERROR" 
* Daniel Russell 
* Aug. 6, 1990 
* •· The file Error.c 
subroutines. * 
* void 
* void 
* void 

camerr() 
finderr() 
error() 

*I 

#include <graph.h> 
#include <conio.h> 
#include <stdio.h> 
#include <decl-. h> 
#include "dan.h" 

extern struct videoconfig vc; 
extern struct ~ccoord record: 
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contains the following 

I* If there is an error in any of the camac routines 
* this subroutine will be called. This is really only for 
* development purposes, although if any hardware problems 
* do occur this may help in tracking down the error. This 
* will tell you which modu~e was being talked to and what 
* parameters were passed. 
*I 

void camerr(int mod, int fun, int A, unsigned int data, int 
Q, int X} 
{ 

char buffer(100]: 
int i; · 
_setvideomode(_DEFAULTMOOE}; 
settextcolor(4}; 

:settextposition(10, 15}; 
record= _gettextposition(); 
_outtext("Camac Error"}; 
sprintf(buffer, "Module = %i", mod}: 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(buffer}: 
sprintf(buffer, "Function= %i", fun}; 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col}; 
_outtext(buffer); 
sprintf(buffer, "A= %i", A}; 
rcoord.row++; 

__ settextposition(rcoord.row, rcoord.col): 
_outtext(buffer}; 
sprintf(buffer, "data= %ui", data); 



} 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(buffer); . 
sprintf(buffer, "Q = %i", Q); 
record. row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(buffer); 
sprintf(buffer, "X= %i", X);
rcoord.row++; 
_settextposition(rcoord.row, rcoord~col); 
_outtext(buffer): 
rcoord.row+T; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit a key to continue"); 
while (i == 0) 

i = kbhit(); 
i = getche(); · 
return; 
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I* This routine would notify you that the ibfind call 
* failed. 
*I 

void finderr () 
{ 

} 

int i; 

_setvideomode(_DEFAULTMODE); 
_settextcolor(4); 
_settextposition(10, 15); 
record= _gettextposition(); 

_outtext("Ibfind error; does device or board"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

_outtext("name given match configuration name?"); 
rcoord.row++; , 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit a key to continue"); 
while (i == 0) 

i = kbhit(); 
i = getche () ; 
return; · 

I* The error checking routine will, among other 
iberr to determine the exact cause of 

condition and then take action 
the application. For errors du:r:ing 

things, * check 
the * error 
appropriate to * 
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data transfers, * 
the actual number * 
*I 

ibcnt may be examined to determine 
of bytes transferred. 

void error() 
{ 

char buffer[100]; 
·int i; 
_setvideomode(_DEFAULTMODE); 
settextcolor(4); 

:settextposition(10, 15); 
rcoord = _gettextposi tion 0 ; 

_outtext("GPIB function call error:"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

"ibsta=Ox%x, iberr=Ox%x,", sprintf(buffer, 
iberr) ; · 

} 

_outtext(buffer); 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 

sprintf(buffer, " ibcnt=Ox%x\n", ibcnt); 
outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord~row, rcoord.col); 
_opttext("Hit a key to continue"); 
while (i == O) 

i = kbhit(); 
i = getche () ; 
return; 

ibsta, 

.. 
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I. PROGRAM LISTING PLOTS 

/* Program "PLOTS" 
• Daniel Russell 
* Aug. 6, 1990 
* * The file Plots.c contains the following 
subroutines. 
* 
* void rboundl() 
* void rtickxy1() 
* void rpoint1() 
* void text _point () 
* void rbound2() 
* void rtickxy2 () 
* void rpoint2() 
* void csave() 
* void rpointc () 
* void cend() 
*I 

#include <graph.h> 
#include <conio.h> 
#include <stdio.h> 
#include <malloc.h> 
#include "dan.h" 

extern 
extern 
extern 
extern 

struct 
struct 
int 
int 

videoconfig vc; 
rccoord record; 
channel disl, channel dis2; 
channel:color1, channel_color2, 

xycoord xycoord; 
xa, xs1, ya, ys1; 
xs2, ys2; 
dx, dy; 
xdiffl, ydiff1, xmin1, yminl; 
xdiff2, ydiff2, xmin2, ymin2; 

box_ color; 

struct 
float 
float 
float 
float 
float 
float 
float· 
float 
long int 
float 

xmin_tickl, tick_temp, xmax_tick, temp_tick; 
ymin_tick1, ymax_tick1; 
xmin_~ick2, ymin_tick2, ymax_tick2; 
rect_xmin, rect_ymin, rect_xmax, rect_ymax; 
rect_xdiff, rect_ydiff; 

void rbound1(float a, float b, float xmax1, float ymax1) 

I* 
* 
* 
*I 

{ 

rboundl () sets up the mapping of data into the 
screens coordinates for the first set of data points 
the user wants to plot 



} 

xsl, ys1: extern float 
extern float 
xminl = a: 
yminl = b: 

xdiff1, ydiffl, xmin1, ymin1: 

xdiffl = xmaxl - xminl: 
ydiffl = ymaxl - yminl: 
rect xdiff = (float)(rect xmax
rect_ydiff = (float) (rect:Ymax -
xsl = (rect_xdiff) I (xdiffl): 
ysl = (rect_ydiff) I (ydiffl): 
rtickxyl () : 

rect xmin); 
rect:Ymin) ; 
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void rtickxy1(void) 
I* rtickxy1 () plots the tick marks for the first set of 
* data points 
*I 

{ 
extern float xdiff1, ydiff1, xmin1, ymin1; 
char buffer(10]; 
extern float xs1, ys1; 
extern long int rect_xmin, rect_ymin, rect_xmax, 

rect_ymax; 
float temp, temp2: 
temp = (xdiffl) 1 50; 
temp = temp * 10; 

tick temp= (((int)xminl) 1 temp) *temp; 
if (xmin1 >= tick_temp) 

xmin_tick1 = tick_temp; 
else 

xmin_tickl = tick_temp - temp; 
tick_temp = (((int) (xmin1 + xdiff1)) 1 temp) *temp; 
if ((xmin1 + xdiff1) <= tick_temp) 

xmax_tick = tick_temp: 
else 

xmax_tick = tick_temp + temp; 
temp_tick = xmin_tickl; 
xdiff1 = xmax tick - xmin tick!; 
xsl = (rect_xdiff) 1 (xdiffl); 
xminl = xmin tickl; 
settextcolor(box color); 

:setcolor(box_color); 
while (temp_tick <= xmax_tick) { 

temp2 = (temp_tick - xmin_tickl) * xsl + rect_xmin; 
_moveto((int)temp2, (int) rect_ymax); 
_lineto((int)temp2, (int) rect_ymax- 10); 
text_point((long int)temp2, rect_ymax + 10); 



• 

} 

} 

if (temp> (float)l.) 
sprintf(buffer, "%.Of", temp_tick); 

else if (temp< (float) 1.) 
sprintf(buffer, "%.1f", temp_tick); 

else if (temp > (float) .1) 
sprintf(buffer, "%.2f", temp_tick); 

_outtext(buffer); 
temp_tick = temp_tick + temp; 

temp = (ydiffl) I 50; 
temp = (temp * 10) ; 
tick_temp = ((yminl) 1 temp) * temp; 
if (yminl >= tick_temp) 

ymin_tickl = tick_temp; 
else 

ymin_tickl = tick_temp - temp; 
tick_temp = (((yminl + ydiffl)) I temp) * temp; 
if ((yminl + ydiffl) <= tick_temp) 

ymax_tickl = tick_temp; 
else 

ymax_tickl = tick_temp + temp; 
temp_tick = ymin_tickl; 
ydiffl = ymax_tickl - ymin_tickl; 
ysl = (rect_ydiff) 1 (ydiffl); 
yminl = ymin_tickl; 
_setcolor(channel_colorl); 
_settextcolor(channel_colorl); 
while (temp_tick <= ymax_tickl) { 
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temp2 = rect_ymax - (temp_tick - ymin_tickl) * ysl; 
_moveto((int)rect_xmin, (int)temp2); 
_lineto((int)rect_xmin + 10, (int)temp2); 
text_point(rect_xmin - 30, (long int)temp2); 

} 

if (temp> (float)l) 
sprintf(buffer, "%.Of", temp_tick); 

else if (temp > (float) .1) 
sprintf(buffer, "%.1f", temp_tick); 

else if (temp > (float) .01) 
sprintf(buffer, 11 %.2f", temp_tick); 

else if (temp < (float) .01) 
sprintf(buffer, "%.3f", temp_tick); 

_outtext(buffer); 
temp_tick = temp_tick + temp; 

void rpointl(float rxo, float ryO) 
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I* . · rpointl () plots one point per call using rboundl () 's 
* mapping to map onto screen coordinates 
*I 

{ 

} 

int ix, iy; 
ix = (int) ((rxO- xmin_tickl) * xsl + rect xmin); 
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl); 
setcolor(channel colorl); 

:setpixel(ix, iy); 

void text_point(ix, iy) 

I* text_point() moves the text coordinate to where the 
* label for the tick marks should be 
*I 

long int ix, iy; 
{ 

} 

xycoord = _getphyscoord((short)ix, (short) iy); 
ix = (long int)( (float)xycoord.xcoord 1 

(float)vc.numxpixels * ((float)vc.numtextcols)); 
iy = (long int) ( 1 + (float)xycoord.ycoord I 

(float)vc.numypixels * ((float)vc.numtextrows)); 
_settextposition((short)iy, (short)ix); 

void rbound2(float b, float ymax2) 

1 * rbound2 () is the same as rboundl () except the 
* ,mapping is for the second set of data points. Note that 
* the xaxis mapping is already defined from rboundl() 
*I 

{ 

} 

extern float 
extern float 

ymin2 = b; 

xs2, ys2; 
xdiff2, ydiff2, xmin2, ymin2; 

xs2 ~ (rect xdiff) 1 (xdiffl); 
ydiff2 ~ ymax2 - ymin2; 

ys2 = (rect_ydiff) 1 (ydiff2); 
rtickxy2(); 

void rtickxy2(void) 

.. 
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I* rtickxy2 () is the same as rtickxy1 () except the 
* xaxis tick marks have already been drawn by rtickxy1() 
*I 

{ 
extern float xdiff2, ydiff2, xmin2, ymin2; 
char buffer[10]; 
extern float xs2, ys2; 
extern long int rect_xmin, rect_ymin, rect_xmax, 

rect_ymax; 
float temp, temp2; 

temp = (ydiff2) I 50; 
temp= (temp* 10); 
tick_temp = ((ymin2) I temp) * temp; 
if (ymin2 >= tick_temp) 

ymin_tick2 = tick_temp; 
else 

ymin_tick2 = tick_temp - temp; 
tick_temp = (((ymin2 + ydiff2)) 1 temp) * temp; 
if ((ymin2 + ydiff2) <= tick_temp) 

ymax_tick2 = tick_temp; 
else 

ymax_tick2 = tick_temp + temp; 
temp_tick = ymin_tick2; 
ydiff2 = ymax_tick2 - ymin_tick2; 
ys2 = (rect_ydiff) I (ydiff2); 
_setcolor(channel_color2); 
settextcolor(channel color2); 

ymin2 = ymin_tick2; -
while (temp_tick <= ymax_tick2) { 

} 

temp2 = rect_ymax- (temp_tick- ymin_tick2) * ys2; 
_moveto((short)rect_xmax, (short)temp2); 
lineto((short) (rect xmax- 10), (short)temp2); 

text_point(rect_xmax-+ 20, (long int)temp2); 

if (temp > (float) 1) 
sprintf (buffer, "'.Of';, temp_tick) ; 

else if (temp > (float) .1) 
sprintf(buffer, 11 t.1f11 , temp_tick); 

else if (temp > (float) .01) 
sprintf(buffer, 11 t.2f11 , temp_tick); 

else if (temp < (float) .01) 
sprintf(buffer, "t.Jf", temp_tick); 

~outtext(buffer); 
temp_tick = temp_tick + temp; 
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} 

void rpoint2(float rxo, float ryO) 

/* rpoint2 () is the same as rpointl () except it is 
* mapped to the screen coordinates by rbound2() 
*I 

{ 

} 

int ix, iy; 
ix == (int) ((rxo ... xmin_tickl) * xs2 + rect xmin); 
iy == (int) (rect_ymax- (ryO- ymin_tick2) * ys2); 
_setcolor(channel_color2); 
_setpixel(ix 1 iy); 

int ixold 1 iyold; 
static char far *cimage; 
void csave(float rx0 1 float ryO) 

/* csave () initializes cursor movements by saving space 
* for the original image and then writes the cursor image. 
* There is a better and quicker way to do this with xor but 
* I did not realize it at the time 
*I 

{ 

extern char far *cimage; 
int ix 1 iy 1 i: 
extern int ixold 1 iyold; 
ix = (int) ((rxo - xmin_tickl) * xsl + rect xmin); 
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl); 
ixold == ix; 
iyold == iy; 
cimage == _fmalloc((unsigned int) _imagesize(ix- 5 1 iy-

5 1 ix +5 1 iy + 5)); 
if (cimage == (char far * ) NULL) { 

printf("calloc failed"); 

} 

printf("hit a key to continue"); 
while (i == 0) 

i = kbhit(): 
i = .getche ( ) ; 

return; 

_getimage(ix- 5 1 iy- 5, ix +5 1 iy +5 1 cimage); 
_setlinestyle(Oxaaaa); 
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_rectangle(_GFILLINTERIOR, 400, 330, 600, 360); 
} 

void rpointc(float rxo, float ryO) 

I* 
*I 

{ 

} 

void 
I* 
*I 
{ 

} 

This plots the cursor at the new position 

extern char 
extern int 

far *cimage; 
ixold, iyold; 

int ix, iy; 
char buffer(20); 
_putimage(ixold - 5, iyold - 5, cimage, _GPSET): 
ix = (int)·( (rxo- xmin_tickl) * xsl + rect_xmin); 
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl); 

_getimage(ix- 5, iy- 5, ix + 5, iy + 5, cimage); 
_setcolor(l5); 

moveto(ix, iy + 5); 

_lineto(ix, iy- 5); 
_moveto(ix, iy + 5); 
_lineto(ix, iy- 5); 
ixold = ix; 
iyold = iy; 
_settextposition(25, 55); 
_remappalette(6, _BLACK); 
setcolor(6); 

sprintf(buffer, "%i %f", (int)rxO, ryO); 
_rectanqle(_GFILLINTERIOR, 400, 330, 600, 360); 

settextcolor(box color); 
_outtext(buffer);-

cend() 
cend() frees up the space used for cursor movements 

extern char far •cimage; 
_ffree(cimage); 



J. PROGRAM LISTING COMM 

I* Program "COMM" 
* Daniel Russell 
* Aug. 6, 1990 
* 
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* The file Comm.c contains the following subroutines. 
* 
* 
* 
* *I 

qp_talk() 
se_talk() 
int check() 

#include <decl.h> 
#include <graph.h> 
#include <conio.h> 
#include <stdio.h> 
#include "dan.h" 

extern struct videoconfig vc; 
extern struct rccoord record; 

I* There are two ways to communicate to the stage. 
* Using GPIB-PC, or serial line. qp talk sends the string 
* to the GPIB-PC and returns error info. 
*I 
gp_talk(device, data, count) 
int device; 
char data(]; 
int count; 
{ 

extern int ibsta, iberr, ibcnt; 
ibwrt(device, data, count); 
return (ibsta & ERR); 

} 

I* se_talk is used to communicate through the serial 
* line I am not sure if this code was ever tested and 
* therefore I have commented it out. Right now this is not 
* a problem since all communication occurs through the 
* GPIB-PC. 
*I 
se_talk(dummy, data, dummy2) 
int dummy, dummy2; 
char data(]; 

{ 
FILE * stream; 
int sent; 



l*stream=fopen("com1","wb"): 
sent=fprintf(stream,"%s",data); 
if(sent!=dummy21 lfclose(stream)!=O){ 

return(-1):} 
else 

*I 
return(O): 

} 
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I* check is a program that is used to check if the 
* digital delay generator is being triggered. 
*I 
int check() 
{ 

extern int ddg; 
int i, dummy = o; 
for (i = o: i != 5; i++) { 

ibwrt (ddg, "IS 1", 4): 
I* The command "IS 1" asks the digital delay generator 
* to return bit one of the status byte. see pg 11 of the 
* manual. If rd[O]='O' then the ddg is not being 
* triggered. 
*I 

} 

ibrd (ddg, rd, 3) ; 
if ( rd[O] == '0') 

dummy++; 

if ( dummy == 5) { 
I* If after 5 tries the ddg is not busy with a trigger, the 
* DOG is put on internal trigger mode 
*I 

ibwrt(ddg, "rc 1", 4); 
setvideomode( DEFAULTMODE); 

:settextcolor(4); 
_settextposition(10, 15); 
record= _gettextposition(); 
_outtext("Trigger is now on internal"); 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit a key to continue"); 
while (i == 0) 

i = kbhit(); 



} 

i = qetche () ; 
return(-1); 

} 
return(O); 
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K. PROGRAM LISTING DATA 

I* Program "DATA" 
* Daniel Russell 
* Auq. 6, 1990 
* 
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* The file Data.c contains the following subroutines. 

* * void take_data_menu() 
* int test_num() 
*I 

#include <strinq.h> 
#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <qraph.h> 
#include <conio.h> 
#include "dan.h" 
#include <setjmp.h> 

extern double *d_norm(4]; 
extern int gate_chan_a, gate_chan_b; 
extern char comment[1000]; 
extern int points_scan, staqe_step; 
extern long int shots_step, stage_beq; 
extern int multi_count, reverse_flaq, scan; 
extern int pedestal(J], multi_flag; 
extern int delay_a, delay_b, qwidth_a, qwidth_b; 
extern int tcolor; 
extern int ecolor; 
extern struct videoconfig vc; 
extern struct rccoord record; 
extern int ddg, trig_check; 
extern jmp_buf mark; 

I* This section of code writes the take data menu and 
* gets input. 

, *I 

void take_data_menu(void) 

{ 
int 
int 
char 
char 
char 
int 

triq, sresult; 
count = 1; 
*data_strinq(int) 
inputs(J]; 
•input; 
i = O; 

. , 



I* 
*I 

I* 
*I 

_setvideomode(_DEFAULTMODE); 
settextcolor(tcolor); 

:settextpos1tion(10, 15); 
record= _gettextposition(); 
while (count != 8) { 

for (i = 1; i < 9; i++) { 

Write the menu on the screen 

} 

_outtext(data_string(i)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

if (trig_check == O) { 
trig = O; 

} 

sresult = system("mode spe com"); 
while (kbhit() == o && trig == O) 

trig = check() ; 
ibloc(ddg); 
sresult = systel'il("mode spe·auto"); 
if (trig == -1) 

longjmp(mark, -1); 

input= gets(inputs); 
count= atoi(inputs); 
if (count == 0 II count < 1 II count > 8) { 

If a valid key was not hit write error message 

setvideomode( DEFAULTMODE); 
-settextposition(9, 15); 
record= _gettextposition(); 
settextcolor(ecolor); 

-outtext(error string(5)); 
rcoord.row++; -
_settextposition(rcoord.row, rcoord.col); 

settextcolor(tcolor); 
} else if (count == 1) { 

read comment(); 
setvideomode( DEFAULTMODE); 

:settextposition(10, 15); 

_settextcolor(tcolor); 

record = _gettextposition(); 
} else if (count·== 2) { 
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set_multi(); 
_setvideomode(_DEFAULTMODE); 
~settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 

} else if (count == 3) { 
open_data_file(); 
_setvideomode(_DEFAULTMODE); 
_settextcolor(tcolor); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 

} else if (count == 4) { 
channel_display(); 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
_settextcolor(tcolor); 
rcoord = _gettextposition(); 

} else if (count == 5) { 
take_data(); 
_setvideomode(_DEFAULTMODE); 
_settextcolor(tcolor); 
_settextposition(lO, 15); 
rcoord = _gettextposition(); 

} else if (count == 6) { 
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I* In order to look at another file data space must be 
• free for the new data. Note this new data file might not 
* have the same number of points per scan as the current 
• setup file has defined, therefore even though points_scan 
• is defined in look_data() it is not the same variable as 
* points_scan in the rest of the program. This allows the 
* user to look at different data files without losing their 
• current setup. 
*I 

if (d_norm(O] != NULL) 
free (d_norm(OJ); 

if (d_norm[l] != NULL) 
free (d_norm[l]); 

if (d_norm(2] != NULL) 
free (d_norm(2]); 

if (d_norm(J] != NULL) 
free (d_norm(3]); 

look data(); 
if (points_scan != 0 ) { 

d_norm(O] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(l] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(2] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(3] = (double *)calloc(points_scan, 



} 

} 

sizeof(double)); 

} 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
_settextcolor(tcolor); 
record= _qettextposition(); 

} else if (count == 7) { 

} 

norm(): 
_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
_settextcolor(tcolor); 
record= _qettextposition(); 

setvideomode( DEFAULTMOOE); - -return; 
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1 * test num is a routine I wrote to make sure the 
* string returned by the user was all numbers. There are 
* easier ways to do this but I never changed the parts of 
* the program where this is usede One could for example do 
* the same thing with atoi() as was done in the subroutine 
* take_data_menu() 
*I 

int test_num(nums) 

char nums[]: 
{ 

} 

int i = o, ch; 
while (nums[i] != '\O') { 

ch = nums[i]; 
if (isdiqit(ch) == 0) { 

if (islower(ch)) 
return(-1); 

else if (isupper(ch)) 
return(-1); 

else 
i++; 

} else 
i++; 

} 
return(O); 



L. PROGRAM LISTING LOOK 

/* Program "LOOK" 
* Daniel Russell 
* Aug. 6, 1990 
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* 
* 
* 
* 
* 
* 
* 
* 
*I 

The file Look.c contains the following subroutines. 

void 
void 
int 
void 
void 

look data() 
plottop() 
plot() 
edit() 
clesave() 

#include <malloc.h> 
#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <conio.h> 
#include <bios.h> 
#include <math.h> 
#include "dan.h" 
#include <string.h> 
#include <setjmp.h> 

/* Note the use of static variables in this file. This 
* is to allow the user to look at data with different setup 
* parameters without affecting the setup parameters used in 
* taking data setup parameters 
*I 

static int points_scan, stage_step: 
static int multi_count, reverse_flag, look, scan: 
static long int shots_step, stage_beg: 
static double *d_norm(4]: · 
static char file_name(7], file_num(J], data_file[l2]: 
static int pedestal(J], multi_flag: 
static int gate_chan_a, gate_chan_b, point_scan_tak: 
static char comment(lOOO]: · 

strUct videoconfig vc: 
struct rccoord record: 
extern int tcolor: 
extern int ecolor, box color: 
extern long int rect_xmin, rect_ymin, rect_xmax, 
rect_ymax: 
time_t ltime: 

void look_data(void) 



{ 
int 
int 
int 
FILE 
char 
char 

triq, sresult; 
i, chan; 
numwritten, ch; 
* stream; 
inputs2[2], test[4]; 
*input, *input2; 

inputs2[0] = 'y'; 
stream = NULL; 

_qetvideoconfiq(&vc); 
while ( ( inputs2 ( o] == 

inputs2(0] == 'c' 
'Y I 

I I 
I I 

I I inputs2(0] == 'Y' 
inputs2(0] == 'C') ) { 

_setvideomode(_DEFAULTMOOE); 
_settextcolor(tcolor); 
_settextposition(lO, 15); 
rcoord = _gettextposition(); 
if (inputs2(0] == 'y' II inputs2(0] == 'Y') { 

_outtext(multi~str1nq(7)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

input= qets(file_name); 
} 
strcpy(data_file, file_name); 
strcat(data file, "·"); 
if (inputs2[0] == 'Y' I I inputs2(0] == 'Y') { 

} 

setvideomode( DEFAULTMODE); 
:settextposition(lO, 15); 
rcoord = _qettextposition(); 
_outtext(multi_string(S)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

input= qets(file_num); 
strcat(data file, file num); - -
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I I 
I I 

I* If C is hit the next data file with the same name 
* but incremented by one number is read in. For example if 
* the user is looking at "dan.!", and the 'C 1 or 'c' key 
* is hit "dan.2" would be read in. 
*I 

if (inputs2(0] == 'c' I I inputs2(0] == 'C') { 
i = atoi(file_num); 
i++; 
itoa(i, file_num, 10); 
strcat(data_file, file~num); 
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} 
if ((stream= fopen(data_file, "rb")) ==NULL) { 

fclose(stream); 
rcoord.row++; 
_settextcolor(ecolor); 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(4)); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext( prompt_string(S)); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

_outtext( prompt_string(7)); 

·input2 = gets(inputs2); 
} 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

:outtext(data_file); 
rcoord.row++; 

if (stream != NULL) { 
for (i = o: i != J; i++) { 

ch = fgetc(stream); 
test(i] = (char) ch; 

} 
test(i] = '\O': 
if (strcmp(test, "djr") != 0) 

printf("not setup file"); 
else { 

fscanf(stream, "%li", &ltime); 
fscanf(stream, "%i", &gate_chan_a); 
fscanf(stream, "%i", &gate_chan_b); 
fscanf(stream, "%i", &points_scan); 
fscanf(stream, "%i", &stage_step); 
fscanf(stream, "%li", &shots step); 
fscanf(stream, "%li", &stage:beg); 
fscanf(stream, "%i", &pedestal(O]); 
fscanf(stream, "%i", &pedestal(!]); 
fscanf(stream, "%i", &pedestal(2]); 
fscanf(stream, "%i", &reverse flag); 
fscanf(stream, "%i", &multi_count); 
fscanf(stream, "%i", &scan); 
for (i = O; (i < 999) && (ch = 

fgetc(stream)) != •·•; i++) 
comment[i] = (char) ch; 

comment[!] = (char) ch; 
i++; 
ch = fgetc(stream); 
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comment[i] = (char) ch; 
if (d_norm(O] != NULL) 

free (d_norm(O]): 
if (d_norm(l] != NULL) 

free (d_norm(l]); 
if (d_norm(2] != NULL) 

free (d_norm(2]); 
if (d_norm(J] != NULL) 

free (d_norm(J]); 

d_norm(O] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(l] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(2] = (double *)calloc(points_scan, 
sizeof(double)); 

d_norm(J) = (double *)calloc(points_scan, 
sizeof(double)); 

if (d norm[O] ==NULL II d norm(l] ==NULL 
11 d_norm(2] == NULL il d_norm[J] == 
NULL) { 

} 

if (d_norm(O] != NULL) 
free (d_norm(O)); 

if (d_norm(l] != NULL) 
free (d_norm(l)); 

if (d_norm(2] != NULL) 
free (d_norm(2]); 

if (d_norm(J] != NULL) 
free (d_norm(J)); 

d_norm[O] = (double *) 
calloc(points_scan, 
sizeof(double)); 

d_norm[l] = (double *) 
calloc(points_scan, 
sizeof(double)); 

d_norm[2] = (double *) 
calloc(points_scan, 
sizeof(double)); 

d_norm(J) = (double *) 
calloc(points_scan, 
sizeof(double)): 

for (i = O; i < 4; i++) { 
if (d_norm[i] == NULL) { 

printf("Allocation Failure \n"); 
printf ("hit a key to continue") ; 
while (i == 0) 

i = kbhit(); 
i = getche () ; 
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return; 
} 

} 

for (i = o; i != 4; i++) 

} 

numwritten = fread(d norm(i], 
s i z e o f .( d o u-b 1 e ) , 
points_scan, stream); 

fclose(stream); 

if (inputs2(0] == 'Y' I I inputs2[0] == 'Y') { 
_setvideomode(_DEFAULTMODE): 
_settextposition(10, 15); 
_settextcolor(tcolor); 

} 

rcoord = _gettextposition(); 

_outtext(look_string(1)); 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 

input2 = gets(inputs2); 
chan= atoi(inputs2); 

I* plot () returns an integer that is to be used for 
* displaying another channel or saving a file after a 
* change to one of the data points 
*I 

inputs2[0] = (char) ( plot(chan) & OxOFF): 
while (inputs2[0] == 'O' JJ inputs2[0] == '1' 

I I inputs2(0] == '2' 11 inputs2(0] == '3') 
inputs2(0] =(char) (plot(atoi(inputs2)) & 
OxOFF); 

if (inputs2[0] == 's') 

I* clesave() is a routine to save the data changed by 
* the user. It is a separate subroutine from save in order 
* to keep the setup variables different from the variables 
* in the file the user is looking at. 
*I 

clesave(O); 

} 
} 
setvideomode( DEFAULTMODE); 

If (d_norm(O] T= NULL) 



free (d_norm(O]); 
if (d_norm[l] != NULL) 

free (d_norm(l]); 
if (d norm(2] != NULL) 

free (d_norm(2]); 
if (d_norm(l] != NULL) 

free (d_norm[l]); 
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I* cend() frees space that was allocated for some of 
* the plottinq routines 
*I 

cend(); 

} 

/* This plots the information that is above the window 
* of data. Note that this is a different subroutine than 
* top () because the setup values should not be mixed 
* between takinq data and lookinq at data 
*I 

void plottop(n) 
int n; 
{ 

char •window_strinq(), *p, file_numt[l]; 
int numl, i; 

strcpy(data_file, file_name); 
strcat(data:.-file, "."); 
numl = atoi(file_num); 
numl = numl + n; 
p = itoa(numl, file numt, 10); 
strcat(data_file, file_numt); 

if (_setvideomode(_ERESCOLOR)) 
• I 

else if (_setvideomode(_HERCMONO)) . 
I 

else { 

1 * msherc. com came with Microsoft C 5. 1 and must be 
* loaded for qraphics to work on a hercules monitor 
*I 

_out text ("Graphics not supported, is msherc. com 
loaded if here"); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("Hit a key to continue"); 
while (i == O) 

i = kbhit(): 
i = qetche () ; 



} 

return; 
} 

_getvideoconfig(&vc); 
_settextcolor(tcolor); 
_settextposition(1, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(1)); 
_outtext(data_file); 
rcoord.col = rcoord.col + 25; 
_settextposition(rcoord.row, rcoord.col); 

time(&ltime); 
_outtext((ctime(&ltime))); 
_settextposition(2, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(J)); 
printf("%li", shots_step); 
rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(4)); 
printf("%li", stage_beg); 
rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(S)); 
printf("%li", (long int) stage_beg + (long int) 

points_scan * (long int)stage_step); 
if (multi count != 0) { 

_settextposition(J, 1); 
rcoord = _gettextposition(); 
_outtext(window_string(6)); 
rcoord.col = rcoord.col + 20; 

_settextposition(rcoord.row, rcoord.col); 
outtext(window string(?)); 

printf("%i", scan); 

} 

if (reverse_flag == 2) { 

} 

rcoord.col = rcoord.col + 20; 
_settextposition(rcoord.row, rcoord.col); 
_outtext(window_string(S)); 

int plot(int n) 

{ 
int i, ch, j, imin, imax; 
float max, min; 

ch = •n 1 ; 

plottop(O); 
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I* 
*I 

I* 
*I 

_qetvideoconfiq(&vc); 
settextcolor(tcolor); 

-settextposition(25, 5); 
record= _qettextposition(); 
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_outtext ("Input q to quit, y for another, or s to save") ; 

rect xmin = 50; 
rect_ymin = 50; 
rect_xmax = 550; 
rect_ymax = 300; 

(short) 
(short) 

setcolor(box color); 
:rectanqle(_GBORDER, 

rect_ymin, 
rect_ymax); 

max= (float)*(d_norm(n)); 
min= (float) *(d_norm(n)); 
imin = O; 
imax = O; 

rect_xmin, 
rect_xmax, 

Find the max and min values of the data 

for (i = O; i < points_scan; i++) { 
if ( *(d_norm(n] + i) > max) { 

} 

max = (float) *(d_norm[n] + i) ; 
imax = i; 

} else if ( *(d_norm(n] + i) < min) { 
min= (float) *(d_norm[n] + i); 
imin = i; 

} 

Set bounds of plot window. 

(short) 
(short) 

rbound1((float)1., min- (max- min) * .1, 
(float)points_scan, max+ (max- min) * .1); 

for (i = O; i < points_scan; i++) 
rpointl((float)i + 1, (float)*(d_norm[n] + i)); 

i = O; 
j = 1; 

I* csave allocates some space for the plottinq routines 
* that is specifically needed for cursor movement. 
*I 

csave((float)i + 1., (float)*(d_norm(n] + i)); 

1 * The next section of code moves the cursor around the 
* screen, and allows editinq of the data. 
*I 



/* 
*I 
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ch = _bios_keybrd(_KEYBRD_READ): 
while (ch != 4209 && ch != 5497 && ch != OxOb30 && ch != 
Ox0231 && ch != Ox0332 && ch != Ox0433 && ch != 8051 && 

ch != 11875) { 

if (ch == 18176 && j != 1) { 
j = 1: 
i = o: 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 
if (ch == 20224 && j < points_scan) { 

j = points_scan; 
i = points_scan - 1; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 
if (ch == 18688 ) { 

j = imax + 1; 
i = imax; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 
if (ch == 20736 ) { 

j = imin + 1; 
i = imin; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 
if (ch == 18432 && j < points_scan - 10) { 

j = j + 10; 
i = i + 10; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 
if (ch == 20480 && j > 10) { 

j = j - 10; 
i = i - 10; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} 

if (ch == 19200 && j != 1) { 
j--; 
i--; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} else if (ch == 19712 && j < points_scan) { 
i++; 
j++; 
rpointc((float)j, (float)*(d_norm[n] + i)); 

} else if (ch == 4709) { 
edit(i, n); 
cend(); 

Must replot the data after editing. 

plottop(O); 

.. 



} 

} 

_qetvideoconfiq(&vc); 
_settextcolor(tcolor); 
_settextposition(25, 5); 
record= _qettextposition(); 
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_outtext("Input q to quit, y for another, or s 
· to save") ; 

_setcolor(box_color); ~ 
_rectanqle(_GBORDER, (short) rect_xmin, (short) 

rect_ymin, (short) rect_xmax, 
(short) rect_ymax); • 

max= (float)*(d_norm(n]); 
min= (float) *(d_norm(n]): 
imin = O; 
imax = O; 
for (i = o; i < points scan; i++) ( 

if ( *(d_norm(n] + i) > max) ( 

} 

max = (float) *(d_norm(n] + i) ; 
imax = i; 

} else if ( *(d_norm[n] + i) < min) ( 
min= (float) *(d_norm(n] + i); 
imin = i; 

} 

rbound1 ( (float) 1. , min - (max - min) * . 1, 
(float)points_scan, max + (max - min) 
* .1); 

for (i = o: i < points_scan; i++) 
rpoint1((float)i + 1, (float) *(d_norm(n] 

+ i)): 
i = O; 
j = 1; 
csave((float)i + 1., (float)*(d_norm[n] + i)): 

ch = _bios_keybrd(_KEYBRD_READ); 

} 
return(ch); 

void edit(int i, int n ) 
{ 

/* There are three cases for editinq. If the data 
* point is the first or last data point there is only one 
* point adjacent and that becomes the new value of the 
* first or last data point. Otherwise the new value is the 
* averaqe of the two adjacent data points. 
*I 

if (i == 0} 



} 

*(d_norm[n]) = *(d norm[n] + 1); 
else if (i == points_scan - 1) 

*(d_norm[n] + i) = *(d_norm[n] + i- 1); 
else 

+ i 
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1) + *(d_norm[n] + i) = (*(d_norm[n] 
* (d_norm[n] + i + 1)) 1 2.: __ -~ __________________ _ 

--- ---· -~- --~- --

void clesave(n) 
int n; 
{ 

} 

int 
int 
char 
FILE 

i; 
num1, numwritten; 
*p, file_numt[J]; 
* stream; 

if (file_name[O] == '\0 1 ) 

return; 
stream= fopen(data_file, "wb"); 
fprintf(stream, "djr"); 
fprintf(stream, "tli ", ltime); 
fprintf(stream, "ti ti 11 , qate_chan_a, qate_chan_b): 
fprintf(stream, "%i ti ", points_scan, staqe_step); 
fprintf(stream, "%li tli ", shots_step, staqe_beg): 
fprintf(stream, "%i ti ti ", pedestal[O], pedestal[1], 

pedestal[2]); 
fprintf(stream, "%i ti ti ", reverse_flag, multi_count, 

scan); 
fprintf(stream, "ts", comment}; 
for (i = O; i != 4; i++} 

· numwritten = fwrite(d_norm[i], sizeof(double), 
points_scan, stream}; 

fclose(stream); 



M. PROGRAM LISTING NICE 

I* Program "Nice" 
* Daniel Russell 
* Auq. 6,1990 
• 

206 

• 
• 
• • • • • 
*I 

The file Nice.c contains the following subroutines • 

void screen() 
camerror() 
void stage_return() 
qp_stage_wait() 
se_stage_wait() 

I* The code was written for an IBM PC clone with a 
* 80386 processor and 80837 coprocessor. The intended use 
• was both experiment control and data acquisition. This 
* section of code actually takes the data and plots it. 
* The rest of code does all initialization, saving of new 
* data and or plotting of old data, and some special 
* functions. 
• Data is collected through a Camac based data 
* acquisition system. The actual data gathering software 
* is assembler code that was modified code provided by DSP 
* Technology, the producer of the CAMAC crate controller. 
• This code is in the subroutine dani, which I will not 
• provide, since it is in assembler. I would like to 
* describe it briefly though. The code provided by DSP was 
• not fast enough for our intended purpose. We wished to 
* collect two channels of data a 8kHz, the repetition rate 
* of the laser, and do four floating point operations. the 
* two channels of data are a signal channel(norm) and a 
* reference channel that we wished to keep a running 
• average of, and a running average of the ratio of the two 
• which is the signal due to exciting the molecule. The 
• code was modified in two basic ways. It was modified to 
* take advantage of 80826-80836 specific instructions that 
• were faster. Secondly the code was written two allow the 
• floating point coprocesser actually be a coprocesser. 
• Once a data point was collected, the floating point 
• operations were started simultaneously on the 80837, with 
• the next collection of data points by the 80836. The two 
* processes then ran concurrently. 
*I 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <graph.h> 
#include <ctype.h> 



.. 

#include <malloc.h> 
#include <dos.h> 
#include <decl.h> 
#include <process.h> 
#include <malloc.h> 
#include "dan.h" 
#include <bios.h> 
#include <conio.h> 
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I* 
* 
* 
* 
* 
* 
* 

The following variables are used for plotting two of 
the three possible variables. The norm or signal due to 
excitation can be plotted and or one of the other data 
points, the reference or the signal. The reason for 
allowing plotting of two different pieces of data is to 
allow the user to see both the signal and to monitor the 
reference,· which is directly related to laser power. 

*I 
float max, min, maxl, minl; 

I* 
* 
* 
* 

The variables max, min, maxl, and maxl, are the· 
maximum and minimum of the two data channels that are 
being displayed to allow appropriate scaling of the · '' 
data in the data window. 

*I 
extern int 

I* 
* 
* 
*I 

The 
determine 
displayed. 

extern int 

channel_disl, channel_dis2; 

variables 
which of 

channel disl and channel dis2 
the three data variables- are 

channel_colorl, channel_color2, box_color; 

I* The variables channel colorl, channel color2, and 
* box color define the color of the two channels displayed 
* and-the color of the box. 
*I 
extern float ymin_tickl, ymax_tickl, ymin_tick2, ymax_tick2; 

I* 
* 
* 
* *I 

The variables ymin_tickl etc are the real minimum 
and maximum values for the data window. This is so that 
the tick marks on the xaxis and yaxis of the plot are 
reasonable and all the data points can be seen. 

extern long int rect_xmin, 
rect_ymax; 
extern struct videoconfig vc; 
extern struct rccoord record; 

rect_ymin, rect_xmax, 

'·:·· 



208 

I* These variables are system dependent and are based 
* the graphics coordinate system defined in the Microsoft 
* C 5. 1 graphics 1 ibrary. The variables rect xmin, 
* rect_ymin rect_xmax, and rect_ymax are dependent on what 
* type of video board, although the values in this program 
* will work on a Hercules video card, EGA, and VGA although 
* the VGA will be running in EGA mode. 
*I 

I* The following variables are values for experimental 
* conditions. 
*I 
int stage_d; 

I* The variable stage_d keeps track of the direction 
* the stage should move next. 
*I 
extern int multi_count, reverse_flag, scan; 

I* These variables are initialized in the setup. 
* multi count is the number of times that the stage should 
* be scanned, reverse_flag is i if data is taken in only 
* one direction of stage movement and 2 if data is to be 
* taken in both directions. Taking data in both directions 
* is more efficient and will also help cancel any long term 
* drift in time of the concentration of the molecule that 
* you are studying if the drift is small. 
*I 
extern int points_scan, stage_step; 
extern long int stage_beg; 

I* These variables describe the number of points the 
* stage is going to scan ( basically the time base of the 
* experiment), the number of stage steps between these 
* points, and where the stage should begin. 
*I 
double dtemp(4]; 

I* This a temporary place to store data in the 
* assembler code for the subroutine dani. 
*I 
extern double *d_norm(4]; 

I* This an array of pointers to arrays where the data 
* is stored. The arrays are dynamically allocated earlier 
* in the program. The number of arrays is 4 due to the 
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* fact that at a later point in time someone may want to 
* also collect the actual laser power as a function of 
* time. 
*I 
extern int ibsta, iberr, ibcnt; 
int yaxis; 
int se_ talk () , qp_ talk () , ( •talk) () , 
gp_stage_wait(), se_stage_wait(); 
unsigned int set_up , return!; 

(*v_stage_wait) (), 

I* The above variables are associated with 
* communication subroutines. ibsta, iberr, ibcnt are the 
* GPIB-PC status, error, and count variables. If ibsta & 
* ERR are true an error has occurred and the user is 
* notified of the error and what type of error it was. 
* yaxis is the variable the GPIB-PC software associates 
* with the Klinger stage. talk is a pointer to a function 
* that is defined at run time depending on whether or not 
* the GPIB-PC interface is running. If the GPIB-PC 
* interface is running talk=gp_ talk which is the subroutine 
* provided with the GPIB-PC card to talk to the GPIB-PC, 
* other wise talk=se talk which is subroutine to talk to 
* the RS-232 port. The same rules apply to v_stage_wait, 
* which is the pointer to the function that will handle 
* waiting for the stage to finish moving. set_up and 
* return are the initial setup values for the RS-232 port 
* and a return variable to check for errors. 
*I 

void screen(void) 
{ 

char •stage_direction; 
unsigned int stepl, step2, step3, step4; 

I* These are temporary variables to hold partial stage 
* movements in case the desired stage movement is a larger 
* number than a 16 bit integer can hold. This is a 
* constraint due to the stage controller. 
*I 

int stage_beg_l, stage_total_l, stage_step_length; 

I* These variables are the length of character strings 
* that are sent to the stage controller 
*I 

char inputs[3],stage_s[lO]; 
char stage_total_s(lO],stage_beg_s[lO]; 

I* space for various strings used in communication 



*I 

int point_scan_tak, point_scan_tak2, i; 
int data_space(l7], e ~ o, flaq; 
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I* point_scan_tak and point_scan_tak2 are the number of 
* points in the scan that have been taken, althouqh 
* point_scan_tak starts countinq at 1 and point_scan_tak2 
* starts at o. i is dummy counter for a loop, and 
* data_space is more temporary space for the assembler 
* code. e is an error flaq from the assembler code. flag is 
* a variable to find out if there is a data point out of 
* the window bounds. 
*I 

long int vector, stage_total; 

I* Unfortunately Microsoft used an interrupt vector 
* that was reserved by intel for a later instruction on the 
* 80826 and 80836 which checked to see if the number in 
* register ax was within the bounds set by a user. If it 
* was not within the bound, interrupt 5 occurred. vector 
* is a variable that stores the address for microsoft's 
* interrupt routine so that it can be restored when the 
* proqram exits. staqe_total is the variable that stores 
* the total number of staqe steps in a scan. 
*I 

I* 
*I 

char *input, *go; 

_qetvideoconfiq{&vc); 
qo = "G\r"; 

yaxis = ibfind {"YAXIS"); 
talk = qp_talk; 

Check to see if GPIB-PC is operatinq 

if ({*talk) (yaxis, "+W\r", 3) < O) { 
set_up = o; 
set_up ~ set_up COM NOPARITY; 
set_up ~ set_up _COM_STOPl; 
set_up ~ set_up _COM_CHR8; 
set_up ~ set_up 1 _COM_9600; 
return!= _bios_serialcom{_COM_INIT, o, set_up); 
returnl = _bios_serialcom(_COM_STATUS, o, O); 
talk = se talk; 
v_stage_wait = se_staqe_wait; 
if (return! < 0) { 

finderr(): 



~ 

I* 
*I 

return; 
} 

} else { 
talk = qp_talk; 
v_stage_wait = gp_stage_wait; 

} 

Initialize the stage. 

if ((*talk) (yaxis, "FS01\r", 5) < 0) { 
error(); 
return; 

} 
if ((*talk) (yaxis, 11RW4000\r11 , 7) < 0) 

error(): 
return; 

} 
if ((*talk) (yaxis, "AC.1\r", 5) < 0) 

error(): 
return; 

} 

if (stage_beg > 0) { 
if (stage_d == 1) 

} 

} 

stage direction = "+W\r": 
stage_d = =1: 

else { 
stage_direction = 11 -W\r": 
stage_d = 1: 

{ 

( 

if ((*talk) (yaxis, stage direction, 3) < O) { 
error(); 
return; 

} 
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if (stage_beg < 65000 && stage_beg > -65000) { 
stage_beg_l = sprintf(stage_beq_s, "NW%li\r", 

labs(stage_beg)); 
(*talk) (yaxis, stage_beg_s, stage_beg_l): 
if ((*talk) (yaxis, "MW\r", 3) < O) { 

error(); 
return: 

} 

} else { 
step1 = (stage_beg) 1 4: 
step2 = (stage_beg - step1) I 3: 
step3 = (stage_beg - step1 - step2) 1 2: 
step4 = (stage_beg- step1- step2- step3); 
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stage_step_length = sprintf(stage_s 1 "NW%u\r" 1 

step1); 

(*talk) (yaxis 1 stage_s, stage_step_length); 
(*talk) (yaxis 1 "MW\r" 1 3); 
if (ibsta & ERR) { 

) 

error(); 
return; 

v stage wait(); 
stage_step_length = sprintf(stage.._s 1 "NW%u\r" 1 

step2); 
(*talk) (yaxis 1 stage_s 1 stage_step_length); 
if ((*talk) (yaxis 1 "MW\r" 1 3) < O) { 

error(); 
return; 

} 

v_stage_wait(); 
stage_step_length = sprintf ( stage_s, "NW%u\r" 1 

step3); 
(*talk) (yaxis 1 stage_s 1 stage_step_length); 
if ( ( •talk) (yaxis 1 "MW\r" 1 3) < o) { 

error(); 
return; 

} 

v_stage_wait(); 
stage_step_length = sprintf (stage_s 1 "NW%u\r" 1 

step4); 
(*talk) (yaxis 1 stage_s 1 stage_step_length); 
if ((*talk) (yaxis 1 "MW\r" 1 3) < 0) { 

error(); 
return: 

} 
} 
v_stage_wait(); 

if (stage_step > 0) { 

} 

} 

if (stage_d == 1) 
stage_direction = "+W\r"; 

stage_d = -1; 

else { 
stage_direction = "-W\r"; 
staqe_d = 1; 

stage_total = (long int) stage_step 
int) (points_scan); 

stage_total_l· = sprintf(stage_total_s 1 

* (long 

"NW%li\r", 
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stage_total); 
stage_step_1ength = sprintf(stage~s, "NW%i\r", 

stage_step); 

if ((*talk) (yaxis, stage_s, stage_step_length) < O) { 
error(); 
return; 

} 
if ((*talk) (yaxis, stage_direction, 3) < 0) { 

error(); 
return: 

} 

rect xmin = 50; 
rect::3min = 50; 
rect_xmax = 550; 
rect_ymax = 300; 

1 * . setbound gets Microsoft • s interrupt 5 vector and newbound 
* stores a new one to be used by the assembler code in data 
* acquisition. 
*I 

setbound(&vector); 
newbound(); 

/* In the initialization program o is usually used as a flag 
* for not in use so if multi_flag == 0 then there will only 
* be one scan 
*I 

if (multi_count == O) 
multi count = 1; 

scan = 1: 
while (scan <= multi_count) { 

inputs(O] = •y•: 
if (scan 1= 1 ) { 

if (reverse_flag == 1) 
stage d = -stage d; 

if (stage_d == 1) -{ 
stage_d = -1: 
stage direction= "+W\r"; 

} else { -

} 

staqe_d = 1; 
stage_direction = 11 -W\r": 

if ((*talk)(yaxis, stage_direction, 3) < O) { 
error(): 
return; 



} 
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} 

if ((*talk) (yaxis, stage_s, stage_step_length) 
< 0) { 
error(); 
return; 

} 

point_scan_tak = 1; 

point_scan_tak2 = O; 

1 * top is a graphics routine which labels the top half 
* of the data window with info concerning the current data 
* scan 
*I 

top(scan- 1); 

I* the following graphics routines write the data 
* window. 
*I 

_remappalette(6, _BLACK); 
_setcolor(6); 
_rectangle(_GFILLINTERIOR, O, 50, 620, 330); 

setcolor(box color); 
:rectangle(_GBORDER, (short) rect_xmin, (short) 

rect_ymin, (short) rect_xmax, (short) 
rect _ymax) ; 

while ( point_scan_tak <= points_scan && (inputs[O] 
== 'Y' :: inputs(O] == 'Y')) { 

v _stage_ wait() ; 
dani(data_space, dtemp, &e); 

if (e ! = 0) { 

} 

if (camerror(e, point_scan_tak) == 1) { 
oldbound(&vector); 
return; 

} 

I* This next line moves the stage the number of steps 
* defined by stage_step 
*I 

(*talk) (yaxis, "MW\r", 3); 
{ 

} 

error(); 
return; 



.. 

I* 
* 
* 
*I 
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This initializes the window bounds for the first point 
and makes assumptions on the minimum size of a norm 
signal to make a good quess for the first window 

if (point_scan_tak == 1) { 

} 

max = ( float)dtemp[channel_dis1] + .01; 
max1 = ( float)dtemp(channel_dis2] + .01; 
min = (float) dtemp(channel_dis1] - .01; 
min1 = (float) dtemp(channel_dis2] - .01; 
rbound1( (float) 1., min, (float) points scan, 

max); -
rbound2( min1, max1); 

for ( i = 0; i 1 = 4; i++) { 
*(d_norm(i] + point_scan_tak2) = dtemp[i]: 

} 
flag = o: 
if ((float)dtemp(channel_dis1] > ymax_tick1) { 

flag = 1; 
max= (float) dtemp(channel_dis1]; 

} 
if ((float)dtemp(channel_dis1] < ymin_tick1) { 

flag = 1; 
min= (f1oat)dtemp[channel_dis1]; 

} 
if ((float)dtemp(channel_dis2] > ymax_tick2) { 

flag = 1; 
max1 = (float)dtemp(channel_dis2]; 

} 
if ((float)dtemp[channel_dis2] < ymin_tick2) { 

flag = 1; 
min1 = (float)dtemp[channel_dis2]; 

} 

I* If the new data point is out of the window bounds the 
* window is redrawn and new bounds are defined 
*I 

if (flag == 1) { 
setcolor(6); 

:rectangle (_GFILLINTERIOR, 0, 45, 620, 
330); 

setcolor(box color); 
:rectangle(_GBORDER, (short) rect_xmin, 

(short) rect _ymin, (short) 
rect xmax, (short) rect _ymax) ; 

rbound1((float)1., min, (float) 
points_scan, max); 

rbound2( min1, max1); 
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for (i = 1; i < point_scan_tak; i++) { 
rpointl( (float) i, (float) 

* (d_norm(channel_dis1] + i)); 
rpoint2((float)i, (float) 

*(d_norm[channel_dis2] + i)); 
} 

} 
_setcolor(channel_colorl); 
rpoint1((float)point_scan_tak, 

. dtemp[channel_disl]); 
· _setcolor(channel_color2); 
rpoint2((float)point scan tak, 

dtemp(channel dis2]); 
point_scan_tak++; -
point_scan_tak2++; 

(float) 

(float) 

I* The keyboard is checked and if it was hit, this allows 
* the user to continue, quit, or quit while saving the data 
* collected to this point. 
*I 

if (kbhit() != 0) { 
i = getche () ; 
_setcolor(6); 
_rectangle(_GFILLINTERIOR, O, 30, 620, 

330); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 
_outtext(window_string(9)); 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 
_outtext(window_string(10)); 
rcoord.row++; 

_settextposition(rcoord.row,rcoord.col); 
_outtext(window_string(ll)); 
rcoord.row++; 
_settextposition(rcoord.row;rcoord.col): 

input= gets(inputs); 
if (inputs(O] == 'Q' l l inputs(O] == 'q') { 

stage return((long int) 
- point_scan_tak2* {long 

int)stage_step); 

stage_return((long int)stage_beg); 

I* oldbound returns interrupt 5 back to its initial 
* microsoft state before this subroutine returns. 
*I 

oldbound(&vector); 



.. 

/* 
* 
*I 

} 

} 

} 
else 

} 
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return: 

if (inputs(O] == 'S' I I inputs[O] == 
's') { 

staqe_return((lonq int) 
point_scan_tak2 * (lonq 
int) staqe_step): 

staqe_return((lonq int)staqe_beq): 
open_data_file(): 
save(scan- l,point_scan_tak2); 

oldbound(&vector); 
return; 

else if (inputs(O] == 'Y' I I inputs[OJ == 
'Y') { 

} 

setcolor(6); 
:rectanqle(_GFILLINTERIOR, 0, 45, 

620, 330); 

setcolor(box color); - . -
_rectanqle(_GBORDER, (short) 

(short) 
(short) 
(short) 

rect xmin, 
rect:ymin, 
rect_xmax, 
rect_ymax) : 

rboundl((float)l., min, 
points_scan, max); 

rbound2( minl, maxl); 

(float) 

for (i = l;i < point_scan_tak;i++) { 

} 

rpointl((float)i, (float) 
*(d_norm[channel_disl] 
+ i)) ; 

rpoint2((float)i, (float) 
*(d_norm(channel_dis2] 
+ i)) : 

save(scan- l,point_scan_tak2); 
scan++; 
point_scan_tak--: 
point_scan_tak2--: 

The next section of code takes data backwards as the 
staqe reverses 

if (reverse_flaq == 2) { 



if (stage_d == 1) ( 
stage d = -1; 
stage_direction = "+W\r"; 

} else ( 

} 

stage_d = 1: 
stage_direction = "-W\r"; 

v_stage_wait(); 
(*talk) (yaxis, stage_direction, 3); 
if((*talk) (yaxis, "MW\r'', 3)<0) 
{ 

} 

error(); 
return; 

top(scan- 1); 
_remappalette(6, _BLACK); 
_setcolor(6); 
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_rectangle(_GFILLINTERIOR, O, 45, 620, 330); 

_setcolor(box_color); 
rectangle( GBOROER, (short) rect xmin, (short) 

- rect_ymin, (short)- rect_xmax, 
(short) rect_ymax); 

while ( point_scan_tak >= 1 && (inputs(O] --
' Y ' I I inputs [ o] == 'y ' ) ) { 

v_stage_wait(); 
dani(data_space, dtemp, &e); 
if (e != 0){ 

return; 

} 

if(camerror(e, point_scan_tak)==1){ 
oldbound(&vector); 
return; 

} 

(*talk)(yaxis, "MW\r", 3); 

{ 
error(); 

} 

if (point_scan_tak == points_scan) ( 
max = (float)dtemp[channel_dis1] + .4; 
max1 = (float)dtemp(channel_dis2] + .01; 
min = (float)dtemp(channel_dis1] - .1; 
min1 = (float)dtemp(channel_dis2] - .01; 
rbound1((float)1., min, (float) 

points_scan, max); 
rbound2( min1, max1); 

• 
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} 
for (i = o: i != 4: i++) { 

* (d_norm[ i] + point_scan_tak2) = dtemp( i]: 

} 
flag = o; 
if ((float)dtemp(channel_dis1] > ymax_tick1) { 

flag = 1; 
max= (float)dtemp(channel_dis1]: 

} 
if ((float)dtemp(channel_disl] < ymin_tick1) { 

flag = 1: 
min= (float)dtemp[channel_dis1]: 

} 
if ((float)dtemp[channel_dis2] > ymax_tick2) { 

flag = 1: 
max1 = (float)dtemp[channel_dis2]; 

} 
if ((float)dtemp[channel_dis2] < ymin_tick2) { 

flag = 1: 
minl = (float)dtemp[channel_dis2]; 

} 

if (flag == 1) { 
setcolor(6); 

:rectangle(_GFILLINTERIOR, 0, 45, 620, 
330): 

} 

_setcolor(box_color): 
_rectangle(_GBORDER, (short) rect xmin, 

(short) rect_ymin, (short} 
rect_xmax, (short) rect_ymax}; 

rbound1((float)1., min, (float} 
points_scan, max): 

rbound2( min1, max1): 
for(i=points_scan:i>point_scan_tak:i--}{ 

rpoint1 ((float) i, (float} 
* (d_norm[channel_dis1] + i}}: 

rpoint2 ((float) i, (float} 
- * (d_norm[channel_dis2] + i}) ; 

} 

setcolor(channel color1): 
rpointl((float)point_scan_tak, 

dtemp[channel_dis1]): 
_setcolor(channel_color2): 
rpoint2((float)point_scan_tak, 

(float} 

(float} 
dtemp[channel_dis2]): 

point_scan_tak--: 
point_scan_tak2--; 
if (kbhit () != 0) { 

i = getche () ; 
_setcolor(6); 
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_rectanqle(_GFILLINTERIOR, O, 30, 620, 
330); 

_settextposition(lO, 15); 
record= _qettextposition(); 
_outtext(window_strinq(9)); 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 
_outtext(window_strinq(lO)); 
rcoord.row++; 

_settextposition(rcoord.row,rcoord.col); 
_outtext(window_strinq(ll)); 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 
_outtext(window_string(12)): 
rcoord.row++; 
_settextposition(rcoord.row,rcoord.col); 

input= qets(inputs); 
if (inputs[O]=='Q' I I inputs[O] == 'q') { 

stage_return((lonqint)point_scan_tak 
*(long int)staqe_step); 

stage return((long int)stage_beg); 

oldbound(&vector); 
return; 

) else if (inputs[O] == •s• I I inputs[O] 
== 's') { 

stage_return((lonq int) 
point_scan_tak2 * (long 
int) staqe_step) : 

staqe_return((long int)staqe_beq): 
open_data_file(); 
save(scan- 1, point_scan_tak2); 

oldbound(&vector); 
return; 

) else if (inputs[O) == 'Y' I I inputs{O] 
== 'Y') { 

setcolor(6); 
:rectangle(_GFILLINTERIOR, 0, 45, 

620, 330); 

setcolor(box color); 
:rectanqle(_GBORDER, 

rect xmin, 
rect:ymin, 
rect_xmax, 
rect_ymax) ; 

rboundl((float)l., min, 

(short) 
(short) 
(short) 
(short) 

(float) 



} 

} 

} 

} 

} 
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points_scan, max); 
rbound2( min1, max1); 
for (i = points_scan; i > 

point scan tak; i--) { 
rpoint1((float) i ,(float) 

*(d_norm(channel_dis1] 

} 

+ i)); 
rpoint2((float)i, (float) 

*(d_norm(channel_dis2] 
+ i)); 

v_stage_wait(); 
if (stage_d == 1) { 

(*talk) (yaxis, 
} else { 

(*talk) (yaxis, 
} 

"+W\r", 3); 

if ( ( •talk) (yaxis, "MW\r", 3) < o) { 

} 

error(); 
return; 

save(scan- 1, points_scan- point_scan_tak2- 1); 
scan++; 

stage_return( (long int)point_scan_tak * (long int) 
stage_step); 

stage_return((long int)stage_beg); 
oldbound(&vector); 
} 

camerror(e, point_scan_tak) 

int e, point_scan_tak; 

{ 
extern double dtemp(4]; 
char inputs(3]; 
char *input; 
int i, data_space(16]; 

struct videoconfig vc; 
struct rccoord rcoord; 



I* 
* 
* 
* 
*I 

_getvideoconfig(&vc); 
while (e == 5) { 

setcolor(6); 
:rectangle(_GFILLINTERIOR, O, 30, 620, 330); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 

_outtext("Camac is not giving a IAM"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 

_outtext("OOG is now on internal"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
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_outtext("Input a Y to continue or a q to quit"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
input = gets(inputs); 
if (inputs[O] == 'Q' I I inputs(O] == 'q') { 

If the user wants to quit the 
returned to the place where it began. 
this section of code is bug free in 
which direction the stage should go. 

stage should be 
I am not sure if 

keeping track of 

stage_return((long int) point_scan_tak * (long 
int )stage_step); 

stage_return((long int)stage_beg): 

return(l); 
} else if (inputs[O] == 'Y' 11 inputs[O] == 'Y' && 

point_scan_tak == 1) 

I* Here data collection continues and there are two 
* cases, the data window doesn't need to redrawn because 
* no data has been taken yet or the window must be redrawn 
* because data already exists 
*I 

dani(data_space, dtemp, &e); 

else if (inputs[O] == 'Y' II inputs[O] == 'Y' && 
point_scan_tak != 1) { 

dani(data_space, dtemp, &e); 
setcolor(6); 

:rectangle(_GFILLINTERIOR, O, 45, 620, 330); 



} 
} 

return(O); 
} 
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_setcolor(box_color); 
_rectangle(_GBORDER, (short) rect_xmin, (short) 

rect_ymin, (short) rect_xmax, 
(short) rect_ymax); 

rboundl((float)l., min, (float)points_scan, 
max); 

rbound2( minl, max1); 
if (stage_d == 1) { 

} 

for (i = points_scan; i > point_scan_tak; 
i--) { 

} 

rpoint1((float)i, (f1oat)*(d_norm(O] 
+ i- 1)); 

rpoint2((float)i, (float)*(d_norm(J] 
+ i- 1)); 

if (stage_d == -1) { 

} 

for (i = 1; i < point_scan_tak; i++) { 

} 

rpoint1((float) i, (float) 
*(d_norm(channel_dis1] + i-
1)); 

rpoint2((float) i, (float) 
*(d_norm(channel_dis2] + i-
1)); 

dani(data_space, dtemp, &e); 

void stage_return(back) 
long int back; 
{ 

char stage_s(10], *go; 
int stage_step_length; 
unsigned int step1, step2, step3, step4; 

go = "G\r"; 

v_stage_wait(); 
if ((back) > 0) { 

(*talk) (yaxis, 11 -W\r", 3): 
} 

else { 
(*talk) (yaxis, "+W\r", 3); 

} 
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if (back < 65000) { 
staqe_step_lenqth = sprintf(staqe_s, "NW%li\r", 

labs( back)); 
(*talk) (yaxisl staqe_s 1 staqe_step_lenqth); 
(*talk)(yaxis 1 "MW\r", 3); 
v_staqe_wait(); 

} else { 
stepl = (staqe_beq) 1 4: 
step2 = (staqe_beq - stepl) 1 3; 
step3 = (staqe_beq - stepl - step2) 1 2; 
step4 = (staqe_beq- stepl- step2- step3); 

staqe_step_lenqth = sprintf(staqe_s, "N %u\r", 
stepl); 

(*talk) (yaxis 1 staqe_s, staqe_step_lenqth); 
( •talk) (yaxis 1 "MW\r", 3) ; · 
if (ibsta & ERR) { 

} 

error(); 
return; 

v_staqe_wait(); 
if ((back) > O) { 

(*talk) (yaxis, "-W\r" 1 3); 
} 

else { 
(*talk)(yaxis, "+W\r", 3); 

} 

staqe_step_lenqth = sprintf (staqe_s 1 "NW%u\r" 1 

step2) ; 
(*talk) (yaxis 1 staqe_s 1 staqe_step_lenqth); 
if ( ( •talk) (yaxis 1 "MW\r", 3) < 0) { · 

error(); 
return; 

} 

v_staqe_wait(); 

if ((back) > O) { 
(*talk) (yaxis, "~W\r", 3); 

} 
else { 

(*talk) (yaxis 1 "+W\r", 3); 
} 

staqe_step_lenqth = ·. sprintf(staqe_s.1 "NW%u\r" 1 



} 

} 

step3); 
(*talk)(yaxis, staqe_s, staqe_step_lenqth); 
if ((*talk) (yaxis, "MW\r", 3) < 0) { 

error(); 
return; 

} 

v_staqe_wait(); 
if ((back) > O) { 

(*talk) (yaxis, "-W\r11
1 3); 

} 
else { 

(•talk) (yaxis 1 "+W\r11
1 3); 

} 
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staqe_step_lenqth = sprintf(staqe_s 1 "NW%u\r" 1 

step4); 
(*talk) (yaxis 1 staqe_s 1 staqe_step_lenqth); 
if ((*talk) (yaxis 1 "MW\r" 1 3) < 0) ( 

error(); 
return; 

} 

gp_staqe_wait() 
{ 

} 

dummy = O; irit 
I* (*talk) (yaxis 1 staqe_direction, 

3) ; 
& ERR) { while ( ibsta 

dummy++; 
(*talk)(yaxis 1 

dummy++; 
}*/ 

char d[lO]; 
ibrd(yaxis 1 rd 1 5); 
ibrd(yaxis 1 rd 1 5); 
while ( rd[l] == 'A') { 

} 

dummy++; 
ibrd(yaxis 1 rd1 5); 
dummy++; 

staqe_direction 1 2); 

se_staqe_wait() 



{ 

} 

unsigned int data; 
returnl = _bios_serialcom(_COM_STATUS, o, data); 
data = O; 
while (data != 16) { 
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returnl = _bios_serialcom(_COM_STATUS, o, data); 
data = returnl & 16; 

} 



N. PROGRAM LISTING SAVE 

I* Program "Save" 
* Daniel Russell 
* Aug. 6,1990 
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* 
* 
* 
* 
* 
* 
* 
* 
*I 

The file Save.c contains the following subroutines. 

void save() 
double sigma() 
void norm() 
void bound ( ) 

#include <time.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <conio.h> 
#include <bios.h> 
#include <math.h> 
#include "dan.h" 
#include <string.h> 
#include <setjmp.h> 

extern int channel_disl, channel_dis2; 
time_t ltime; 
extern int tcolor; 
extern int ecolor; 
extern int channel_disl, channel_dis2; 
extern int channel colorl, channel color2, box_color; 
extern struct videoconfig vc; -
extern struct rccoord record; 
extern int ddg, trig_check; 
extern jmp_buf mark; 

void save(n, point_scan_tak) 

I* Note that the variable point_scan_tak is passed to 
* save because the data collection may have been stopped 
* prematurely and points_scan may not be equal to the 
* number of data points that were actually taken. n is the 
* number of scans taken in multi mode (start counting at o 
* ) . This allows save to save the file with the right 
* final number. 
*I 

int 
{ 

n, point scan tak; - -
extern int 
extern int 

pedestal[J], multi_flag; 
gate_chan_a, gate_chan_b; 
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int points_scan, staqe_step; 
int multi_count, reverse_flaq, scan; 
long int shots_step, staqe_beq; 
double *d_norm(4]; 

extern 
extern 
extern 
extern 
extern 
extern 

char file_name[7], file_num(J], data_file(12]; 
char comment(1000]; 

int i; 
int num1, numwritten; 

char *p, file_numt[J); 

FILE •.stream; 

if.(file_name(O] == '\O') 
return; 

strcpy(data_file, file_name); 
strcat(data file, ".~); 
num1 = atoi(file_num); 
numl = num1 + n; 
p = itoa(num1, file_numt, 10); 
strcat(data_file, file_numt); 

stream= fopen(data~file, "rb"); 
if (stream != NULL) ( 

_qetvideoconfiq(&vc); 
fclose(stream); 
setvideomode( DEFAULTMODE); 

-settextcolor(ecolor); 
:settextposition(10, 15); 
rcoord = _qettextposition(); 
outtext(data file); 

rcoord.row++;-
settextposition(rcoord.row, rcoord.col); 

-outtext("File already exits"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
_outtext("hit a key to continue"); 
while (i == 0) 

i = kbhit(); 
i = qetche () ; 
open_data_file(); 
stream= fopen(data_file, "wb"); 

} 
fclose(stream); 
stream= fopen(data_file, "wb"); 

fprintf(stream, "djr"); 
fprintf(stream, "%li ", ltime); 
fprintf(stream, "%i %i ", qate_chan_a, qate_chan_b); 
fprintf(stream, "%i %i ", point_scan_tak, staqe_step); 

.•. 

•. 
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• 

.. 

} 
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fprintf(stream, "tli tli ", shots_step, staqe_beq); 
fprintf(stream, "%i ti ti 11 , pedestal(O], pedestal[!], 

pedestal[2]); 
fprintf(stream, "%i ti ti ", reverse_flaq, multi count, 

scan); 
fprintf(stream, 11 ts", comment); 

for (i = 0; i != 4; i++) 
numwritten = fwrite(d_norm(i], sizeof(double), 

point_scan_tak, stream) ; 
fclose(stream); 

double 
double 

normtemp(8]; 
siqma(int n) 

I* 
* 
* 
* 
* 
* 
*I 

{ 

} 

This Subroutine calculates sigma for the three 
different pieces of data, channel o, channel 1, and norm. 
normtemp(O] contains the sum of channel o, and 
normtemp(O+J] contains the sum of the squares of channel 
3. normtemp ( 1] contains the sum of channel 1 and 
normtemp(2] contains the sum of norm. 

extern lonq int shots_step; 
extern double normtemp(8]; 
double normtempn; 
normtempn = normtemp[n] * normtemp[n] 1 

((double)shots~step); 
normtempn = normtemp[n+J] - normtempn; 
normtempn = normtempn 1 ((double) (shots_step- 11)); 
normtempn = sqrt(normtempn); 
return(normtempn); 

void norm(void) 

{ 
char inputs2[2]; 
char *input2: 
int triq, sresult; 
extern lonq int shots_step; 
int j, e = 0 , ddq, i; 
lonq int vector; 

unsiqned int DATA[l6]; 
char buffer[lOO]; 

;,_ < 
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extern double normtemp(8]; 
double ntemp; 

setbound(&vector); 

I* Note that there is a different subroutine to change 
* interrupt 5 for norm. nnewbound is for norm, and 
* newbound is for regular data collection. 
*I 

nnewbound(); 
inputs2(0] = •y•; 
while (iJ:1puts2(0] != 'q') { 

ndani(DATA, normtemp, &e); 
if (e == 5) { 

l*ddg=ibfind("ddg"); 
ibwrt(ddg,"tm 0 11 ,4); 
ibloc(ddg);*l 

_setvideomode(_DEFAULTMODE); 
_settextposition(10, 15); 
rcoord = _gettextposition(); 

} 

outtext("No LAM, DOG now on internal"}; 
rcoord.row++; . 
_settextposition(rcoord.row, rcoord.col): 
_outtext("hit a key to continue"); 
while (i == O) 

i = kbhit(); 
i = getche () ; 
break; 

setvideomode( DEFAULTMODE); 
:settextcolor(ecolor); 
_settextposition(10, 15); 
record= _gettextposition(); 
_outtext("hit q to quit"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col}; 

sprintf(buffer, "average of "}; 
_outtext(buffer): 
rcoord.row++: 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "Channel 0 %5.2f 11

, normtemp[O] I 
(double)shots_step); 

_outtext (buffer) ; · 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
sprintf(buffer, "Channel 1 %5.2f 11

, normtemp[1] I 
(double)shots_step); 

I~ 



_outtext(buffer); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
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sprintf(buffer, "Norm %le 11 , normtemp(2] 1 

} 

(doub1e)shots_step); 
_outtext(buffer); 
_settextposition(11, 45); 
rcoord = _gettextposition(); 
ntemp = sigma(O); 
j = sprintf(buffer, "SD of"); 
outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
j = sprintf(buffer, "%E ", ntemp); 
_outtext(buffer); 
ntemp = sigma(1); 
rcoord.row++; 
settextposition(rcoord.row, rcoord.col); 

j = sprintf(buffer, "%E ", ntemp); 
outtext(buffer); 

ntemp = sigma(2); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
j = sprintf(buffer, "%.4f ", ntemp * 100.); 
outtext(buffer); 

j = sprintf(buffer, "%% "); 
outtext(buffer); 

rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == 0) { 

} 

trig = O; 
sresult = system("mode spe com"); 
while (kbhit() == 0 && trig == O) 

trig= check(); 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 

inputs2(0] = getch(); 

} 
oldbound(&vector); 

void bound(int n) 
{ 

struct videoconfig vc; 



struct rccoord record; 
char inputs2(10]; 
char *input2; 
int trig, sresult; 
extern int low, high; 
high = 0; 
low = o: 
while (low == O) { 

_setvideomode(_DEFAULTMODE); 

} 

settextcolor(ecolor); 
:settextposition(10, 15); 
record= _qettextposition(); 
_outtext("Input Low"); 
record. row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == O) { 

} 

trig = O; 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == O) 

trig = check() ; 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 

input2 = gets(inputs2); 
low= atoi(input2); 

while (high == 0 ) { 
setvideomode( DEFAULTMODE); 

-settextcolor(ecolor); 
:settextposition(10, 15); 

_outtext("Input High"); 
rcoord.row++; 
_settextposition(rcoord.row, rcoord.col); 
if (trig_check == 0) { 

} 

trig = o: 
sresult = system("mode spe com"); 
while (kbhit() == o && trig == 0) 

trig= check(); 
ibloc(ddg); 
sresult = system("mode spe auto"); 
if (trig == -1) 

longjmp(mark, -1); 
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} 

} 

input2 = qets(inputs2); 
hiqh = atoi(input2); 
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