
'

. l

LBL-30000

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

· Materials & Chemical
Sciences Division

Vibrational Relaxation in Liquids: Comparisons
between Gas Phase and Liquid Phase Theories

D.J. Russell
(Ph.D. Thesis)

November 1990

Prepared for the U.S. Department of Energy under Contract Number DE·AC03· 76SF0009&.

"'hCJ
o r
-s) 0

n D
rr) ~ z

1-'

~ !lJ n
ro&o
tD tD "0
X"Ul-<
Ul

IJ:1
1-'

0.
1.0 .
(Jl
!So

r
crn
-s 0
!lJ"O
"1'<
'<: . m

r
:::0
r
I

t•J
!So
!So
!So
!So

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain colTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Vibrational Relaxation in Liquids:
Comparisons between Gas Phase and Liquid Phase Theories

Daniel John Russell

Ph.D. Thesis

Department of Chemistry
University of California

and

Chemical Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

December 1990

This work was supported by the National Science Foundation,
the San Diego SupercOflllUter Center, and the U.S. Department

of Energy, Office of Basic Sciences, Chemical Sciences
Division under Contract No. DE-AC03-76SF00098 • . ,

..

Vibrational Relaxation in Liquids:

Comparisons between Gas Phase and Liquid Phase Theories

By

Daniel John Russell

Abstract

1

The vibrational relaxation of iodine in liquid xenon was

studied to understand what processes are important in

determining the density dependence of the vibrational

relaxation. This examination will be accomplished by taking

simple models and comparing the results to both experimental

outcomes and the predictions of molecular dynamics

simulations. The vibration relaxation of·iodine is extremely

sensitive to the iodine potential. The anharmonici ty of

iodine causes vibrational relaxation to be much faster at the

top of the iodine well compared to the vibrational relaxation

at the bottom. For this reason, models that use theories such

as Schwartz, Slawsky, and Herzfeld equation to describe

vibrational relaxation can not be expected to describe the

relaxation in the top of the iodine well. Models that

incorporate the anharmonicity by actually calculating the

probability of · relaxation vs. vibrational level ·are

qtialitatively insensitive to the actual potential used and

reproduce the actual experimental results faithfully.

A number of models are used in order to test the ability

of the Isolated Binary Collision theory's ability to predict

the density dependence of the vibrational relaxation of iodine

2

in liqUid xenon. The models tested vary from the simplest

incorporating only the fact that the solvent occupies volume

to models that incorporate the short range structure of the

liquid in the radial distribution function. None of the

models tested do a good job of predicting. the actual

relaxation rate for a given density. This may be ·due to a

possible error in the choice of potentials to model the

system. The models tested do a reasonable job predicting the

density_ dependence given the relaxation rate at one' density.

The reason for this discrepancy between the error in

predicting the actual rate vs the positive results in

predicting density dependencies suggests that the rate depends

strongly on potentials while density dependence is determined

by the st~cture of the liquid, which for high densities is

only sensitive to the size of the solvent.

i

Acknowledgements

The time I have spent at Berkeley has been filled with

many knowledgeable and friendly people. Without their help

and friendship, life as a graduate student would have been

brutish .and long. I can't thank everyone here, so I will

thank the people who h~ve been most essential to my happiness

and graduate training.

I would like to thank my parents, who have had the

strongest influence oil my life. My brother Gerard has also

helped me in eve~ way, from moral to financial support when

needed. Without my family I probably would have not gone to

graduate school.

Life is not all books and experiments. John and Tina

have not let me lose contact with my friends in Chicago, and

are always wil.ling to listen to my complaints and make

holidays happy by sending goofy packages.

My life has been very happy for the last few years due to

Eva. She provided me with a constant link to the non-

scientific world and has given me much joy and happiness with

her understanding and ability to ignore my argumentativeness.

The days have gone by much faster since I met Eva. I also

want to thank Justine and Tom, who make every Friday a rousing

political debate, and Vince and Susan who have given me some

mini vacations, and tried to teach me bridge.

The Harris group has been a, very good place to learn and

work. I have learned ~ lot from Keenan Brown, 'who through

ii

intuition and mathematical ability has always been helpful,

even when I have bothered him at his new job.. Mark Paige

taught me an experimental style that I think will be useful in

any problem in life. Dave Smith was also willing to discuss

this work at any time and_ was quite. helpful in my work

generally and in particular the papers we worked on together.

Karen Schult~ has always been willing to read something for me

and give good advice on the many mistakes I make

scientifically or otherwise. I also appreciate my office

mates over the years for the good working and clothes changing

environment they provided. I would also like to thank Walter,

Eric, Jennizer, Jason, Steve, David, Jin, Robert, and Dee for

helping me make Roma's rich.

Of course if I wanted to get anything done here it would

have been impossible without Vijaya Narasimhan. Vijaya knew

all the ins and outs of dealing with the bureaucratic monolith

of Berkeley and was also a friend.

Finally I would like to thank Charles Harris for

providing intellectual and financial support for my graduate

training. I would not have studied any of the models

discussed here without his suggestions.

supported by the National Science

Finally this work was

Foundation. The

calculations were performed at the San Diego Supercomputer

Center. I would also like to acknowledge the u.s. Department

of Energy, Office of Basic Scienc~s, Chemical Sciences

Division under Contrpct No. DE-AC03-76SF00098, for some

iii

specialized equipment used in this research.

Table of Contents

I. Introduction

II. Review of Isolated Binary Collision Theory and

Iodine Geminate Recombination •

A.

B.

c.

Introduction

Iodine Recombination

Isol.ated Binary Collision Theory

. . . .

III. Application of Isolated Binary Collision Theory to

the Vibrational Relaxation of Iodine in Liquid

Xenon
A. Calculation of Relaxation Probabilities using

SSH.

B. Taking account of anharmonicity. . . .
c. Calculations of the Density Dependence.

IV. Summary and Conclusions

References • • • • • • • • •

v. APPENDIX . . 0
A. PROGRAM LISTING I2IBC
B. PROGRAM LISTING IBCENE
c. PROGRAM LISTING IIBC
D. PROGRAM LISTING MAIN
E. PROGRAM LISTING MULTI

iv

1

2

2

3

8

16

16

24

40

76

80

83

83

101

105

127

162

v

F. PROGRAM LISTING CAMAC 170

G. PROGRAM LISTING CONST 172

... H. PROGRAM LISTING ERROR . 178

I. PROGRAM LISTING PLOTS ' . . 181

J. PROGRAM LISTING COMM 188

K. PROGRAM LISTING DATA 191

L. PROGRAM LISTING LOOK 195
I

M. PROGRAM LISTING NICE 206

N. PROGRAM LISTING SAVE 227

1

I. Introduction

Chemistry has been divided into many subfields of

interest from biochemistry to physical chemistry. Although

the specific areas of interest are different, the bond between

all of the subfields is the direct or indirect study of

chemical reactions. Physical chemistry is more the study of

how or why certain reactions occur, and not the inventory of

the reactions. Since the advent of spectroscopy there have

been many advances in the realization of many static

properties of molecules, from the electronic states it

possesses, to the relative coordinates of the nuclei. This

allows one to predict the products of reactions using

thermodynamics. However this does not provide enough

information at this time to predict reaction rates or how to

control which products are produced.

The introduction of lasers that produced very short laser

pulses allowed physical chemists to trace the actual reaction

and through what states the molecule went. With the

information of how the molecule moves along a reaction

coordinate it may be possible to change the final outcome of

the reaction by perturbing the path of the wave packet or

which potential a wave packet is on. This will only be

possible, if it is possible at all, by investigating the time

2

scale of these processes and understanding the mechanisms that

determine the pathways.

II. Review of Isolated Binary Collision Theory and

Iodine Geminate Recombination

A. Introduction

The photodissociation and geminate recombination of

iodine in a liquid has been studied since Rabinowitch and Wood

in 1936. 1•2•3 In the photodissociation of iodine the molecule

is electronically excited from the ground state to mainly the

bound B state. The molecule then collisionally

predissociates, at this poi~t the atoms may lose energy and

/ recombine geminately or they may diffuse away. After geminate

recombination, vibrational relaxation returns the molecule to

it's initial. equilibrium state. This simple reaction

incorporates three relatively fast processes that are not well

understood. The three processes are curve crossing, geminate

recombination, and vibrational relaxation. These processes

are not well understood for a number of reasons. Because of

the fast time scale for geminate recombination, experiments

could not be performed until laser technology had produced

lasers which probed this time scale with picosecond or shorter

pulses. Secondly only with the advent of supercomputers,

could.Reople model liquids on the short time,scales that were

3

needed to describe geminate recombination. Before

supercomputers most people used hydrodynamic models which

treat the liquid as a continuum. However, on very short time

scales a liquid does not behave as a continuum and the

frequency dependent behavior of the liquid becomes important.

This would make a big difference in predicting · geminate

recombination rates. The process of curve crossing presents

the difficult problem of trying to describe. a quantum system

coupled, sometimes strongly, to a bath with many degrees of

freedom. Also the curve crossing process can vary by an o_rder

of magnitude in it's rate in the same molecule depending on

the states coupled. The problem of vibrational relaxation on

the other hand has been studied for many years. The systems

studied were usually polyatomics in polyatomic solvents using

ultr9sound. This allowed people to make qualitative

validations of their expectations, but predictions were out of

the question due to the complexity of the systems. Only

recently have simpler molecules in simple solvents been

studied showing that the time scale for relaxation varies over

an enormous range. The question of simple models for iodine's

vibrational relaxation is the main topic of the following

text.

B. Iodine Recombination

The study of geminate recombination yields of iodine

4

was begun in the 1950's and 1960's by Noyes and co-workers. 4

'

The attempts to model the geminate recombination yields as two

iodine atoms in a continuum liquid,, using Brownian motion

models or hydrodynamic systems, were not very successful. The

first time dependent studies of the geminate recombination of

iodine in a liquid., CC14 were performed by Eisenthal.J They
I

excited the iodine with 532 nm light to the bound B state and

watched the transient bleach decay in 150 ps approximately.

The data were interpreted in terms of the dissociated iodine

atoms diffusing in the solvent and then geminately

recombining. curve crossing from the excited electronic state

to the ground state and vibrational relaxation were considered

to be very ... fast. This interpretation was questioned when
'

early molecular dynamics results predicted that recombination

did not behave like a diffusional process and should be very

fast, less than 5 ps. rather than the 150 ps proposed. 6• 7

Nesbitt and Hynes advanced that the 150 ps. time scale was not

geminate recombination but the time scale for vibrational

relaxation of the newly recombined iodine. 8 They based there

proposal on the calculation that for a bleach at 532 nm., as

Eisenthal had performed, that. the recombined iodine molecules

would absorb light at 532 only after the iodine molecule had

vibrationally relaxed. Secondly Nesbitt and Hynes made an

order of magnitude calculation of what the time scale of the

vibrational relaxation should be, they found that vibrational

relaxation could be the time scale associated with the bleach.

•

5

To perform their calculation of the vibrational relaxation

rate, the.assumptions of the Isolated Binary Collision theory

were employed. Using the calculation of vibrational

relaxation rates and Frank Condon factors, Nesbitt and Hynes

predicted that probing at longer wavelengths should probe

higher vibrational states, and if the 150 ps. time scale was

due to vibrational relaxation, the transient absorptions at

longer wavelength would appear sooner and decay faster.

The prediction of fast geminate recombination is

consistent with experiments performed by Smith, which are most

simply interpreted as a recombination time of less than 1 ps. 9-

The prediction of slow vibrational relaxation was confirmed by

Harris et al, 10•11 •12 however a clear understanding of

vibrational relaxation was not forthcoming. No clear trends

could be observed that would predict vibr~tional relaxation

rates. The solvents studied at the time were molecular

solvents, and there were three possible contributions to the

relaxation, vibration to translation, vibration to vibration,

and vibration to rotation. Nesbitt and Hynes had to invoke a

large rate of iodine vibrational energy relaxing into the

vibrational modes of CCL4 to explain the vibrational

relaxation times of iodine in CC14 • 8 Justifying this by noting

the lowest frequency vibrational mode for CC1
4

is 217 cm· 1 and

close enough to iodine's 214 cm· 1 vibrational mode to couple

significantly. Unfortunately this does not seem to be

emulated in other chlorinated solvents.

6

the lowest vibrational frequencies are 261 cm" 1 and 282 cm· 1

yet CC14 has the slowest relaxation time while the vibrational

frequency is closest, and Ch2Cl2 is the fastest where

vibrational coupling arguments indicate it should be ·the

slowest. In order- to come to a firmer understanding of

vibrational energy transfer this group undertook a three phase

study of the relaxation of iodine in liquid xenon, a simple

monatomic solvent. A simple monatomic solvent was chosen to

eliminate any difficulties due to vibration to vibration.

coupling. The first phase was the actual experiment, 13 for

which Nesbitt and Hynes had predicted approximately one

nanosecond for vibrational relaxation due to the lack of

vibrational modes in the solvent to couple to. The second.:_

phase was a classical molecular dynamics simulation of iodine

photodissociating and vibrationally relaxing in liquid

xenon. 14 And finally the application of simpler models to

try and understand the vibrational relaxation process.

The experimental study of iodine in liquid xenon had been

reported by Kelly, 15 but the results were on the same time

scale as relaxation in CCL4 • At the time the results were

reported it was not surprising, considering the then current

interpretation that this was the recombination time. However,

after Nesbitt and Hynes' interpretation became the consensus,

these results were considered too fast to be vibrational
. -

relaxation and therefore surprising. Paige et al reexamined

the iodine photodissociation and recombination in liquid xenon

. ..

..

7

with a laser system that had lower noise and better time

resolution, and found the vibrational relaxation to be on the

time scale of approximately 5 ns. This was the same order of

magnitude as the predictions of Nesbitt and Hynes. 13 The

molecular dynamics simulations however gave a time scale of

relaxation more in line with· Kelly's experimental

observations, if interpreted as vibrational relaxation.

However the molecular dynamics simulations are sensitive to

the interaction potential used for iodine and xenon. If the

slope of the potential between iodine and xenon is in reality

smaller than the slope of the potential in the simulation the

results would be comparable to experiments. This problem can

also be seen by the fact that real Xe does not solidify until

p* = .94 even though a Lennard-Jones system solidifies at p*

= . 9 Another problem with the molecular dynamics being.

compared to the experiment is that the system studied by

molecular dynamics is not at constant temperature, being a

finite volume with periodic boundary conditions, and the

temperature rises as the iodine molecule vibrationally·

relaxes. The temperature of the sistem has been shown to be

a sensitive variable in vibrational relaxation. In order to

test a less computationally intensive model a generalized

~angevin.Equation was also used to model the relaxation, and

performed quite well in modeling the classical simulation of

the relaxation. 16• 17

Because of the problems described above with regards to

8

temperature, all the implementations of the IBC models

discussed here will be compared primarily with the molecular

dynamics simulations and only secondarily with the actual

experiments.

c. Isolated Binary Collision Theory

It has been 30 years since the Isolated Binary Collision

(IBC) theory was proposed to describe vibrational relaxation

in liquid~. 18• 19 Ultrasonic absorption experiments on

various liquids were performed and the results were related to

the vibrational relaxation of an oscillator. Experimentally

it was found in many cases that the relaxation rate increased

linearly with density at low density. As the density

increased how~ver, the rate increased -nonlinearly with

density. Litovitz believed that the results could be

explained by making two assumptions. The first assumption was

that the relaxation could be explained by the gas phase

relaxation equation

K (p , T) ij = P (T) ij * Z (p , T) (1)

Where Kij is the rate of relaxation from vibrational state i

to j. P.. is the gas phase probability of changing from
I J

vibrational state i to j given a collision with one molecule

averaged over oscillator phase, impact parameter and a Maxwell

Boltzmann distribution of velocity. Z · is the collision

frequency. Notice that Pij is only temperature dependent and

..
--'

9

Z is density and temperature dependent. The second assumption

Litovitz made was that z is not given by the ideal gas

collision rate in the dense phase, but that the volume the

molecules take up must be taken into account in calculating

the collision -rate. An example of one of the collision rate

formulas used at the time is

v Z=--- (2)

Note that this is the average velocity (V) divided by the mean

free path of a molecule in a moving wall cage. One problem

with this formulation is that the mean ~ree path should be

proportional to p _, as p 0, but where this transition occurs

is not defined. 18

According to early IBC proponents one only had to

correctly calculate the collision frequency in ·order to

predict the density dependence of vibrational relaxation.

However there .were more assumptions than Litovitz and

Madigosky stated in the original papers. Fixman and Zwanzig

objected that IBC neglected the constant collective random

force on the vibration, the possibility that in the liquid the

collisions may not be independent due to a non random phase of

the oscillator during collisions, and that collisions may
\

overlap in time. 2°,21 Fixman modeled the collective random

force due to the solvent as a force with a white noise

frequency spectrum. His calculation showed that the white_

noise random force is very efficient at relaxing the

10

oscillator. However the white noise random force

overestimates the high frequency random forces in a liquid, as

Fixman noted, and the model's criticism of IBC was rebuffed by

Herzfeld. 22 Zwanzig approached the problem from a time

correlation function perspective where the rate should be

proportional to

f d t . exp (i (A) t) < F (t) F (0) > (3)

where ~·is the frequency of the oscillator and F(t) is the

total force on the oscillator at time t. _Zwanzig then assumed

that. the force on the oscillator could be decomposed into

isolated events at some time tk.

<F(t) F(t+'t)> = LL <f(t-tJc) f(t+'t-tJ>+
j bj

:E <f(t-tlc) f(t+'t-tlc) >
k

Where f (t-tk) is the force during the kth event.

(4)

(5)

Zwanzig

defined the second part of the equation as the binary part of

the force on the oscillator. He found that the binary part

dominates relaxation when

(6)

where ~ is the oscillator frequency and rc is the time between

events. Herzfeld convinced Zwanzig that this was consistent

with IBC if rc is the time between effective events.n

11

According to Herzfeld, the molecules that were studied were

high frequency oscillators and relaxed very slowly, therefore

the time between effective events was very long.

agreed that IBC was internally consistent. 24

Zwanzig

IBC remained stable until 1971, when Davis and Oppenheim

used a master equation approach to describe vibrational

relaxation in a liquid in the w.eak coupling limit. 25 •26

Again their theory, as in earlier ones, applies only to high
'

frequency oscillators. Even though they assumed weak

coupling, they pointed out that using weak coupling theories

may not be appropriate, because even though relaxation is

slow, the forces that cause the relaxation are strong. They

derived an equation that was forced into a binary form and

found that

K1 = (P 1) gl (R•)
Kg Pg gg(R•)

(7)

KL is the .rate for the liquid where the ij subscript has been

dropped, K
9

is the gas rate, pl is the liquid density, p 9 is

the gas density, gl (R*) is the radial distribution function for

that liquid density evaluated at some R*, and g
9

(R*) is the gas

radial distribution function evaluated at R*. R* is the

turning point for the most effective collisions and it is

assumed that this region is small. This is only valid for

sp~erical molecules with small amplitude vibrations. Equation

7 could have been derived by incorporating into IBC, Einwohner

and Alders' models for collision rates in a liquid. 27 A very

12

intuitive development of this is given by Delalande and

Gale. 28 Notice that unlike the earlier equation for the rate

by Litovitz, this incorporates the structure of the liquid.

At this point experimentalists had started to look at

vibrational relaxation with more specific techniques than

ultrasound. Unlike the ultrasound studies, the use of lasers

allowed experimentalists to study the relaxation of diatomics.

The first experiments by Calaway and Ewing of the vibration to

translat"ion relaxation of N2 in liquid N2 served not only as

a simple system to test the above ideas but showed the

enormous range over which vibrational relaxation takes

place. 29
•
30

After ·1984 IBC was applied to . the relaxation of ~many

simple molecules, however most of the experiments were

vibration to vibration relaxations and not as simple to model

as vibration to translation relaxations. In many experiments,

IBC was used to explain the data and the basic theory was
/

usually not questioned, only the effect of anisotropy, how

hard or soft potentials affected the relaxation, how to

calculate g(R*) and what R* to use. One major change was a

paper by Chesney and Weis31 studying the density dependence

of relaxation times. They performed a molecular dynamics
. .

simulation of a Lennard-Jones fluid and calculated two force

autocorrelations functions as a function of density

F(t) = <,E f(rb(t)) L f(rc(O))> (8)
b c

Fb(t) = <:E f(rb(t)) .f(rb(O))>
b

13

(9)

Where F(t) is the total force autocorrelation, Fb(t) is the

binary force autocorrelation and f(t) is the coupling from the

Lennard-Janes ~iquid to the oscillator at time t. From these

correlation functions and the Golden Rule they calculated the

relaxation rate

(10)

Basically the component of the force autocorrelation spectrum

at the oscillator frequency determines relaxation. They found

that the binary force autocorrelation function frequency

spectrum was very similar to the total force autocorrelation

function frequency spectrum, all the way to frequencies of ~

10 cm· 1 • This would extend the validity of IBC calculations

to near resonant vibration to vibration relaxation and perhaps

to dephasing.

The most recent theoretical consideration of IBC was by

Dardi and Cukier. 32,33,34 They calculated the relaxation of

a dilute diatomic in a structureless fluid and discuss

explicitly all approximations in their calculations and an rBc

approach. They examine interference effects as other authors

have and assumed again that for high frequency oscillations

this is not a problem. Another assumption is that dynamically

correlated collisions are not important. Dynamic correlation's

are the correlations between successive elastic collisions.

14 -

The nondynamic effects of correlated elastic collisions should

be taken into account by the radial distribution function. No

one has examined the effects of dynamic correlations on

vibrational relaxation, although by it's very definition it

shouldn't be important, since they are elastic collisions and

may only contribute to a change in the equilibrium vibrational

frequency. Another assumption implicit in all IBC models is

that vibrational relaxation is a Markov process. Finally· they

propose that a weak coupling assumption can be made, unlike

Davis and Oppenheim. Gas phase calculations have shown the

weak coupling approximation to work well, if the inelastic

cross section is much smaller than the elastic cross section,

and the elastic and inelastic potentials are ·chosen

correctly. 35 •36 Cukier et al 's final paper attacks the

scaling of vibrati.onal relaxation by the radial distribution

function. They calculate the relaxation of an oscillator in

a dilute gas using their formalism and show that the result is

the standard dilute gas rate constant. They perform the same

calculations for a liquid and find that to do the correct

averaging the R* of g(R*) must be chosen so large that g(R*) ~

1. They believe that there is no basis for using the ratio of

gl (R*) to g
9

(R*) to explain the nonlinearity of relaxation vs.

density. One possible criticism of their calculation is that

they must assign a transition probability R, as a function of

P(momentum) and b(impact_ parameter), R(P,b). Unfortunately

they approximate R(P,b) as a constant in b up to b~x' where it

15

drops to zero. This functional form -is highly unlikely for

vibrational relaxation and most previous authors have assumed

that R{p,b) is sharply peaked at b = o. It is generally

accepted that hard direct collisions are responsible for the

majority of relaxation.

At this point _in time Isolated Binary Collision theory is

still in use even though the attack on the premise continues.

Most of the more current studies are not on simple systems

although Knudtson et al and Chesney have both studied HCl in

liquid Xe, and Chesney has had good results interpreting the

data in terms of the Isolated Binary Collision theory. 37•38

For this reason and the fact that the experimental and

molecular dynamics· data was available for iodine relaxing in

xenon, the theory was put to a quantitative test, in order to
-

find out if it would apply to such a low frequency oscillator

{214 cm- 1) and if it could ·reproduce a system where the

potential was known.

16

III. Application of Isolated Binary' Collision Theory to the

Vibrational Relaxation of Iodine in Liquid Xenon

A. Calculation of Relaxation Probabilities using SSH.

The first calculation of Pij performed is one of the

simplest approximations that could be made. The Schwartz,

Slawsky, and Herzfeld (SSH) theory is the quantum mechanical

successor to Landau theory. 39•40 The theoretical derivation

has been performed by a number of people to different degrees

of exactness. 41 •42 •43 The theory assumes an exponential

potential, a harmonic oscillator and spherical symmetry. A

good discussion of the calculation of relaxation probabilities

can be found in Lambert's book or the review paper by Rapp and

Kassal. 44 •45 The calculation using SSH was performed more as

an exercise to prove that it would not work and to check the

results given by Kelly et al. Kelly et al proposed that SSH

theory reproduced their experimental results quite well for

the vibrational relaxation of iodine in weakly interacting

sol vents such as CFC13 , c 2cl3F 3 and CC14 • 46 This was quite

surprising since a theory for a harmonic oscillator should not

be accurate for iodine, which is fairly anharmonic especially

high in th~ vibrational well. The calculation used the same

formulas as Kelly et al, but the implementation must have been

different due to the different conclusions reached. The

calculation of Pij was performed as follows.

..

(n+l) (n+2) ... (n+j)

(j I) 2

17

(11)

The matrix must obey two constraints, population conservation

_and the Onsager equations of detailed balance that define the

temperature of the system.

1 = E PiJ for all i
j

(12)

(13)

where E;j is the energy of state i minus the energy of state

j.

The first test was to see if Kelly's results could be

reproduced. Kelly stated that 1/P10 = 550 was a good fit for
. ~

their experimental data for CC14 and was very close to the

value determined by ultrasound data. In this group Harris et

al had performed basically the same experiment with a shorter -

pulse laser with lower noise, and using the Frank Condon

principle inverted the data to get the vibrational population

as a function of time (see figure 1). 12 In order to compare to

the experimental data the above equations were implemented in

the following way. The iodine well was assumed to consist of

58 harmonic vibrational levels with 214 cm" 1 frequency. Using

l/P10 = 550, the half above the diagonal of the matrix was

calculated using equation 11. Next the half below the

diagonal of the matrix was calculated using · equation 13-.

Finally the diagonal was calculated using ~quation 12. This

18

gave the probability matrix, one could now apply this matrix·

to an initial vector and find out the time dependence of the

vibrational relaxation. Only an initial population vector is

now needed. At the time this work was originally completed it

was thought that the iodine only geminately recombined after

predissociation from the bound B state occurred and only then

could vibrational relaxation begin. Predissociation was

thought to take 15 ps., and the calculation was perfor;med that

way. This was implemented by having vibrational state 58 of

the art'ificially harmonic iodine molecule populated with a

time constant of 15 ps. Then a time step is taken every .1 ps

(that is a collision rate.of 10/ps was assumed, as in Kelly et

al 's paper) and the transition matrix is applied and more

population is put in state 58 to simulate the time· for

predissociation. The complete relaxation is shown in figure

2 as a three dimensional plot of the population as function of

energy and time.

Since that time work by Smith et al has shown that the

predissociation takes place in less than 1 ps. 9 The same

calculation is repeated as in figure 3 except that the

recombination time is 1 ps instead of 15 ps. This changes the

early time distribution of the relaxation but does not change

the conclusion that SSH is not a cor~ect theory for predicting

the relaxation of iodine. There are two possible reasons for

the discrepancy. The real iodine relaxation occurs much

faster in the high energy part of the well. The SSH model does

-"ii cr --en
c:
G,)

0
c:
.2 -E
~
Q.

~

4000 6COO
Vi brat ionol Energy (cm-1)

~._~~----~~50

~e\O~

\~~'
-{.,~e

Figure 1 Experimental results of I 2 in CC14

19

20

0 cm-1

50 ps.

time

Figure.2 SSH Calculation with 15 ps. predis'Sociation.

21

0 cm-1

energy 12000
50 ps.

time

Figure 3 SSH Calculation with 1 ps. predissociation.

22

not reproduce this. This may be due to a relaxation channel·

that is open in the higher part of the well that is not open

in the lower part of the well. For example perhaps the iodine

molecule couples better to the vibrational and rotational

modes of CC14 in the upper part of the well. This discrepancy

may also be due to the fact that the SSH theory assumes a

harmonic oscillator and iodine is certainly not that. The

first poss~bility can be tested by seeing if SSH theory can

predict the vibrational relaxation of iodine in liquid xenon

modeled by Brown et al. 14 In this system there are no

vibrational modes for the iodine to couple to. There are two

parameters to fit, the collision frequency which is about 5

collisionsjps __ for iodine in liquid xenon at 1. 8 gjcm3 , 14 and

the value for P10 • In figure 4 a value of 1/735 was us~d for

P10 • ~lso because of the way Brown et al created their plots

of time dependence it is-assumed that the recombination in

this simulation is immediate or .1 ps. In Brown et al's plots

they plotted the average vibrational energy loss where all

trajectories started at 2000 cm"1 , below the dissociation

limit. In other words there is no recombination dynamics in

those plots. This was not to be- a test of quantitative

predictions but a test of qualitative usefulness. Figure 4

shows the same problems in fitting the vibrational relaxation

as figure 2, and 3. If a value of P10 is chosen to simulate
-

the relaxation in the lower part of the vibrational well, the

upper part is too slow, and if a P10 is picked that gives fast

Molecular Dynamics vs. SSH P10=1/735

o~------~------~--------~-------r------~~----~

Ul
L
(!)

- 20QO

-4000

fJ- 6000

E
::J
c
(!)_ 8000

>
(1J

~

-10000

- 12000

-14000 '---------~--------1.----.._ ___ __,_ _____ .._ __ ___.
0 200 400 600 BOO 1000 1200

Picoseconds

Figure 4 Molecular Dynamics (1.8 grnjcc3) vs. SSH

23

24

relaxation at the top of the well the relaxation predicted by

SSH theory is much too fast. This is because SSH theory

implemented this way gives very exponential decays and the

decay produced from molecular dynamics is not exponential. In

figure 5 an exponential fit to the SSH data from figure 2 is

performed. It does a very good job. Surprisingly the

Molecular Dynamics data cari also be fit with an exponential

for the last 4000 cm·1 • This may be due to the relative

harmonicity. in the lower part of the well or the relative

insensitivity of fitting the data.

In conclusion the application of SSH theory to the

vibrational relaxation of iodine from the top of the well to

the bottom is inappropriate. Iodine is a very anharmonic

oscillator and the Pij in _the upper part of the well should be

/ much larger than the Pij in the lower part of the well. This

can be seen by examining figure 7 which is the average energy

loss from each state i for SSH theory. The average energy

loss is linear as a function of vibration level. Note also

that the large increase of energy loss at the vibrational

energy ::::: 12000 cm" 1 is an artifact of the calculation. The

calculation did not allow for the upward transitions to

dissociative states above the dissociation limit, and therefor

the highest vibrational level can only relax or remain at the

same energy.

B. Taking account_of anharmonicity.

SSH (o) P10 vs Fit(-) of Exponential
0~--,---~----T---~--~----~--~----r---~--~

-4{)00

01
~-6000

.!l
E
:I
c:
>
~-8000

-10000

-12000

-1~00~--~--~----~--~--~--~----~--~--~--~

0 50 1 00 150 200 250 300 350 400 450 500

Picoseconds

25

26

Mofecular Dynamics (o) vs ,Fit of Exponential
-4000

-5000
Cl

-6000

-7000
(IJ ...
Gl .D-8000
E
::I
c:
~-9000
c
~·

-10000

-11000

-12000

-13000~----~------~------~------~------~----~

a 200 400 600 800 1000 1200

Picoseconds

Figure 6 Molecular Dynamics fit to 247 ps. decay.

27

•

SSH Theory P10=1/550

- 0
al ...
"' .0
E
:I
c: -5
" > c
~ -al
al -10 0

...J

>.
Cl ...
" c:

U.l -15
" Cl
c ...
Ill
> < -20

-25·~----~----~------~----~----~------._----~
0 2000 4000 6000 8000 10000 12000 14000

Vibrational Energy (Wovenumbers)

Figure 7 Average energy loss per vibrational level

28

The SSH calculation failed to model the vibrational

relaxation of iodine even qualitatively, due to the neglect of

anharmonicity. In this section a discussion of a simple model

which includes anharmonicity is discussed. The calculation of

Pij performed for iodine and xenon is a one dimensional

classical calculation of energy loss. The system can be

treated classically because the de Broglie wavelength of both

xenon a·nd iodine is smaller than the length scale of

interaction. Calculations were.done in one dimension for two

reasons. If three dimensional calculations were required the

calculation w.ould have become more time consuming and more

complex. Secor:_dly studies have shown that the one dimensional

calculation is a reasonable substitute for three dimensions.if

the constraints described in paper by McKenzie are

realized. 47

The calculation of Pij follows closely the calculations

of Nesbitt and Hynes. There are changes from the potentials

that they use in order to check how sensitive the calculations

are to interaction,potentials, and to compare more closely to

the molecular dynamics simulations of Brown et al. The

iodine-iodine potential used is the RKR surface of LeRoy.

This potential is slightly steeper in the upper part of the

well than the morse potential used by Nesbitt and Hynes. The

potential be~ween iodine and xenon is a Weeks Chandler

Anderson {WCA) decomposition of a Lennard-Jones potential. 48

•

29

Potential Form

WCA

One D Calculation I-Xe

a = 3.94 A

I-I RKR

--- --------------.---- -----------------------

Molecular Dynamics

Calculation 14

Table 1

Xe-I

I-I

Lennard-Janes

a_.-= 3.94 A

c = • 8 4 em "1 49

RKR

30

Note that the WCA decomposition was originally intended to

explain liquid structures for reduced densities greater that

0. 6 Even though most of the comparisons to molecular

dynamics will be in this range, WCA was not chosen for this

reason. The WCA decomposition was chosen for three reasons.

When a gas liquifies, energy is released, the heat of

vapor~zation, due to the solvent atoms spending most.of their

time in· the bottom of the well where the potential is

repulsive. The attractive part of the potential is defined as.

the part of the potential where the· accelerations are

negative. Note that in the Lennard-Janes potential, the

potential energy may be negative for r < a 2116 , but the

accelerations are not negative. Since the liquid samples the

attractive part of the potential, but this part of the

potential does not contribute strongly to relaxation, it was

thought that the IBC simulation would be more realistic if it

also did not sample that part of the potential. The turning

point in the gas phase will also be on average at a smaller

radius than in the liquid due to the heat of vaporization,

however the one D model's turning point should be comparable

tq the molecular dynamics simulation due to the use of the WCA

potential. Secondly not having an attractive section of the

potential makes the integration of the trajectory much quicker

since there is less distance to integrate over and there is no

possibility of forming a long lived complex. Thirdly the

31

molecular dynamics trajectory simulation that the trajectories

where

V(r) =0. where r>rc

(.!)
r =2 6 o c

(14)

would be compared to used a Lennard-Jones potential and the

WCA decomposition is the closest approximation to the Lennard-

Jones potential within the above constraints. This potential

is steeper than the exponential potential used by Nesbitt and

Hynes.

A one dimensional trajectory is calculated where the

xenon collides with the iodine collinearly, this is averaged

100 times over iodine's vibrational phase at 15 different

velocities chosen from a Maxwell distribution at 300 K. This

is done for 82 vibrational levels of the RKR potential. The

higher levels where dissociation is significant, were not

studied because the purpose of the calculation was to try and

understand the slow vibrational relaxation and not the fast

recombination dynamics.

The actual code used to calculate the trajectories are

very similar to Brown's code (see program listing I2IBC).

Beeman's method was used for the integrator. 50 This was the

same integrator used in/the •olecular dynamics simulations of

Brown. This is a second order integrator. For the one

dimensional trajectories a time step of .1 fs was used. This

is a smaller time step than used in the molecular dynamics

32

simulations. This was due to the fact that at low vibrational

energies, iodine lost very little enerqy and- the energy

conservation should be at least an order of magnitude better

than the enerqy lost. The code was run on a Cray X-MP at the

University of San Diego Supercomputer Center. Since there

were only three bodies interacting in this model the code

would not take advantage of the speed gains from vectorization

without modification. This was accomplished by running 15

trajectories simultaneously, which could be written as vector

code with vectors long enough to vectorize efficiently.

The trajectories show qualitatively what you would expect

keeping in mind iodine's anharmonicity. Vibrational energy

transfer increases non linearly as a function of v, the

.vibrational energy quantum number (see figure 8). This is at

variance to Landau Teller· theory, which predicts a linear

increase in v, and the SSH results which show a 1 inear

increase as a function of v. Of course Landau Teller theory

is based on a harmonic . oscillator and iodine is most

definitely not a harmonic oscillator. The shape of the curve

is qualitatively the same as that which Nesbitt and Hynes

found and even follows their power law dependence (see figure

9). Nesbitt and Hynes found that

ln[w~;)] vs ln[v] (15)

is linear with a slope of 4.3 • The results for the WCA

potential are also linear for the above function, although the

33

One 0 Calculation
20r-----~~----~------~-------r------~------~

Or------------------
-20 -Ill ...

~
.c
E -40
~
c:
~
> c • -60 -Ill
Ill
0

....J

-80

-100

-120~------~------~------~------~------~----~
0 2000 4<JOO 6000 8000 10000 12000

Vibrational Energy (wavenumber!)

Figure a One o average energy losses vs vibrational energy.

34

Power Lew fit from v=20 ta v=82, slope 3.9

a

-1

- -2 :>
J:

' l.JJ
1:1
I - -3 c

-4

-5

-6~--~----~----~----~----~----~--~~--~----~
2.8 3.2 3.4 3.6 3.8 4.2 4.4 4.6

In v

Fiqure 9 Power Law of Average Energy Loss

35

slope was only 3.9. This is probably due to the steeper

interaction potential between iodine and xenon in this study.

Nesbitt and Hynes studied the dependence of equation 15 as a

function of the steepness of the interaction potential. They

found that the slope of the above equation decreased as a

function of increasing interaction. Most interesting is that

the current study follows the same power law even though the

interaction ,potential is a completely different functional

form. This seems to indicate that the most important physical

aspects of vibrational relaxation fo+ this system are

explained by Nesbitt and Hynes 1 s hard sphere model

description. They assumed that since the iodine molecule in

the upper part of the well spends most of its 1 time at the

outer turning point, where the potential is flat, the dynamics

11 ought to resemble unbound particles 11
, and therefore can be

approximated in the hard sphere impulsive limit. The second

important consideration in their model is which parts of the

oscillator phase may be accessed by the colliding ?Cenon.

Using only these two assumptions they were able to reproduce

their results for an exponential interaction with a very steep

potential. The phase of the oscillator that is sampled in·

their model is determined by the oscillator potential, which

is approximately the same for both studies, and the relative

speed of the' iodine and xenon, which is determined by the

temperature, which is the same for both studies. The dynamics

of collision are not exactly the same, due to the different

36

interaction potentials, however the slope of the potential

seems to determine the slope of the power law dependence and

not the functional form.

Given the similarity between the results of the two

models, Nesbitt and Hynes and this calculation, it seems to be

a good_ assumption that the Pij are qualitative good

approximations for the energy loss given their relative

insensitivity to potential changes. The problem of using the

r~ght potential to map the potential that iodine feels from

the xenon in the liquid to some appropriate gas phase

potential is not resolved. Within the framework of IBC theory

though, it must be a small effect or IBC theory will be

essentially invalid. If there is a way -to map the average

forces the iodine feels in liquid xenon to the gas, the result

will certainly be density dependent. For example -if the

density of xenon is increased, the xenon spend more time on

average at a smaller distance from the iodine molecule, and

therefore will sample on average a different part of the

potential than a less dense liquid xenon atom would. If the
-

average interaction is density independent, the Pij will also

be density independent and that is the main foundation of IBC

theory.

- Assuming that the WCA potential is a good approximation

to the average potential of interaction for the iodine-xenon

system, the next question is what the vibrational energy as a

function of time is. This calculation was performed two ways

37

to make sure that the approximations used were valid. First

the iodine molecule was placed in vibrational state 82 and

randomly one of the 1500 energy losses for the 82nd

vibrational level was chosen (see program IBCENE). If it was

an increase in energy the iodine molecule remained at level

82. If it was a decrease in energy the iodine molecule lost

that amount of energy. If the energy of the iodine molecule

was in between vibrational levels at this step, a ·linear

combination of two randomly chosen energy losses from the

level above and below the iodine's current energy were chosen.

The two randomly chosen energy losses were weighted according

to their distance from the iodine's current energy. This

would provide a new energy loss. This was repeated until the

iodine relaxed. The whole process was repeated 100 times for

good.statistics.

Another calculation of the energy vs time was performed

by modeling the distribution of energy losses-for each Pij as

a gaussian. The distributions of energy losses for each Pij

was very . close to a gaussian and this allowed for a very

efficient calculation. Basically the same program as above

was used, except that the random energy losses chosen were

picked from a gaussian distribution that modeled the energy

loss distribution. If the energy of the iodine molecule was

in between vibrational levels a linear combination of the

gaussian parameters was used weighted by proximity to the

iodine energy. This gave results that were indistinguishable

38

from the first calculation.

The more important question for IBC is the calculation of

Z. If IBC theory is an appropriate theory, the value of Pij

could be found experimentally, although it is not really

needed to test the theory because if P .. was not known, IBC
• 1 J

could still be tested by it's prediction of the density

dependence of the relaxation. Because the relaxation of

iodine by xenon is affected quantitatively by the potentials

used, the calculation of Z will be made with respect· to

molecular dynamics simulations and only qualitatively to the

experiments of Paige et al.

In the molecular dynamics simulation of Brown et al the

relaxation of the iodine at the densities of 1.8 gjcc and 3.0

gjcc could be overlapped on top of each other by scaling the

time axis of the decays. Brown et al found that the 3.0 gjcc

relaxation was approximately 4 times faster than the 1.8 gjcc.

This seemed to indicate that the relaxation may be described

by IBC. This was not expected to occur although work by

Chesney seems to indicate that it might be possible. 31 From

the calculation of Pij and the calculation of energy vs time

described above, the vibrational relaxation of iodine vs time

can be calculated assuming a collision frequency. For a

collision frequency of 4.5 per ps. the one, dimensional

calculation does a very good job reproducing the energy

relaxation (see figure 10) . ,

One D (.) vs MD (-)
0.-------.-------~------~------~------,-----~

-2QOO

-4000 -a! ...
Cl

.Q

E ::l-6000
c:
~ c • ';:-8000
E'
41
c:
u:.., 0000

-12000

-14000~------~----~~----~------~------~------~

0 200 400 600 800 1000 1200

Time (picoseconds)

Figure 10 One D vs MD Xe 1.8 gjcc

39

40

C. Calculations of the Density Dependence.

The one dimensional calculation performed very well with

respect to qualitative aspects of modelling the vibrational

· relaxation, especially at incorporating the anharmonicity of

iodine. It also seems that the choice of the WCA

decomposition of the potential may be appropriate. Since the

trajectory calculations were one dimensional there must be

some weighting factor to take into account that some

collisions are not collinear. 'rt is not clear what that

factor should be, for example Nesbitt and Hynes selected 1/2

for their calculation. 8 The value for the. steric factor could ·

range from all the way from one to less than 1/3. 51 •52 In

fact Shin has calculated steric factors for iodine-argon and

found 1/8 to be appropriate. However, if there are any three

dimensional effects that were missing they are effects that

are constant throughout the 82 vibrational levels. If the

steric factor was dependent on the vibrational levels, the one

dimensional calculation probably would not have fit the three

dimensional MD simulation.

In order for IBC theory to be a useful theory . it must

also. be able to make quantitative predictions of the

relaxation for a particular density and predictions of the ~

density dependence. The collision rate of 4.5 per ps. is a

quite reasonable first order guess of what the collision rate

should be for xenon at 1. 8 gjcc3 • An estimate of the

41

collision frequency can be found using equation 2. This is

the simples treatment for finding the collision frequency,

given the non-linear increase in relaxation with increasing

solvent. The average velocity is

where ~ is the reduced mass of the I 2- Xe system. The value

to use .for a is unclear due to it's ambiguous definition.

From the one dimensional calculation, the turning point for

the most effective collisions was 3.7 - 3.8 A. This number

comes can come from qualitatively considering that Pij is an

increasing function of velocity and the magnitude of the
--

velocity distribution is rapidly dec~easing for high

velocities. Therefore, the turning point of the most

effective collisions will be a trade off between high

velocities for large P1j and the fact that for a given

temperature the number of particles with a high velocity

decreases with increasing velocity. This is the R* that is ·

defined in equation 7 earlier. If this value is used for a in

equation 2, the collision ra.te is calculated to be :::: 2 ps· 1 •

Unfortunately, to have any faith in this equation it would

have to predict a larger collision rate than 4. 5 ps" 1 to be

acceptable. If equation 2 had predicted a collision frequency

higher than 4. 5 ps" 1 , the steric factor could be used to

explain the discrepancy.

The problem of predicting the correct collision frequency

42

to reproduce the MD or the experimental result is probably

intractable. The mapping of the potential that is sampled in

the liquid phase to the gas phase is probably not

quantitatively correct. It is close enough to reproduce the

relaxation qualitatively, but any shifts up or down on the

potential will probably change the _rate. over all. Comparisons

to the experimental results also suffer the same problems

along with uncertainty_ in potential parameters. -The

uncertainty in potential parameters may cause only

quantitative problems and not_ qualitative problems if the

basic shape of the potential is correct and only a linear

change in the slope is needed. For example from the Golden

Rule, the relaxation rate is

t1} =
2

'h1t ~ ~ P.l V1•,Jill 2 a (E1 -Ej+E~ -Ep) (17)

where Pa is the probability of the bath being·in state a, and

V is the part of the hamiltonian which couples the vibrator to

the bath. Suppose for example couplin~ is due to the Lennard

Janes potential, and~ is the parameter that has the most'

error in going from the one dimensional simulation to the real

potential. Then e2 can be pulled out of equation 17 and the

qualitative shape of the relaxation vs time will not change

and only the time scale will change. The change will be

proportional to e2 • For these reasons the rest of the

comparisons will be made to density dependencies and not

actual collision frequencies.

..

43

In figure 11 the density dependence of equation 2 is

plotted. All the rates are scaled relative to the relaxation

in Xe at density 1.8 gjcc. The a chosen for the plots are

3. 7 A and 3.8 A. The results are quite encouraging with

regards to the good agreement with the experimental results.

The comparison to the molecular dynamics is not good and this

is quite disconcerting. Since the molecular dynamics relaxes

10 times as fast as the actual experiment, it should be closer

to a model which treats the system as hard spheres. There is

one more reason why ~quation 2 should fail to model the

molecular dynamics correctly. Equation 2 does not take into

account the short range structure of the liquid. Equation 2

treats the liquid as a system where the particles are evenly

distributed and for dense fluids this is not true.

Equation 7 does include the liquid structure in it's

calculation of relaxation rates, although the use of this

equation has many severe restraints. The molecule must be

nearly spherical because there is no way to incorporate simply

any angle dependent relaxation rate. Secondly the

trajectories that lead to most of the relaxation must have a

narrow distribution in velocity space or equation 7 will not

be valid. The final problem-of equation 7 is calculating the

radial distribution function. It is only fairly recently that

the computer power needed for this calculation was distributed

widely enough for it to be used on problems such as this.

Before that, approximations to the radial distribution

44

MD(+), Experimental (o);·sig=3.7 (-), sig=3.8 (.)
6

5.5

5

4.5 +

... 4 Q -C.l a
c
~ 3.5
Ql
c
CJ

3 (/)

2.5

2

1.5

1
0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6

Number density x1QZZ

Figure 11 Scaling Predicted by Equation 2

45

function were used, sometimes correctly and sometimes without

a clue.

One approach to this problem was to use the attractive

hard spheres pair distribution model by Delalande and Gale. 53

This model assumes that the collision rate should be

calculated at the hard sphere radius. One then assumes the

radial distribution function at R• can be approximated by the

Carnahan and Starling approximation, 54

(1-..!1.)
2 •

(1-T)) 3 ,

(18)

where a is the hard sphere contact distance and p is the

number density. The problem with this approximation is that

the ·hard sphere radius which provides the best model for the

radial distribution is not necessaril~ the correct radius at

which to evaluate R• (see figure 12). A more sophisticated

version of this theory was employed by Madden and van Swol. 55

They used WCA theory to calculate the cavity distribution

function, which was then related to the ratio of vibrational '

relaxation rates in a dilute gas and a dense liquid. This

assumed that g(R) could be approximated by a properly chosen

hard sphere fluid of the same density. They did not equate R*

with the hard sphere diameter used to calculate the radial

distribution function.

We calculated the radial distribution of an iodine atom

in liquid Xe directly. Again this makes the approximation

that the iodine molecule is spherical and the additional

..
0 -CJ
0

Lo.

~
0
(J

(/)

1.5

.46

MD (+), Experimental (o}, sig=3.7 (-); sig=3.8 (.)

+

+

1~~~~-....-....~~_....~_...._....~_...._....~_...._....~--_....~_....---~

0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6

Number Density x1 Q21

Figure 12 Scaling Predicted by Equation 18

47

approximation that the radial distribution around the iodine.

molecule can be approximated by the radial distribution around

an iodine atom. Both of the assumptio~s are not true,

although the differences may not be consequential. Due to the

assumption that all forces in the liquid were pair wise

additive and Lennard-Jones potentials, there is a large

potential well between the two iodine atoms that causes the

radial distribution to be higher there than on the ends of the

iodine molecule. This can be seen in the MD calculations of

Brown et al. This may not be a problem because it is not

expected that the trajectories of the xenon atoms between the

two iodine atoms will contribute significantly to vibrational

relaxation.

The radial distribution function is calculated in the

program IIBC. The simulation puts one iodine atom in a liquid

of 107 xenon atoms with periodic boundary conditions. The

question to be asked now is what potential to use in the

density comparison? The MD was run using a Lennard-Jones

potential but the one D trajectories used a WCA decomposition.

For high density, where the WCA potential provides a good

substitute for the Lennard-Jones potential, there is no

discernable difference between the radial distribution

functions produced (see figure 13). However, at 1.8 gjcc the

differences are quite obvious (see figure 14). Since the

quantity needed is the flux of xenon atoms that is colliding

with the iodine molecule in .the MD, it seems that the best

48

3.0 gm/c:c WCA (.-) Lennard-Jones(.)
3.5r---...,..------.-----r---..,...-----r----r---.............,

j

r
c: 2.5 I 0

;
CJ c:
:t

1.1.. I

c: 2 I I
0 \ ;

I :t

t .0
·;:: - I

~ en I a
I

\
c \ A.... ,-;::>'~. ~
c I .\ ;I ""' • ' • Q::

;~ I ~· --.. · ., ..
•\o /.

I ·":-:':'....,.'; ..
0.5

..

)
0
0 2 4 6 8 10 12 14

Angstroms

Figure 13 One Iodine Atom in Liquid Xenon

49

1.8 gm/cc WCA. (.-) Lennard-Jones(.)

2f-

c:
.2 -u
c:
::l

L... 1.5 ..
c:
.2 -;:,·
~ ·.::: -Ill
i5
c
:s
c

0::

0.5

Angstroms

Figure 14 One Iodine Atom in Liquid Xenon

50

potential to use would be the Lennard-Jones potential used in

.the MD. Figure 15 shows the radial distribution functions

using Lennard-Jones potentials for all 4 densities studied by

the molecular dynamics. The highest density (3. 4 gjcc)

studied experimentally can not be. studied this way due to the

fact that .it is a Lennard-Jones solid at that density even

though in reality xenon is still a fluid at that density.

Note that the area of interest in the radial distribution

functions is the radii between 3. 7 A and 3. 8 A where the

ra_dial -distribution is changing quite rapidly. That region is

of most interest due to the calculation that showed that 3.7

A to 3. 8 A is the region where the most efficient trajectories

have their turning point. Figures 16-18 show that using th~

R* calculated from the one dimensional trajectories, 3.7-3.8

A, good agreement was found for the scale factors given by

equation 19 for the different densities.

Scale Factor = (~) gl(R*)
Pz g 2 (R*)

(19)

In figures 16-18 equation 19 is plotted for the densities 3.0

gjcc, 2.6 gjcc and 2.2 gjcc scaled by the density 1.8 gjcc.

The straight solid line is the prediction of the MD

calculations with the dashed line indicating . a standard

deviation of the MD calculated scale factors. The only major

di'sagreement comes at the density of 2. 6 gjcc. However this

density had the fewest trajectories averaged and there may be

a systematic error for this trajectory. In figures 19-21 the

.•

Lennord-Jones 1.8 (-), 2.2 (.), 2.6 (o).- 3.0 (+)
3.5r---~---r--~----r---~---r--~----r---~--~

c:
0

;
CJ c:
~

L...

3

2.5

c: 2
0

;
~

.!l
·;:: -Ill
0
0
:0
0

0:::

0.5

-++

+
tP

-+0 ••

0--~--~~~MM----~--~--~--~----~--~--~
0 2 5 6 7 a 9 10

Angstroms

Figure 15 One Iodine Atom in Liquid Xenon

51

52

same calculation is plotted, except the comparison is made to

experimental results. There is even better agreement with the

experimental results. All the scale factors were within the

error of the measurement. This was unexpected due to the

difference in the potentials that are used and the real

potentials which a~e unknown.

The scale factors could also have been calculated using

continuum theories. As pointed out earlier, the vibrational

relaxat.ion rate is affected by

F(t) = <!: f(Ib(t)) L f(Ic(O)) >
b c

Fb(t) = <!: f(Ib(t)) f(Ib(O))>
b

(20)

(21)

. Where F (t) is the total force autocorrelation, Fb(t) is the

binary force autocorrelatio~ and f (t) is the coupling from the

liquid to the oscillator at time t. Oxtoby has also

considered this type of division of the forces. 56 From these

correlation functions and the Golden Rule, the relaxation rate

is

..l. =JdteiwtF(t) T .
l

(22)

Basically, the magnitude of the force autocorrelation spectrum
\

at the oscillator frequency determines the relaxation rate.

Figure 22 shows the total force autocorrelation and the binary

force autocorrelation functions for an Iodine atom in liquid

Xe at 1.8gjcc. This was calculated in the program IIBC. The

53

Ratio of 2.2 to 1.8 vs MD predictions
5~----~----~----~----~----~----~----~----~

4.5

3.5

... 3 0 -u c
!,.,

«)

c
(J

C/)

1.5

0.5

0~----._----~~--~----~----~----_.----~----~
3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

Angstroms

Fiqure 16 Scaling Predicted by Equation 19

54

Ratio of 2.6 to 1.8 vs MD predictions

4.5

4

3.5 . . .
... :s 0 -u c

I.&.. 2.5
G.l c
u

(/)

1.5

0.5

0~----~----~----~----~----~----~----~--~
3.6 3.65 3.7 3.75 .3.8 3.85 3.9 .3.95 4

Angstroms

-
Figure 17 Scaling Predicted by Equation 19

...
0 -CJ
Q u..
~

c
CJ

C/'1

Ratio of 3.0 to 1.8 vs MD predictions
5.-----r-----r-----r-----r-----r-----r-----~--~

1.5

0.5

0~-----~----~----~--~~----~----~----_.----~
3.6 3.65 3.7 3.75 .3.8 .3.85 .3.9 .3.95 4

Angstroms

Figure 18 Scaling Predicted by Equation 19

55

Ratio of 2.2 to 1 .8 vs Experimental Results
Sr----,--~-r----~----~--~-----r----,---~ \

3.5

0.5

0~----~----~----._----~----~----~----~--~
3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

Angstroms

-

Fiqure 19 scaling Predicted by Equation 19

56

57

Ratio of 2.6 to 1 .a vs Experimental Results
5~----r-----r-----r-----r-----r-----~----~--~

4.5

3.5

... 3 0 -u c
~ 2.5
«< c;
u 2 en

1.5

1

0.5

0
3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95

Angstro'!'s

..

Piqure 20 Scalinq Predicted by Equation 19

58

Ratio of 3 to 1 .a vs Experimental Results

3.5

... 3 0 -CJ a
t..
G a
(J

en

1.5

0.5

0~----._ ____ ._ ____ ._ ____ ~----~----~----~--~
3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4

Angstroms

Piqure 21 MD Prediction is the Solid Straight Line

-N
I

en
a. -

59

Iodine Atom FAF Total (-), IBC (+) 1.8 gm/ cc
201r-------r-----~~-----,------~------~------~

-1QL-----~------~------~------~----~------~
0 0.5 1.5 2 2.5 3

Time (PS)

60

early time components of the two autocorrelations are very

similar. In figure 23 the power spectrum of the total force

autocorrelation and the binary autocorrelation function are

plotted. As . Chesney had found, the binary force

autocorrelation function frequency spectrum was very similar

to the total force autocorrelation function frequency

spectrum, in this case down to frequencies of · =:: so cm· 1 • 31

Chesney found that the .spectrums were the same down to == 10

cm" 1
• The results are slightly different in part probably due

to the use of different potentials. This is evidence for the

appropriateness for using IBC theory to model the vibrational

relaxation even though I 2 has such a low vibrational

frequency. The implication being that the many body forces

are unimportant, if the magnitudes of the frequency spectrum

for the total and isolated force spectrum are the same.

In figures 24-29 the force autocorrelation functions and

power spectrums for densities 2 • 2 , 2 • 6 and 3 • o g/ cc are shown.

Unfortunately equation 22 does not do a good job predicting

relaxation rates. In figures 30-35 predictions for scale

factors for equation 22 vs both experimental and MD results

are plotted. The straight line across is the experimental or

MD result for the scale factor with the dotted line showing a

standard deviation on the prediction. Unlike the scaling ,

results from the radial distribution function, both the

experimental and MD results are not predicted well by the

spectrum of the force autocorrelation function. The

61

Amplitude of Freq. Spec. of Total FAF(-) and IBC FAF(+) 1.8 gm/cc
700~----~----~-----,------T-----~----~----~

600

500 + +

+
(12 -'2 400
~ ,. ...
0 ... - 300 :a ...
<

200

100

0~--~----_.--~~~~~*+~+H~~+M+-~

0 50 100 150 200 250 300 350

Frequency (cm-1)

Fiqure 23 An Iodine Atom in Xenon

62

Piqura 24 Force Autocorrelations for an Iodine Atom in Xenon

~
c :a ...
<

Amplitude of Freq. Spec. of Total FAF(-) and IBC FAF(+) 2.2 gm/ cc
aoo~--~~----~----~------~----~--~~----~

+

+

aL---~-----_.--~~~~~~~+H~~+H~~

0 -so 100 150 200 250 300 350

Frequency (cm-1)

Piqure 25 An Iodine Atom in Xenon

63

64

Iodine Atom FAF Total (-), IBC (+) 2.6 gm/ cc
~r-------~------~------T-------~~----~----~

30

20 + -N
I

Ul
a. --· ~
' u..
~ , ... ,

I I = 0

-zo~----~------_.------~------~------~----~
0 0.5 1.5 2 2.5 3

Time (PS)

Fiqure 26 Force Autocorrelations for an Iodine Atom in Xenon

Amplitude of Free;. Spec. of Total FAF(-) and IBC FAF(+) 2.6" gm/cc
2000 ,----~---r-----r---~---r-----r-----,

65

100 150 zoo 250 300 350

Frequency (cm-1)

Fiqura 27 An Iodine Atom in Xenon

66

Iodine Atom FAF Total (-), IBC(+) 3.0 gm/cc
70

60

50

40 + - +
N + I

30 + Ul
a. .+ - + - +
~ 20 +

' +

~
+ +

_,. 10
I •• 'I OW 5I' "E' •

0

-10

-20
0 0.5 1.5 2 2.5 3

Time (PS)

Piqure 28 Force Autocorrelations for an Iodine Atom in. Xenon

67

Amplitude of Freq. Spec. of Total FAF(-) and fBC FAF(+) 3.0 gm/ cc
6000~----~----~----~------~----~----~----~

\

4000
~ -"2

::::::1

)1. 3000 ...
a ... -:a ...
<

2000

150 200 250 300 350

Frequency (cm-1)

Piqure 29 An Iodine Atom in Xenon

68

Ratio of 2.2 to 1.8 vs MO Results
2r--------r--------~------~--------~----~~

1.6

...
0 -u a

1.6.

~ c
u

Cl'l

0.8

0.6

0.4

0.2 L-------1.-----'---------"L-------'--------J
0 50 100 150 200 250

Frequency (cm-l)

Fiqure 30 Scale Factor Using Equation 22

69

Ratia of 2.S to 1.8 vs MO Results
4.5 r-------r-----r-------,------r-------,

3.5

...
·o 3 -(J

a
~

G a 2.5 u en

2

50 100 150 200 250

Frequency (cm-1)

.•

Fiqure 31 Scale Factor Usinq Equation 22

70

Ratio of 3.0 to 1.8 vs ~0 Results
Br-----~~--------~-------r--------r-------~

,0~------~--------_.--------~--------._------~
0 50 100 150 200 250

Frequency (cm-1)

Fiqure 32 Scale Factor Usinq Equation 22

Ratio of 2.2 to 1 .a vs Experimental Results
2.2

2

1.8

1.6

,... 1.4 0 -u a
~ 1.2
Q)

c
tJ

Cll

0.8

0.6

0.4

0.2
0 50 100 150 200 250

Frequency (cm-1)

Fiqure 33 Scale Factor Using Equation 22

72

Ratio of 2.6 to 1.8 vs ExJ:)erimentat Results
3.5r------r----...,...---------,~---...,.,....-----,

(; 2.5 -(J

~
QJ

a
(J

en 2

. . . _/

1.5

1~--~----~------~~------~--------~--------~
0 so 100 150 200 250

Frequency (cm-1)

Piqura 34 Scale Factor Using Equation 22

73

Ratio of 3.0 to 1.8 vs Experimental Results

8r-------~--------~--------~--------~------~

0~------~~------~--------~--------_. ________ ~
a 50 100 150 200 250

Frequency (cm-1)

Fiqure 35 Scale Factor Usinq Equation 22

74

experimental values are comparable but the agreement is not

good at 3.0 gjcc.

There is one factor that is not taken into account in

equation 22. There is a phase factor that will influence the

enerqy dissipation. For example, if the iodine molecule is

vibrating while the xenon atoms are at rest there will be a
..

component of force at the vibrational frequency. However,

there will be no dissipation of enerqy due to this elastic

int'eraction. Brown et al calculated the phase factors for the

four densities studied and there was a trend for the phase

factor to be more dissipative for the lower density systems.

If the phase factors are applied to equation 22, the MD and

experimental results compare much better (see table 2).14This

see~s to imply that the phase factors- must be included as a

function of density for the real experiment and the MD. This

leaves the results in.the_ambiquous state of being partially

correct, neither proven nor disprovede If phase factors must

be include to describe the relaxation the first assumption of

IBC theory is disproved. A density dependent phase

relationship is equivalent to a density dependent Pij.

75

Density MD Exp. Scale Phase14 Scale
'

Scale Scale
~

Factor 1.8. qjcc Factor

Factors Factors Eq. 22 phase= with

26. Phase

± 3.

2.2 1.3 1.8 1.4 22. 1.2

qjcc ± • 15 ± .22 ± . 3 ± 3 •

2.6 3.8 1.9 2.5 19° 1.9

qjcc ± .5 ± .2 ± • 5 ± 3 •

3.0 4.0 3.0 5.2 18° 3.7

qjcc ± .5 ± .35 ± 1 ± 4.

Table 2

76

IV. Summary and Conclusions

The state of the theory of vibrational relaxation at this

point must be driven by experiments. Due to the observation

that relaxation is very sensitive to the potentials, all the

applications of IBC examined in this paper are useful only in

predicting the density and temperature dependence of

relaxation. Unfortunately, there have been very fe~

experiments that provide this information in a system that can

be easily modeled. It seems that the probability of

relaxation, P1j, is fairly independent of potential over a

realistic range. In comparisons to liquid relaxation the

steric factor seems to have a. quantitative effect on the

relaxation rate. However, the steric factor seems independent

of density and not a problem with respect to predicting

density dependencies. In the classical regime I 2 in liquid Xe

has been studied extensively in theory and experiment. This

system has been modeled by most of the theories examined. The

most successful model of the relaxation was based on the

generalized Langevin equation due to the inclusion of many

body effects. However the generalized Langevin model has only

been applied to the densities of·l.S gjcc and 3.0 gjcc. This

is unfortunate, because IBC does a good job on the MD results

for 1.8 gjcc, 2.2 gjcc, and 3.0 gjcc but not at 2.6 gjcc using
'

both- the radial distribution function as a scale factor and

using the frequency spectrum of the force autocorrelation

77

function. The failureat 2.6 gjcc may be due to a failure of

IBC or a problem with bad statistics on the MD calculations

due to the small number of runs completed. The interpretation

may have been clearer if the generalized Langevin model had

been tried at these densities to see if it would work for all

densities. This would not have proved IBC's correctness for

this system, but if the generalized Langevin equations'

results disagreed with MD then perhaps there- is something

wrong with either the MD or there is something peculiar about

2. 6gjcc Xe that does not allow either the generalized Langevin

equation or IBC to model the relaxation. IBC has reproduced

the density trends seen in the ·relaxation of I 2 in Xe

experiments, using the radial distribution function as a

scaling factor, but not using the power spectrum of the force

autocorrelation function. This may not be too disconcerting

considering the possibility of the I-Xe Lennard-Jones may not

be a good representation of the real potential, and would have

more effect on the power spectrum than the radial distribution

function.

Both the IBC and Langevin approaches will fail if the

coupling between the bath and oscillator is strong. IBC

theory will also fail if the binary force autocorrelation

function power spectrum at the appropriate frequency is not

the same as the total force autocorrelation. The most

probable reason for the two force autocorrelation functions

not being the same is if many body effects become more

78

important and provide damping at the oscillators frequency.

The final reason for failure for either of the above models is

the lack of phase information. If the iodine molecule is

driving the collisions, there may be a different average phase

relationship for the real system and the two model systems.

The IBC calculation assumes a random phase approximation, and

the average phase relationship is determined by the xenon and

iodine velocities. This is incorporated - in the · Pij and is

density independent. The generalized Langevin equations phase

vs force or collision may also be different than the MD or

real system,- and may be density dependent. Brown et al have

seen an average phase shift over the various densities studied

that may affect the vibrational relaxation, and these can be

incorporated, but IBC is a failure if in reality they are

density dependent.

IBC theories have been somewhat successful in modeling

quantum systems. The ease in applying IBC has m~de it most

prevalent, however it has been applied in detail differently

in many experiments. This difference in application from

experiment to experiment is partially due to the lack of a

firm theoretical foundation for IBC. This weakness causes the

theory to still be attacked theoretically. This work does not

prove· IBC, on the other hand considering the approximations

made in implementation the results are not ~iscouraging. It

has done a surprisingly good -job describing the density

dependence. Other theori~s to model quantum systems have been

79

confined to semiclassical calculations, however few of these

calculations have been made because of their relative

difficulty·. Until the relaxation of simple oscillators in

simple solvents are understood it seems that relaxation

mechanisms and dynamics of chemical relaxation in larger

molecules in molecular solvents will still. be a major

challenge to experimentalist and theorist alike.

80

References

1. J. Frank and E. Rabinowitch, Trans. Faraday Soc. 30, 120,
(1934)

2. E. Rabinowitch and w. c. Wood, Trans. Faraday Soc., 30, 547,
(1936).

3. E. Rabinowitch and W. c. Wood, Trans. Faraday Soc. 32, 1381
(1936).

4. see for example R. M. Noyes, Proq. React. Kin. 1, 128, (1961).

s. T. J. Chuang, G. w. Hoffman, and K. B. Eisenthal, Chem. Phys.
Lett. 25, 201 (1974).

6. D. L. Bunker and B. s. Jacobsen, J. Am. Chem. Soc. 94, 1843,
(1972) .

7. J. N. Murrell, A. J. stace, and R. Dammel, J. Chem. Soc.
Faraday Trans., 74, 153~, (1978)

a. D. J. Nesbitt and J. T. Hynes, J. Chem. Phys. 77, 2130 (1982).

9. D. E. Smith and c. B. Harris, J. Chem. Phys, a7, 2709, (1987).

10. M. Berg, A. L. Harris, J.
Ultrafast Phenomena IV. Eds. D. H.
Springer Series in Chemical Physics
Publishers) 1984.

K. Brown and c. B. Harris
Auston and K. B. Eisenthal,

38, p. 300, (Springer-Verlag

11. M. Berg, A. L. Harris and c. B. Harris, Phys. Rev. Lett.,
54 ,· 9 51, (19 8 5) •

12. A. L. Harris, M. Berg and c. B. Harris, J. Chem. Phys. a4,
788, 1986.

13. M. E. Paige, D. J. Russell, and c. B. Harris, J. Chem. Phys.
as, 3699, (1986)

14. J. K. Brown, c. B. Harris, and J. c. Tully, J. Chem. Phys.,
89, 6687, (1988).

15. D. F. Kelly and P. M. Rentzepis, Chem. Phys. Lett., as, 85
(1982).

16. D. E. Smith and c. B. Harris, J. Chem. Phys., 92, 1304,
(1990).

17. D. E. smith and c. B. Harris, J. Chem. Phys., 92, 1312,
(1990).

81

18. K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion
of Ultrasonic Wav~s. Academic, New York, 1959

19 •. w. M. Madigosky and T. A. Litovitz, J. Chem. Phys., 34, 489,
(1961) •

20. M. Fixman, J. Chem. Phys., 34, 369,(1961).

21. R. Zwanzig, J. Chem. Phys., 34, 1931, (1961).

22. K. F. Herzfeld, J. Chem. Phys., 36, 3305, (1962).

23. K. F. Herzfeld, J. Chem. Phys., 36, 3305, (1961) •

24. R. Zwanzig, J. Chem. Phys., 36, 2227, (1962).

25. P. K •. Davis and I. Oppenheim, J. Chem. Phys., 57, 505, (1972).

26. P. K. Davis and I. Oppenheim, J. Chem. Phys., 56, 86, (1972).

27. T. Einwohner and B. Alder, J. Chem. Phys., 49, 1458, (1968).

28. c. Delalande and G. M. Gale, J. Chem. Phys., 71, 4804, (1979)

29. w. F. Calaway and G. E. Ewing, Chem. Phys. Lett., 30, 485,
(1975).

30. w. F. Calaway and G. E. Ewing, J. Chem. Phys., 63, 2842,
(1975).

31. J. Chesnoy and J. J. Weis, J. Chem. Phys., 84, 5378, (1986).

32. P. s. Dardi and R.I. Cukier, J. Chem. Phys., 86, 2264,
(1987) 0

33. P. s. Dardi and R. I. CUkier, J. Chem. Phys., 86, 6893,
(1987).

34. P. s. Dardi and R.I. Cukier, J. Chem. Phys., 89, 4145,
(1988) 0

35. F. H. Mies, J. Chem. Phys. ~ 40, 523_, (1964).

36. R. E. Roberts, J. Chem. Phys., 55, 100, (1971).

37. J. T. Knudtson and E. Weitz, Chem. Phys. Lett., 104, 71,
(1984).

38. J. Chesnoy, J. Chem. Phys., 83, 2214, (1985).

39. L. Landau and E. Teller, Phy~ik z. Sowjetunion, 10, 34,
(1936).

82

40. R. N. Schwartz, z. I. Slawsky, and K. F. Herzfeld, J. Chem.
Phys., 20, 1591 (1952).

41. J. M. Jackson and N. F. Mott, Proc. Re Soc. A137, 703, (1932).

42. K. Takayanagi, Progr. theor. Phys. I a, 497, (1952).

43. R. N. Schwartz, and K. F. Herzfeld, J. Chem. Phys., 22, 767,
(1954).

44. J. D. Lambert, Vibrational and Rotational Relaxation In Gases,
Oxford, 1977.

45. D. Rapp and T. Kassal, Chem. Rev., 69, 6'11 (1969).

46. N. A. Abul-Haj and D. F. Kelly, ·J. Chem. Phys. 84, 1335,
(1986).

47. R. L. McKenzie, J. Chem. Phys., 66, 1457, (1975).

48. D. Chandler, J. c. Weeks, and H. c. Anderson, Science 220, 778

49. The exact ~quation used for the ground state of iodine and the
xenon-xenon interaction in the Molecular Dynamics by Brown and
Harris is

rs:2.Sa

=0; r>2.5a.

50. D. Beeman, J. comp. Phys. 20, 130, (1976).

51. J. T. Yardley, Introduction to Molecular Energy Trans fer, ·
(Academic, New York, 1980).

52. H. K. Shin, Dynamics of Molecular Collisions Part A, Ed. by w.
H. Miller (Plenum, New York, 1967). ·

53. c. Delalande and G. M. Gale, J. Chem. Phys., 71, 4531, (1979).

54. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 635,
(1969).

55. P. A. Madden and F. van swol, Chem. Phys., 112, 43, (1987).

56. D. w. Oxtoby, Mol: Phys., 34, 987, (1977).

83'

V. APPENDIX

A. PROGRAM LISTING I2IBC

c Program "I2IBC"
c Daniel Russell
c Auqust 2 1990
c
c
c
c
c
c
c
c
c
c

c
c

c
c
c
c
c
c
c
c
c
c

c
c

c
c

This program calculates a one dimensional trajectory
for one Iodlne molecule and one Xenon atom. The
energy before and after a collision occurred were
calculated giving the relative gain or loss of
energy after a collision. This was done for 15
maxwell boltzman distributed relative velocities of
the Iodine molecule and xenon atom and 100 phases of
the iddine atom. This gives 1500 trajectories for
every Iodine vibrational level that was run.

integer ntm3, i, stop
parameter(ntm3=45)

ntm3 is 3 * the number of particles. In this
calculation 15 trajectories are run simultaneously.

double precision vxyz·(ntm3) , rxyz (ntmJ) , axyz (ntmJ)

vxyz, rxyz, and axyz are the velocity, position, and
the acceleration respectively. vxyz(1) is the
velocity of the first iodine atom, vxyz(2) is the
velocity of the second iodine atom, and vxyz(J) is
the velocity of the xenon atom that will collide
with that particular iodine molecule. vxyz(4) is
the velocity of the first iodine atom that will be
running a parallel trajectory although it will have
a different phase and xenon velocity than the first
trajectory.

double precision axyz2(ntm3)

axyz2 is a space for storing the accelerations at
the time step before for Beeman's integrator.

/

double precision rxyz2(ntm3)

rxyz2 is a space for storing the positions at the
time step before for Beeman's integrator.

double precision sig, eps

c
c
c
c
c
c
c

c
c
c
c

c
c

c
c

c
c
c
c
c
c

c
c
c

c
c
c
c
c
c

84

siq is the Iodine - Xenon sigma for a Lennard-Jones
potential, and eps is epsilon. Note a Lennard-Jones
interaction is not used. A Weeks Chandler Anderson
decomposition of a Lennard-Jones is used.
eps=225. 0000*1.196265744 in the units of atomic mass
units* anqstroms2 per picosecond2

siq=3.94 ·

double precision masi, masx, masi2, masx2

masx=131.3 Is the mass of Xenon
masi=126.90 Is the mass of Iodine
masi2=masij2.
masx2=masxj2.

These are various constants that are calculated
once and used during the rest of the program.

double precision cst5
double precision cst6, cst7, cst9, cst10
double precision cst12
double precision cst13, cst14, cst15, cst16

h is the time step, h2 is h squared, h26 is h2/6 and
hi is one over h

double precision h, h2, h26, hi ·

the array ep stores the potential energy's of the
15 separate trajectories at every third index
starting at one. The -array ek stores kinetic
energy. sum.stores the total energy in both iodine
and xenon. sumi2i is iodine's initial energy
includinq center of mass motion.

double precision ep(45), ek(45), sum(45), sumi2i(45)

sumi2 is the iodine's · total energy, including
center of mass motion, calculated for every call to
energy.

double precision sumi2(45)

plnk is Plank's constant. ri is a dummy constant
used in reading in a dummy constant. 'the array v is
the initial relative velocities for the iodine xenon
collision that are chosen from a Maxwell Boltzman
distribution. sumi2f is the final iodine kinetic
energy includinq center of mass velocity.

double precision plnk, ri, v(15), sumi2f(45)

c
c
c
c
c
c
c

c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c

c
c
c

c

85

The array rel is calculated in the subroutine energy
and contains the relative kinetic energy in the
iodine's vibrational motion and it's potential
energy. Note this does not include center of mass
motion of the iodine molecule. The array reli
contains the initial relative energy in the iodine
molecule.

double precision rel(45), reli(45)

w is the iodine 1 s initial vibrational frequency that
is used in generating a random phase. rcount is a
flag that indicates if a collision has occurred and
should really be an integer. The array relf is the
final relative energy.

double precision w, rcount, relf(45)

The array r.contains the distance between the two
iodine atoms, the distance between the second iodine
atom and the xenon atom, and the distance between
the second iodine atom and the xenon atom to the
inverse sixth power for all 15 trajectories. rmax
contains the largest distance between two iodine
atoms for a particular vibrational energy. This is
to make sure that the xenon atom starts out at a
distance where it will not be interacting with the
iodine molecule until it has had a chance to begin
it • s trajectory. The array viben contains the first
100 vibration energies for the iodine molecule.

. double precision r(45), rmax, viben(100)

common ;eng/ ek, ep, sumi2, rel, rmax, w, sum, rcount,
$cst15, cst16 ·

common /blk2/ h, h2, h26, hi
common /blk4/ vxyz
common /blkS/ rxyz, rxyz2, axyz, axyz2
common /blk9/ natom, natoml, natom3
common /lang/ masi, masx, masi2, masx2
common ;stuff/ csts, cst6, cst7, sig, cst9, eps
common ;stuff2/ cstlO, cst12, cst13, cstl4
common /last/ r, xseed

This open statement was used on the Cray X-MP when
it was running CTSS.

call link("unitl=(open, xe, text), unit7=(da,
create, text), unit9=(rk, open, text), unit2=(fc,
open, text)//")

The following open statements can be used on most

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c

c
c

86

Unix operating systems including UNICOS on the cray
Y-MP at San Diego. The file xe contains the initial
starting velocities of the xenon atoms, fcfkb.out
contains the vibrational energies of the iodine
molecule,· rold stores the energy lost from the
iodine molecules for each trajectory, and rkr
contains the rkr potential for the iodine molecule.

open(1, status='old', file•'xe')
open(2, status='old', file•'fcfkb.out')
open(7, status='new•, file='rold')
open(9, status='old', file='rkr')

The random number generator you use depends on the
operating system you are on and how well it works~
gOccf initializes a random number sequence that
gives a· non-repeatable sequence. This is from the
NAG library. .This was used so that there would be
a different random number sequence for each
vibrational level.

call g05ccf

xseed is a dummy argument used by g05caf which
generates the pseudo random numbers in a
distribution from o to 1.

xseed=15344

In this section anything that is independent of
vibrational level is initialized.

call inrkr

do 22 i=1, 15
read(1,3) ri,v(i)

22 continue

3 format(2e15.5)

c The variables is and if are the vibrational levels
c over which this calculation will be performed.

c
c

read(1,*)is,if

Read in the vibrational levels for iodine. The
variables rjunk etc are junk dummy variables.

do 43 i=1,100
read(2,*)rjunk,viben(i),rjunk1,rjunk2,rjunk3

43 continue

..

c.
c

c
c

c
c

·. b=l. 0/.52290
xe=2.66680
siq=3.94
masx=l31.3
masi=l26.90
masi2=masij2.
masx2=masx;2.
eps=225.0000*l.l96265744

87

ktm is a counter for the number of times · an
integration step has occurred.

ktm=O
plnk=39.903130050

cst5=4.*eps*(sig**6)
cst6=sig**6
cst7=cst5*(6.0)/masx
cst9=masx;masi
cstlO=l./masi*l.l962657440
cstl2=2.*cst6
cstl3=2.0**(1./6.)*sig
cstl4=1.1962657440
cstl5=cst13+100.0
rcount=O.O
natom=l5
natom3=3*natom

In this section anything that is vibrational level
dependent but independent of phase is considered

do 111 id=is,if

ip=O
stop=99
rxyz(2)=1.332950
rxyz(1)=-1.332950

write(7,*)id

w=(viben(id+1)-viben(id))/plnk*cstl4
cstl6=sqrt(4.*viben(id)*cst14/masi)*.50

At this point the loop for taking the average over
phase begins. First initph1 is called to find rmaxx

call initphl
goto 999

997 call initph
ip=ip+1

999 do 2444 i=1,natom3,3
r(i)=rxyz(i+1)-rxyz(i)
r(i+1)=rxyz(i+2)-rxyz(i+1)

2444 r(i+2)·==r(i+1) **(-6)

call enerqy(rxyz,vxyz)
do 28 i=1,ntm3,3
reli(i)=rel(i)

28 sumi2i(i)=sumi2(i)

c sumi2i is the initial i2. energy

88

c Start the xenon atoms moving toward the iodine
c molecules now that the phase has been randomized and
c the initial energy is known.

do 222 k= 1,15
222 vxyz(3*k)=-v(k)

c Th~ time step h is .0001 picoseconds

c
c

h=.00010
h2=h*h
h26=h2/6.0
hi=1. 0/h

do 100 i=1,260000

checks to see if the collision partner is far enough
away to stop the trajectory

if(rxyz(3)-rxyz(2).gt.cst15.and.rcount.eq.1.0) goto
$150

if(rxyz(3)-rxyz(2).lt.cst15)rcount=1.0

c calls the integrator remember integrator takes two
c steps for every one call

do 120 j=1,100
120 call integ(ktm)

100 continue

150 call enerqy(rxyz,vxyz)
do 29 k=1,ntm3,3
sum(k)=ek(k)+ep(k)
relf(k)=rel{k)

29 sumi2f{k)=sumi2{k)

"

89

c sumi2f is final i2 energy
c Write the energy lost or gained after the collision.
c The energy written out is in wavenumbers.

do 27 k=1,ntmJ,J
27 write(7,246) (relf(k)-reli(k))/cst14
246 format(Je17.7)

111

c

c
c
c
c
c
c

if(ip.ne.stop)goto 997

continue

call exit(O)
end

The subroutine initphl calculates the maximum
distance between two iodine atoms for a particular
vibrational energy. It then randomizes the iodine
vibrational phase and puts the xenon atom far enough
away that it is not immediately interaction with
the iodine molecule.

subroutine initphl

integer n~mJ, i
parameter(ntm3=45)

double precision vxyz(ntmJ), rxyz(ntmJ), axyz(ntmJ)
double precision axyz2(ntm3)
double precision rxyz2(ntmJ)
double precision sig, eps
double precision cstS
double precision cst6, cst7, cst9, cstlO
double precision cstl2
double precision cstlJ, cstl4, cstlS, cstl6
double precision h, h2, h26, hi
double precision masi, masx, masi2, masx2
double precision ep(45), ek(45), sum{45), sumi2(45)
double precislon rel(45)
double precision w, rx, rstop, rcount
double precision r(45), rmaxx, rmax

common jeng/ ek, ep, sumi2, rel, rmax, w, sum, rcount,
$cstl5, cstl6

common /blk2/ h, h2, h26, hi
common /blk4/ vxyz
common /blkS/ rxyz, rxyz2, axyz, axyz2
common /blk9/ natom, natoml, natomJ
common /lang/ masi, masx, masi2, masx2
common ;stuff/ cstS, cst6, cst7, sig, cst9, eps
common jstuff2/ cstlO, cstl2, cstlJ, cstl4

10

c

·common /last/ r, xseed

h=-.00010
h2=h*h
h26=h2/6.0
hi=1.0/h
ktm=O

rcount=O.
do 10 i=1,ntm3
axyz(i)=O.O
axyz2(i)=O.O
vxyz(i)=O.O
rxyz2(i)=O.O
rxyz(i)=O.O
sum(i)=O.OO
ek(i)=O.OO
ep(i)=O.OO

initializes with random phase

xseed=qOcaf(xseed)
rx=xseed
rstop=1.00/w*rx+1.00/W

nstep=int(rstop/h)

do 21 i=1,ntmJ,J
vxyz(i+1)=cst16
vxyz(i)=-cst16
rxyz(i+1)=1.332950
rxyz(i)=-1.332950

21 rxyz(i+2)=cstl5 -

do 140 i=l,nstep
rmax=rxyz(2)-rxyz(l) .
if(rmax.qt.rmaxx)rmaxx=rmax

140 call inteq(ktm)

cstl5=cst1J+rmaxx/2.
do 211 i=l,ntmJ,J

211 rxyz(i+2)=cstl5

return
end

90

c
c

ini tph does everything ini tphl but calculate the
maximum distance between the two iodine atoms.

10

c

subroutine initph

inteqer ntmJ, i
parameter(ntm3=45)

91

' .
double precision vxyz(ntmJ), rxyz(ntmJ), axyz(ntmJ)
double precision axyz2(ntm3)
double precision rxyz2(ntm3)
double precision siq, eps
double precision csts
double precision cst6, cst7, cst9, cst10
double precision cst12
double precision cst13, cst14, cst15, cst16
double precision h, h2, h26, hi - ·
double precision masi, masx, masi2, masx2
double precision ep(45), ek(45), sum(45), sumi2(45)
double precision rel(45), w, rcount
double precision r(45), rmax

common jenq/ ek, ep, sumi2, rel, rmax, w, sum, rcount,
$cst15, cst16

common /blk2/ h, h2, h26, hi
common /blk4/ vxyz
common /b1k5/ rxyz, rxyz2, axyz, axyz2
common /blk9/ natom, natom1, natomJ
common /lanq/ masi, masx, masi2, masx2
common ;stuff/ cstS, cst6, cst7, siq, cst9, eps
common ;·stuff2/ cst10, cst12, cst13, cst14
common /last/ r, xseed

h=.00010
h2=h*h
h26=h2/6.0
hi=1.0/h
ktm=O
rcount=O.

do 10 i=-1,ntm3
axyz(i)=O.O
axyz2(i)=O.O
vxyz(i)=O.O
rxyz2(i)=O.O
rxyz(i)=O.o
sum(i)=O.OO
ek(i)=O.OO
ep(i)=O.OO

initializes with random phase

xseed=qOcaf(xseed)

rx=xseed
rstop=1.00/W*rx+1.00/W

nstep=int(rstop/h)

do 21 i=1,ntm3,3
vxyz(i+1)=cst16
vxyz(i)=-cst16
rxyz(i+l)=1.332950
rxyz(i)=-1.332950

92

21 rxyz(i+2)=cst15

do 140 i=1,nstep
140 call inteq(ktm)

c
c
c
c
c
c

return
end

subroutine inteq(kstep)

This subroutine integrates Newton's equations for
the particles whose positions and velocities are
specified by the arrays rxyz and vxyz respectively.
The force;mass are in the arrays axyz and axyz2 for
the times i and i-1. the integration is done by
Beeman's method.

parameter (ntm=15,- ntm1=ntm-1, ntm3=3*ntm)

double precision vxyz(ntm3), rxyz(ntm3), axyz(ntm3)
double precision axyz2(ntm3)
double precision rxyz2(ntm3)
double precision eps, sig
double precision cst5
double precision cst6, cst7, cst9, cst10
double precision cst12
double precision cst13, cstl4
double precision h, h2, h26, hi
double precision r(45)

common /blk4/ vxyz
common /blk5/ rxyz, rxyz2, axyz, axyz2
common /blk2/ h,- h2, h26, hi
common /blk9/ natom, natoml, natomJ
common /stuff/ cst5, cst6, cst7, sig, cst9, eps
common /stuff2/ cst10, cst12, cst13, cst14
common /last/ r, xseed

kstep=kstep+2

...

93

do 100 i=1,natom3
rxyz2(i)=rxyz(i)+h*vxyz(i)+h26*(4.0*axyz(i)-axyz2(i))

100 axyz2(i)=O.O

call accel(axyz2,rxyz2,kstep-2)

do 110 i=1,natom3
rxyz(i) = (rxyz2(i)-rxyz(i) + h26 * (2.00 * axyz2(i)

$+ axyz(i))) *hi
rxyz(i) = rxyz2(i) + h * rxyz(i) + h26 * (4.00 *

$axyz2(i) - axyz(i))
110 axyz(i)=o.oo

call accel(axyz,rxyz,kstep-1)

do 120 i=1,natom3
120 vxyz(i) = (rxyz(i) - rxyz2(i) + h26 * (2.00 * axyz(i)

c
c
c
c
c
c
c
c
c
c
c

$+ axyz2(i))) *hi

return
end

subroutine accel(axyz,rxyz,ktm)

The subroutine accel calculates the accelerations
for each of the particles. The first iodine atom,
the one farthest away from the xenon atom only feels
the force due to the iodine atom next to it. The
second iodine atom feels the force due to the iodine
atom next to it and the xenon atom. The xenon atom
only feels the force due to the iodine atom closest
to it. The two iodine atoms feel a force derived
from the rkr potential, and the xenon feels the
force derived from a Weeks Chandler Anderson
decomposition.

parameter(natom3=45)

double
double
double
double
double
double
double
double
double

precision
precision
precision
precision
precision
precision
precision
precision
precision

rxyz(natom3), axyz(natom3)
sig, eps

cst5
cst6, cst7, cst9, cst10
cst12
cst13, cst14 .
masi, masx, masi2, masx2
r(45)
rkrf

common jlang/ masi, masx, masi2, masx2
common ;stuff/ cst5, cst6, cst7, sig, cst9, eps
common ;stuff2/ cst10, cst12, cst13, cst14
common /last; r, xseed

94

c -Calculate the interatomic distances, and inverse
c sixth power of the distance between the iodine and
c xenon. This will be used in calculations of the
c acceleration due to the WCA potential. This
c probably should be done after the if statement which
c checks to see if the xenon is close enough to feel
c the iodine atom.

d9 244 i=1,natom3,3
r(i)=rxyz(i+1)-rxyz(i)
r(i+1)=rxyz(i+2)-rxyz(i+1)

244 r(i+2)=r(i+1)**(-6)

c Calculate the acceleration the first iodine atom
c feels due to the second iodine atom.

do 24 i=1,natom3,3
24 axyz(i)=-rkrf(r(i))*cst10

c Both if statements are left in for the user. The
c first if statement checks to see if the xenon is
c close enough to feel any acceleration due to the
c iodine atom. The second one is a vectorizable if
c statement for the Cray X-MP. At the time compiler
c development had not reached the stage such that an
c if statement would vectorize. The call to cvmgt- is
c basically a vectorizable if statement.

do 19 i=1,natom3,3
19 if(r(i+1).gt.cst13)r(i+1)=cst13
c19 r(i+1)=cvmgt(cst13,r(i+1),r(i+1).gt.cst13)

do 20 i=1,natom3,3
axyz(i+2)=cst7*(cst12*r(i+1)**(-13)-r(i+1)**(-7))

20 axyz(i+1)=-axyz(i)-axyz(i+2)*cst9

c
c
c
c
c
c

return
end

subroutine energy(rxyz,vxyz)

This subroutine calculates the energy of the total
system, for checking energy conservation, and then
calculates the energy in the iodine molecule. Note
rel, the energy in the iodine molecule does not the
contain center of mass energy for the iodine
molecule. sumi2 does contain center of mass motion.

parameter(ntm3=45)

double precision vxyz(ntm3), rxyz(ntm3)

.,.

double precision sig, eps
double precision cst5
double precision cst6, cst7, cst9, cstlO
double precision cst12
double precision cstl3, cst14, cst15, cst16
double precision masi, masx, masi2, masx2
double precision ep(45), ek(45), sumi22(45)
double precision sumi2(45), rel(45)
double precision r(45), rkrv, w, rcount
double precision sum(45), rmax

common /lang/ masi, masx, masi2, masx2

95

common jengj ek, ep, sumi2, rel, rmax, w, sum, rcount,
$cst15, cst16

common ;stuff/ cst5, cst6, cst7, sig, cst9, eps
common jstuff2/ cstld, cst12, cstlJ, cst14
common /last/ r, xseed

c ek = kinetic energy ep = potential energy

do 25 i=l,ntm3,3
r(i+l)=rxyz(i+2)-rxyz(i+l)
r(i)=rxyz(i+l)-rxyz(i)
r(i+2)=r(i+l)**(-6)
ek(i)=O.OO
rel(i)=O.OO
ek(i)=ek(i)+vxyz(i)**2*masi2
ek(i)=ek(i)+vxyz(i+l)**2*masi2
sumi2(i)=ek(i)
rel(i)=(vxyz(i+l)-vxyz(i))**2*masi2/2.00

25 ek(i)=ek(i)+vxyz(i+2)**2*masx2

do 26 i=l,ntm3,3
ep(i)=O.OO
if(r(i+l).gt.cstlJ)goto 26
ep(i)=ep(i)+cst5*((r(i+2)**2)*cst6-r(i+2))+eps

26 continue ·

c
c

do 27 i=l,ntm3,3

Note rkrv returns energy in wavenumbers, and must be
converted to the units used in this program •

sumi22(i)=rkrv(r(i))*l.l962657440
rel(i)=rel(i)+sumi22(i)
ep(i)=ep(i)+sumi22(i)

27 sumi2(i)=sumi2(i)+sumi22(i)

return
end

subroutine inrkr

c
c

96

This subroutine reads,in the·RKR data and puts it in
form that can be used by the spline subroutine.

double precision e(200), ri(200), ro(200)
double precision b(200), cl(200), dl(200)

common jkbl/ e, ri, ro, b, cl, dl, n

n=O
5 n=n+l

read(9,*) e(n),ri(n),ro(n)
if (e(n).lt.l2000.) goto 5
m=n
n=n+l
e (n) =o-. o
ri(n)=2.66570
do 6 i=l,m
n=n+l
e(n)=e(i)

6 ri(n)=ro(i)

do 7 i=l,m/2
tl=ri (i)
t2=e (i)
j=m+l-i
ri(i)=ri(j)
e(i)=e(j)
ri(j)=tl

7 e(j)=t2

c
c
c
c
c
c
c
c
c
c
c

call spline(n,ri,e,b,cl,dl)

return
end

double precision function rkrf(r)

This calculates the force on an iodine atom due to
the other iodine atom. The force is either a one
over radius to the thirteenth if r less than or
equal to 2.3138, one over. ~adius to the 9.4 if r i~
greater or equal to 4. 4060 and finally if the radius
is between these two .values a spline of the force
table generated from the rkr table is used. Note
that in the molecular dynamics calculations a look
up table was used for the force and potential for
the iodine molecule.- A spline had to be used here
because energy conservation constraints are tighter.

double precision e(200), ri(200), ro(200), b(200)

c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

double precision cl(200), dl(200)
double precision.r, f, dseval

common /kbl/ e, ri, ro, b, cl, dl, n

f=O.O
if (r.le.2.31380) f=-12.*2.9255766d8/r**l3
if (r.ge.4.4060) f=8.4*1.28477d8/r**9.4
if -(f.eq.O.) f=dseval(n,r,ri,e,b,cl,dl)
rkrf=-f

return
end

double precision function rkrv(r)

97

This calculates the potential energy of the iodine
atoms due to the other iodine atom. Again a spline
and not a look up table were used due to the fact
that energy conservation had to be much better for
this' calculation than the molecular dynamics in a
liquid calculation.

double precision e(200), ri(200), ro(200), b(200)
double precision cl(200), dl(200)
double' precision r, v, seval

common /kbl/ e, ri, ro, b, cl, dl, n

v=O.
if (r.le.2.31380) v = 2.9255766d8 1 r**l2 -3456.4670

$-12540.260
· if (r.ge.4.4060) v=-1.28477d8/r**8.4

if (v.eq.O.) v=seval(n,r,ri,e,b,cl,dl)-12540.260
rkrv=v

return

end

subroutine spline(n,x,y,b,c,d)

This subroutine is a cubic interpolating spline
taken from Computer Methods for Mathematical
Computations, by Forsythe, et al., p. 76.

S(X) = y(I) + b(I) * (X - X(I)) + c(I) * (X -
x(I)**2 + d(I) * (x- x(I))**3

for x(I) less than or equal to x and x is less than

c
c
c
c
c

or equal to x(I+1)

n = the number of data points (n.ge.2)
x= the abscissa in strictly increasing order
y = the ordinate

integer n
integer nm1, ib, i

double precision x(n),y(n),b(n),c(n),d(n)
double precision t

nm1=n-1
if (n.lt.2) return
if (n.lt.3) goto 50

d(1)=x(2)-x(1)
c(2)=(y(2)-y(1))/d(1)

do 10 i=2,nm1
d(i)=x(i+1)-x(i)
b(i)=2.*(d(i-1)+d(i))
c(i+1)=(y(i+1)-y(i))/d(i)
c(i)=c(i+1)-c(i)

10 continue

b(1)=-d(1)
b(n)=-d(n-1)
c(1)=0.
c(n)=o:
if (n.eq.3) goto 15
c(1)=c(3)/(x(4)-x(2))-c(2)/(x(3)-x(1))
c(n)=c(n-1)/(x(n)-x(n-2))-c(n-2)/(x(n-1)-x(n-3))
c(1)=c(1)*d(1)**2/(X(4)-x(1)) ·
c(n)=-c(n)*d(n-1)**2/(x(n)-x(n-3))

15 do 20 i=2,n
t=d (i-1) /b (i-1)
b(i)=b(i)-t*d(i-1)
c(i)=c(i)-t*c(i-1)

20 continue

c(n)=c(n)/b(n)

do 30 ib=1,nm1
i=n-ib
c(i)=(c(i)-d(i)*c(i+l))/b(i)

30 continue

b(n)=(y(n)-y(nm1))/d(nm1)+d(nm1)*(c(nm1)+2.*c(n))

do 40 i=1,nm1

98

b(i)=(y(i+1)-y(i))/d(i)-d(i)*(c(i+1)+2.*c(i))
d(i)=(c(i+1)-c(i))/d(i)
c(i)=3.*c(i)

99

40 continue

50

c
c
c
c
c
c

c(n)=3.*c(n)
d(n)=d(n-1)
return

b(1)=(y(2)-y(1))/(X(2)-x(1))
c(1)=0.
d(1)=0.
b (2) =b (1)
c(2)=0.
d(2)=0.
return

end

double precision function seval(n,u,x,y,b,c,d)

This subroutine evaluates the spline function once
the coefficients have been calculated by spline.
cubic interpolating spline taken from Computer
Methods for Mathematical Computations, by Forsythe,
et al., p. 76. This subroutine calculates the
spline interpolation for the potential.

integer n
integer i, j, k

double precision u, x(n), y(n), b(n), c(n), d(n)
double precision dx

data i/1/

if (i.ge.n) i=1
if (u.lt.x(i)) goto 10
if (u.le.x(i+1)) goto 30

10 i=1
j=n+l

20 k=(i+j)/2
if (u.lt.x(k)) j=k
if (u.ge.x(k)) i=k
if (j.gt.i+1) goto 20.

30 dx=u-x(i)
seval=y{i)+dx*(b(i)+dx*(c(i)+dx*d(i)))
return

c
c
c
c
c
c
c
c

100

end

double precision function dseval(n,u,x,y,b,c,d)

This subroutine evaluates the spline function once
the coefficients have been calculated by spline.
cubic interpolating spline taken from Computer
Methods for Mathematical Computations, by Forsythe,
et al., p. 76. This subroutine calculates the
spline interpolation for the force. Note that the
return is just the derivative of the cubic
interpolation.

integer n
integer i, j, k

.double precision u, x(n), y(n), b(n), c(n), d(n)
double precision dx

data i/1/

if (i.ge.n) i=1
if (u.lt.x(i)) goto 10
if (u.le.x(i+1)) goto 30

10 i=1-

j=n+1
20 k=(i+j)/2

if (u.lt.x(k)) j=k
if (u.ge.x(k)) i=k
if (j.gt.i+1) goto 20

30 dx=u-x(i)
dseval=b(i)+dx*(2.*c(i)+dx*3.*d(i))
return

end

101

B. PROGRAM LISTING IBCENE

c Program 11 IBCENE 11

c Daniel Russell
c Aug. 6, 1990

c This program reads in the energy losses for the 1500
c trajectories run the program 11 I2IBC" and calculates
c the average energy loss as a function of number of
c collisions.
c
c
c
c
c
c

c
c
c
c

c

c
c

The matrix dis contains the 1500 energy losses for
the 82 vibrational levels. vel is vector that will
store a velocity distribution for the energy loss.
newe keeps track of the energy. The array tot keeps
track of the energy as a function of collisions.

real dis(l500,82) ,vel(15) ,viben(82) ,newe,tot(10000)
common /data/ dis

Because the data files are quite large they are
stored on a TK-50 tape. The tar command retrieves
the data file from tape. The file xl-20 contains
the data for the vibrational level 1 through 20.

if(system(-'tar -x x1-20').ne~O)write(6,*)"tar err"

The subroutine dread() reads in the data.

call dread(1,1,20)

The data file is removed so space is available for
the next file.

if(system('rm xl-20').ne.O)write(6,*)"rm err"

if(system('tar -x x21-40') .ne.O)write(6,*)"tar err"

call dread(2,21,40)

if(system('rm x21-40').ne.O)write(6,*)"rm err"

if(system('tar -x x41-60').ne.O)write(6,*)"tar err"

call dread(J,41,60)

if(system('rm x41-60').ne.O)write(6,*)"rm err"

if(system('tar -x x61-82 ').ne.O)write(6,*)"tar err"

call dread(4,61,82)

if(system('rm x61-82').ne.O)write(6,*)"rm err"

open(4,status='new',file='ene.dep')
open(5,status='new',file='vel.dep')
open(J,status='old',file='fcfkb.out')

c Read in the-vibrational energy levels.

do 1 i=1,100
read(3,*)rjunk,viben(i),rjunk1,rjunk2,rjunk3

1 continue

iy=165335
times=100

do 12 i=1,10000
12 tot(i)=O.

do 2 i=1,times

5 rnd=urand(iy)

102

c Get a random number uniformly distributed between
c o and 1. /

c
c

k=int(1500.*rnd)+1

Change it to a random number between 1 and 1500
which then gives an energy loss for this step

newe=viben(82)+dis(k,82)
jj=O
kk=O

6 do 3 j=82i2,-1

3 if(newe.gt.viben(j))goto 4
goto 2

4 if(j.eq.82)newe=newe+dis(int(1500.*urand(iy))+1,82)
jj=jj+1

c Store the energy every 10 collisions

if(jj.eq.10)kk=kk+1
if(jj.eq.10)tot(kk)=newe+tot(kk) ·

if(jj.eq.lO)jj=O
if(j.eq.82)goto 6

103

c For energies in between vibrational levels choose an
c energy loss which is a function of the two energy
c levels.

ri=(viben(j+1)-newe)/(viben(j+l)-viben(j))
rf=1.-ri

- ryl=urand(iy)
ry2=urand(iy)
newe = newe + ri * dis(int(.lSOO. * ry1) + 1, j) + rf
$* dis(int(1500. * ry2) + 1, j + 1)
goto 6

2 continue

do 8 i=1,82
jj=O

do 9 k=1,15
9 vel(k)=O.

c Calculate the energy. loss as a function of the
c velocities.

do 7 j=l,lSOO
jj=jj+1
vel(jj)=vel(jj)+dis(j,i)

7 if(jj.eq.15)jj=O

do 8 k=1,15
8 write(S,*)vel(k)

do 10 i=1,10000
if(tot(i).eq.O.)goto 11

10 write(4,*)tot(i)
11 continue

end

subroutine dread(i,j,k)
real dis(1500,82)
character*20 a
common /data/ dis
open(1,status="old",file="list")
do 1 ii=1,i

1 read(1,*)a
open(2,status="old",file=a)
do 2 ii=1,k-j+1
read(2,*)rj
do 2 jj=1,1500

2 read(2,*)dis(jj,j+ii-l)
close(1)

close(2)
return
end

104

105

C. PROGRAM LISTING IIBC

c Program "IIBC"
c Daniel Russell
c August 6 1990
c
c This program calculates the average properties of an
c iodine atom in a bath of 107 xenon atoms. The
c system is first carefully thermalized. Then the
c calculation is then run long enough to get good
c statistics on the radial distribution function and
c the various force autocorrelation functions. Some
c of the subroutines are taken from Keenan Brown's
c molecular dynamics program "I2XENON" and slightly
c modified for this system.

program xenon

parameter (natom=108, natom1=natom-1, natom3=3*natom)
parameter (ignum=lOOO, ivacf=256)
parameter(n~=natom, nc=2*natom)

c natom is the number of atoms in the system. ignum
c times three is the length of the array that will
c store the radial distribution function. ivacf is
c the length of the array that will store the force
c autocorrelation functions. Note that there are
c three dimensions, so that the size of the array
c will actually be three times ivacf.

c If run on the Cray the following line sho~ld making
c the. real variables double precision should be
c commented out. The Cray has enough precision to run
c accura_tely enough with single precision. If this is
c being run on the Digital Microvax or the Silicon
c Graphics· 3130 the reals should be double precision

c implicit double precision (a-h, o-z)

c The matrix acceli temporarily stores the individual
c forces between the iodine atom and each xenon atom.
c This is stored for all three dimensions even though
c the iodine atom is sphericalty symmetric. The
c matrix dfibc actually stores the Isolated Binary
c force autocorrelation that is described earlier in
c the text. The array g contains the radial
c distribution function. The matrix atot stores the
c accelerations used in calculating the total force
c . autocorrelation. The matrix dftot contains the
c total force autocorrelation.

·dimension acceli(natom3, ivacf), dfibc(ivacf, 3)

c
c
c
c
c
c
c
c
c
c
c

c
c

c
c
c
c

c
c
c

106

dimension g(3*ignum), atot(ivacf, 3), dftot(ivacf, 3)

alxyz is the length of the cube used in periodic
boundary conditions. smass is the mass of the
solvent, xenon, in atomic mass units. r2max is the
square of the maximum radius where the potential is
felt between xenon atoms. vzero is the constant
that is added to the potential in order to have the
potential between xenon atoms go to zero at the
radius squared of r2max. This make sure that the
potential and derivative of the potential are
continuous. r2maxi and vzeroi are the corresponding
values for iodine.

common /blkl/ alxyz, cl, c2, smass, cld, c2d, r2max

common /blkll/ vzero, vzeroi, r2maxi

h is the time step, h2 is h squared, h26 is h2/6 and
hi is one over h

common jblk2/ h, h2, h26, hi

si.mass is the iodine mass (amu) • eps is the
Lennard-Jones well depth for iodine-xenon. The
actual potential is a Weeks- Chandler Anderson
decomposition of the Lennard-Jones potential.

common jblk3/ cldi, c2di, eli, c2i, simass, eps
common jcacl2/ acc~li, dfibc, dftot, iq, atot, g, scale

vxyz, rxyz, and axyz' are the velocity, position.
They are stored all the x coordinates for the 108
atoms first, all the y coordinates next etc.

common jblkS/ rxyz(natom3), vkyz(natom3), axyz(natom3)

common /blk51/ axyz2(natom3)

c This text was saved as an example of how to open a
c file on the Cray X;_MP using the CTSS operating
c system.
c
c call link(11unit6=(eng, create, text), unit8=(vacf,
c $create,text), unitl=(start, open, text), unit2=(flow,
c $CREATE, TEXT), PRINT2/ / 11

)

open(l, file='final2', status='new')
open(2, file='axyz', form='unformatted', status='new')
open(l, file='infinal', status='old')
open(8, file='fforce', status='new')
open(2, file='jforce', status='new')

c
c
c

107

The subroutine init initializes all the variables
and reads in a FCC lattice which is the starting
point for the iodine atom and the xenon solvent.

call init

. scale=float(4*ignum)jalxyzjalxyz

c zero arrays for start-up

do 40 i=l,natom3
axyz2(i)=O.O

40 axyz(i)=O.O

do 43 i=l;3.
do 43 il=l,ivacf
dftot(il,i)=O.

43 dfibc(il,i)=O.

do 45 i=1,3*ignum
45 . g (i) =0 0

c tke is the kinetic energy of the system given the
c temperature of 280 Kelvin.

c
c
c
c

c
c
c

~c

c
c
c

c

tke=1.50*natom*.8310*280.0

ktm is incremented by two on every integration step.
the following integration loop is for equilibration,
only energy data is stored.

ktm=O
dtemp=O.

The subroutine tempe calculates the kinetic energy
of the system and also removes any center of mass
motion.

call tempe(ek,ep,etot,cek)

do 999 i=l,25

The subroutine tempa() is very similar to tempe()
except it does not remove center of mass moti~:m. By
this time all the center of mass motion should be
removed from the system.

call tempa(ek,ep,etot,cek)
ff2=sqrt(tkejek)

ff2 is the scale factor to cool the system to the

108

c appropriate temperature.

do 762 iw=l,natom3
762 vxyz(iw)=vxyz(iw)*ff2

999 call integ(ktm)

dtemp=O.

c
c
c

In this do loop the system is run somewhat hot to
randomize it. Therefore cooling is also done
slower.

do 482 il=1,256

call integ(ktm)

call tempa(ek,ep,etot,cek)
dtemp=dtemp+ek

482 continue
ff2=sqrt(tkejdtemp*256.)

do 763 iw=l,natom3
763 vxyz(iw)=vxyz(iw)*ff2

w.rite(6,*)dtempjl.5/.83l/natom/256.

dtemp=O.

do 764 i2=1,3

do 483 il=l,2500
call integ(ktm)

. call tempa(ek,ep,etot,cek)
dtemp=dtemp+ek

483 continue

ff2=sqrt(tke/dtemp*2500.)
write(6,*)dtempjl.5/.83l/natom/2500.
dtemp=O.

do 764 iw=l,natom3
764 vxyz(iw)=vxyz(iw)*ff2

c The following loop is the final cooling loop to get
c the system as close as possible to the appropriate
c temperature.

dtemp=O.·
do 484 il=l,5000

call inteq(ktm)

call tempa(ek,ep,etot,cek)
dtemp=dtemp+ek

109

484 continue

ff2=sqrt(tke/dtemp*5000.)
write(6,*)dtempj1.5/.831jnatom/5000.

do 765 iw=1,natom3
765 vxyz(iw)=vxyz(iw)*ff2

c
c
c

c
c
c

dtemp=O.
iq=1

Run a do loop of 256 iterations in order to
initialize the matrix dfibc and acceli for
calculation of force autocorrelations.

do 485 i1=1,256

The subroutine dinteq performs two inteqration loops
per call. On the second loop it stores information
for calculatinq the force autocorrelations.

call dinteq(ktm)

c The variable iq keeps track of time o in the force
c autocorrelation matrices.

iq=iq+1
call tempa(ek,ep,etot,cek)

485 dtemp=dtemp+ek

c
c

c
c
c
c

iq=1

The subroutine dfrc actually calculates the force
autocorrelations.

call dfrc
call enerqy(ek,ep,etot)
write(6,*)ek,ep,etot

do 21 i2=1,50000

The subroutine tempa() is called at this point not
to equilibrate the system but in order to find out
what the averaqe temperature of the system was
durinq the calculation.

c

21

c

10

c
c

call tempa(ek,ep,etot,cek)
dtemp=dtemp+ek
call dinteq(ktm)

Note that iq is updated here.

iq=l+mod(iq,ivacf)
call dfrc

write(6,*)dtemp/1.5/.831/natomj50256.
call enerqy(ek,ep,etot)

Write out the final temperature.

write(6,*)ek,ep,etot

format(el0.4,6fl0.4,i5)

110

'Write out the Isolated Binary Collision Force
autocorrelation function.

do 64 i=l,J
do 64 il=l,ivacf

64 write(S,*)dfibc(il,i)

c Write out the total force autocorrelation function·-

do 65 i=l,J
do 65 il=l,ivacf

65 write(S,*)dftot(il,i)

c Write out the radial distribution function

do 55 i=l,J*iqnum
55 write(S,*)q(i)

stop
call exit
end

subroutine tempe (ek, ep-, etot, cek) -

parameter(natom=lOS, natoml=natom-1, natomJ=J*natom)
parameter(nbl=l, nb2=natom+l, nb)=2*natom+l)
parameter(nb=natom, nc=2*natom)

c implicit double precision (a-h, o-z)

common /blkl/ alxyz, cl, c2, smass, cld, c2d, r2max

common /blkll/ vzero, vzeroi, r2maxi

111

common /blk3/ cldi, c2di, eli, c2i, simass, eps
common /blkS/ rxyz(natom3), vxyz(natom3), axyz(natom3)

common /blkSl/ axyz2(natom3)

qimension rx(natom), ry(natom), rz(natom)

equivalence (rxyz(nbl), rx), (rxyz(nb2), ry),
$(rxyz(nb3), rz)

ek = 0.0
cmassx=O.O
cmassy=O.O
cmassz=O.O

c Calculate the center of mass velocity for_the xenon
c atoms.

do 11 i=2,natom
'cmassy=cmassy+vxyz(i+nb)
cmassz=cmassz+vxyz(i+nc)

11 cmassx=cmassx+vxyz(i)

c Calculate the center of mass momentum for the xenon
c atoms.

c

cmassx=cmassx*smass
cmassy=cmassy*smass
cmassz=cmassz*smass

Add center of mass momentum for the iodine atom.

cmassx=cmassx+vxyz(l)*simass
cmassy=cmassy+vxyz(l+nb)*simass
cmassz=cmassz+vxyz(l+nc)*simass

tempx=cmassxj(natoml*smass+simass)
tempy=cmassy/(natoml*smass+simass)
tempz=cmassz/(natoml*smass+simass)

cek=.50*(cmassx**2 + cmassy**2. + cmassz**2) 1 (natoml *

$smass + simass)

c Remove Center of mass motion.

do 13 i=l,natom
vxyz(i)=vxyz(i)-tempx
vxyz(i+nb)=vxyz(i+nb)-tempy

13 vxyz(i+nc)=vxyz(i+nc)-tempz

c Calculate kinetic energy, used in assigning

112

c temperature.

do 10 i=2,natom
·ek=ek+vxyz(i+nb)*vxyz(i+nb)
ek=ek+vxyz(i+nc)•vxyz(i+nc)

10 ek=ek+vxyz(i)•vxyz(i)

c
c
c

ek = .50 * smass * ek
ek=ek+vxyz(1)*vxyz(l)*.50*simass
ek=ek+vxyz(l+nb)*vxyz(l+nb)*.SO*simass
ek=ek+vxyz(l+nc)•vxyz(l+nc)*.SO*simass

return
end

subroutine tempa(ek,ep,etot,cek)

This subroutine is the same as tempe () 1 except there .
is no calculation or subtraction of center of mass
motion.

parameter(natom=l08, natom1=natom-1, natom3=3*natom)
parameter(nbl=l, nb2=natom+l, nb3=2*natom+l)
parameter(nb=natom 1 nc=2*natom)

c implicit double precision (a-h, o-z)

common jblkl/ alxyz, cl, c2, smass, c1d 1 c2d 1 r2max

common /blk11/ vzero, vzeroi, r2maxi
common jblk3/ c1di 1 c2di, eli, c2i, simass 1 eps
common jblk5/ rxyz(natom3), vxyz(natom3), axyz(natom3)

common jblk51/ axyz2(natom3)

dimension rx(natom), ry(natom), rz(natom)

equivalence (rxyz(nb1) 1 rx), (rxyz(nb2) 1 ry) I

$(rxyz(nb3) 1 rz)

ek = o.o

do 10 i=2,natom
ek=ek+vxyz(i+nb)*vxyz(i+nb)
ek=ek+vxyz(i+nc)•vxyz(i+nc)

10 ek=ek+vxyz(i)•vxyz(i)

ek = .50 * smass * ek
ek=ek+vxyz(l)*vxyz(l)*.SO*simass
ek=ek+vxyz{l+nb)*vxyz(l+nb)*.SO*siinass

c
c
c
c
c
c
c
c

ek=ek+vxyz(1+nc)*vxyz(i+nc)•.so•simass

return
~d .

subroutine integ(kstep)

113

This subroutine integrates Newton's equations for
the particles whose positions and velocities are
specified by the arrays rxyz and vxyz respectively.
The forcesjmass are in the arrays axyz and axyz2 for
the times i and i-1. The integration is done by
Beeman's method. This is identical to the
subroutine used in the molecular dynamics
simulations of J. K. Brown.

parameter(natom=108, natom1=natom-1, natom3=3*natom)

c implicit double precision (a-h, o-z)

common jblk2/ h, h2, h26, hi
common /blkS/ rxyz(natomJ), vxyz(natomJ), axyz(natomJ)

common /blk51/ axyz2(natom3)

dimension rxyz2(natom3)

kstep=kstep+2

do 100 i=1,natom3
rxyz2(i)=rxyz(i)+h*vxyz(i)+h26*(4.•axyz(i)-axyz2(i))

100 axyz2(i)=O.O

call accel(axyz2,rxyz2)

do 110 i=1,natom3
rxyz(i)=(rxyz2(i)-rxyz(i)+h26*(2.*axyz2(i)+axyz(i)))*hi
rxyz(i)=rxyz2(i)+h*rxyz(i)+h26*(4.*axyz2(i)-axyz(i))

110 axyz(i)=O.O

call accel(axyz,rxyz)

do 120 i=1,natom3
120 vxyz(i)=(rxyz(i)-rxyz2(i)+h26*(2.•axyz(i)+axyz2(i)))*hi

return

c
c
c
c

114

end

subroutine dinteq(kstep)

This subroutine is identical to the subroutine
inteq(), except that in stead of calling the
subroutine accel () twice accel () is called once and
daccel() is called once.

parameter(natom=1,08; natom1=natom-1, natom3=3*natom)

c implicit double precision (a-h, o-z)

common /blk2/ h, h2, h26, hi
common /blkS/ rxyz(natom3), vxyz(natom3), axyz(natom3)

common /blk51/ axyz2(natom3)

dimension rxyz2(natom3)

kstep=kstep+2

do 100 i=1,natom3
rxyz2(i)=rxyz(i}+h*vxyz(i}+h26*(4.*axyz(i)-axyz2(i))

100 axyz2(i)=O.O

call accel(axyz2,rxyz2)

do 110 i=1,natom3
rxyz(i)=(rxyz2(i)-rxyz(i)+h26*(2.*axyz2(i)+axyz(i)))*hi
rxyz(i}=rxyz2(i)+h*rxyz(i)+h26*(4.*axyz2(i)-axyz{i))

110 axyz(i)=O.O

call daccel(axyz,rxyz)

do 120 i=1,natom3
120 vxyz(i)=(rxyz(i)-rxyz2(i)+h26*(2.*axyz(i)+axyz2(i)))*hi

return
end

subroutine accel(a,r)

parameter(natom=108, natom1=natom-1, natom3=3*natom)
_parameter(nb=natom, nc=2*natom}"
parameter (iqnum=1000, ivacf=256)

c implicit doubleprecision (a-h, o-z)

c
c
c
c
c
c
c

115

The subroutine accel() calculates the x, y, and z
components of the acceleration between atoms.
CUrrently a Weeks Chandler Anderson force function
is assumed. Although this code has been used for a
Lennard-Jones fluid and where changes are needed to
do this will be indicated in the comments.

common /blkl/ alxyz, c1, c2, smass, cld, c2d, r2max
common /blkll/ vzero, vzeroi, r2maxi
common /blk3/ cldi, c2di, eli, c2i, simass, eps

dimension dvr(natom), dx(natom), dy(natom), dz(natom)
dimension a(natom3), r(natom3), r2(natom)
dimension num(natom)

i=l
i1 = i+l

c In this loop the relative distances are calculated
c and scaled in order to take account of periodic
c boundary conditions.

do 220 j=i1,natom
dx(j) = r(i) - r(j)
dy(j) = r(i+nb)- - r(j+nb)
dz(j) = r(i+nc) - r(j+nc)
dx(j) = dx(j) - alxyz*anint(dx(j)/alxyz)
dy(j) = dy(j) - alxyz•anint(dy(j)/alxyz)
dz (j) = dz (j) - alxyz•·anint(dz (j)/alxyz)

220 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2

do 440 j=i1,natom
if (r2(j) .qt. r2maxi) qoto 441
dvr(j) = (1.0 1 r2(j))**4
dvr(j) = dvr(j) * (c1di*dvr(j)*r2(j) - c2di)
dx{j) = dx(j) * dvr{j)
dy{j) = dy(j) * dvr{j)
dz(j) = dz{j) * dvr(j)
a{i) = a(i) + dx(j)
a{i+nb) = a(i+nb) + dy(j).
a{i+nc) = a(i+nc) + dz{j)
qoto 440·

441 dx(j)=O.O
dy(j)=O.O
dz(j)=O.O

440 continue

n = o

do 330 j=il,natom
if (r2(j) .gt. r2maxi) goto 330
n=n+.1
num(n) = j
dx(n) = dx(j)
dy(n) = dy(j)

· dz (n) = dz (j)
r2(n) = r2(j)

330 continue

116

c
c

This next loop makes sure to put the opposite force
on·the appropriate xenon atom.

do 550. j=1,n
i1=num(j)
a(i1) = a·(i1) - dx(j)
a(i1+nb) = a(i1+nb) - dy(j)

550 a(i1+nc) = a(i1+nc) - dz(j)

c If the Calculation is to be a pseudo gas phase
c calculation, uncomment th~ goto 11 line.
c goto 11

c The above loops calculated the accelerations for all
c iodine xenon pairs. The followinq loops do the same
c for all xenon xenon pairs.

do 10 i=2,natom1
i1 = i+1

do 20 j=i1,natom
dx(j) = r(i) - r(j)
dy(j) = r(i+nb) - r(j+nb)
dz(j) = r(i+nc) - r(j+nc)
dx(j) = dx(j) - alxyz*anint(dx(j)jalxyz)
dy(j) = dy(j) - alxyz*anint(dy(j)jalxyz)
dz(j) = dz(j) - alxyz*anint(dz(j)jalxyz)

20 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2

n = o

do 30 j=i1,natom

if· (r2 (j) .gt. r2max) goto 30
n = n + 1
num(n) = j
dx(n) = dx(j)
dy(n) = dy(j)
dz(n) = dz(j)
r2(n) = r2(j)

30 continue

"·

..

do 40 j=1,n

dvr(j) = (1.0 I r2(j))**4
dvr(j) = dvr(j) * (c1d*dvr(j)*r2(j) - c2d)
dx(j) = dx(j) * dvr(j)
dy(j) = dy(j) * dvr(j)
dz(j) = dz(j) * dvr(j)
a(i) = a(i) + dx(j)
a(i+nb) = a(i+nb) + dy(j)

117

40 a(i+nc) = a(i+nc) + dz(j)

50

do 50 j=1,n
i1 = num(j)
a(i1) = a(i1) - dx(j)
a(i1+nb) = a(i1+nb)
a(i1+nc) = a(i1+nc) -

dy(j)
dz(j)

10 continue

c
c

The following loops turn . the forces
accelerations by dividing by the mass.

into

11 do 60 i=2,natom
a(i+nb) = a(i+nb) I smass
a(i+nc) = a(i+nc) 1 smass

60 a(i) = a(i) I smass

c
c
c
c
c
c
c
c
c

a(1) = a(1) 1 simass
a(1+nb) = a(1+nb) 1 simass
a(1+nc) = a(1+nc) 1 simass

return

end

subroutine daccel(a,r)

parameter(natom=108, natom1=natom-1, natom3=3*natom)
parameter(nb=natom, nc=2*natom)
parameter (ignum=1000, ivacf=256)

implicit double precision (a-h, o-z)
The subroutine daccel() is the same as the
subroutine accel(), except that the data needed for
force autocorrelations are calculated here. It is
done here because this subroutine must do some of
the calculations needed for the force
autocorrelations as it calculates accelerations.
This subroutine also does the radial distribution
calculation.

118

dimension acceli(natom3, ivacf), dfibc(ivacf, 3)
dimension dftot(ivacf, 3), q(3*iqnum), atot(ivacf, 3)

common /blk1/ alxyz, c1, c2, smass; cld, c2d, r2max
common /blk11/ vzero, vzeroi, r2maxi
common /blk3/ c1di, c2di, eli, c2i, simass, eps
common jcacl2/ acceli, dfibc, dftot, iq,. atot, q, scale

dimension dvr(natom), dx(natom), dy(natom), dz(natom)
dimension a(natom3), r(natom3), r2(natom)
dimension num(natom), inc(natom)

i=1
i1 = i+1

do 220 j=i1,natom
dx(j) = r(i) - r(j)
dy(j) = r(i+nb) - r(j+nb)
dz(j) = r(i+nc) - r(j+nc)
dx(j) = dx(j) - alxyz•anint(dx(j)jalxyz)
dy(j) = dy(j) - alxyz•anint(dy(j)jalxyz)
dz(j) = dz(j) - alxyz•anint(dz(j)jalxyz)

220 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2

do 1 i3=2,108
1 inc(i3)=anint(scale*r2(i3)+.5)

do 2 i3=2,108
2 q(inc(i3))=q(inc(i3))+1.

c
c
c

c
c

do 440 j=i1,natom
if (r2(j) .qt. r2maxi) qoto 441
dvr(j) = (1.0 1 r2(j))**4
dvr(j) = dvr(j) * (c1di*dvr(j)*r2(j) - c2di)
dx(j) = dx(j) * dvr(j)
dy(j) = dy(j). * dvr(j)
dz(j) = dz(j) * dvr(j)

Store the forces on the iodine atom due to each
xenon atom in the followinq steps. This is used for
the Isolated Binary Collision force autocorrelation.

acceli(j-1,iq)=dx(j)
acceli(j-1+nb,iq)=dy(j)
acceli(j-1+nc,iq)=dz(j)

For the total force autocorrelation only the total ·
acceleration on the iodine atom is needed.

a(i) = a(i) + dx(j)
a(i+nb) = a(i+nb) + dy(j)

..

- a(i+nc) = a(i+nc) + dz(j)

qoto_440

441 dx(j)=O.O
dy(j)=O.O
dz(j)=O.O
acceli(j-1,iq)=dx(j)
acceli(j-1+nb,iq)=dy(j)
acceli(j-1+nc,iq)=dz(j)

440 continue

atot(iq,1)=a(i)
atot(iq,2)=a(i+nb)
atot(iq,3)=a(i+nc)

n = o
do 330 j=i1,natom

if (r2(j) .qt. r2maxi) qoto 330
n = n ·+ 1 -
num(n) = j
dx(n) = dx(j)
dy(n) = dy(j)
dz(n) = dz(j)
r2(n) = r2(j)

330 continue

do 550 j=1,n

i1=num(j)
a(i1) = a(i1) - dx(j)
a(i1+nb) = a(i1+nb) - dy(j)

550 a(i1+nc) = a(i1+nc) - dz(j)

119

c
c
c

If a pseudo qas phase calculation is needed
uncomment the followinq line.
qoto 11

do 10 i=2,natom1

i1 = i+1

do 20 j=i1,natom

dx(j) = r(i) - r(j)
dy(j) ~ r(i+nb) - r(j+nb)
dz(j) = r(i+nc) - r(j+nc)
dx(j) = dx(j) alxyz•anint(dx(j)/alxyz)
dy(j) = dy(j) - alxyz•anint(dy(j)/alxyz)

dz(j) = dz(j) - alxyz•anint(dz(j)lalxyz)
20 r2(j) = dx(j)**2 + dy(j)**2 + dz(j)**2

n = o

do 30 j=il,natom

if (r2(j) .qt. r2max) goto 30
n = n + 1
num(n) = j
dx(n) = dx(j)
dy(n) = dy(j)
dz(n) = dz(j)
r2(n) = r2(j)

30 continue

do 40 j=l,n
dvr(j) = (1.0 1 r2(j))**4
dvr(j) = dvr(j) * (c1d*dvr(j)*r2(j) - c2d)
dx(j) = dx(j) * dvr(j)
dy(j) = dy(j) * dvr(j)
dz(j) = dz(j) * dvr(j)
a(i) = a(i) + dx(j)
a (i+nb) = a (i+nb) + dy(j)·

40 a(i+nc) = a(i+nc) + dz(j)

do 50 j=1,n
il = num(j)
a(i1) = a(il) - dx(j)
a(i1+nb) = a(i1+nb) - dy(j)

50 a(il+nc) = a(i1+nc) - dz(j)

10 continue

11 do 60 i=2,natom
a(i+nb) = a(i+nb) 1 smass
a(i+nc) = a(i+nc) 1 smass

60 a(i) = a(i) 1 smass

a(1) = a(1) 1 simass
a(1+nb) = a(1+nb) 1 simass
a(1+nc) = a(1+nc) 1 simass
return

end

subroutine energy(ek,ep,etot)

120

c
c
c

The subroutine calculates kinetic energy (ek),
potential energy {ep) and the total energy (etot)
for the system of particles whose velocities and

121

c posi.tions are qiven by the arrays vxyz and rxyz
c respectively. . A Weeks Chandler Anderson
c decomposition of a Lennard-Janes 6-12 potential
c shifted to zero at rzero is assumed.

parameter(natom=lOS, natoml=natom-1, natom3=3*natom)
parame~er(nbl=l, nb2=natom+l, nb3=2*natom+l)
parameter(nb=natom, nc=2*natom)

c implicit double precision (a-h, o-z)

c
c
c

common /blkl/ alxyz, cl, c2, smass, cld, c2d,.r2max

common /blkll/ vzero, vzeroi, r2maxi
common /blk3/ cldi, c2di, eli, c2i, simass, eps
common /blk5/ rxyz(natom3), vxyz(natom3), axyz(natom3)

common /blk51/ axyz2(natom3.)

dimension r2(natom), rx(natom), ry(natom), rz(natom)

inteqer num(natom)

equivalence (rxyz(nbl), rx), (rxyz(nb2), ry),
$(rxyz(nb3), rz)

Calculate the kinetic enerqy.

ek = o.o

do 10 i=2,natom
ek=ek+vxyz(i+nb)*vxyz(i+nb)
ek=ek+vxyz(i+nc)*vxyz(i+nc)

10 ek=ek+vxyz(i)*vxyz(i)

c
c

ek = .50 * smass * ek
ek=ek+vxyz(l)*vxyz(l)*.SO*simass ·
ek=ek+vxyz(l+nb)*vxyz(l+nb)*.SO*simass
ek=ek+vxyz(l+nc)*vxyz(l+nc)*.SO*simass

ep=O.
i=l

i! = i + 1

Calculate the potential enerqy of all the xenon 1

atoms interactinq with the iodine atom.

do 220 j=il,natom
dx = rx(i) - rx(j)
dy = ry(i) - ry(j)
dz = rz(i) - rz(j)
dx = dx - alxyz•anint(dxjalxyz)

dy = dy - alxyz•anint(dyjalxyz)
dz = dz - alxyz*anint(dzjalxyz)

220 r2(j) = dx**2 + dy**2 + dz**2

n = 0
do 330 j=i1,natom
if (r2(j) .gt. r2maxi) goto 330
n = n + 1
num(n) = j
r2(n) = r2(j)

330 continue

do 440 j=1,n
vr = (1.0 1 r2(j))**3

122

c _ The following line should add vzeroi instead of'eps
c if a Lennard-Jones potential is to be used.

440 ep = ep + vr * (c1i*vr - c2i)+eps

c For a pseudo gas uncomment the following line.

c goto 11

c calculate the potential energy of all the xenon
c atoms interacting with the other xenon atoms.

-

20

-

do 15 i=2,natom1

i1 = i + 1

do 20 j=i1,natom
dx = rx(i) - rx(j)
dy = ry(i) - ry(j)
dz = rz(i) - rz(j)
dx = dx - alxyz•anint(dx/alxyz)
dy = dy - alxyz•anint(dyjalxyz)
dz = dz - alxyz•anint(dzjalxyz)
r2(j) = dx**2 + dy**2 + dz**2

n = o
do 30 j=i1,natom
if (r2(j) .gt. r2max) goto 30
n = n + 1
num(n) = j
r2(n) = r2(j)

30 continue

do 40 j=1,n
vr = (1.0 1 r2(j))**3

123

40 ep = ep + vr * (cl*vr - c2)

c This line adds the amount of energy that the Weeks
c Chandler Anderson potential was shifted up relative
c to the Lennard-Jones potential.

ep = ep + n*vzero

15 continue

11 etot = ek + ep

return
end

subroutine init

parameter(natom=l08, natoml=natom-1, natom3=3*natom)
parameter(nb=natom, nc=2*natom)

c implicit double precision (a-h, o-z)

c

c

common lblkll al'xyz, cl, ·c2, smass, cld, c2d, r2max

common lblklll vzero, vzeroi, r2maxi
common lblk21 h, h2, h26, hi
common lblk31 cldi, c2di, eli, c2i, simass, eps
common lblk51 rxyz(natom3), vxyz(natom3), axyz(natom3)

common lblk5ll axyz2(natom3)

rzero = 10.0
elj = 4.0 * 154.0
sigma = 4.10
smass = 131.30

The following line is for the density 1.8 gmlcc.

alxyz = (108.0 * smass 1 .60230 1 1.80)**(1.013.0)

c calculate v~rious other quantities needed for execution
c

read(l,lO) h,rzero,rmax,elj,sigma,smass,alxyz,ndatom

h = .0050

c Iodine mass (amu)

simass=l26.9

c Iodine - Xenon well depth

elji=225.*4.*1.196

c Iodine - Xenon sigma

sigi=3.94

h2=h*h
h26=h216.0
hi=l.Oih

124

c The following line should be used for a Lennard- -
c Jones potential, and the two lines after should be
c commented out.
c r2max = rzero**2

r2maxi= (2.0 **(l.l6.)*sigi}**2
r2max= (2.0 **(l.l6.)*siqma)**2
eps= eljil4.

elj=l.l9610*elj

c2 = siq.ma**6
cl = elj * c2 * c2
cld = 12.0 * cl
c2 = cl 1 c2
c2d = 6.0 * c2

c2i=sigi**6
eli= elji *c2i *c2i
cldi=l2.0 * eli
c2i=cli I c2i
c2di = 6.0 * c2i

c The following two lines should be used for a
c Lennard-Jones potential, and the line after should
c be commented out.

c vzero=l.Oir~~ro**6
c vzero = -vzero*(cl*vzero-c2)

vzero = eljl4.

c The following two lines should be used for a
c Lennard-Janes potential, and the line after should
c be commented out.
c vzeroi=l.Oirzero**6 .
c vzeroi = -vzeroi*(cli*vzeroi-c2i)

c

..

c

20

c
c
c

Read in initial positions and velocities

do 20 i=l,natom
read(l,*) rxyz(i),rxyz(i+nb),rxyz(i+nc)
read(l,*) vxyz(i),vxyz(i+nb),vxyz(i+nc)
continue
close(l)

return
end

subroutine dfrc

125

The subroutine dfrc calculates the Isolated force
autocorrelation function and the total force
autocorrelation function.

parameter (natom=lOS, natoml=natom-1, natom3=3*natom)
parameter (iqnum=lOOO, ivacf=256)
parameter(nb=natom, nc=2*natom)

c implicit double precision (a-h, o-z)

dimension acceli(natom3, ivacf), dfibc(ivacf, 3)
dimension dftot(ivacf, .J), g(3*iqnum), atot(ivacf, 3)

common jblkl/ alxyz, cl, c2, smass, cld, c2d, r2max

common /blkll/ vzero, vzeroi, r2maxi
common ;cacl2/ acceli, dfibc, dftot, iq, atot, q, scale

d6 11 il=iq-1,1,-1

it=ivacf-iq+il+l
dftot(it,l)=atot(iq,l)*atot(il,l)+dftot(it,l)
dftot(it,2)=atot(iq,2)*atot(il,2)+dftot(it,2)
dftot(it,3)=atot(iq,3)*atot(il,3)+dftot(it,3)

do 1 i=l,natoml

dfibc(it,l)=acceli(i,iq)*acceli(i,il)+dfibc(it,l)
dfibc(it,2)=acceli(i+nb,iq)*acceli(i+nb,il)+dfibc(it,2)

1 dfibc(it,J)=acceli(i+nc,iq)*acceli(i+nc,il)+dfibc(it,J)

11 continue

do 12 il=iq,ivacf

it=l- iq + il
dftot(it~l)~atot(iq,l)*atot(il,l)+dftot(it,l)

dftot(it,2)=atot(iq,2)*atot(i1,2)+dftot(it,2)
dftot(it,J)=atot(iq,J)*atot(il,J)+dftot(it,J)

do 2 t=l,natoml

126

dfibc(it,l)=acceli(i,iq)*acceli(i,il)+dfibc(it,l)
dfibc(it,2)=acceli(i+nb,iq)*acceli(i+nb,il)+dfibc(it,2)

2 dfibc(it,J)=acceli(i+nc,iq)*acceli(i+nc,il)+dfibc(it,J)

12 continue

return
end

..

D.

I*
•
• •
•
• • •
•
• •
• •
• • • • • •
•
• •
•
• • •
•
•
•
•
•
•
• •
• •
•
• •
•
•
*I

PROGRAM LISTING MAIN

Program "MAIN"
Daniel Russell
Aug. 6, 1990

127

The following program is a data acquisition program
written specifically for a 80386 computer with 80387
coprocessor. The program takes data on a _CAMAC based
system using the following. A LeCroy model 2323A Dual
Gate and Delay Generator, A LeCroy model 4300 Fast
Encoding and Readout Gated ADC, a LeCroy model 4 3 01
Driver Module, and finally a DSP Technologies Model 6001
CAMAC crate controller and PC004 IBM-PC interface. The
DSP _equipment also ~ame with sample code that was
modified to take at advantage of the 80836 and the 80837
for speed. Speed was needed . because the data is
collected and normalized at 8 kHz, this is at the limits
of the 80386's ability. That assembly code will not be
presented here because of DSP's copywrite. The software
also communicates with a Klinger Scientific MC-4 Stepping
Motor Controller Driver which controls a stepping stage •
The last piece of hardware that the software can
communicate with is a Stanford Research Systems Model
DG535 Digital Delay 1 Pulse Generator that is no longer
needs to communicate to the software •

The file Main.c contains the following subroutines .

·.main()
void readfile ()
void setupfile()
void p_scan()
void s_step ()
void p step ()
void stage_start()
void gate()
void read_ped ()
void read comment()
void display ()
void channel_display()
void store file ()
void ddg_ check ()

#include <process.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <graph.h>
#include <ctype.h>

#include <malloc.h>
#include <dos.h>
#include <decl.h>
#include <process.h>
#include <conio.h>
#include "dan.h"
#include <setjmp.h>

128

I* These variables are system dependent and are based
* the graphics coordinate system defined in the Microsoft
* C 5 • 1 graphics 1 ibrary. The variables rect xmin,
* rect_ymin rect_xmax, and rect_ymax are dependent on what .
* type of videoboard, although the values in this program
* will work on a Hercules video card, EGA, and VGA although
* the VGA will be running in EGA mode.
*I
struct rccoord rcoord;
struct videoconfig vc;

I* These variables are dependent on where the CAMAC A to D
* and gate and delay generator are physically located in
* the CAMAC crate. AD=S signifies that the A to D is in
* slot 8. GATE=16 signifies that the gate and delay
* generator is in slot 16.
*I
int AD=8;
int GATE=16;

I~

*
* *I

The
determine
displayed.

variables
which of

channel dis1 and channel dis2
the three data variables are

int channel_dis1, channel_dis2;

I* The variables channel color1, channel color2, and
* box~color define the color of the two channels displayed
* and the color of the box.
*I
int channel_color1, chann~l_color2,box_color;

I* The variables gate_chan_a and gate_chan_b are the
* variables that store the data that is actually sent to
* the gate and delay generator (LeCroy model 2323A). The
* format of the data is described on page 11 of the manual
* for the 2323A. Note also that the value of o for these
* variables is invalid.
*I

•

int

I*
*
*
*
*
*
*
* *I
int

I*
*
*
*
*
*
*
*
* *I
int

I*
*
* *I
int

int

I*
*
*
*
*
*
*
* *I

129

gate_chan_a = o, gate_chan:._b = 0;

The variables points_scan and stage_step describe
the number of points .the stage is going to scan(
basically the time base of the experiment) and the number
of stage steps between these points. 0 is an inval.id
value for points_scan and for stage_step since the user
may wish to move 0 stage steps per data point the author
of the program used his birthday to be an invalid value
assum~ng it would be an unusual value to chose.

points_scan = o, stage_step = -1003;

The array pedestal is an array of the three values
that will be subtracted off data channel o, and 15. This
also leaves room for one more pedestal. This is to allow
the subtraction of background current in the A to D. See
LeCroy's CAMAC model 43008 manual pg 1-5. If

. pedestal(0]=-1 the data is declared invalid. -1 was
chosen to allow the user to input
0 for a pedestal so that the user can find out what the
pedestal value is.

pedestal(3] :

The variables low and high determine what is the
highest and lowest acceptable data. 0 is an invalid value
for both low and high

low=O-, high=O:

multi_count = o, reverse_flag,scan:

multi 'count is the number of times that the stage
should be scanned, reverse_flag is 1 if data is taken in
only one direction of stage movement and 2 if data is to
be taken in both directions. Taking data in both
directions is more efficient and will also help cancel
any long term drift in time of the concentration of the
molecule that you are studying if .the drift is small.
scan is the actual number of scans taken.

long int shots_step = 0, stage_beg = -100362:

I* shots_step is the number of laser shots taken for
* each data point. - Any value less than or equal to two is
* invalid at this time due to need for speed in the
* ~ssembly code. stage_beg is the variable that stores

130

* where the stage should begin taking data. Note that both
* of these variables are long integers to allow for values
* that can be greater that 65000. The invalid data values
* are 0 and -100362 respectively.
*I
char file_name[7], file_num[3], data_file[12];

I* These three character arrays store the file name,
* for example "dan", the file number, for example 11 1 11 , and
* data_file stores the total file name, using _the above
* data as an example data_file="dan.1" • The data is
* stored this way to ·allow multiple scans to be store
* easily in succession.
*I
char comment[1000];

I* The array comment stores the users comment for a
* particular data file. It can store up to 998. characters
* and ends with the character .. - .. to indicate the user has
~ finished the comment. The .. - .. is not displayed bT the
* program except whe~ the user enters it.
*I
int delay_a, delay_b, gwidth_a, gwidth_b;

/* delay _a and delay _b are the delays for the gate
* pulses that come out of the LeCroy 2323A gate and delay
* generator for channel A and B respectively. They are
* stored in nanoseconds and ·must be less than 1000
* nanoseconds and greater that 0 nanoseconds. gwidth_a and
* gwidth_b are the widths for channel A and B respectively.
* The value of gwidth_a and gwidth_b must be 01 1, 21 or 3.
* see the LeCroy 2323A manual pg 11 for more information.
*I
double *d_norm[4];

/* This an array of pointers to arrays where the data
* is stored. The arrays are dynamically allocated in the
* program. The number of arrays is 4 due to the fact that
* at a later point in time someone may want to also collect
* the actual laser power as a function of time.
*I

int tcolor=7, ecolor=4;

/* tcolor and ecolor are the color of normal text
* strings and error text used in the program.
*I

131

int ddg, trig_chec-k=1;

I* ddg is the variable associated by the GPIB-PC
* software with the digital delay generator. trig_check is
* a flag to see if user wants to check that the digital
* delay is being triggered by the CPM. The default
* trig_check=O is no checking, trig_check=1 check_ing is
* enabled while the software is waiting for keystrokes.
*I

jmp_buf mark;

I* mark is used by setjmp (mark) and longjmp (mark, -1) to
* set up where the program should jump to if a triggering
* error is det~cted. First check() informs the user that
* the DOG is on internal and then jumps back to the main
* menu.
*I

int main()
{

char
int

inputs[J];
n = 1, is_set = o,trig,sresult;

char •input;
channel dis1=2;
channel::dis2=3;
channel_color1=10;
channel_color2=13;
box color=11;
ddg;;ibfind("ddg");
comment[O]=•-•;
pedestal[O] = -1;

/

setjmp(mark);

I* Program will jump here if the DOG does not get
* triggered properly
*I

setvideomode(DEFAULTMODE);
while (n != 6 r {

settextcolor(tcolor);
::settextposition(10, 15);
rcoord = _gettextposition();

/* This next loop writes out the main menu. The
* strings output are found in the file const.c. Although
* reading the program is a little harder due to the fact
* the strings are not in this file, it-saves space this
* way.
*I

for

'
}·

(n = 1; n < 7; n++) {
_outtext(main_strinq(n));
rcoord.row++;
_settextposition(rcoord.row,

if (trig check==O)
{

triq=O;

rcoord.col);

sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check() ;.
ibloc(ddq);

}

sresult=system("mode spe auto");
if (trig==-i)

longjmp(mark,-1);

input= gets(inputs);

n = atoi(inputs);

if (n == 1)

132

I* Read in a setup file that contains all the ,
* parameters needed for data collection
*I

readfile () ;
else if (n == 2)

setup file() ;
else if (n == 4){

I* The space allocated for d_norm is freed here so that
* other data files can be looked at that may or may not
* have different data lengths.
*I

if(d_norm[O]!= NULL)
free (d_norm[O]);

if(d_norm[l] != NULL) ·
free (d_norm[l]);

if(d_norm[2]!= NULL)
free (d_norm(2]);

if(d_norm(J]!= NULL)
free (d_norm[J]);

look_ data() ;
if (points_scan != o) {

I* If points_scan is defined the space is reallocated
*I.

d_norm(O] = (double *)calloc(points_scan,

133

- sizeof(aouble));
d_norm[l] = (double *)calloc(points scan,

sizeof(double)); -
d_norm[2] = (double *)calloc(points scan,

sizeof(double)); -
d_norm[3] = (double *)calloc(points scan,

sizeof(double)); -
}

}

else if (n == 3) {
is set = O; -

/* Check for valid data parameters before allowing data
* to be taken
*I

_setvideomode(_DEFAULTMODE);
_settextposition(2, 15);
rcoord = _gettextposition();
_settextcolor(ecolor);
if (gate_chan_a == O) {

is set = 1;
outtext(error string(!)); - -}

if {stage_step == -1003 && stage_beg == -1003621 &&

}

points~scan == O) {
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
is set = 1;
_outtext(error_string(2));

if (shots_step == 2) {

}

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
is set = 1;
_outtext{error_string(3));

if (pedestal[O] == -1) {

}

rcoord.row++;
_settextposition{rcoord.row, rcoord.col);
is set = 1;
_outtext{error_string{4));

if (high == o I I low == 0) {

}

rcoord.row++;
_settextposition{rcoord.row,
is set = 1;
_outtext(error_string(6));

if (is set == 0) {

rcoord.col);

134

I* At this point all data points are found to be valid
* and data collection can begin.
*I

setupcamac();

take_data_menu();
}

}
else if(n==5)
di:lg_check();
else if (n==6)
exl.t(O);
else if (n < 1 I I n > 6) {

_setvideomode(~DEFAULTMODE);
_settextposition(9, 15);
_settextcolor(ecolor);
_outtext(main_string(O));
_settextcolor(tcolor);

} .

}

exit(-1);
}

I* Read in a setup file that contains all the
* parameters needed for data collection
*I

void readfile(void)

{

FILE * stream;
char inputs(10], inputs2(2], testf4];
char •input, •input2;

int i, ch,trig,sresult;
inputs2(0] = 'y';
stream = NULL;

I* On basically all user questions the user is asked
* for information. If the information is not usable or a
* file is not found this section loops around until the
* user gives up. That is why inputs2 is defined Y

*I

I*
*I

135

while ((inputs2[0] == 'Y' II inputs2[0] = 'Y') && stream
= NULL) {

_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
rcoord = _gettextposi tion () ;
_settextcolor(tcolor);
_outtext(prompt_string(l));
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system{"mode spe auto");
if {trig==-1)

longjmp(mark,-1);

input= gets(inputs);

Attempt to open the file.

if ((stream= fopen(input, "rb")) ==NULL) {
rcoord.row++;
settextcolor(ecolor);

:settextposition(rcoord.row, rcoord.~ol);
_outtext(prompt_string{4));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(5));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(7));
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

input2 = gets(inputs2);
if (inputs2(0] != 'Y' && inputs2(0] -- 'Y') {

I*
*I

I*
*I

}

}
}

_setvideomode(_DEFAULTMODE);
return;

If the file exists read the data in

if (stream != NULL) {
for (i = o; i != 3; i++) ·{

ch = fgetc(stream);
test[i] =(char) ch;

}

test (i]_ = 1 \ o 1 ;

All setup files begin with djr

if (strcmp(test 1 "djr") != 0)
printf("not setup file");

136

I* Probably should exit this gracefully if it really is
* not a setup file as opposed to reading blindly
*I

}

fscanf(stream 1 "%i" 1 &gate_chan_a);
fscanf(stream 1 "%i" 1 &gate_chan_b);
fscanf(stream 1 "%i" 1 &points_scan);
fsc--anf(stream 1 "%i" 1 &stage_step);
fscanf(stream 1 "%i" 1 &high);
fscanf(stream 1 "%i" 1 &low);

fscanf(stream 1 "%li" 1 &shots_step);
fscanf(stream 1 "%1i" 1 &stage_beg);
fscanf(stream 1 "%i" 1 &pedestal(O]);
fscanf(stream 1 "%i" 1 &pedestal[l]);
fscanf(stream 1 "%i" 1 &pedestal(2]);
for (i = o; (i < 999) && (ch = fgetc(stream)) !=

.-1; i++)
comment(i] =(char) ch;

comment[i] =(char) ch;
i++;
ch = fgetc(stream);
comment[i] ={char) ch;
fclose(stream);
_setvideomode{~OEFAULTMODE);

return;
}
_setvideomode(_DEFAULTMODE);

I. I

\

void setupfile(void)

{
char *input;
char inputs(3];
char buffer[10];
int triq,sresult;
int is_set,n,i;

_setvideomode(_DEFAULTMODE);
n=O;

137

/* This section of code qives prompts for the setup
* data values and loops around until 14 or quit is chosen.
*I

while (n != 14) {
settextcolor(tcolor);

:settextposition(10, 15);
record= _qettextposition();
_settextposition(rcoord.row, rcoord.col);
_outtext(setup_strinq(1});
if (points_scan != O} {

rcoord.col = rcoord.col.+ 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, " %i", points_scan);
settextcolor(ecolor);

:outtext(buffer};
settextcolor(tcolor};

rcoord.col = rcoord.col - 40;
}
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

:outtext(setup_strinq(2));
if (staqe_step != -1003} {

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "%i", staqe_step};
settextcolor(ecolor);

-outtext(buffer);
:settextcolor(tcolor);

rcoord.col = rcoord.col - 40;
}
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

-outtext(setup strinq(3));
If (shots_step T= 0) {

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, " %li", shots_step);
_settextcolor(ecolor);

}

_outtext(buffer);
_settextcolor(tcolor);
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row,, rcoord.col);
_outtext(setup_strinq(4));
if (staqe~beq != -100362) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "%li", staqe_beq);
_settextcolor(ecolor);
_outtext(buffer);
_settextcolor(tcolor);
rcoord.col = rcoord.col - 40;

for (i=S;i<14;i++){

}

reoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(setup_strinq(i));

if (high != 0 && low != O) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "%i, %i", low,hiqh);
settextcolor(ecolor);

-outtext(buffer);
-settextcolor(tcolor);
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(setup_strinq(14));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

triq=check () ;
ibloc{ddq);
sresult=system("mode spe auto");
if (trig==-1)

lorigjmp(mark,-1);

input= gets(inputs);
n = atoi(inputs);
if (n < 1 ll n > 14) {

138

') I

_setvideomode(_DEFAULTMODE);
_settexteolor(eeolor);
_settextposition(9, 15);
record= _gettextposition();
_settextposition(reoord.row, reoord.eol);

_outtext(main_string(O));
} else if (n == 1) {

p_sean(1);
_setvideomode(_DEFAULTMODE);

} else if (n == 2) {
s_step(1);
_setvideomode(_DEFAULTMODE);

} else if (n == 3) {
p_step(1);
_setvideo~ode(_DEFAULTMODE);

} else if (n == 4) {
stage_start(1);
_setvideomode(_DEFAULTMODE);

} else if (n == 5) {
gate(1);

· _setvideomode(_DEFAULTMODE);
} else if (n == 6) {

read_ped(1);
_setvideomode(_DEFAULTMODE);

} else if (n == 7) {
read_eomment();
_setvideomode(_DEFAULTMODE);

} else if (n == 8) {
display();
_setvideomode(_DEFAULTMODE);

} else if (n == 9) {
store file() ;
_setvideomode(_DEFAULTMODE);

} else if (n == 10) {
ehannel_display();
_setvideomode(_DEFAULTMODE);

} else if (n == 11) {
is set = O;
setvideomode(DEFAULTMODE);

:settextposition(2, 15);
record = _gettextposition();
_settexteolor(eeolor);
if (gate chan a == 0) {

is set =-1;
outtext(error string(1)); - - '

}

139

·if (stage_step == -1003 && stage_beg -
-1003621 && points_sean == 0) {
record. row++;
_settextposition(rcoord.row,rcoord.col);

)

is_set = 1;
_outtext(error_strinq(2));

if (shots_step == 2) {

140

record. row++;
_settextposition(reoord.row,reoord.eol);
is set = 1; 1->:J
_outtext(error_strinq(3));

)
if .(pedestal [0] == -1) {

record. row++;

)

_settextposi tion (record. row, record. col') ;
is set = 1;
_outtext(error_strinq(4));

if (is set == 0) {

)

setupcamac();
take data();
_setvideomode(_DEFAULTMODE);

) else if (n == 12) {
is set = o;
_setvideomode(_DEFAULTMODE);
_settextposition(2, 15);
record= _qettextposition();
_settextcolor(ecolor);
if (qate_chan_a·== 0) {

}

is set = 1; ·
_outtext(error ... strinq(1));

if (staqe_step == -1003 &&. stage_beg --

)

-1003621 && points_scan == O) {
reoord.row++;
_settextposition(rcoord.row,rcoord.col);
is set = 1;
_outtext(error_strinq(2));

if (shots_step == 2) {

}

rcoord.row++;
_settextposition(rcoord.row,rcoord.col);
is set = 1t.
_outt~xt(error_string(3));

if {pedestal(O] ==·-1) {
rcoord.row++;
_settextposition(rcoord.row,rcoord.qol);
is set = 1;
_outtext(error_strinq(4));

) -
if (is_set == 0) ·{

setupcamac();
norm();

..

}

_setvideomode(_DEFAULTMODE);
)

) else if (n == 13) {

)

'bound(1);
_setvideomode(_DEFAULTMODE);

)
_setvideomode(_DEFAULTMODE);
return:

141

void.p scan{n)
int - n;
{

int trig,sresult:
int i;
char numbers[10];
char buffer(JO];
char •result, •stage_string{);

if{d_norm(O]t= NULL)
free {d_norm(O]);

if(d_norm[1]t= NULL)
free {d_norm(1]);

-- if(d_norm(2.] t= NULL)
free (d_norm (2]) ·;

if(d_norm(J]t= NULL)
free {d_norm(J]);

/* If n== 0 and points~scan is defined allocate space
* for the data
*I

if {points_scan t= o && n == 0) {
d_norm[O] = (double *)calloc{points_scan,

sizeof{double));
d_norm(1] = (double .*)calloc{points_scan,

sizeof(double));
d_norm(2] = (double *)calloc{points_scan,

siz.eof{double));
d_norm(J] = {double *)calloc{points_scan,

sizeof{double));
for {i = O; i < 4; i++) {

if {d_norm(i] ==NULL){
points_scan=O;

setvideomode{ DEFAULTMODE); - -
_settextposition{10, 15);
rcoord = _gettextposition{);

142

sprintf(buffer,"calloc failed on %i",i);
_outtext(buffer);

}

}
}
return;

rcoord.row++;
_settextposition(rcoord.row,rcoord.col);

_outtext("hit a key to continue");
while (i = 0)

l = kbhit();
i = qetche () ;

setvideomode(DEFAULTMODE);
-settextcolor(tcolor);
-settextposition(10, 15);
record~ _qettextposition();
_outtext(staqe_strinq(1));
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

if (triq_check==O) ·
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,-1);

-
result= qets(numbers);
points_scan = atoi (number.s);

/* Prompt for the # of points per scan and only accept
* positive values
*I

while (points_scan == o I I points_scan < O) {
setvideomode(DEFAULTMODE);

-settextcolor(ecolor);
-settextposition(lO, 15);
record= _qettextposition();
_outtext(error_strinq(5));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

..

}

_settextcolor(tcolor);
_outtext(stage_string(l));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig=-O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

result= gets(numbers);
points_scan = atoi(numbers);

d_norm(O] = (double *)calloc(points_scan,
sizeof(double));

d_norm[l] = (double *)calloc(points_scan,
sizeof(double));

d_norm(2] = (double.•)calloc(points_scan,'
sizeof(double));

d_norm(3] = (double *)calloc(points_scan,
sizeof(double));

for (i = o; i < 4; i++) {
if (d_norm(i] ==NULL){

}

}

void s_step(n)
int n;

points_scan=O;
_settextposition(10, 15);
record= _gettextposition();

sprintf(buffer,"calloc failed on %i",i);
outtext(buffer);

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

_outtext("hit a key to continue");
while (i == 0)

i = kbhit();
i = getche () ;

143

{

I*
*
*I
I*
*I

int trig,sresult:
char numbers[10]:
char *result, •stage_string():
if (stage_step != -1003 && n == 0)

This was left here is case there was stage setup
required at the current time there is not

put in stage setup stuff

return:

_setvideomode(~DEFAULTMODE):
settextcolor(tcolor):

-settextposition(10, 15):
rcoord = ~gettextposition();
_outtext(stage_string(2)):
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O)
{

}

trig=o;
sresult=system("mode spe com"):
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg):
sresult=system("mode spe auto"):
if (trig==-1)

longjmp(mark,-1):

result= gets(numbers):
stage_step = atoi(numbers);
if (test_num(numbers) == -1)

stage_step = -1003:
while (stage_step == -1003) (

setvideomode(DEFAULTMODE);
-settextcolor(ecolor):
:settextposition(10, 15);
rcoord = gettextposition();
_outtext(error_string(5));
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

-settextcolor(tcolor);
:outtext(stage_string(2)):
rcoord.row++:
settextposition(rcoord.row, rcoord.col);

if (trig_check==O)
(

..

..

I*
*I
}

}

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check() ;
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

result= gets(numbers);
stage_step = atoi(numbers);
if (test_num(numbers) == -1)

stage_step = -1003;

put in st~ge setup stuff

void p_step(n)
int n;
{

int trig,sresult;
char n~rs(10J;
char *result, •stage_string();
if (shots_step != 0 && n == O)

145

I* This was left here is case there was # of shots
* setup required; at the current time there is not
*I

return;

_setvideomode(_DEFAULTMODE);
_settextcolor(tcolor);
_settextposition(10, 15);
rcoord = _gettextposition();
outtext(stage string(3));

record. row++ ; - -
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

}

result= gets(numbers);
shots_step = atol(numbers);
while (shots_step <= 1 I I shots_step ==·o) {

_setvideomode(_DEFAULTMODE);
_settextcolor(ecolor);
_settextposition(10, 15);

}

rcoord = _qettextposition();
_outtext(error_string(5));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col):
_settextcolor(tcolor);
_outtext(stage.._string(J));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

· trig=check () ;
ibloc(ddg);
sresult=system("mode spe auto");
if (triq==-1)

longjmp(mark,-1);

result= gets(numbers);
shots_step = atoi(numbers);

void stage_start(n)
int n;
{

int trig,sresult;
char numbers(10];
char •result, •stage_string();
if (stage_beg != o && n == O)

return;

setvideomode(DEFAULTMODE);
:settextcolor(tcolor);
_settextposition(10, 15);
record= _gettextposition();
outtext(stage string(4));

rcoord.row++; -
_settextposition(rcoord.row, rcoord.col):
if (triq_check==O)

146

,.

..

I*
*I

}

{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto"};
if (triq==-1)

lonqjmp(mark,-1);

result= qets(numbers);
staqe_beq = atol(numbers);
if (test_num(numbers) == -1)

staqe_beq = -100362;
while (staqe_beq == -100362) {

}

setvideomode(DEFAULTMODE);
:settextcolor(ecolor);
_settextposition(10, 15);
record= _qettextposition();
_outtext(error_strinq(S));
rcoord.row++;
_settextposi tion (record. row, record. col) .;
settextcolor (tcolor) : ·o

:outtext(staqe_strinq(4));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1) -

lonqjmp(mark,-1);

result = gets(numbers):
staqe_beq = atoi(numbers);
if (test_num(numbers) == -1)

stage_beq = -100362;

put in stage setup stuff

147

148

void qate(n)
int n;
{

int triq,sresult;
unsiqned int DATA, qwidth, delay, qate_temp;
unsiqned int c, fun, A, X, Q,i;
char delays(20], qwidths(J];
char *result;

if (qate_chan_a != 0 && qate_chan_b != o && n -- O) {

}

A = O;
fun= 17;
c = camo(&GATE, &fun, &A, &qate_chan_a, &Q, &X);
if(Q!=1 II X!=1) {

camerr(GATE,fun,A,qate_chan_a,Q,X);
return; ·

}

A = 1;
c = camo(&GATE, &fun, &A, &qate~chan_b, &Q, &X);
if(Q!=1: I X!=1){

}

camerr(GATE,fun,A,qate_chan_b,Q,X);
return;

return;

_setvideomode(_DEFAULTMODE);
_settextcolor(tcolor);
_settextposition(10, 15);
rcoord = _qettextposition();
for(i=1;i<7;i++){

}

_out~ext(qate_strinq(i));
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);

if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,-1);

result= gets(qwidths);
qwidth = atoi(qwidths);
if (test_num(qwidths) == -1) {

qwidth = 5; .

}

while (qwidth < 0 l l qwidth > 3) {
_setvideomode(_DEFAULTMODE);
_settextposition(lO, 15);

}

rcoord = _gettextposition();
_outtext(gate_string(1));
rcoord.row++;
_settextposition(rcoord~row, rcoord.col);
_settextcolor(6);
_outtext(gate_string(lO));
_settextcolor(tcolor);
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
for (i=3;i<7;i++){

}

_outtext(gate_string(i));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

if (trig_check==O)
(

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

result= gets(gwidths);
gwidth = atoi(gwidths);
if (test_num(gwidths) == -1) {

gwidth = 5;

}

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(gate_string(7));
if (trig check==O)
{

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

149

}

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig=-1)

longjmp(mark,-1);

result= gets(delays);
delay= atoi(delays);
while (delay >= 1000 I I delay <= O) {

_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);

}

rcoord = _gettextposition();

_settextposition(rcoord.row, rcoord~col);
_outtext(gate_string(9));
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

:outtext(gate_string(7));
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc (ddg) ; -
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

result= gets(delays);
delay= atoi(delays);

DATA = qwidth << 4;
gate_temp = DATA;
DATA = gate_temp << 10;
gate_temp = DATA + delay;
DATA = gate_temp;
gate chan a = DATA; - -
_setvideomode(_DEFAULTMODE);

\

settextposition(10, 15);
rcoord = _gettextposition();
DATA = O;
_outtext(gate_string(8));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
for (i=2;i<7;i++){

150

}

_outtext(qate_strinq(i));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

if (triq_check==O)
(

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check () ;
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1) · ·

lonqjmp(mark,-1);

result = qets(qwidths);
qwidth = atoi(qwidths);
if (test_num(qwidths) == -1) (

qwidth = 5;
}
while (qwidth < o I I qwidth > 3) (

_setvideomode(~DEFAULTMODE);
_settextposition(10, 15);
record= _qettextposition();
_outtext(qate_strinq(S));
rcoord.row++;
_settextposi tion (record .• row, record. col) ;
_settextcolor(6);
_outtext(qate_strinq(lO)) ·;
_settextcolor(tcolor) ;
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(qate_strinq(3));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col):
_outtext(qate_strinq(4));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(qate_strinq(5));.
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(qate_strinq(6));
record. row++;
_sett'extposi tion (record. row, record. col) ;
if (triq_check==O)
(

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check () :

151

}

}

ibloc(ddg);
sresult=system("mode spe auto") ;
if (trig==-1)

longjmp(mark,-1);

result = gets(qwidths);
qwidth = atoi(qwidths);
if (test....:_num(qwidths) == -1) {

qwidth = 5;
}

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(gate_string(7));
if (trig_check==O)
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

result= gets(delays);
delay = atoi(delays);
while (delay >= 1000 : : delay <= 0) {

_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
record = gettextposition();
_settextposition(rcoord.row, rcoord.col);
_outtext(gate_string(9));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(gate_string(7));
if (trig_check~=O)
{

}

trig=O;
sresult=system("mode spe com") ;
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system(11mode spe auto") ;
if (trig==-1)

longjmp(mark,-1);

152

}

}

result= gets(delays);
delay= atoi(delays);

DATA = qwidth << 4;
gate_temp = DATA;
DATA = gate_temp << 10;
gate_temp = DATA + delay;
DATA = gate_temp; ·
gate_chan_b = DATA;

void read_ped(n)
int n;
{ .

int trig,sresult;
int i,c,fun2;
int fun,X,Q,junk=100;
char numbers(10];
char *result, *stage_string();

fun = 17;
fun2=1;

if (pedestal(O] != -1 && n == 0) {

153

I* The pedestal values are sent to the gate and delay
* generator here. See the DSP manual and the LeCroy gate
* and delay manual
*I

}

for (i = O; i != 3; i++) {
c = camo(&AD, &fun, &i,&pedestal[i] , &Q, &X);

}
for (i = 1; i != 15; i++) {

}
i=15;

c = c·amo(&AD, &fun, &i,&junk , &Q, &X);

c = camo(&AD, &fun, &i,&pedestal[1] , &Q, &X);

return;

_settextcolor(tcolor);
for (i = O; i != 3; i++) {

setvideomode(DEFAULTMODE);
:settextpositi0n(10, 15);
record= _gettextposition();
printf("Input pedestal %i", i);

}

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (triq_check==O)
(

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,-1);

result= gets(numbers);
pedestal[i] = atoi(numbers);
if (test_num(numbers) == -1)

pedestal[i] = -1003;
while (pedestal(i] < o l l pedestal[i] > 100) {

}

. setvideomode(DEFAULTMODE);
-settextposition(10, 15);
·record= _gettextposition();

settextcolor(ecolor);
-outtext(error string(S));
rcoord.row++; -
settextposition(rcoord.row,-rcoord.col);

-settextcolor(tcolor);
printf("Input pedestal %i", i);
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O) ·
{

}

trig=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (trig==-1)

lonqjmp(mark,-1);

result = gets(numbers);
pedestal[i] = atoi(numbers);
if (test_num(numbers) == -1)

pedestal(i] = -1003;

154

}

void read_comment()

{

int i, ch;

int triq,sresult;
setvideomode(DEFAULTMODE);

:settextcolor(tcolor);
_settextposition(10, 15):
rcoord = _qettextposition();
_settextposition(rcoord.row, rcoord.col):
_outtext(staqe_strinq(5));
rcoord.row++;
_settextposition(rcoord.row, O);
if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,-1);

155

for (i = O; (i < 999) && (ch = qetchar()) != •-•; i++)

}

· comment [i] = (char) ch:
comment[i] =(char) ch;
i++:
ch = qetchar();
comment[i] =(char) ch;
i++;
comment[i] = '\O':
return;

void display (voidf

int real_width[4];
int i = o;
unsigned int qate_temp;
char buffer(JO];

156

/* This chanqes the binary variables as described in
* the LeCroy qate and delay manual into a more
* understandable form
*I

if (qate_chan_a != 0) {

}

delay a = qate chan a & 01777;
qate_temp = qate_chan_a >> 14;
qwidth_a = qate_temp & 03;
delay_b = qate_chan_b & 01777;
qate_temp = qate_chan_b >> 14;
qwidth_b = qate_temp & 03;

real_width[O] = 10;
real_width[1] = 30;
real_width[2] = 100;
real_width[3] = 300;
_setvideomode(_DEFAULTMODE);
_settextcolor(tcolor);
_settextposition(10, 15);
record= _qettextposition();
_outtext(set_strinq(1));
if (points_scan != 0) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer," ti", points scan);
_outtext(buffer); -
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col):
_outtext(set_strinq(2));
if (staqe.:_step != O) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer," ti", staqe_step);
_outtext(buffer);
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col):
_outtext(set_strinq(3));
if (shots_step != O) {

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, 11 %li", shots_s.tep);
outtext(buffer);

rcoord.col = rcoord.col - 40;
}
rcoord.row++;

_settextposition(rcoord.row, rcoord.col);
_outtext(set_strinq(4));
if (staqe_beg != 0) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer," %li", staqe_beq);
_outtext(buffer);
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(set_string(S)):
if (delay_a != O) {

157

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "%ins, %ins", real_width(qwidth_a),

}

delay_a);
_outtext(buffer);
rcoord.col = rcoord.col - 40;

rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
_outtext(set_string(6));
if (delay_a != O) {

}

rcoord.col = rcoord.col + 40;
settextposition(rcoord.row, rcoord.col);

sprintf(buffer, "%ins, tins", real_width(qwidth_b],
delay_b);

_outtext(buffer);
rcoord.col = rcoord.col - 40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(set_string(7));
if (pedestal(O] != -1) {

}

rcoord.col = rcoord.col + 40;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer,"ti , %i , ti", pedestal[O],

pedestal(1], pedestal[2]);
_outtext(buffer);
rcoord.col = rcoord.col -.40;

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(set_string(S));
rcoord.row++;
_settextcolor(ecolor);
_settextposition(rcoord.row, O);
if(comment(O]!=•·•)

outtext(comment);
record= _gettextposition();

}

rcoord.row++;
_settextcolor(tcolor);
_settextposition(rcoord.row, 10);
_outtext(set_strinq(9));
while (i = 0)

i = kbhit():
i = qetche () ;

158

void channel_display(void)

{

int triq,sresult;
char inputs2(3];
char *input2;
.setvideomode(DEFAULTMODE);
:settextcolor(ecolor);
_settextposition(lO, 15);
record = _qettextposi tion.() ;

_outtext("Input the first channel to be displayed");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext("either 0, 1, 2, or 3");
rcoorc;l.row++;
_sette~tposition(rcoord.row, rcoord.col);
if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check();
ibloc(ddq);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,~1);

input2 = qets(inputs2);
channel_disl = atoi(input2);

setvideomode(DEFAULTMODE);
-settextcolor(ecolor);
:settextposition(10, 15);
record= ~qettextposition();
_outtext("Input the second channel to be displayed");
record. row++:
_settextposition(rcoord.row, rcoord.col);
_outtext("either o, 1, 2, or 3");
record. row++;
_settextposi tion (record. row, r.coord. col) :

}

if (triq_check==O)
(

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (triq==-1)

lonqjmp(mark,-1);

input2 = qets(inputs2);
channel_dis2 = atoi(input2);

159

void storefile(void)

{
FILE * stream;
int triq,sresult;
char inputs[10], inputs2[2];
char *input, •input2, *prompt_strinq();
inputs2[0] = 'n';
while ((inputs2[0J == 'n' l l inputs2[0] -- 'N') && stream

!= NULL) {
_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
rcoord = _qettextposition();

_outtext(prompt_strinq(1));
if (triq_check==O)
{

}

triq=O;
sresult=system("mode spe com");
while(kbhit()==O&&triq==O)

triq=check () ;
ibloc(ddq);
sresult=system("mode spe auto");
if (trig='=-1)

lonqjmp(mark,-1);

input= gets(inputs);
if ((stream= fopen(input, "rb")) !=NULL) {

fclose(stream);
rcoord.row++;
settextcolor(ecolor);

}

_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(2));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(J));
rcoord.row++;
_settextposition(rcoord.row, record. col);
_outtext(prompt_string(6));
if (trig_check==O)
{

}.

triq=O;
sresult=system("mode spe com");
while (kbhit () ==O&&triq==o)

trig=check();
ibloc(ddg);
sresult=system("mo<;le spe auto");
if (trig==-1)

longjmp(mark,-1);

input2 = gets(inputs2);

160

if (inputs2(0] == 'Q' I I inputs2(0] -- 'q') {
_setvideomode(_DEFAULTMODE);
return;

}
}

}
stream = fopen(input, "wb");
fprintf(stream,"djr");
fprintf(stream, "%i %i ", gate_chan_a, gate_chan_b);
fprintf (stream, ''%i %i ", points_scan, stage_step) ;
fprintf(stream, 11 %i %i ", high,low):
fprintf(stream, "%li %li 11 , shots_step, stage_beg);
fpri.ntf(s.tream, 11 %i %i %i 11

, pedestal(O], pedestal[1],
pedestal (2]) ; /

fprintf(stream, 11 %s", comment):
fclose(stream);
setvideomode(DEFAULTMODE):

return; -

void ddg_ch~ck(void)
{

int trig,sresult;
char inputs2[3];
char *input2;

setvideomode(DEFAULTMODE);
:settextcolor(tcolor):
_settextposition(10, 15);
record = _gettextposition():
if (trig_check==O)

}

161

_ _out text ("Trigger checking is enabled now") ;
if (trig_check==1)

_outtext("Trigger checking is not enabled now");

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext("Input a 0 for trigger checking or a 1 ,");
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
.::_outtext(" for no trigger checking");

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check==O)
{

}

sresult=system("mode spe com");
while(kbhit()==O&&trig==O)

trig=check();
ibloc(ddg);
sresult=system("mode spe auto");
if (trig==-1)

longjmp(mark,-1);

input2 = gets(inputs2):
trig_check = atoi(input2);
_setvideomqde(_DEFAULTMOOE);

E. PROGRAM LISTING MULTI

I* Program "MULTI"
* Daniel Russell
* Aug. 6 1 1990

162

*
*
*
*
*
*
*
*I

The file Multi. c contains the following subroutines.

void set_multi()
void open_data_file()
void take_data()
void top()

#include <string.h>
#include <conio.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include·<graph.h>
#include <time.h>
#include <math.h>
#include <float.h>
#include "dan.h"
#include <setjmp.h>

extern int
extern~int

extern int
extern char
extern int
extern int
extern long
extern int
extern char
extern char
extern long
rect_ymax;
extern int
extern int

channel disl 1 channel dis2;
channel-colorl 1 channel color2 1 box_color;
time t ltime; -
multi_count 1 reverse_flag 1 scan;
file_name(7] 1 file_num[3];
gate_chan_a 1 gate_chan~b;
points_scan 1 stage_step;

int shots:_step 1 stage_beg; ,
pedestal[3] 1 multi_flag;
file_name[7] 1 file_num(3] 1 data_file[l2];
comment(lOOO];

int rect_xmin 1 rect_ymin 1 rect_xmax,

tcolor;
ecolor;

extern struct videoconfig vc;
extern struct rccoord rcoord;
extern int ddg 1 trig_check;
extern jmp_buf mark;

I* This sets·up the variables for taking multiple scans
*I

void set_multi(void)

{ .

..

char inputs(4];
char *input;
int trig, sresult;
multi count = O;
reverse_flag = O;
while (multi_count == 0 I I multi~count 1= 1) {

_setvideomode(_DEFAULTMODE);

}

settextcolor(tcolor);
-settextposition(lO, 15);
record = _gettextposition();
_outtext(multi_string(9));
record. row++;
settextposition(rcoord.row, rcoord.col);

·:outtext(multi_string(lO));
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

If (trig_check == O) {
trig = o;

}

sresult = system("mode spe com");
while (kbhit() == o && trig == 0)

trig= check();
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

input= gets(inputs);
multi count= atoi(inputs);
if (multi_count == 2) {.

}

multi_count = O;
return;

setvideomode(DEFAULTMODE};
-settextcolor(tcolor);
:settextposition(lO, 15);
record= _gettextposition();
outtext(multi string(!));

rcoord.row++; -
_settextposition(rcoord.row, rcoord.col);
if (trig_check == O) {

trig = O;
sresult = system("mode spe com");
while (kbhit() ==_0 && trig== 0)

trig= check();

163

}

ibloc(ddq);
sresult = system("mode spe auto");
if (triq == -1)

lonqjmp(mark, -1);

input= qets(inputs);
multi_count = atoi(inputs);

while (mul ti_count % 2 ! = o Ll multi count -- o) {
setvideomode(DEFAULTMODE);

-settextposition(10, 15);
rcoord = _gettextposition();
settextcolor(ecolor);

}

:outtext(multi_strinq(2));
rcoord.row++;
settextcolor(tcolor);

:settextposition{rcoord.row, rcoord.col);

_outtext(multi_strinq(1));

rcoord.row++;
_settextposition{rcoord.row, rcoord.col);
if {triq_check == 0) {

}

triq = O;
sresult = system{"mode spe com");
while (kbhit() == o && trig == 0)

tr iq = check() ;
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp{mark, -1);

input= qets(inputs);
multi_count = atoi{inputs);

setvideomode(DEFAULTMODE);
:settextposition(10, 15);

settextcolor{tcolor);
record= _gettextposition();
_outtext{multi_string{3));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

outtext{multi string(4));
rcoord.row++; - '
_settextposition(rcoord.row, rcoord.col);
if (triq_check ==·0) {

164

•

}

}

trig = O;
sresult = system("mode spe com");
while (kbhit() == o && trig == 0)

trig =~~check();
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

input= gets(inputs);
reverse_flag = atoi(inputs);
while (reverse_flag != 2 && reverse_flag != 1) {

setvideomode(DEFAULTMODE);
-settextposition(10, 15);
record = _gettextposition();
settextcolor(ecolor);

}

-outtext(multi string(5));
rcoord.row++; -
settextposition(rcoord.row, rcoord.col);

-settextcolor(tcolor);
:outtext(multi_string(3));
rcoord.row++;
_settextposit~on(rcoord.row~- rcoord.col);

_outtext(multi_string(4));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check == O) {

}

trig = o;
sresult = system("mode spe com");
while (kbhit() == o && trig == O)

trig= check();
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

input= gets(inputs);
reverse_flag = atoi(inputs);

void open_data_file(void)

165

/*
*
*
*I

{

166

This subroutine makes sure that the file name you
want to store the data in doesn't already exist on
the disk before you take the data.

char inputs2[2];

int trig, sresult;
char *input, •input2;
FILE * stream;

inputs2[0] = 'n'; '
stream == o:
while ((inputs2[0] == 'n' I I inputs2[0] -- 'N') && stream

!= NULL) {
_setvideomode(_DEFAULTMODE);
settextcolor(tcolor);

-settextposition(10, 15);
record= gettextposition();
_outtext(multi_string(7));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check == O) {

}

trig = o;
sresult = system("mode spe com");
while (kbhit() == o && trig == 0)

trig = check():
ibloc(ddg);
sresult = system("mode spe auto");
if (trig = -1)

longjmp (mark, -1)·;

input= gets(file_name);
strcpy(data_file, file_name);
strcat(data_file, ".");

setvideomode(DEFAULTMODE);
:settextposition(10, 15);
record= _gettextposition();
outtext(multi string(S));

rcoord.row++; -
settextposition(rcoord.row, rcoord.col);

if (trig_check == O) {
trig = O;
sresult = system("mode spe com");
while -(kbhit() == o && trig == 0)

..

}
}

}

triq = check():
ibloc(ddq);
sresult = system("mode spe auto");
if (triq == -1)

1onqjmp(mark, -1);

167

input= qets(file_num);
strcat(data_file, file_num);
if ((stream= fopen(data_file, "rb")) !=NuLL) {

fclose(stream);

}

rcoord.row++;
settextcolor(ecolor);

:settextposition(rcoord.row, rcoord.col);
~outtext(prompt_strinq(2)):
rcoord.row++;
_settextposition(rcoord.row, rcoord.col):
_outtext(prompt_strinq(3));
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_strinq(7));
if (triq_check == O) {

}

triq = O;
sresult = system("mode spe com");
while (kbhit() == o && trig == 0)

trig = check();
ibloc(ddg);
sresult = system("mode spe auto") ;
if (trig == -1)

lonqjmp(mark, -1);

input2 = gets(inputs2);

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
outtext(data file);

rcoord.row++;-

void take_data(void)

{
float ymin = (float) -1., ymax = (float)1., xmin =

168

(float)O., xmax = (float)1000.;

}

I*
*
*
*
*
*I

screen();

This subroutine plots the information at the top of
the screen. The variable n is the number of scans
taken in multi mode. This allows top() to print
the right file name for that scan (n starts counting
at 0).

void top(n)
int n:
{

char *window_string(), *p, file_numt[J];
char buffer(50];

float ymin = (float) -1., ymax = (float)1., xmin =
(float)O., xmax = (float)1000.;

int numl, i;
strcpy{data_file, file_name);
strcat(data_file, ".");
num1 = atoi(file num);
num1 = num1 + n;
p = itoa(numl, file_numt, 10);
strcat(data_file, file_numt);
if. (_setvideomode(_ERESCOLOR)) . ,
else if (setvideomode(HERCMONO)) - -· / -. ,
else {

_out text ("Graphics not supported, is msherc. com
loaded if here");

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext("Hit a key to continue");
while (i == 0)

i = kbhit ();
i = getche () ;
return;

}
_getvideoconf~g(&vc);
_settextcolor(tcolor);
settextposition(l, 1);

record = _gettextposition();
_outtext(window_string(1));

}

_outtext(data_file);
rcoord.col = rcoord.col + 25;
_settextposition(rcoord.row, rcoord.col);

time(<ime);
_outtext((ctime(<ime)));
rcoord.col = rcoord.col + 35;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "display %i ", channel dis1);
_settextcolor(channel_color1); -
outtext(buffer);

-settextcolor(tcolor);
-settextposition(2, 1);
rcoord = _gettextposition();
_outtext(window_string(J)):
sprintf(buffer, "%li", shots_step);
outtext(buffer);

rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(4));
sprintf(buffer, "%li", stage_beg);
_outtext(buffer);
rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(5));

169

sprintf(buffer, "%li", (long int) stage_beg + (long int)
_ points~scan * (long int)stage_step);

outtext(buffer);
If (multi count != 1) {

_settextposition(J, 1);

}

rcoord = gettextposition();
_outtext(window_string(6));
rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);

outtext(window string(7));
sprintf(buffer,-"%i", multi_count);
outtext(buffer);

if (reverse_flag == 2) {

}

rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(S));

rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
spr-intf (buffer, "display %i ", channel_dis2) ;
_settextcolor(channel_color2);
outtext(buffer);

-settextcolor(tcolor);

170

F. PROGRAM LISTING CAMAC

I* Program "CAMAC"
* Daniel Russell
* Aug. 6, 1990

*
*
*
* *I

The file Camac. c contains the following subroutines.

void setupcamac()

#include "dan.h"

void setupcamac(void)
{'

I*
*
*
*
*I

I*
*
*
*
*
*
*'
*
*

int Q, X, 1, A[16], crate, c, bytes, ads, QBL, fun;
unsigned int DATA[16];

extern int low, high;
extern long int shots_step;
extern int AD;

Q = 0;
X = O;

All the subroutines in this file are described in
the DSP manual. .The Assembler was modified for all
these subroutines to follow c language calling
conventions.

fun = O;
1 = 64;
A[O] = O;
crate = 1;
crateset(&crate);
c = camcl(&l);
1 = 4;
c = camcl(&l);
c = cami(&AD, &fun, A, DATA, &Q, &X);

This next camo sets . up the A to D in the
appropriate way. See pg 1-5 in the LeCroy A to D
manual. Basically, bit 12 is high meaning pedestal
subtraction is done by the A to D, bit 13 is high
and Camac data_compression is enabled, bit 14 is
high so sequential readout occurs, bit 15 is high
so a LAM is set as soon as data is ready to be
read, and bit 16 is set telling the A to D to
suppress O's and overflows on CAMAC readout.

...

*I

/*
*
*
*
*I

DATA[O] = 0174000;
fun = 16;
c = camo(&AD, &fun, A, DATA, &Q, &X);

fun = o:
c = cami(&AD, &fun, A, DATA, &Q, &X);
if (DATA[O] != 064000 && Q != 1 && X != 1) {

camerr(AD, fun, A(O] ,_ DATA[O], Q, X);
return;

}

DATA[O] = OxOOO;
bytes = 2;
ads = 17;
QBL = 1;

171

This subroutine is slightly different than the one
described in the DSP manual. It also passes to the
assembler code the low and high for bounds
checking, and the number of shots per step.

dmaset(&crate,
shots_step);

&bytes, &QBL, &ads, &low, &high,

}

p_scan(O);
p_step(O);
stage start(O);
gate(O);
read_ped (0) ;

1 = O;
c =camel(&!);
return;

172

G. PROGRAM LISTING CONST

I* Proqram "CONST"
* Daniel Russell
* Auq. 6, 1990
* The file Const.c contains the following
subroutines. *
* char •multi_strinq()
* char •window_strinq()
* ·char •error_strinq ()
* char •qate_strinq ()
* char *main_strinq ()
* char •setup_strinq ()
* char *prompt_strinq()
* char *look_strinq()
*' char •staqe_strinq()
* char *data_strinq ()
* char •set_strinq ()
* char *odd_strinq ()
*I

#include "dan.h"

I* This file contains most of the strinq constants
used * in the proqram. This was done for two reasons: it
saves * data space for strinqs that are used more than
once, and * also allows some menus to be output with for
loops * instea~ of havinq one line for each output.
Basically, * these are subroutines that return a string.
The first * part is the definition of the static char
which is * basically an array of character strings. In
* mul ti_strinq[o], strinq (o] is equal to "ill strng".
That * was put in there so that in the development phase
errors * could be caught easily. Also for formatting for
the * thesis some constant strings would not fit on one
line * and a newline character was put in. This is not
allowed * and the source file generated from the thesis must
be * changed to one line constants
*I

char •multi_strinq(n)
int n;
{

static char •string(] = { \
"ill strng",
" Input number of scans (must be even number)",
" Must be an even number",
" 1: stage takes data in one direction",
" 2: Stage takes data in both directions",
" Input 2 or 1 ", '
" 5: Return to Main Menu",
"Input Data File name",

} ;

"Input Data File number",
" 1: Turn multi on",
" 2: Turn multi off",
"Input Ascii data file name••

173

I* The return line should be interpreted to say if n
is* less than 1 or greater than 11 return string[O], else
* return string[n]
*I

return((n· < 1 II n > 11) ? string[O] : string[n]);
}

char •window_string(n)
int n;
{ I

static char •string[] = {
"ill strng",
"File Name ••,
'' Date '',
"Shots ",
"Begin ",
"End " ,
"Multi is on",
" Scans ",
"Reverse",
"Input Y if you wish to continue,",

·"InputS it' you wish to save,and quit",
"Input Q if you wish to quit without saving",
"remember if you quit to put the stage back to

origin"
} ;
return((n < 1 I I n > 12) ? string(O] : string[n]);

}

char •error_string(n)
int n;
{

}

static char •string[] = {
"ill strng·",
"gate not set",
"stage not set",
"shots not set",
"pedestal not set",
"not an acceptable number",
"bounds not set",
"write error occurred "

}; '

return((n < 1 I I n > 7) ? string(O] : string(n]);

char *gate_string(n)
int n;
{

}

static char *string(] = {

} ;

"ill strng",
"Set up Channel A",
"choose a gate width ",
"O: 10 nsec "
"1: 30·nsec ",
"2: 100 nsec ",
"3: 300 nsec ",
"input delay in nsec ",
"Set up Channel B",
"delay < 1000 nsec & delay > 0 ",
"Choice must be between o, 1, 2 or 3"

return((n < 1 .ll n > 10) ? string(O] : string[n]);

char *main string(n)
int n;
{

}

static char *string[] = {

} ;

twill strng",
" 1: Read in Setup File",
" 2: create Setup File ",
" 3: Take DATA",
" 4: Look at DATA",
/* " 5: Add DATA files", */
" 5: To check trigger, -on not to check trigger
" 6: Quit'!,
"this video mode is not supported"

return((n < 1 l l n > 6) ? string(O] : string(n]);

char *setup_string(n)
int n;
{

static char *string[] = {
. "ill strng",

" 1: # of Points in Scan ",
11 · 2: # of Stage steps between points ",
"-3: #of Shots/Step.",
" 4: Stage Starting Position",
" 5: Set Gate & Delay",
" 6: Set Pedestals",
" 7: Comment of 5 sentences or less ",
" 8: Display All ",
" 9: Save setup",

174

?II . '

..

..

}

} ;

11 10: Choose which channels to display",
11 11: Take data for setup without saving",
"12: Run Norm",
11 13:· set Bounds",
1114: Quit"

return((n < 1 II n > 14) ? string(O] string[n]);

char *prompt_string(n)
int n;
{

)

static char •string(] = {

} ;

"ill strng",
"Type File Name ",
"File Already Exists !!!",
11 Do you Want to overwrite ?",
"File Doesn't Exists!!!",
" Do you Want Try Another ?",
"Answer Y or Nor Q ",
"Answer Y or N "

return((n < 1 I I n > 7) ? string(O] : string(n]);

char •look_string(n)
int n;
{

static char •string(] = {
"ill strng",
"Input Channel 0,1;2, or 3 (norm)"

} ;
return((n < 1 I I n > 2) ? string[O] : string[n]);

}

char •stage_string(n)
int n;
{

static char •string(] = {
"ill strng",
"Input Total points in scan",
"Input # of Stage Steps Between Points",
"Input Shots per Step",

175

"Input Stage position where Scan should begin",
"Input Comment of 5 sentences or less and end with

a - ..
} ;
return((n < 1 I I n > 5) ? string(O] : string(n]);

}

char *data_string(n)
·int n;
{

static char •string(] = {
"ill strng",
" 1: Change Comment" ,
" 2: Set up Multi",
" 3: Open Data Files",
" 4: Set which channel to display",
" 5: Take Data",

}

} ;

" 6: Look at Data.",
" 7: Run.Norm",
" 8: Return to Main Menu"

return(en· < 1 II n > 8) ? string(O]

char •set_string(n)
int n;
{

}

static char •string(] = {

} :

"ill strng",
"Points in scan",
"Stage Steps Between points",
"Shots per step ",
"Stage Start",
"Gate A width and'delay",
''"Gate B width and delay",
"Pedestal o, 1 , and 2",
"Comment" ,
"Hit a key to return"

return((n < 1 I I n > 9) ? string(OJ

char •odd_string(n)
int n;
{

static char •string(] = {
"ill strng",
"Trigger is n6w on internal",
"Hit a key to continue",
"Camac Error",

string(n]);

string[n]);

"Ibfind ~rror; does device or board",
"name given match configuration name?",
"GPIB function call error:",
"Device error",

176

•

here?",

} ;

177

"Graphics not supported, is msherc.com loaded if

"Input q to quit y for another",
"Input number of files to add",
"Input the first channel to be displayed",
"either o, ·1, 2, or 3",
"Input the second channel to be displayed",
"Trigger checking is enabled now",
"Trigger checking is not enabled now",
"Input a o for trigger checking or a 1,",
"for no trigger checking",
"Camac is not giving a LAM",
"DOG is now on internal",
"Input a y to c9ntinue or a q to quit",
"No LAM, DOG now on internal",
"hit q to quit",
"Input Low",
"input High",
"mode spe com",
"mode spe auto"

return((n < 1 I I n > 26) ? string[O] : string[n]);
}

H. PROGRAM LISTING ERROR
I* Program "ERROR"
* Daniel Russell
* Aug. 6, 1990
* •· The file Error.c
subroutines. *
* void
* void
* void

camerr()
finderr()
error()

*I

#include <graph.h>
#include <conio.h>
#include <stdio.h>
#include <decl-. h>
#include "dan.h"

extern struct videoconfig vc;
extern struct ~ccoord record:

178

contains the following

I* If there is an error in any of the camac routines
* this subroutine will be called. This is really only for
* development purposes, although if any hardware problems
* do occur this may help in tracking down the error. This
* will tell you which modu~e was being talked to and what
* parameters were passed.
*I

void camerr(int mod, int fun, int A, unsigned int data, int
Q, int X}
{

char buffer(100]:
int i; ·
_setvideomode(_DEFAULTMOOE};
settextcolor(4};

:settextposition(10, 15};
record= _gettextposition();
_outtext("Camac Error"};
sprintf(buffer, "Module = %i", mod}:
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(buffer}:
sprintf(buffer, "Function= %i", fun};
rcoord.row++;
_settextposition(rcoord.row, rcoord.col};
_outtext(buffer);
sprintf(buffer, "A= %i", A};
rcoord.row++;

__ settextposition(rcoord.row, rcoord.col):
_outtext(buffer};
sprintf(buffer, "data= %ui", data);

}

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(buffer); .
sprintf(buffer, "Q = %i", Q);
record. row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(buffer);
sprintf(buffer, "X= %i", X);
rcoord.row++;
_settextposition(rcoord.row, rcoord~col);
_outtext(buffer):
rcoord.row+T;
_settextposition(rcoord.row, rcoord.col);
_outtext("Hit a key to continue");
while (i == 0)

i = kbhit();
i = getche(); ·
return;

179

I* This routine would notify you that the ibfind call
* failed.
*I

void finderr ()
{

}

int i;

_setvideomode(_DEFAULTMODE);
_settextcolor(4);
_settextposition(10, 15);
record= _gettextposition();

_outtext("Ibfind error; does device or board");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

_outtext("name given match configuration name?");
rcoord.row++; ,
_settextposition(rcoord.row, rcoord.col);
_outtext("Hit a key to continue");
while (i == 0)

i = kbhit();
i = getche () ;
return; ·

I* The error checking routine will, among other
iberr to determine the exact cause of

condition and then take action
the application. For errors du:r:ing

things, * check
the * error
appropriate to *

180

data transfers, *
the actual number *
*I

ibcnt may be examined to determine
of bytes transferred.

void error()
{

char buffer[100];
·int i;
_setvideomode(_DEFAULTMODE);
settextcolor(4);

:settextposition(10, 15);
rcoord = _gettextposi tion 0 ;

_outtext("GPIB function call error:");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

"ibsta=Ox%x, iberr=Ox%x,", sprintf(buffer,
iberr) ; ·

}

_outtext(buffer);
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);

sprintf(buffer, " ibcnt=Ox%x\n", ibcnt);
outtext(buffer);

rcoord.row++;
_settextposition(rcoord~row, rcoord.col);
_opttext("Hit a key to continue");
while (i == O)

i = kbhit();
i = getche () ;
return;

ibsta,

..

181

I. PROGRAM LISTING PLOTS

/* Program "PLOTS"
• Daniel Russell
* Aug. 6, 1990
* * The file Plots.c contains the following
subroutines.
*
* void rboundl()
* void rtickxy1()
* void rpoint1()
* void text _point ()
* void rbound2()
* void rtickxy2 ()
* void rpoint2()
* void csave()
* void rpointc ()
* void cend()
*I

#include <graph.h>
#include <conio.h>
#include <stdio.h>
#include <malloc.h>
#include "dan.h"

extern
extern
extern
extern

struct
struct
int
int

videoconfig vc;
rccoord record;
channel disl, channel dis2;
channel:color1, channel_color2,

xycoord xycoord;
xa, xs1, ya, ys1;
xs2, ys2;
dx, dy;
xdiffl, ydiff1, xmin1, yminl;
xdiff2, ydiff2, xmin2, ymin2;

box_ color;

struct
float
float
float
float
float
float
float·
float
long int
float

xmin_tickl, tick_temp, xmax_tick, temp_tick;
ymin_tick1, ymax_tick1;
xmin_~ick2, ymin_tick2, ymax_tick2;
rect_xmin, rect_ymin, rect_xmax, rect_ymax;
rect_xdiff, rect_ydiff;

void rbound1(float a, float b, float xmax1, float ymax1)

I*
*
*
*I

{

rboundl () sets up the mapping of data into the
screens coordinates for the first set of data points
the user wants to plot

}

xsl, ys1: extern float
extern float
xminl = a:
yminl = b:

xdiff1, ydiffl, xmin1, ymin1:

xdiffl = xmaxl - xminl:
ydiffl = ymaxl - yminl:
rect xdiff = (float)(rect xmax
rect_ydiff = (float) (rect:Ymax -
xsl = (rect_xdiff) I (xdiffl):
ysl = (rect_ydiff) I (ydiffl):
rtickxyl () :

rect xmin);
rect:Ymin) ;

182

void rtickxy1(void)
I* rtickxy1 () plots the tick marks for the first set of
* data points
*I

{
extern float xdiff1, ydiff1, xmin1, ymin1;
char buffer(10];
extern float xs1, ys1;
extern long int rect_xmin, rect_ymin, rect_xmax,

rect_ymax;
float temp, temp2:
temp = (xdiffl) 1 50;
temp = temp * 10;

tick temp= (((int)xminl) 1 temp) *temp;
if (xmin1 >= tick_temp)

xmin_tick1 = tick_temp;
else

xmin_tickl = tick_temp - temp;
tick_temp = (((int) (xmin1 + xdiff1)) 1 temp) *temp;
if ((xmin1 + xdiff1) <= tick_temp)

xmax_tick = tick_temp:
else

xmax_tick = tick_temp + temp;
temp_tick = xmin_tickl;
xdiff1 = xmax tick - xmin tick!;
xsl = (rect_xdiff) 1 (xdiffl);
xminl = xmin tickl;
settextcolor(box color);

:setcolor(box_color);
while (temp_tick <= xmax_tick) {

temp2 = (temp_tick - xmin_tickl) * xsl + rect_xmin;
_moveto((int)temp2, (int) rect_ymax);
_lineto((int)temp2, (int) rect_ymax- 10);
text_point((long int)temp2, rect_ymax + 10);

•

}

}

if (temp> (float)l.)
sprintf(buffer, "%.Of", temp_tick);

else if (temp< (float) 1.)
sprintf(buffer, "%.1f", temp_tick);

else if (temp > (float) .1)
sprintf(buffer, "%.2f", temp_tick);

_outtext(buffer);
temp_tick = temp_tick + temp;

temp = (ydiffl) I 50;
temp = (temp * 10) ;
tick_temp = ((yminl) 1 temp) * temp;
if (yminl >= tick_temp)

ymin_tickl = tick_temp;
else

ymin_tickl = tick_temp - temp;
tick_temp = (((yminl + ydiffl)) I temp) * temp;
if ((yminl + ydiffl) <= tick_temp)

ymax_tickl = tick_temp;
else

ymax_tickl = tick_temp + temp;
temp_tick = ymin_tickl;
ydiffl = ymax_tickl - ymin_tickl;
ysl = (rect_ydiff) 1 (ydiffl);
yminl = ymin_tickl;
_setcolor(channel_colorl);
_settextcolor(channel_colorl);
while (temp_tick <= ymax_tickl) {

183

temp2 = rect_ymax - (temp_tick - ymin_tickl) * ysl;
_moveto((int)rect_xmin, (int)temp2);
_lineto((int)rect_xmin + 10, (int)temp2);
text_point(rect_xmin - 30, (long int)temp2);

}

if (temp> (float)l)
sprintf(buffer, "%.Of", temp_tick);

else if (temp > (float) .1)
sprintf(buffer, "%.1f", temp_tick);

else if (temp > (float) .01)
sprintf(buffer, 11 %.2f", temp_tick);

else if (temp < (float) .01)
sprintf(buffer, "%.3f", temp_tick);

_outtext(buffer);
temp_tick = temp_tick + temp;

void rpointl(float rxo, float ryO)

184

I* . · rpointl () plots one point per call using rboundl () 's
* mapping to map onto screen coordinates
*I

{

}

int ix, iy;
ix = (int) ((rxO- xmin_tickl) * xsl + rect xmin);
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl);
setcolor(channel colorl);

:setpixel(ix, iy);

void text_point(ix, iy)

I* text_point() moves the text coordinate to where the
* label for the tick marks should be
*I

long int ix, iy;
{

}

xycoord = _getphyscoord((short)ix, (short) iy);
ix = (long int)((float)xycoord.xcoord 1

(float)vc.numxpixels * ((float)vc.numtextcols));
iy = (long int) (1 + (float)xycoord.ycoord I

(float)vc.numypixels * ((float)vc.numtextrows));
_settextposition((short)iy, (short)ix);

void rbound2(float b, float ymax2)

1 * rbound2 () is the same as rboundl () except the
* ,mapping is for the second set of data points. Note that
* the xaxis mapping is already defined from rboundl()
*I

{

}

extern float
extern float

ymin2 = b;

xs2, ys2;
xdiff2, ydiff2, xmin2, ymin2;

xs2 ~ (rect xdiff) 1 (xdiffl);
ydiff2 ~ ymax2 - ymin2;

ys2 = (rect_ydiff) 1 (ydiff2);
rtickxy2();

void rtickxy2(void)

..

185

I* rtickxy2 () is the same as rtickxy1 () except the
* xaxis tick marks have already been drawn by rtickxy1()
*I

{
extern float xdiff2, ydiff2, xmin2, ymin2;
char buffer[10];
extern float xs2, ys2;
extern long int rect_xmin, rect_ymin, rect_xmax,

rect_ymax;
float temp, temp2;

temp = (ydiff2) I 50;
temp= (temp* 10);
tick_temp = ((ymin2) I temp) * temp;
if (ymin2 >= tick_temp)

ymin_tick2 = tick_temp;
else

ymin_tick2 = tick_temp - temp;
tick_temp = (((ymin2 + ydiff2)) 1 temp) * temp;
if ((ymin2 + ydiff2) <= tick_temp)

ymax_tick2 = tick_temp;
else

ymax_tick2 = tick_temp + temp;
temp_tick = ymin_tick2;
ydiff2 = ymax_tick2 - ymin_tick2;
ys2 = (rect_ydiff) I (ydiff2);
_setcolor(channel_color2);
settextcolor(channel color2);

ymin2 = ymin_tick2; -
while (temp_tick <= ymax_tick2) {

}

temp2 = rect_ymax- (temp_tick- ymin_tick2) * ys2;
_moveto((short)rect_xmax, (short)temp2);
lineto((short) (rect xmax- 10), (short)temp2);

text_point(rect_xmax-+ 20, (long int)temp2);

if (temp > (float) 1)
sprintf (buffer, "'.Of';, temp_tick) ;

else if (temp > (float) .1)
sprintf(buffer, 11 t.1f11 , temp_tick);

else if (temp > (float) .01)
sprintf(buffer, 11 t.2f11 , temp_tick);

else if (temp < (float) .01)
sprintf(buffer, "t.Jf", temp_tick);

~outtext(buffer);
temp_tick = temp_tick + temp;

186

}

void rpoint2(float rxo, float ryO)

/* rpoint2 () is the same as rpointl () except it is
* mapped to the screen coordinates by rbound2()
*I

{

}

int ix, iy;
ix == (int) ((rxo ... xmin_tickl) * xs2 + rect xmin);
iy == (int) (rect_ymax- (ryO- ymin_tick2) * ys2);
_setcolor(channel_color2);
_setpixel(ix 1 iy);

int ixold 1 iyold;
static char far *cimage;
void csave(float rx0 1 float ryO)

/* csave () initializes cursor movements by saving space
* for the original image and then writes the cursor image.
* There is a better and quicker way to do this with xor but
* I did not realize it at the time
*I

{

extern char far *cimage;
int ix 1 iy 1 i:
extern int ixold 1 iyold;
ix = (int) ((rxo - xmin_tickl) * xsl + rect xmin);
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl);
ixold == ix;
iyold == iy;
cimage == _fmalloc((unsigned int) _imagesize(ix- 5 1 iy-

5 1 ix +5 1 iy + 5));
if (cimage == (char far *) NULL) {

printf("calloc failed");

}

printf("hit a key to continue");
while (i == 0)

i = kbhit():
i = .getche () ;

return;

_getimage(ix- 5 1 iy- 5, ix +5 1 iy +5 1 cimage);
_setlinestyle(Oxaaaa);

187

_rectangle(_GFILLINTERIOR, 400, 330, 600, 360);
}

void rpointc(float rxo, float ryO)

I*
*I

{

}

void
I*
*I
{

}

This plots the cursor at the new position

extern char
extern int

far *cimage;
ixold, iyold;

int ix, iy;
char buffer(20);
_putimage(ixold - 5, iyold - 5, cimage, _GPSET):
ix = (int)·((rxo- xmin_tickl) * xsl + rect_xmin);
iy = (int) (rect_ymax- (ryO- ymin_tickl) * ysl);

_getimage(ix- 5, iy- 5, ix + 5, iy + 5, cimage);
_setcolor(l5);

moveto(ix, iy + 5);

_lineto(ix, iy- 5);
_moveto(ix, iy + 5);
_lineto(ix, iy- 5);
ixold = ix;
iyold = iy;
_settextposition(25, 55);
_remappalette(6, _BLACK);
setcolor(6);

sprintf(buffer, "%i %f", (int)rxO, ryO);
_rectanqle(_GFILLINTERIOR, 400, 330, 600, 360);

settextcolor(box color);
_outtext(buffer);-

cend()
cend() frees up the space used for cursor movements

extern char far •cimage;
_ffree(cimage);

J. PROGRAM LISTING COMM

I* Program "COMM"
* Daniel Russell
* Aug. 6, 1990
*

188

* The file Comm.c contains the following subroutines.
*
*
*
* *I

qp_talk()
se_talk()
int check()

#include <decl.h>
#include <graph.h>
#include <conio.h>
#include <stdio.h>
#include "dan.h"

extern struct videoconfig vc;
extern struct rccoord record;

I* There are two ways to communicate to the stage.
* Using GPIB-PC, or serial line. qp talk sends the string
* to the GPIB-PC and returns error info.
*I
gp_talk(device, data, count)
int device;
char data(];
int count;
{

extern int ibsta, iberr, ibcnt;
ibwrt(device, data, count);
return (ibsta & ERR);

}

I* se_talk is used to communicate through the serial
* line I am not sure if this code was ever tested and
* therefore I have commented it out. Right now this is not
* a problem since all communication occurs through the
* GPIB-PC.
*I
se_talk(dummy, data, dummy2)
int dummy, dummy2;
char data(];

{
FILE * stream;
int sent;

l*stream=fopen("com1","wb"):
sent=fprintf(stream,"%s",data);
if(sent!=dummy21 lfclose(stream)!=O){

return(-1):}
else

*I
return(O):

}

189

I* check is a program that is used to check if the
* digital delay generator is being triggered.
*I
int check()
{

extern int ddg;
int i, dummy = o;
for (i = o: i != 5; i++) {

ibwrt (ddg, "IS 1", 4):
I* The command "IS 1" asks the digital delay generator
* to return bit one of the status byte. see pg 11 of the
* manual. If rd[O]='O' then the ddg is not being
* triggered.
*I

}

ibrd (ddg, rd, 3) ;
if (rd[O] == '0')

dummy++;

if (dummy == 5) {
I* If after 5 tries the ddg is not busy with a trigger, the
* DOG is put on internal trigger mode
*I

ibwrt(ddg, "rc 1", 4);
setvideomode(DEFAULTMODE);

:settextcolor(4);
_settextposition(10, 15);
record= _gettextposition();
_outtext("Trigger is now on internal");
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
_outtext("Hit a key to continue");
while (i == 0)

i = kbhit();

}

i = qetche () ;
return(-1);

}
return(O);

190

K. PROGRAM LISTING DATA

I* Program "DATA"
* Daniel Russell
* Auq. 6, 1990
*

191

* The file Data.c contains the following subroutines.

* * void take_data_menu()
* int test_num()
*I

#include <strinq.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <qraph.h>
#include <conio.h>
#include "dan.h"
#include <setjmp.h>

extern double *d_norm(4];
extern int gate_chan_a, gate_chan_b;
extern char comment[1000];
extern int points_scan, staqe_step;
extern long int shots_step, stage_beq;
extern int multi_count, reverse_flaq, scan;
extern int pedestal(J], multi_flag;
extern int delay_a, delay_b, qwidth_a, qwidth_b;
extern int tcolor;
extern int ecolor;
extern struct videoconfig vc;
extern struct rccoord record;
extern int ddg, trig_check;
extern jmp_buf mark;

I* This section of code writes the take data menu and
* gets input.

, *I

void take_data_menu(void)

{
int
int
char
char
char
int

triq, sresult;
count = 1;
*data_strinq(int)
inputs(J];
•input;
i = O;

. ,

I*
*I

I*
*I

_setvideomode(_DEFAULTMODE);
settextcolor(tcolor);

:settextpos1tion(10, 15);
record= _gettextposition();
while (count != 8) {

for (i = 1; i < 9; i++) {

Write the menu on the screen

}

_outtext(data_string(i));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

if (trig_check == O) {
trig = O;

}

sresult = system("mode spe com");
while (kbhit() == o && trig == O)

trig = check() ;
ibloc(ddg);
sresult = systel'il("mode spe·auto");
if (trig == -1)

longjmp(mark, -1);

input= gets(inputs);
count= atoi(inputs);
if (count == 0 II count < 1 II count > 8) {

If a valid key was not hit write error message

setvideomode(DEFAULTMODE);
-settextposition(9, 15);
record= _gettextposition();
settextcolor(ecolor);

-outtext(error string(5));
rcoord.row++; -
_settextposition(rcoord.row, rcoord.col);

settextcolor(tcolor);
} else if (count == 1) {

read comment();
setvideomode(DEFAULTMODE);

:settextposition(10, 15);

_settextcolor(tcolor);

record = _gettextposition();
} else if (count·== 2) {

192

set_multi();
_setvideomode(_DEFAULTMODE);
~settextcolor(tcolor);
_settextposition(10, 15);
rcoord = _gettextposition();

} else if (count == 3) {
open_data_file();
_setvideomode(_DEFAULTMODE);
_settextcolor(tcolor);
_settextposition(10, 15);
rcoord = _gettextposition();

} else if (count == 4) {
channel_display();
_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
_settextcolor(tcolor);
rcoord = _gettextposition();

} else if (count == 5) {
take_data();
_setvideomode(_DEFAULTMODE);
_settextcolor(tcolor);
_settextposition(lO, 15);
rcoord = _gettextposition();

} else if (count == 6) {

193

I* In order to look at another file data space must be
• free for the new data. Note this new data file might not
* have the same number of points per scan as the current
• setup file has defined, therefore even though points_scan
• is defined in look_data() it is not the same variable as
* points_scan in the rest of the program. This allows the
* user to look at different data files without losing their
• current setup.
*I

if (d_norm(O] != NULL)
free (d_norm(OJ);

if (d_norm[l] != NULL)
free (d_norm[l]);

if (d_norm(2] != NULL)
free (d_norm(2]);

if (d_norm(J] != NULL)
free (d_norm(3]);

look data();
if (points_scan != 0) {

d_norm(O] = (double *)calloc(points_scan,
sizeof(double));

d_norm(l] = (double *)calloc(points_scan,
sizeof(double));

d_norm(2] = (double *)calloc(points_scan,
sizeof(double));

d_norm(3] = (double *)calloc(points_scan,

}

}

sizeof(double));

}
_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
_settextcolor(tcolor);
record= _qettextposition();

} else if (count == 7) {

}

norm():
_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
_settextcolor(tcolor);
record= _qettextposition();

setvideomode(DEFAULTMOOE); - -return;

194

1 * test num is a routine I wrote to make sure the
* string returned by the user was all numbers. There are
* easier ways to do this but I never changed the parts of
* the program where this is usede One could for example do
* the same thing with atoi() as was done in the subroutine
* take_data_menu()
*I

int test_num(nums)

char nums[]:
{

}

int i = o, ch;
while (nums[i] != '\O') {

ch = nums[i];
if (isdiqit(ch) == 0) {

if (islower(ch))
return(-1);

else if (isupper(ch))
return(-1);

else
i++;

} else
i++;

}
return(O);

L. PROGRAM LISTING LOOK

/* Program "LOOK"
* Daniel Russell
* Aug. 6, 1990

195

*
*
*
*
*
*
*
*
*I

The file Look.c contains the following subroutines.

void
void
int
void
void

look data()
plottop()
plot()
edit()
clesave()

#include <malloc.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
#include <conio.h>
#include <bios.h>
#include <math.h>
#include "dan.h"
#include <string.h>
#include <setjmp.h>

/* Note the use of static variables in this file. This
* is to allow the user to look at data with different setup
* parameters without affecting the setup parameters used in
* taking data setup parameters
*I

static int points_scan, stage_step:
static int multi_count, reverse_flag, look, scan:
static long int shots_step, stage_beg:
static double *d_norm(4]: ·
static char file_name(7], file_num(J], data_file[l2]:
static int pedestal(J], multi_flag:
static int gate_chan_a, gate_chan_b, point_scan_tak:
static char comment(lOOO]: ·

strUct videoconfig vc:
struct rccoord record:
extern int tcolor:
extern int ecolor, box color:
extern long int rect_xmin, rect_ymin, rect_xmax,
rect_ymax:
time_t ltime:

void look_data(void)

{
int
int
int
FILE
char
char

triq, sresult;
i, chan;
numwritten, ch;
* stream;
inputs2[2], test[4];
*input, *input2;

inputs2[0] = 'y';
stream = NULL;

_qetvideoconfiq(&vc);
while ((inputs2 (o] ==

inputs2(0] == 'c'
'Y I

I I
I I

I I inputs2(0] == 'Y'
inputs2(0] == 'C')) {

_setvideomode(_DEFAULTMOOE);
_settextcolor(tcolor);
_settextposition(lO, 15);
rcoord = _gettextposition();
if (inputs2(0] == 'y' II inputs2(0] == 'Y') {

_outtext(multi~str1nq(7));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

input= qets(file_name);
}
strcpy(data_file, file_name);
strcat(data file, "·");
if (inputs2[0] == 'Y' I I inputs2(0] == 'Y') {

}

setvideomode(DEFAULTMODE);
:settextposition(lO, 15);
rcoord = _qettextposition();
_outtext(multi_string(S));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

input= qets(file_num);
strcat(data file, file num); - -

196

I I
I I

I* If C is hit the next data file with the same name
* but incremented by one number is read in. For example if
* the user is looking at "dan.!", and the 'C 1 or 'c' key
* is hit "dan.2" would be read in.
*I

if (inputs2(0] == 'c' I I inputs2(0] == 'C') {
i = atoi(file_num);
i++;
itoa(i, file_num, 10);
strcat(data_file, file~num);

197

}
if ((stream= fopen(data_file, "rb")) ==NULL) {

fclose(stream);
rcoord.row++;
_settextcolor(ecolor);
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(4));
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext(prompt_string(S));
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

_outtext(prompt_string(7));

·input2 = gets(inputs2);
}
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

:outtext(data_file);
rcoord.row++;

if (stream != NULL) {
for (i = o: i != J; i++) {

ch = fgetc(stream);
test(i] = (char) ch;

}
test(i] = '\O':
if (strcmp(test, "djr") != 0)

printf("not setup file");
else {

fscanf(stream, "%li", <ime);
fscanf(stream, "%i", &gate_chan_a);
fscanf(stream, "%i", &gate_chan_b);
fscanf(stream, "%i", &points_scan);
fscanf(stream, "%i", &stage_step);
fscanf(stream, "%li", &shots step);
fscanf(stream, "%li", &stage:beg);
fscanf(stream, "%i", &pedestal(O]);
fscanf(stream, "%i", &pedestal(!]);
fscanf(stream, "%i", &pedestal(2]);
fscanf(stream, "%i", &reverse flag);
fscanf(stream, "%i", &multi_count);
fscanf(stream, "%i", &scan);
for (i = O; (i < 999) && (ch =

fgetc(stream)) != •·•; i++)
comment[i] = (char) ch;

comment[!] = (char) ch;
i++;
ch = fgetc(stream);

198

comment[i] = (char) ch;
if (d_norm(O] != NULL)

free (d_norm(O]):
if (d_norm(l] != NULL)

free (d_norm(l]);
if (d_norm(2] != NULL)

free (d_norm(2]);
if (d_norm(J] != NULL)

free (d_norm(J]);

d_norm(O] = (double *)calloc(points_scan,
sizeof(double));

d_norm(l] = (double *)calloc(points_scan,
sizeof(double));

d_norm(2] = (double *)calloc(points_scan,
sizeof(double));

d_norm(J) = (double *)calloc(points_scan,
sizeof(double));

if (d norm[O] ==NULL II d norm(l] ==NULL
11 d_norm(2] == NULL il d_norm[J] ==
NULL) {

}

if (d_norm(O] != NULL)
free (d_norm(O));

if (d_norm(l] != NULL)
free (d_norm(l));

if (d_norm(2] != NULL)
free (d_norm(2]);

if (d_norm(J] != NULL)
free (d_norm(J));

d_norm[O] = (double *)
calloc(points_scan,
sizeof(double));

d_norm[l] = (double *)
calloc(points_scan,
sizeof(double));

d_norm[2] = (double *)
calloc(points_scan,
sizeof(double));

d_norm(J) = (double *)
calloc(points_scan,
sizeof(double)):

for (i = O; i < 4; i++) {
if (d_norm[i] == NULL) {

printf("Allocation Failure \n");
printf ("hit a key to continue") ;
while (i == 0)

i = kbhit();
i = getche () ;

199

return;
}

}

for (i = o; i != 4; i++)

}

numwritten = fread(d norm(i],
s i z e o f .(d o u-b 1 e) ,
points_scan, stream);

fclose(stream);

if (inputs2(0] == 'Y' I I inputs2[0] == 'Y') {
_setvideomode(_DEFAULTMODE):
_settextposition(10, 15);
_settextcolor(tcolor);

}

rcoord = _gettextposition();

_outtext(look_string(1));
rcoord.row++;
_settextposition(rcoord.row,rcoord.col);

input2 = gets(inputs2);
chan= atoi(inputs2);

I* plot () returns an integer that is to be used for
* displaying another channel or saving a file after a
* change to one of the data points
*I

inputs2[0] = (char) (plot(chan) & OxOFF):
while (inputs2[0] == 'O' JJ inputs2[0] == '1'

I I inputs2(0] == '2' 11 inputs2(0] == '3')
inputs2(0] =(char) (plot(atoi(inputs2)) &
OxOFF);

if (inputs2[0] == 's')

I* clesave() is a routine to save the data changed by
* the user. It is a separate subroutine from save in order
* to keep the setup variables different from the variables
* in the file the user is looking at.
*I

clesave(O);

}
}
setvideomode(DEFAULTMODE);

If (d_norm(O] T= NULL)

free (d_norm(O]);
if (d_norm[l] != NULL)

free (d_norm(l]);
if (d norm(2] != NULL)

free (d_norm(2]);
if (d_norm(l] != NULL)

free (d_norm[l]);

200

I* cend() frees space that was allocated for some of
* the plottinq routines
*I

cend();

}

/* This plots the information that is above the window
* of data. Note that this is a different subroutine than
* top () because the setup values should not be mixed
* between takinq data and lookinq at data
*I

void plottop(n)
int n;
{

char •window_strinq(), *p, file_numt[l];
int numl, i;

strcpy(data_file, file_name);
strcat(data:.-file, ".");
numl = atoi(file_num);
numl = numl + n;
p = itoa(numl, file numt, 10);
strcat(data_file, file_numt);

if (_setvideomode(_ERESCOLOR))
• I

else if (_setvideomode(_HERCMONO)) .
I

else {

1 * msherc. com came with Microsoft C 5. 1 and must be
* loaded for qraphics to work on a hercules monitor
*I

_out text ("Graphics not supported, is msherc. com
loaded if here");

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext("Hit a key to continue");
while (i == O)

i = kbhit():
i = qetche () ;

}

return;
}

_getvideoconfig(&vc);
_settextcolor(tcolor);
_settextposition(1, 1);
rcoord = _gettextposition();
_outtext(window_string(1));
_outtext(data_file);
rcoord.col = rcoord.col + 25;
_settextposition(rcoord.row, rcoord.col);

time(<ime);
_outtext((ctime(<ime)));
_settextposition(2, 1);
rcoord = _gettextposition();
_outtext(window_string(J));
printf("%li", shots_step);
rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(4));
printf("%li", stage_beg);
rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(S));
printf("%li", (long int) stage_beg + (long int)

points_scan * (long int)stage_step);
if (multi count != 0) {

_settextposition(J, 1);
rcoord = _gettextposition();
_outtext(window_string(6));
rcoord.col = rcoord.col + 20;

_settextposition(rcoord.row, rcoord.col);
outtext(window string(?));

printf("%i", scan);

}

if (reverse_flag == 2) {

}

rcoord.col = rcoord.col + 20;
_settextposition(rcoord.row, rcoord.col);
_outtext(window_string(S));

int plot(int n)

{
int i, ch, j, imin, imax;
float max, min;

ch = •n 1 ;

plottop(O);

201

I*
*I

I*
*I

_qetvideoconfiq(&vc);
settextcolor(tcolor);

-settextposition(25, 5);
record= _qettextposition();

202

_outtext ("Input q to quit, y for another, or s to save") ;

rect xmin = 50;
rect_ymin = 50;
rect_xmax = 550;
rect_ymax = 300;

(short)
(short)

setcolor(box color);
:rectanqle(_GBORDER,

rect_ymin,
rect_ymax);

max= (float)*(d_norm(n));
min= (float) *(d_norm(n));
imin = O;
imax = O;

rect_xmin,
rect_xmax,

Find the max and min values of the data

for (i = O; i < points_scan; i++) {
if (*(d_norm(n] + i) > max) {

}

max = (float) *(d_norm[n] + i) ;
imax = i;

} else if (*(d_norm(n] + i) < min) {
min= (float) *(d_norm[n] + i);
imin = i;

}

Set bounds of plot window.

(short)
(short)

rbound1((float)1., min- (max- min) * .1,
(float)points_scan, max+ (max- min) * .1);

for (i = O; i < points_scan; i++)
rpointl((float)i + 1, (float)*(d_norm[n] + i));

i = O;
j = 1;

I* csave allocates some space for the plottinq routines
* that is specifically needed for cursor movement.
*I

csave((float)i + 1., (float)*(d_norm(n] + i));

1 * The next section of code moves the cursor around the
* screen, and allows editinq of the data.
*I

/*
*I

203

ch = _bios_keybrd(_KEYBRD_READ):
while (ch != 4209 && ch != 5497 && ch != OxOb30 && ch !=
Ox0231 && ch != Ox0332 && ch != Ox0433 && ch != 8051 &&

ch != 11875) {

if (ch == 18176 && j != 1) {
j = 1:
i = o:
rpointc((float)j, (float)*(d_norm[n] + i));

}
if (ch == 20224 && j < points_scan) {

j = points_scan;
i = points_scan - 1;
rpointc((float)j, (float)*(d_norm[n] + i));

}
if (ch == 18688) {

j = imax + 1;
i = imax;
rpointc((float)j, (float)*(d_norm[n] + i));

}
if (ch == 20736) {

j = imin + 1;
i = imin;
rpointc((float)j, (float)*(d_norm[n] + i));

}
if (ch == 18432 && j < points_scan - 10) {

j = j + 10;
i = i + 10;
rpointc((float)j, (float)*(d_norm[n] + i));

}
if (ch == 20480 && j > 10) {

j = j - 10;
i = i - 10;
rpointc((float)j, (float)*(d_norm[n] + i));

}

if (ch == 19200 && j != 1) {
j--;
i--;
rpointc((float)j, (float)*(d_norm[n] + i));

} else if (ch == 19712 && j < points_scan) {
i++;
j++;
rpointc((float)j, (float)*(d_norm[n] + i));

} else if (ch == 4709) {
edit(i, n);
cend();

Must replot the data after editing.

plottop(O);

..

}

}

_qetvideoconfiq(&vc);
_settextcolor(tcolor);
_settextposition(25, 5);
record= _qettextposition();

204

_outtext("Input q to quit, y for another, or s
· to save") ;

_setcolor(box_color); ~
_rectanqle(_GBORDER, (short) rect_xmin, (short)

rect_ymin, (short) rect_xmax,
(short) rect_ymax); •

max= (float)*(d_norm(n]);
min= (float) *(d_norm(n]):
imin = O;
imax = O;
for (i = o; i < points scan; i++) (

if (*(d_norm(n] + i) > max) (

}

max = (float) *(d_norm(n] + i) ;
imax = i;

} else if (*(d_norm[n] + i) < min) (
min= (float) *(d_norm(n] + i);
imin = i;

}

rbound1 ((float) 1. , min - (max - min) * . 1,
(float)points_scan, max + (max - min)
* .1);

for (i = o: i < points_scan; i++)
rpoint1((float)i + 1, (float) *(d_norm(n]

+ i)):
i = O;
j = 1;
csave((float)i + 1., (float)*(d_norm[n] + i)):

ch = _bios_keybrd(_KEYBRD_READ);

}
return(ch);

void edit(int i, int n)
{

/* There are three cases for editinq. If the data
* point is the first or last data point there is only one
* point adjacent and that becomes the new value of the
* first or last data point. Otherwise the new value is the
* averaqe of the two adjacent data points.
*I

if (i == 0}

}

*(d_norm[n]) = *(d norm[n] + 1);
else if (i == points_scan - 1)

*(d_norm[n] + i) = *(d_norm[n] + i- 1);
else

+ i

205

1) + *(d_norm[n] + i) = (*(d_norm[n]
* (d_norm[n] + i + 1)) 1 2.: __ -~ __________________ _

--- ---· -~- --~- --

void clesave(n)
int n;
{

}

int
int
char
FILE

i;
num1, numwritten;
*p, file_numt[J];
* stream;

if (file_name[O] == '\0 1)

return;
stream= fopen(data_file, "wb");
fprintf(stream, "djr");
fprintf(stream, "tli ", ltime);
fprintf(stream, "ti ti 11 , qate_chan_a, qate_chan_b):
fprintf(stream, "%i ti ", points_scan, staqe_step);
fprintf(stream, "%li tli ", shots_step, staqe_beg):
fprintf(stream, "%i ti ti ", pedestal[O], pedestal[1],

pedestal[2]);
fprintf(stream, "%i ti ti ", reverse_flag, multi_count,

scan);
fprintf(stream, "ts", comment};
for (i = O; i != 4; i++}

· numwritten = fwrite(d_norm[i], sizeof(double),
points_scan, stream};

fclose(stream);

M. PROGRAM LISTING NICE

I* Program "Nice"
* Daniel Russell
* Auq. 6,1990
•

206

•
•
• • • • •
*I

The file Nice.c contains the following subroutines •

void screen()
camerror()
void stage_return()
qp_stage_wait()
se_stage_wait()

I* The code was written for an IBM PC clone with a
* 80386 processor and 80837 coprocessor. The intended use
• was both experiment control and data acquisition. This
* section of code actually takes the data and plots it.
* The rest of code does all initialization, saving of new
* data and or plotting of old data, and some special
* functions.
• Data is collected through a Camac based data
* acquisition system. The actual data gathering software
* is assembler code that was modified code provided by DSP
* Technology, the producer of the CAMAC crate controller.
• This code is in the subroutine dani, which I will not
• provide, since it is in assembler. I would like to
* describe it briefly though. The code provided by DSP was
• not fast enough for our intended purpose. We wished to
* collect two channels of data a 8kHz, the repetition rate
* of the laser, and do four floating point operations. the
* two channels of data are a signal channel(norm) and a
* reference channel that we wished to keep a running
• average of, and a running average of the ratio of the two
• which is the signal due to exciting the molecule. The
• code was modified in two basic ways. It was modified to
* take advantage of 80826-80836 specific instructions that
• were faster. Secondly the code was written two allow the
• floating point coprocesser actually be a coprocesser.
• Once a data point was collected, the floating point
• operations were started simultaneously on the 80837, with
• the next collection of data points by the 80836. The two
* processes then ran concurrently.
*I

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <graph.h>
#include <ctype.h>

..

#include <malloc.h>
#include <dos.h>
#include <decl.h>
#include <process.h>
#include <malloc.h>
#include "dan.h"
#include <bios.h>
#include <conio.h>

207

I*
*
*
*
*
*
*

The following variables are used for plotting two of
the three possible variables. The norm or signal due to
excitation can be plotted and or one of the other data
points, the reference or the signal. The reason for
allowing plotting of two different pieces of data is to
allow the user to see both the signal and to monitor the
reference,· which is directly related to laser power.

*I
float max, min, maxl, minl;

I*
*
*
*

The variables max, min, maxl, and maxl, are the·
maximum and minimum of the two data channels that are
being displayed to allow appropriate scaling of the · ''
data in the data window.

*I
extern int

I*
*
*
*I

The
determine
displayed.

extern int

channel_disl, channel_dis2;

variables
which of

channel disl and channel dis2
the three data variables- are

channel_colorl, channel_color2, box_color;

I* The variables channel colorl, channel color2, and
* box color define the color of the two channels displayed
* and-the color of the box.
*I
extern float ymin_tickl, ymax_tickl, ymin_tick2, ymax_tick2;

I*
*
*
* *I

The variables ymin_tickl etc are the real minimum
and maximum values for the data window. This is so that
the tick marks on the xaxis and yaxis of the plot are
reasonable and all the data points can be seen.

extern long int rect_xmin,
rect_ymax;
extern struct videoconfig vc;
extern struct rccoord record;

rect_ymin, rect_xmax,

'·:··

208

I* These variables are system dependent and are based
* the graphics coordinate system defined in the Microsoft
* C 5. 1 graphics 1 ibrary. The variables rect xmin,
* rect_ymin rect_xmax, and rect_ymax are dependent on what
* type of video board, although the values in this program
* will work on a Hercules video card, EGA, and VGA although
* the VGA will be running in EGA mode.
*I

I* The following variables are values for experimental
* conditions.
*I
int stage_d;

I* The variable stage_d keeps track of the direction
* the stage should move next.
*I
extern int multi_count, reverse_flag, scan;

I* These variables are initialized in the setup.
* multi count is the number of times that the stage should
* be scanned, reverse_flag is i if data is taken in only
* one direction of stage movement and 2 if data is to be
* taken in both directions. Taking data in both directions
* is more efficient and will also help cancel any long term
* drift in time of the concentration of the molecule that
* you are studying if the drift is small.
*I
extern int points_scan, stage_step;
extern long int stage_beg;

I* These variables describe the number of points the
* stage is going to scan (basically the time base of the
* experiment), the number of stage steps between these
* points, and where the stage should begin.
*I
double dtemp(4];

I* This a temporary place to store data in the
* assembler code for the subroutine dani.
*I
extern double *d_norm(4];

I* This an array of pointers to arrays where the data
* is stored. The arrays are dynamically allocated earlier
* in the program. The number of arrays is 4 due to the

209

* fact that at a later point in time someone may want to
* also collect the actual laser power as a function of
* time.
*I
extern int ibsta, iberr, ibcnt;
int yaxis;
int se_ talk () , qp_ talk () , (•talk) () ,
gp_stage_wait(), se_stage_wait();
unsigned int set_up , return!;

(*v_stage_wait) (),

I* The above variables are associated with
* communication subroutines. ibsta, iberr, ibcnt are the
* GPIB-PC status, error, and count variables. If ibsta &
* ERR are true an error has occurred and the user is
* notified of the error and what type of error it was.
* yaxis is the variable the GPIB-PC software associates
* with the Klinger stage. talk is a pointer to a function
* that is defined at run time depending on whether or not
* the GPIB-PC interface is running. If the GPIB-PC
* interface is running talk=gp_ talk which is the subroutine
* provided with the GPIB-PC card to talk to the GPIB-PC,
* other wise talk=se talk which is subroutine to talk to
* the RS-232 port. The same rules apply to v_stage_wait,
* which is the pointer to the function that will handle
* waiting for the stage to finish moving. set_up and
* return are the initial setup values for the RS-232 port
* and a return variable to check for errors.
*I

void screen(void)
{

char •stage_direction;
unsigned int stepl, step2, step3, step4;

I* These are temporary variables to hold partial stage
* movements in case the desired stage movement is a larger
* number than a 16 bit integer can hold. This is a
* constraint due to the stage controller.
*I

int stage_beg_l, stage_total_l, stage_step_length;

I* These variables are the length of character strings
* that are sent to the stage controller
*I

char inputs[3],stage_s[lO];
char stage_total_s(lO],stage_beg_s[lO];

I* space for various strings used in communication

*I

int point_scan_tak, point_scan_tak2, i;
int data_space(l7], e ~ o, flaq;

210

I* point_scan_tak and point_scan_tak2 are the number of
* points in the scan that have been taken, althouqh
* point_scan_tak starts countinq at 1 and point_scan_tak2
* starts at o. i is dummy counter for a loop, and
* data_space is more temporary space for the assembler
* code. e is an error flaq from the assembler code. flag is
* a variable to find out if there is a data point out of
* the window bounds.
*I

long int vector, stage_total;

I* Unfortunately Microsoft used an interrupt vector
* that was reserved by intel for a later instruction on the
* 80826 and 80836 which checked to see if the number in
* register ax was within the bounds set by a user. If it
* was not within the bound, interrupt 5 occurred. vector
* is a variable that stores the address for microsoft's
* interrupt routine so that it can be restored when the
* proqram exits. staqe_total is the variable that stores
* the total number of staqe steps in a scan.
*I

I*
*I

char *input, *go;

_qetvideoconfiq{&vc);
qo = "G\r";

yaxis = ibfind {"YAXIS");
talk = qp_talk;

Check to see if GPIB-PC is operatinq

if ({*talk) (yaxis, "+W\r", 3) < O) {
set_up = o;
set_up ~ set_up COM NOPARITY;
set_up ~ set_up _COM_STOPl;
set_up ~ set_up _COM_CHR8;
set_up ~ set_up 1 _COM_9600;
return!= _bios_serialcom{_COM_INIT, o, set_up);
returnl = _bios_serialcom(_COM_STATUS, o, O);
talk = se talk;
v_stage_wait = se_staqe_wait;
if (return! < 0) {

finderr():

~

I*
*I

return;
}

} else {
talk = qp_talk;
v_stage_wait = gp_stage_wait;

}

Initialize the stage.

if ((*talk) (yaxis, "FS01\r", 5) < 0) {
error();
return;

}
if ((*talk) (yaxis, 11RW4000\r11 , 7) < 0)

error():
return;

}
if ((*talk) (yaxis, "AC.1\r", 5) < 0)

error():
return;

}

if (stage_beg > 0) {
if (stage_d == 1)

}

}

stage direction = "+W\r":
stage_d = =1:

else {
stage_direction = 11 -W\r":
stage_d = 1:

{

(

if ((*talk) (yaxis, stage direction, 3) < O) {
error();
return;

}

211

if (stage_beg < 65000 && stage_beg > -65000) {
stage_beg_l = sprintf(stage_beq_s, "NW%li\r",

labs(stage_beg));
(*talk) (yaxis, stage_beg_s, stage_beg_l):
if ((*talk) (yaxis, "MW\r", 3) < O) {

error();
return:

}

} else {
step1 = (stage_beg) 1 4:
step2 = (stage_beg - step1) I 3:
step3 = (stage_beg - step1 - step2) 1 2:
step4 = (stage_beg- step1- step2- step3);

212

stage_step_length = sprintf(stage_s 1 "NW%u\r" 1

step1);

(*talk) (yaxis 1 stage_s, stage_step_length);
(*talk) (yaxis 1 "MW\r" 1 3);
if (ibsta & ERR) {

)

error();
return;

v stage wait();
stage_step_length = sprintf(stage.._s 1 "NW%u\r" 1

step2);
(*talk) (yaxis 1 stage_s 1 stage_step_length);
if ((*talk) (yaxis 1 "MW\r" 1 3) < O) {

error();
return;

}

v_stage_wait();
stage_step_length = sprintf (stage_s, "NW%u\r" 1

step3);
(*talk) (yaxis 1 stage_s 1 stage_step_length);
if ((•talk) (yaxis 1 "MW\r" 1 3) < o) {

error();
return;

}

v_stage_wait();
stage_step_length = sprintf (stage_s 1 "NW%u\r" 1

step4);
(*talk) (yaxis 1 stage_s 1 stage_step_length);
if ((*talk) (yaxis 1 "MW\r" 1 3) < 0) {

error();
return:

}
}
v_stage_wait();

if (stage_step > 0) {

}

}

if (stage_d == 1)
stage_direction = "+W\r";

stage_d = -1;

else {
stage_direction = "-W\r";
staqe_d = 1;

stage_total = (long int) stage_step
int) (points_scan);

stage_total_l· = sprintf(stage_total_s 1

* (long

"NW%li\r",

213

stage_total);
stage_step_1ength = sprintf(stage~s, "NW%i\r",

stage_step);

if ((*talk) (yaxis, stage_s, stage_step_length) < O) {
error();
return;

}
if ((*talk) (yaxis, stage_direction, 3) < 0) {

error();
return:

}

rect xmin = 50;
rect::3min = 50;
rect_xmax = 550;
rect_ymax = 300;

1 * . setbound gets Microsoft • s interrupt 5 vector and newbound
* stores a new one to be used by the assembler code in data
* acquisition.
*I

setbound(&vector);
newbound();

/* In the initialization program o is usually used as a flag
* for not in use so if multi_flag == 0 then there will only
* be one scan
*I

if (multi_count == O)
multi count = 1;

scan = 1:
while (scan <= multi_count) {

inputs(O] = •y•:
if (scan 1= 1) {

if (reverse_flag == 1)
stage d = -stage d;

if (stage_d == 1) -{
stage_d = -1:
stage direction= "+W\r";

} else { -

}

staqe_d = 1;
stage_direction = 11 -W\r":

if ((*talk)(yaxis, stage_direction, 3) < O) {
error():
return;

}

214

}

if ((*talk) (yaxis, stage_s, stage_step_length)
< 0) {
error();
return;

}

point_scan_tak = 1;

point_scan_tak2 = O;

1 * top is a graphics routine which labels the top half
* of the data window with info concerning the current data
* scan
*I

top(scan- 1);

I* the following graphics routines write the data
* window.
*I

_remappalette(6, _BLACK);
_setcolor(6);
_rectangle(_GFILLINTERIOR, O, 50, 620, 330);

setcolor(box color);
:rectangle(_GBORDER, (short) rect_xmin, (short)

rect_ymin, (short) rect_xmax, (short)
rect _ymax) ;

while (point_scan_tak <= points_scan && (inputs[O]
== 'Y' :: inputs(O] == 'Y')) {

v _stage_ wait() ;
dani(data_space, dtemp, &e);

if (e ! = 0) {

}

if (camerror(e, point_scan_tak) == 1) {
oldbound(&vector);
return;

}

I* This next line moves the stage the number of steps
* defined by stage_step
*I

(*talk) (yaxis, "MW\r", 3);
{

}

error();
return;

..

I*
*
*
*I

215

This initializes the window bounds for the first point
and makes assumptions on the minimum size of a norm
signal to make a good quess for the first window

if (point_scan_tak == 1) {

}

max = (float)dtemp[channel_dis1] + .01;
max1 = (float)dtemp(channel_dis2] + .01;
min = (float) dtemp(channel_dis1] - .01;
min1 = (float) dtemp(channel_dis2] - .01;
rbound1((float) 1., min, (float) points scan,

max); -
rbound2(min1, max1);

for (i = 0; i 1 = 4; i++) {
*(d_norm(i] + point_scan_tak2) = dtemp[i]:

}
flag = o:
if ((float)dtemp(channel_dis1] > ymax_tick1) {

flag = 1;
max= (float) dtemp(channel_dis1];

}
if ((float)dtemp(channel_dis1] < ymin_tick1) {

flag = 1;
min= (f1oat)dtemp[channel_dis1];

}
if ((float)dtemp(channel_dis2] > ymax_tick2) {

flag = 1;
max1 = (float)dtemp(channel_dis2];

}
if ((float)dtemp[channel_dis2] < ymin_tick2) {

flag = 1;
min1 = (float)dtemp[channel_dis2];

}

I* If the new data point is out of the window bounds the
* window is redrawn and new bounds are defined
*I

if (flag == 1) {
setcolor(6);

:rectangle (_GFILLINTERIOR, 0, 45, 620,
330);

setcolor(box color);
:rectangle(_GBORDER, (short) rect_xmin,

(short) rect _ymin, (short)
rect xmax, (short) rect _ymax) ;

rbound1((float)1., min, (float)
points_scan, max);

rbound2(min1, max1);

216

for (i = 1; i < point_scan_tak; i++) {
rpointl((float) i, (float)

* (d_norm(channel_dis1] + i));
rpoint2((float)i, (float)

*(d_norm[channel_dis2] + i));
}

}
_setcolor(channel_colorl);
rpoint1((float)point_scan_tak,

. dtemp[channel_disl]);
· _setcolor(channel_color2);
rpoint2((float)point scan tak,

dtemp(channel dis2]);
point_scan_tak++; -
point_scan_tak2++;

(float)

(float)

I* The keyboard is checked and if it was hit, this allows
* the user to continue, quit, or quit while saving the data
* collected to this point.
*I

if (kbhit() != 0) {
i = getche () ;
_setcolor(6);
_rectangle(_GFILLINTERIOR, O, 30, 620,

330);
_settextposition(10, 15);
rcoord = _gettextposition();
_outtext(window_string(9));
rcoord.row++;
_settextposition(rcoord.row,rcoord.col);
_outtext(window_string(10));
rcoord.row++;

_settextposition(rcoord.row,rcoord.col);
_outtext(window_string(ll));
rcoord.row++;
_settextposition(rcoord.row;rcoord.col):

input= gets(inputs);
if (inputs(O] == 'Q' l l inputs(O] == 'q') {

stage return((long int)
- point_scan_tak2* {long

int)stage_step);

stage_return((long int)stage_beg);

I* oldbound returns interrupt 5 back to its initial
* microsoft state before this subroutine returns.
*I

oldbound(&vector);

..

/*
*
*I

}

}

}
else

}

217

return:

if (inputs(O] == 'S' I I inputs[O] ==
's') {

staqe_return((lonq int)
point_scan_tak2 * (lonq
int) staqe_step):

staqe_return((lonq int)staqe_beq):
open_data_file():
save(scan- l,point_scan_tak2);

oldbound(&vector);
return;

else if (inputs(O] == 'Y' I I inputs[OJ ==
'Y') {

}

setcolor(6);
:rectanqle(_GFILLINTERIOR, 0, 45,

620, 330);

setcolor(box color); - . -
_rectanqle(_GBORDER, (short)

(short)
(short)
(short)

rect xmin,
rect:ymin,
rect_xmax,
rect_ymax) :

rboundl((float)l., min,
points_scan, max);

rbound2(minl, maxl);

(float)

for (i = l;i < point_scan_tak;i++) {

}

rpointl((float)i, (float)
*(d_norm[channel_disl]
+ i)) ;

rpoint2((float)i, (float)
*(d_norm(channel_dis2]
+ i)) :

save(scan- l,point_scan_tak2);
scan++;
point_scan_tak--:
point_scan_tak2--:

The next section of code takes data backwards as the
staqe reverses

if (reverse_flaq == 2) {

if (stage_d == 1) (
stage d = -1;
stage_direction = "+W\r";

} else (

}

stage_d = 1:
stage_direction = "-W\r";

v_stage_wait();
(*talk) (yaxis, stage_direction, 3);
if((*talk) (yaxis, "MW\r'', 3)<0)
{

}

error();
return;

top(scan- 1);
_remappalette(6, _BLACK);
_setcolor(6);

218

_rectangle(_GFILLINTERIOR, O, 45, 620, 330);

_setcolor(box_color);
rectangle(GBOROER, (short) rect xmin, (short)

- rect_ymin, (short)- rect_xmax,
(short) rect_ymax);

while (point_scan_tak >= 1 && (inputs(O] --
' Y ' I I inputs [o] == 'y ')) {

v_stage_wait();
dani(data_space, dtemp, &e);
if (e != 0){

return;

}

if(camerror(e, point_scan_tak)==1){
oldbound(&vector);
return;

}

(*talk)(yaxis, "MW\r", 3);

{
error();

}

if (point_scan_tak == points_scan) (
max = (float)dtemp[channel_dis1] + .4;
max1 = (float)dtemp(channel_dis2] + .01;
min = (float)dtemp(channel_dis1] - .1;
min1 = (float)dtemp(channel_dis2] - .01;
rbound1((float)1., min, (float)

points_scan, max);
rbound2(min1, max1);

•

219

}
for (i = o: i != 4: i++) {

* (d_norm[i] + point_scan_tak2) = dtemp(i]:

}
flag = o;
if ((float)dtemp(channel_dis1] > ymax_tick1) {

flag = 1;
max= (float)dtemp(channel_dis1]:

}
if ((float)dtemp(channel_disl] < ymin_tick1) {

flag = 1:
min= (float)dtemp[channel_dis1]:

}
if ((float)dtemp[channel_dis2] > ymax_tick2) {

flag = 1:
max1 = (float)dtemp[channel_dis2];

}
if ((float)dtemp[channel_dis2] < ymin_tick2) {

flag = 1:
minl = (float)dtemp[channel_dis2];

}

if (flag == 1) {
setcolor(6);

:rectangle(_GFILLINTERIOR, 0, 45, 620,
330):

}

_setcolor(box_color):
_rectangle(_GBORDER, (short) rect xmin,

(short) rect_ymin, (short}
rect_xmax, (short) rect_ymax};

rbound1((float)1., min, (float}
points_scan, max):

rbound2(min1, max1):
for(i=points_scan:i>point_scan_tak:i--}{

rpoint1 ((float) i, (float}
* (d_norm[channel_dis1] + i}}:

rpoint2 ((float) i, (float}
- * (d_norm[channel_dis2] + i}) ;

}

setcolor(channel color1):
rpointl((float)point_scan_tak,

dtemp[channel_dis1]):
_setcolor(channel_color2):
rpoint2((float)point_scan_tak,

(float}

(float}
dtemp[channel_dis2]):

point_scan_tak--:
point_scan_tak2--;
if (kbhit () != 0) {

i = getche () ;
_setcolor(6);

220

_rectanqle(_GFILLINTERIOR, O, 30, 620,
330);

_settextposition(lO, 15);
record= _qettextposition();
_outtext(window_strinq(9));
rcoord.row++;
_settextposition(rcoord.row,rcoord.col);
_outtext(window_strinq(lO));
rcoord.row++;

_settextposition(rcoord.row,rcoord.col);
_outtext(window_strinq(ll));
rcoord.row++;
_settextposition(rcoord.row,rcoord.col);
_outtext(window_string(12)):
rcoord.row++;
_settextposition(rcoord.row,rcoord.col);

input= qets(inputs);
if (inputs[O]=='Q' I I inputs[O] == 'q') {

stage_return((lonqint)point_scan_tak
*(long int)staqe_step);

stage return((long int)stage_beg);

oldbound(&vector);
return;

) else if (inputs[O] == •s• I I inputs[O]
== 's') {

stage_return((lonq int)
point_scan_tak2 * (long
int) staqe_step) :

staqe_return((long int)staqe_beq):
open_data_file();
save(scan- 1, point_scan_tak2);

oldbound(&vector);
return;

) else if (inputs[O) == 'Y' I I inputs{O]
== 'Y') {

setcolor(6);
:rectangle(_GFILLINTERIOR, 0, 45,

620, 330);

setcolor(box color);
:rectanqle(_GBORDER,

rect xmin,
rect:ymin,
rect_xmax,
rect_ymax) ;

rboundl((float)l., min,

(short)
(short)
(short)
(short)

(float)

}

}

}

}

}

221

points_scan, max);
rbound2(min1, max1);
for (i = points_scan; i >

point scan tak; i--) {
rpoint1((float) i ,(float)

*(d_norm(channel_dis1]

}

+ i));
rpoint2((float)i, (float)

*(d_norm(channel_dis2]
+ i));

v_stage_wait();
if (stage_d == 1) {

(*talk) (yaxis,
} else {

(*talk) (yaxis,
}

"+W\r", 3);

if ((•talk) (yaxis, "MW\r", 3) < o) {

}

error();
return;

save(scan- 1, points_scan- point_scan_tak2- 1);
scan++;

stage_return((long int)point_scan_tak * (long int)
stage_step);

stage_return((long int)stage_beg);
oldbound(&vector);
}

camerror(e, point_scan_tak)

int e, point_scan_tak;

{
extern double dtemp(4];
char inputs(3];
char *input;
int i, data_space(16];

struct videoconfig vc;
struct rccoord rcoord;

I*
*
*
*
*I

_getvideoconfig(&vc);
while (e == 5) {

setcolor(6);
:rectangle(_GFILLINTERIOR, O, 30, 620, 330);
_settextposition(10, 15);
rcoord = _gettextposition();

_outtext("Camac is not giving a IAM");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

_outtext("OOG is now on internal");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

222

_outtext("Input a Y to continue or a q to quit");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
input = gets(inputs);
if (inputs[O] == 'Q' I I inputs(O] == 'q') {

If the user wants to quit the
returned to the place where it began.
this section of code is bug free in
which direction the stage should go.

stage should be
I am not sure if

keeping track of

stage_return((long int) point_scan_tak * (long
int)stage_step);

stage_return((long int)stage_beg):

return(l);
} else if (inputs[O] == 'Y' 11 inputs[O] == 'Y' &&

point_scan_tak == 1)

I* Here data collection continues and there are two
* cases, the data window doesn't need to redrawn because
* no data has been taken yet or the window must be redrawn
* because data already exists
*I

dani(data_space, dtemp, &e);

else if (inputs[O] == 'Y' II inputs[O] == 'Y' &&
point_scan_tak != 1) {

dani(data_space, dtemp, &e);
setcolor(6);

:rectangle(_GFILLINTERIOR, O, 45, 620, 330);

}
}

return(O);
}

223

_setcolor(box_color);
_rectangle(_GBORDER, (short) rect_xmin, (short)

rect_ymin, (short) rect_xmax,
(short) rect_ymax);

rboundl((float)l., min, (float)points_scan,
max);

rbound2(minl, max1);
if (stage_d == 1) {

}

for (i = points_scan; i > point_scan_tak;
i--) {

}

rpoint1((float)i, (f1oat)*(d_norm(O]
+ i- 1));

rpoint2((float)i, (float)*(d_norm(J]
+ i- 1));

if (stage_d == -1) {

}

for (i = 1; i < point_scan_tak; i++) {

}

rpoint1((float) i, (float)
*(d_norm(channel_dis1] + i-
1));

rpoint2((float) i, (float)
*(d_norm(channel_dis2] + i-
1));

dani(data_space, dtemp, &e);

void stage_return(back)
long int back;
{

char stage_s(10], *go;
int stage_step_length;
unsigned int step1, step2, step3, step4;

go = "G\r";

v_stage_wait();
if ((back) > 0) {

(*talk) (yaxis, 11 -W\r", 3):
}

else {
(*talk) (yaxis, "+W\r", 3);

}

224

if (back < 65000) {
staqe_step_lenqth = sprintf(staqe_s, "NW%li\r",

labs(back));
(*talk) (yaxisl staqe_s 1 staqe_step_lenqth);
(*talk)(yaxis 1 "MW\r", 3);
v_staqe_wait();

} else {
stepl = (staqe_beq) 1 4:
step2 = (staqe_beq - stepl) 1 3;
step3 = (staqe_beq - stepl - step2) 1 2;
step4 = (staqe_beq- stepl- step2- step3);

staqe_step_lenqth = sprintf(staqe_s, "N %u\r",
stepl);

(*talk) (yaxis 1 staqe_s, staqe_step_lenqth);
(•talk) (yaxis 1 "MW\r", 3) ; ·
if (ibsta & ERR) {

}

error();
return;

v_staqe_wait();
if ((back) > O) {

(*talk) (yaxis, "-W\r" 1 3);
}

else {
(*talk)(yaxis, "+W\r", 3);

}

staqe_step_lenqth = sprintf (staqe_s 1 "NW%u\r" 1

step2) ;
(*talk) (yaxis 1 staqe_s 1 staqe_step_lenqth);
if ((•talk) (yaxis 1 "MW\r", 3) < 0) { ·

error();
return;

}

v_staqe_wait();

if ((back) > O) {
(*talk) (yaxis, "~W\r", 3);

}
else {

(*talk) (yaxis 1 "+W\r", 3);
}

staqe_step_lenqth = ·. sprintf(staqe_s.1 "NW%u\r" 1

}

}

step3);
(*talk)(yaxis, staqe_s, staqe_step_lenqth);
if ((*talk) (yaxis, "MW\r", 3) < 0) {

error();
return;

}

v_staqe_wait();
if ((back) > O) {

(*talk) (yaxis, "-W\r11
1 3);

}
else {

(•talk) (yaxis 1 "+W\r11
1 3);

}

225

staqe_step_lenqth = sprintf(staqe_s 1 "NW%u\r" 1

step4);
(*talk) (yaxis 1 staqe_s 1 staqe_step_lenqth);
if ((*talk) (yaxis 1 "MW\r" 1 3) < 0) (

error();
return;

}

gp_staqe_wait()
{

}

dummy = O; irit
I* (*talk) (yaxis 1 staqe_direction,

3) ;
& ERR) { while (ibsta

dummy++;
(*talk)(yaxis 1

dummy++;
}*/

char d[lO];
ibrd(yaxis 1 rd 1 5);
ibrd(yaxis 1 rd 1 5);
while (rd[l] == 'A') {

}

dummy++;
ibrd(yaxis 1 rd1 5);
dummy++;

staqe_direction 1 2);

se_staqe_wait()

{

}

unsigned int data;
returnl = _bios_serialcom(_COM_STATUS, o, data);
data = O;
while (data != 16) {

226

returnl = _bios_serialcom(_COM_STATUS, o, data);
data = returnl & 16;

}

N. PROGRAM LISTING SAVE

I* Program "Save"
* Daniel Russell
* Aug. 6,1990

227

*
*
*
*
*
*
*
*
*I

The file Save.c contains the following subroutines.

void save()
double sigma()
void norm()
void bound ()

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
#include <conio.h>
#include <bios.h>
#include <math.h>
#include "dan.h"
#include <string.h>
#include <setjmp.h>

extern int channel_disl, channel_dis2;
time_t ltime;
extern int tcolor;
extern int ecolor;
extern int channel_disl, channel_dis2;
extern int channel colorl, channel color2, box_color;
extern struct videoconfig vc; -
extern struct rccoord record;
extern int ddg, trig_check;
extern jmp_buf mark;

void save(n, point_scan_tak)

I* Note that the variable point_scan_tak is passed to
* save because the data collection may have been stopped
* prematurely and points_scan may not be equal to the
* number of data points that were actually taken. n is the
* number of scans taken in multi mode (start counting at o
*) . This allows save to save the file with the right
* final number.
*I

int
{

n, point scan tak; - -
extern int
extern int

pedestal[J], multi_flag;
gate_chan_a, gate_chan_b;

228

int points_scan, staqe_step;
int multi_count, reverse_flaq, scan;
long int shots_step, staqe_beq;
double *d_norm(4];

extern
extern
extern
extern
extern
extern

char file_name[7], file_num(J], data_file(12];
char comment(1000];

int i;
int num1, numwritten;

char *p, file_numt[J);

FILE •.stream;

if.(file_name(O] == '\O')
return;

strcpy(data_file, file_name);
strcat(data file, ".~);
num1 = atoi(file_num);
numl = num1 + n;
p = itoa(num1, file_numt, 10);
strcat(data_file, file_numt);

stream= fopen(data~file, "rb");
if (stream != NULL) (

_qetvideoconfiq(&vc);
fclose(stream);
setvideomode(DEFAULTMODE);

-settextcolor(ecolor);
:settextposition(10, 15);
rcoord = _qettextposition();
outtext(data file);

rcoord.row++;-
settextposition(rcoord.row, rcoord.col);

-outtext("File already exits");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
_outtext("hit a key to continue");
while (i == 0)

i = kbhit();
i = qetche () ;
open_data_file();
stream= fopen(data_file, "wb");

}
fclose(stream);
stream= fopen(data_file, "wb");

fprintf(stream, "djr");
fprintf(stream, "%li ", ltime);
fprintf(stream, "%i %i ", qate_chan_a, qate_chan_b);
fprintf(stream, "%i %i ", point_scan_tak, staqe_step);

.•.

•.

..

•

..

}

229

fprintf(stream, "tli tli ", shots_step, staqe_beq);
fprintf(stream, "%i ti ti 11 , pedestal(O], pedestal[!],

pedestal[2]);
fprintf(stream, "%i ti ti ", reverse_flaq, multi count,

scan);
fprintf(stream, 11 ts", comment);

for (i = 0; i != 4; i++)
numwritten = fwrite(d_norm(i], sizeof(double),

point_scan_tak, stream) ;
fclose(stream);

double
double

normtemp(8];
siqma(int n)

I*
*
*
*
*
*
*I

{

}

This Subroutine calculates sigma for the three
different pieces of data, channel o, channel 1, and norm.
normtemp(O] contains the sum of channel o, and
normtemp(O+J] contains the sum of the squares of channel
3. normtemp (1] contains the sum of channel 1 and
normtemp(2] contains the sum of norm.

extern lonq int shots_step;
extern double normtemp(8];
double normtempn;
normtempn = normtemp[n] * normtemp[n] 1

((double)shots~step);
normtempn = normtemp[n+J] - normtempn;
normtempn = normtempn 1 ((double) (shots_step- 11));
normtempn = sqrt(normtempn);
return(normtempn);

void norm(void)

{
char inputs2[2];
char *input2:
int triq, sresult;
extern lonq int shots_step;
int j, e = 0 , ddq, i;
lonq int vector;

unsiqned int DATA[l6];
char buffer[lOO];

;,_ <

230

extern double normtemp(8];
double ntemp;

setbound(&vector);

I* Note that there is a different subroutine to change
* interrupt 5 for norm. nnewbound is for norm, and
* newbound is for regular data collection.
*I

nnewbound();
inputs2(0] = •y•;
while (iJ:1puts2(0] != 'q') {

ndani(DATA, normtemp, &e);
if (e == 5) {

l*ddg=ibfind("ddg");
ibwrt(ddg,"tm 0 11 ,4);
ibloc(ddg);*l

_setvideomode(_DEFAULTMODE);
_settextposition(10, 15);
rcoord = _gettextposition();

}

outtext("No LAM, DOG now on internal"};
rcoord.row++; .
_settextposition(rcoord.row, rcoord.col):
_outtext("hit a key to continue");
while (i == O)

i = kbhit();
i = getche () ;
break;

setvideomode(DEFAULTMODE);
:settextcolor(ecolor);
_settextposition(10, 15);
record= _gettextposition();
_outtext("hit q to quit");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col};

sprintf(buffer, "average of "};
_outtext(buffer):
rcoord.row++:
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "Channel 0 %5.2f 11

, normtemp[O] I
(double)shots_step);

_outtext (buffer) ; ·
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
sprintf(buffer, "Channel 1 %5.2f 11

, normtemp[1] I
(double)shots_step);

I~

_outtext(buffer);
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);

231

sprintf(buffer, "Norm %le 11 , normtemp(2] 1

}

(doub1e)shots_step);
_outtext(buffer);
_settextposition(11, 45);
rcoord = _gettextposition();
ntemp = sigma(O);
j = sprintf(buffer, "SD of");
outtext(buffer);

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
j = sprintf(buffer, "%E ", ntemp);
_outtext(buffer);
ntemp = sigma(1);
rcoord.row++;
settextposition(rcoord.row, rcoord.col);

j = sprintf(buffer, "%E ", ntemp);
outtext(buffer);

ntemp = sigma(2);
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
j = sprintf(buffer, "%.4f ", ntemp * 100.);
outtext(buffer);

j = sprintf(buffer, "%% ");
outtext(buffer);

rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check == 0) {

}

trig = O;
sresult = system("mode spe com");
while (kbhit() == 0 && trig == O)

trig= check();
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

inputs2(0] = getch();

}
oldbound(&vector);

void bound(int n)
{

struct videoconfig vc;

struct rccoord record;
char inputs2(10];
char *input2;
int trig, sresult;
extern int low, high;
high = 0;
low = o:
while (low == O) {

_setvideomode(_DEFAULTMODE);

}

settextcolor(ecolor);
:settextposition(10, 15);
record= _qettextposition();
_outtext("Input Low");
record. row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check == O) {

}

trig = O;
sresult = system("mode spe com");
while (kbhit() == o && trig == O)

trig = check() ;
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

input2 = gets(inputs2);
low= atoi(input2);

while (high == 0) {
setvideomode(DEFAULTMODE);

-settextcolor(ecolor);
:settextposition(10, 15);

_outtext("Input High");
rcoord.row++;
_settextposition(rcoord.row, rcoord.col);
if (trig_check == 0) {

}

trig = o:
sresult = system("mode spe com");
while (kbhit() == o && trig == 0)

trig= check();
ibloc(ddg);
sresult = system("mode spe auto");
if (trig == -1)

longjmp(mark, -1);

232

}

}

input2 = qets(inputs2);
hiqh = atoi(input2);

233

~ ~~\,_.

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

;:i:;'~~---

