
1
~:~· '1
~r· "\'• •

I' .. f ~

~ ..

I
I
>t

LBL-30056
UC-404

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

Canonical vs. Micro-Canonical Sampling Methods
in a 2D Ising Model

J. Kepner

December 1990

Prepared for the U.S. Department of Energy under Contract Number DE·AC03-76SF00098

----tJn
0 r
'1 '1 0

11 D
f(l ~ z
~ !lJ n
til ct-O
til til "0
:r:Ul -<
Ul ---
ill
0..

I.C .
trl
5I

r
r 1):1 r
crn I
'1 0 ·l•J
!lJ"O &
'1-< &
-< (JJ . f(o IJ"

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the U~iversity of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

LBL-30056

CANONICAL VS. MICRO-CANONICAL SAMPLING METHODS
IN A 2D ISING MODEL1

Jeremy Kepner
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

December 1990

1 This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research,

U.S. Department of Energy under Contract DE-AC03-76SF00098.

•

,,.
. -.t

KEYWORDS

2D Ising Model, Micro-Canonical, Specific Heat

ABSTRACT

Canonical and micro-canonical Monte Carlo algorithms were

implemented on a 2D Ising model. Expressions for the internal energy, U,

inverse temperature, Z, and specific heat, C, are given. These quantities

were calculated over a range of temperatures, lattice sizes, and time steps.

Both algorithms accurately simulate the Ising model. To obtain greater

than three decimal accuracy from the micro-canonical method requires

that the more complicated expression for Z be used. The overall difference

between the algorithms is small. The physics of the problem under study

should be the deciding factor in determining which algorithm to use.

•

, ..

1. INTRODUCTION

In the study of phase transitions and other critical phenomena the

Monte Carlo method has emerged as one of the most powerful simulation

techniques-canonical and micro-canonical being just two of the more

common approaches. Determining which is best for a particular problem

can be difficult. It is the goal of this paper to help the researcher by

comparing the ability of these two algorithms to simulate a 2D Ising model,

with an emphasis on illustrating the differences in behavior and accuracy

as a function of temperature and lattice size.

In the canonical approach, one computes the state of each point from the

previous state using a random number generator. Usually, each state is

weighted according to a probability proportional to the Boltzman factor

exp(-EikT), with E being the energy of the state [1].

The micro-canonical Monte Carlo method consists of constraining the

total energy of the system, while letting the energy distribution evolve. The

transfer of energy is carried out by a new set of variables, called demons,

which correspond to the kinetic energy in molecular dynamics calculations

[2].

2. THE UPDATING ALGORITHMS

In both algorithms, the central operations are performed on a lattice of

spins, S, that are either up (+1) or down (-1). For our model, we will define

the energy of a particular site i as

Ei = Io -sisj). (1)

where the sum is over the four nearest neighbors j of i [3]. This has the

operational effect of making a lattice with aligned spins have lower energy

1

than an unaligned lattice. Note that flipping the spin of i produces a

change in energy

(2)

A quantity of particular interest in our experiments IS the internal

energy, U. In terms of the previous notation
1 1 N

-U = 2- 2NLEi •
i=1

(3)

where N is the number of points in the lattice. In the limiting case of N ~

oo, U is known exactly
1 + [2 tanh2(H) - 1] 2K(k1)ht

U = tanh(H) ' (4)

where H = 2Z, k1 = 2 sinh(H)/cosh2(H), and KCk1) = F(7tl21 k1) is the complete

elliptic integral of the first kind [4,5]. This provides a way to compare the

two algorithms.

Having defined the spin structure and the energy, the canonical scheme

for changing spins can best be explained by the following piece of pseudo

code:

r = random number between 0 and 1

B = exp(-~EiZ)

if(r <B) then

endif

where the temperature, T = 1/Z, is an input parameter of the program [6].

Executing the above procedure on every site in the lattice constitutes one

iteration, or time step, of the algorithm.

The micro-canonical procedure is a bit more complicated. In addition to

the spin lattice, we have a corresponding lattice of demons, D. Each

element in D, Di, is restricted by the condition that DiE {0, 1 , 2, ... , Dmax}.

2

..

...

Di can be thought of as the kinetic energy conjugate to the ith point in the

lattice. The most important property of the micro-canonical updating

algorithm is that the energy at each point be conserved
N N

Ei + 4Di = constant ~ ET = 4 LDi + LEi , (5)
i=l i=l

where ET is the total energy of the lattices. Eq. (5) illustrates the central

difference between the two algorithms. Canonical sampling selects

configurations based on their Boltzman weight, while micro-canonical

sampling selects configurations that satisfy the total energy constraint of

Eq. (5). As a consequence ofEq. (5)

~i + 4Wi = 0, (6)

which gives some insight as to how to construct the updating algorithm.

The spin flipping procedure used in our experiments was equivalent to the

following code fragment:

Di' = (4Di- ~i)/4

if (0 ::;:; Di' ::;:; Dmax) then

Di = Di'

Si = -Si

endif [7]

The factor of four comes about from the property-obtained from Eq. (1)

that ~Ei e {-8, 4, 0, 4, 8}. A convenient way of running the program is to

have each demon unit correspond to the smallest change in ~Ei. For a

detailed explanation of implementing this algorithm see ref. [8].

Eq. (6) obeys the principle of detailed balance [9], implying that Sand D

are governed by traditional thermodynamic principles. This provides an

intuitive rational for believing that the micro-canonical algorithm works.

As the system evolves, the demons become distributed according to their

3

Boltzman factors. The demon average will then be related to the

temperature by

!~D· - (D·)- LYexp(-4yZ)
N~ I - I - '

i=l L',exp(-4yZ)
(7)

where the sums are carried out from y = 0 to Dmax· Given a particular state

D, (Di) can be calculated, and Eq. (5) can be numerically inverted to find the

temperature. Thus, the temperature is an output rather than an input of

the algorithm.

3. RUNNING THE ALGORITHMS

Both algorithms were implemented with doubly periodic boundary

conditions. A checkerboard updating procedure was used to avoid the

result of [10]-that any algorithm which updates all spins simultaneously

cannot simulate the Ising model. All the spins were initially set to + 1. To

compensate for the relaxation of the system from its starting state, some

number of initial steps, ti, need to be discarded. Berretti and Sakal [11]

point out that ti should not be larger than - ~. tt being the total number of

iterations of the algorithm.

In the micro-canonical program the demons were initialized to either 2

or 0. An input parameter was used to set the ratio of the number of 2's to

the number of O's, depending upon the desired value of the total energy. In

order to speed up the algorithm it was necessary to increase the thermal

contact by "scrambling" the demons. This was done by offsetting the entire

demon lattice by 3 positions in both the x and y directions after each

iteration. The value of Dmax needed to be set so that there were neither too

few nor too many energy levels for the particular range of Z. The best

4

,.

results seem to occur when Dmax was allowed to vary dynamically so that

the highest energy level contained -0.1% of the demons.

A listing of the Fortran program used to implement these sampling

techniques is given in Appendix B.

4. RESULTS

A survey of both algorithms using a 100x100 lattice (tt = 1200 and ti = 200),

over the range 0 < Z < 1, was conducted on a Stardent GK3000 mini-super-

computer. The main output was the internal energy, U, which was

calculated after each time step and then averaged for the whole run. These

results (see Figs. 1a, b and Table I) illustrate the short term behavior of the

algorithms. Both algorithms seem to follow the exact curve fairly well over

the range 0.2 < Z < 0. 7. However, near the critical temperature, Zc =

~ log(1 + -J2) = 0.44068 ... , both produce results above the exact value (see Fig.

2). The kink in the internal energy that should occur at Zc, seems to take

place at Z::::: 0.435.

Comparing the relative accuracies of each method required much

longer runs. These were carried out on a Cray 2 super-computer. The

ratio of U to Uexact is shown in Fig. 3 (N = 100x100, tt = 100,000 and ti =

25,000). The numerical values are given in Table II. In general, one sees

that the canonical is consistently much closer to the exact value. The

micro-canonical appears to be correlated with Z. This correlation could be

due to the fact that for finite N

(Di) = LY exp[-4'fl- (4'fl)
2
/2CN] + 0(1/N),

:Lexp[-4'fl- (4'fl)212CN] + 0(1/N)
(8)

where C is the specific heat (see ref. [3]). Runs of N = 40x40 and N = 200x200

(tt = 100,000 and ti = 25,000) were conducted for both algorithms. Figs. 4a

5

and 4b show U!Uexact for two different lattice sizes for the canonical and

micro-canonical methods respectively. The canonical method changes

little with lattice size, while the micro-canonical method exhibits increased

variation with decreasing N. This variation could also be related to Eq. (8).

Another quantity of interest is the specific heat. In the canonical case, C

can be calculated from the standard deviation of U, O'u:
2au 2 2

-Ccan = Z az = Z (Ncru) . (9)

The derivation ofEq. (9) is given in Appendix A. Since both Z and U vary in

the micro-canonical method, Eq. (9) cannot be used. That the micro

canonical method exhibits the same behavior as the canonical method can

be shown using the following empirical equation

C
. _ (Ncrz 2)(Ncru2)

- tmcro- KmZ (10)

where O'z is the standard deviation of Z, and Km is a constant equal to one

with units of energy. Ccan and Cmicro are plotted in Fig.5 (N = 100x100, tt =

100,000, ti = 25,000). Both agree with Cexact qualitatively, but fall short

quantitatively. In the case of Ccan, the shortfall is an indication that the

successive configurations of S are correlated. This may also be true for

Cmicro, indicating that the correlation in the micro-canonical method is

greater-a believable hypothesis since the algorithm is deterministic.

CcaniCexact and Cmicr01Cexact are plotted in Fig. 6 for (N = 100x100, tt =

1,000, ti =250) and (N = 100x100, tt = 100,000, ti =25,000). Fig. 6 shows that

there is a consistency in the difference between Ccan and Cmicro. and that

both fall short of Cexact in the same way. This suggests that Cmicro really

does describe the specific heat. Fig. 6 also demonstrates that the variations

due to different initial conditions are smoothed out as tt is increased.

6

J•

'"

,..._.

Finally, runs ofN = 200x200, tt = 1,000,000, tj = 250,000 were conducted for

both algorithms at Z""' 0.4. No significant difference was found with the tt =
100,000 data.

5. CONCLUSIONS

In this paper extensive surveys of the canonical and micro-canonical

sampling methods were conducted over 0.2 < Z < 0. 7, 40x40 ~ N ~ 200x200,

and 1,000 ~ tt ~ 1,000,000. In each case U, Z, O'u, and O'z, were examined.

The main results are:

I) For short runs, tt = 1,000, both algorithms give nearly identical

results.

II) In longer runs, tt = 100,000, it appears as though the more

complex formulation of Z is required for the micro-canonical

method to match the canonical method's accuracy.

III) The specific heat indicates that both algorithms suffer from

successive configurations being correlated, with the micro

canonical algorithm suffering more.

For the researcher debating about which algorithm to use for his or her

particular model, the main result of this work is that the two algorithms

are equivalent enough in accuracy over 0.2 < Z < 0. 7, that the particular

physics involved should be the determining factor. The canonical approach

is simpler. One can get good results using a smaller lattice. Although,

this performance advantage can be offset by the need for random numbers

and the exponential function, depending upon the implementation. The

main advantage of the micro-canonical approach is its temperature

independence. This makes it ideal for studying systems where the

temperature is either not uniform or evolving. Finally, a different set of

7

situations can be explored since the demons correspond to their own

physical system-the kinetic energy of the lattice sites.

ACKNOWLEDGEMENTS

I would like to thank Prof. Alexandre Chorin for his guidance and

support, Dr. M. Creutz, Dr. B. Alpert, and A. Qi for many helpful

discussions, and the Department of Energy's Science and Engineering

Research Semester for sponsoring me.

8

APPENDIX A

In this appendix the equation for the canonical specific heat is derived.

From Eq.(9) it is apparent that
au · 2 az =Nau

is all that needs to be shown. First note:

au2 = (((U)- U)2) = (U2)- (U)2.

Let,

and
1

(U) = Z L,E11 exp[-ZE~
ll

be the partition function and the a-verage internal energy of a

thermodynamic system respectively [12]. (U) and (U2) can be re-written in

terms of partial derivatives

1 az 2 1 (az)2

(U) = - z az => (U) = z2 az
2 1 2 1 a2z

(U) =- "'E exp[-ZE- l =--z L..J 11 J.l-1 z az2 ·
ll

Thus,

2 1 a2 z 1 (a z)2 a (1 a z)
cru = z az2 - z2 az = az z az ·

Substituting in for the definition of (U) gives

cru2 = a~~)=(~¥) .
· U = (U)

In the finite 2D Ising model [13]

u ---7 -:z (~ log(ZN)),

which has the necessary factor of N, resulting in
1 au 2
N az = O"u

9

REFERENCES

1. K. BINDER, Applications of the Monte Carlo Method in Statistical

Physics (Springer-Verlag, Berlin, 1987), p. 5.

2. M. CREUTZ, Annals of Physics 167, 62 (1986).

3. G. BHANOT, M. CREUTZ, AND H. NEUBERGER, Nuclear Physics B 235

[FS11], 417 (1984).

4. L. ONSAGER, Physical Review 65, 118 (1944).

5. C. J. THOMPSON, Mathematical Statistical Mechanics (MacMillan,

New York, 1972), pp. 131-135.

6. K. BINDER, Applications of the Monte Carlo Method in Statistical

Physics (Springer-Verlag, Berlin, 1987), p. 10.

7. M. CREUTZ, Physical Review Letters 50, 1411 (1983).

8. H. GOULD AND J. TOBOCHNIK, An Introduction to Computer

Simulation Methods: Applications to Physical Systems (Addison

Wesley, 1988), Part II, pp. 501-525.

9. C. KITTEL AND H. KROEMER, Thermal Physics (W. H. Freeman and

Co., New York, 1980), 2nd edition, pp. 407.

10. G. VICHNIAC, Physica D 10, 96 (1984).

11. A. BERRETT!, A. D. SOKAL, J. of Statistical Physics 40, 483 (1985).

12. C. KITTEL AND H. KROEMER, Thermal Physics (W. H. Freeman and

Co., New York, 1980), 2nd edition, pp. 83-84.

13. A. CHORIN, Communications in Mathematical Physics 99, 501 (1985).

10

TABLE I
Some numerical values of the internal energy
calculated from the canonical and micro-canonical
algorithms of the 2D Ising model. Programs were run
for 1200 iterations on a 100x100 lattice. The first 200
iterations were discarded. "-" indicates that the
algorithm did not yield consistent results. Dmax is the
largest a demon could become for the given micro
canonical run.

z
0

0.1064
0.2040
0.3091
0.4033
0.4370
0.4407
0.5142
0.6733

1

Exact
0

0.2169
0.4381
0.7339
1.1240
1.3653
1.4151
1.7829
1.9540
1.9972

u
Can

0.2497
0.4422
0.7330
1.1223
1.3916
1.4113
1.7801
1.9522
1.9955

11

Micro

0.2174
0.4381
0.7324
1.1215
1.3987
1.4114
1.7808
1.9455

Dmax

14
8
5
4
4
4
3
2

TABLE II
Numerical values used to generate Fig. 3 and Fig. 5.
Data obtained from runs using N = lOOxlOO, tt = 100,000, and ti = 25,000.

Canonical Micro-Canonical
z u Ncru2 U/Uex z Ncrz2 u Ncru2 U/Dex

0.20 0.42827 1.34756 1.00010 0.21099 0.00700 0.45479 1.16199 0.99875
0.25 0.55728 1.82468 1.00001 0.26849 0.01626 0.60867 1.45837 0.99914
0.30 0.70450 2.39080 1.00000 0.32558 0.03862 0.78891 1.70429 0.99894
0.35 0.87990 3.23888 1.00011 0.37865 0.08173 0.99968 1.95769 0.99925
0.40 1.10587 4.87621 0.99981 0.42220 0.14297 1.23924 2.23533 0.99835

,_. 0.45 1.51312 7.47434 1.00005 0.44118 0.19915 1.42264 2.61784 0.99961
N

0.50 1.74558 2.58469 1.00001 0.46171 0.18690 1.59006 1.82139 0.99934
0.55 1.85104 1.29418 0.99995 0.49603 0.18469 1.73236 1.20608 0.99922
0.60 1.90906 0.73575 0.99999 0.52703 0.18775 1.81125 0.86258 1.00017
0.65 1.94306 0.43015 0.99999 0.55614 0.18912 1.86026 0.65435 1.00007
0.70 1.96380 0.26043 1.00001 0.60289 0.21157 1.91239 0.47006 1.00043

"

'"

;-•• j

, ..

Figure Texts

Fig. 1. Internal energy vs. inverse temperature for (a) canonical and (b)
micro-canonical approaches (N = 100x100, tt; = 1200, ti = 200).

Fig. 2. Behavior of the the internal energy near the critical temperature (N
= 100x100, tt; = 1200, ti = 200).

Fig. 3. Ratio of the exact to the computed values of the internal energy (N =
100x100, tt; = 100,000, ti = 25,000).

Fig. 4. Effect of changing the lattice size, N, on (a) canonical and (b) micro
canonical approaches (tt; = 100,000, ti = 25,000).

Fig. 5. Specific heat (Ccan and Cmicro) vs. inverse temperature (N =
lOOxlOO, tt; = 100,000, ti = 25,000).

Fig. 6. Effect of increasing the total number of time steps, tt. on CcaniCexact
and CmicrofCexact (N = 100x100).

13

0

0
...-i

~
I

14

0

00
0

c.o
0

0

o=>
0

..

.+-) 0 u ~
(lj u
~ • r-4

P:1 ::g
0

,e

~

~
I

15

1.0
0

00
0

0
o=>
0

\.0 lO
M M

• 0

oe
<»

00
oe

~
M

~
i

16

C'l
~

co ~::)
M M

0

~
J-..4
C)

a:l • ...-<

Q ~
, .. • 0

CfJ
0

•
•

0 • <0
0

o.
0

CQ • 0
bb

0 • ...-<

~ • 0
0

• ~
0

0

•
0

•
0

•
• 0 C'l

0

.•

0

C'l ,...-1 0 0) oo=>
0 0 0 0) 0)
0 0 0 0) 0)

,...-1 ,...-1 ,...-1 0 0

laRxan.Jn.

17

0
0

0 C\1
~ :><:

:><: 0
0 0
~ C\1

• 0

cd
~

bb • .-< • ~

C\1-I
0 0
0 0
.....-I-I

0

at

()

0

0

0

0

0

0 •
eo

«:>

0
0
0
.....-I

1auxantn

18

~
~
~

0

00
0

co
0

~
0

C\1
0

0
oo=>
~
~

0

...

0
~----------~r------------.,------------.-------------, ~

0
-.;:11
:<

0
-.;:11

•

0
0
C'l
:<

0
0
C'l

0

00
0

0
<='1~----------~M------------~o------------~m------------~oo~
o o o m m
M M M 0 0

1~uxan;n

19

+I
C)

ro
Q ~

Q) ro
u u

•

..

lQ

bb . ,.....
~ 0

0
J..t
C) .,.....
~

0

0
,......j

u
I

0

20

0

0

0

00
0

m
0

~
0

0
o=>
0

cO
bb .,....;

~

0 r--------.--------.--------.--------r--------.-------. ~

0
0
0
~

T"""l

~
Oj

c.:>

0

ce
0

• 0
0

0
<It • 0 <l

e 0 <l.

0 <J e<l

• ~·
<l
<l 0

0 • <l • 0 <l
0 <l • • 0 <l

<l 0 .<l o• <l 0
e<J 0

0 • <l
0 <l

~0
0

•

C\1 0 00 ~

T"""l T"""l d 0

l~tJxae>/C>

21

0
0 0

0 0~ 0
0 ~

0 T"""l
T"""l 0

~
J...c
c:J

Oj •.-4

c.:> ::g

• <l

<l

~
<l

•

-.::t!
0

0
0
0
~

0
0
T"""l

0
J...c
c:J

•r-4 ::g

•

C\1
0

00
d

~

0

~
d

C\1
0

0
o::5
0

APPENDIXB

Listing of the Fortran program used in these experiments. Note that the

first section is the common block, which is inserted by the "include"

command at the beginning of each subroutine.

c ******************* BEGIN COMMON BLOCK **************

c calculation variables
c 302*302 = 91204

integer gspin1(302,302), gdemarr1(302,302)
integer gspin2(302,302), gdemarr2(302,302)
integer gmap(91204,6)

c
c
c

gspin1 = SPIN array 1; gdemarr1
gspin1 = SPIN array 2; gdemarr1
gmap = MAP array

common gspin1, gdemarr1
common gspin2, gdemarr2
common gmap

c calculation parameters
logical gdovarb
integer gmethod, gdemoff

DEMon ARRay 1
DEMon ARRay 2

integer gmaxbins, gminbins, gmaxdem
integer gbinht, gdemonht
real gvarbwt, gspinwt, gdemonwt

c gdovarb = DO VARiable Bins
c gmethod = sampling METHOD; gdemoff = DEMon array OFFset
c gmaxbins = MAXimum demon BIN; gminbins = MINimum demon BIN;
c gmaxdem = MAXimum DEMon value
c gbinht = demon BIN HeighT; gdemonht = DEMON value HeighT
c gvarbwt = VARiable Bin WeighT; gspinwt = SPIN WeighT;
c gdemonwt = DEMON WeighT

common gdovarb
common gmethod, gdemoff
common gmaxbins, gminbins, gmaxdem
common gbinht, gdemonht
common gvarbwt, gspinwt, gdemonwt

c canonical globals
real gzinput, gboltzar(5)

c gzinput = Z Input; gboltzar

common gzinput, gboltzar

c calculation outputs
integer glastbin

BOLTZman ARray

22

,.

f!'

·1

c
c
c

c

c
c
c

c

c
c
c
c

c
c
c

c

c

c
c
c
c
c

c

real gavgbin, gavgham, gz, gu

glastbin = LAST demon BIN
gavgbin = AVeraGe demon BIN; gavgham AVeraGe spin HAMiltonian;

gz = Z (inverse temperature); gu = U (internal energy)

common glastbin
common gavgbin, gavgham, gz, gu

running outputs
integer gstep
real gztot, gutot
real gzsqrd, gusqrd

gstep = current time STEP
gztot = Z TOTal; gutot = U TOTal
gzsqrd = total Z SQuaReD; gusqrd

common gstep
common gztot, gutot
common gzsqrd, gusqrd

running paramters
integer gxsize, gysize, gtotal,
integer gavgit, gfullu

total U SQuaReD

gsteps

gxsize = X SIZE; gysize = Y SIZE;
gtotal = TOTAL array elements; gsteps = total time STEPS

gavgit = time steps before calling AVeraGe IT;
gfullu = FULL output file Unit

common gxsize, gysize, gtotal, gsteps
common gavgit, gfullu

character*8 gfullf
gfullf = FULL output Filename
Cray insists that all string variables be placed
in a separate common block.
common /string/gfullf

******************** END COMMON BLOCK ***************

program ising
load common block
include 'vectb.f'

global/common block variables are denoted by a "g"
Declare local variables.
nstep is the size of the lattice, zstep is
the temperature, and zscale converts
zstep into a usable real number.

integer nstep,zstep
real zscale
character*l6 titlel,title2

call dropfile(O)

23

c

c
c
c

c
c
c
c
c
c
c

c
c
c
c
c

c
c
c
c

c

Set defualt values.

call setdefs
zscale = 0.001

Set up output file.
Since we are using status= 1 old 1

, a file
called gfile (see defaults) must already exist.

title1 = 1 n avgz sigz uex
title2 = 1 avgu sigu cex 1

open(unit=gfullu,file=gfullf,status= 1 old 1
)

write(gfullu,*) title1,title2

This is where the user can change values
e.g. time step, sampling method, ...
Vary the constants in the zstep and nstesp
do loops to change the temperature and
lattice size. These loops are there to make
it convenient to do surveys over a range of
temperatures and lattice sizes.

gsteps = 40
gmethod = 1
gdovarb = .true.
gavgit = gsteps/4
do 90 zstep = 200,200,100

gzinput = zscale * zstep
if (gmethod .eq. 1) then

Approximate imperical formula that
sets the initial demon lattice so that the
equilibrium temperature will be approximately
equal to gzinput. This is only relavent
in the micro-canonical (gmethod = 1).

gdemonwt = ((1.0/gzinput) - 1.0)/7.0

gdemoff = 3
endif

do 80 nstep = 40,40,20

Although have seperate variables for the
X and Y array limits, this is only there
if one day someone wants to do rectagular
arrays.

gxsize nstep
gysize gxsize
gtotal gxsize * gysize
print*, 1 z = 1 ,gzinput, 1 n
call initit

Begin main loop.

do 70 gstep = 1, gsteps

24

1 , gxsize

,..

c
c

Choose between micro-canonical
and canonical approaches

if (gmethod .eq. 1) then
call calcmic
call evaluate
if (gdemoff .gt. 0) call randemon

elseif (gmethod .eq. 2) then
call calccan
call evaluate

endif
if (gstep .ge. gavgit) call avgit

70 continue
call stats

80 continue
90 continue

close(gfullu)
end

c Converts bins to demons.
function bindem(bins)

integer bins
bindem = 4 * (bins - 1)

return
end

c Converts demons to bins.
function dembin{demon)

integer demon
dembin = {demon/4) + 1

return
end

c Sets the default values of many of
c the variables in the common block.

subroutine setdefs
c load common block

include 'vectb.f'

gmethod 2
gzinput 0.4
gdemoff 0
gdovarb .true.
gvarbwt 0.001
gmaxbins = 5
gminbins = 3
gmaxdem = bindem(gmaxbins)
gspinwt = 0.0
gdemonwt 0.0
gbinht = 3
gdemonht bindem(gbinht)

gxsize
gysize

100
gxsize

25

gtotal gxsize * gysize
gsteps 100000
gavgit 200
gfullf 'fulld'
gfullu 21

return
end

c INITIALIZE ARRAYS
c Initialize the lattice in accordance with
c the values set at the beginning of the main
c loop. The function rand(O) returns a random
c real number between 0.0 and 1.0 with uniform
c distribution.

subroutine initit
c load common block

include 'vectb.f'

c
c
c
c
c

c
c
c
c
c
c
c
c
c

integer i,j,k,l,s,d,ip,im,jp,jm

INIT BOLTZMAN TABLE
No need to call exp() all the time
since there are only five different
values in the canonical method, so we put
them in a lookup table.

do 10 i 1, 5
gboltzar(i) exp(4*(3-i)*gzinput)

10 continue

INITMAP
In order to use checkerboard updating need
to create a list of x and y lattice locations
so that one can simply step through the list
and hit the right points. NOTE, this requires
that gxsize and gysize be even.
Stepping through the first half of the map
gives the first color, the second half
gives the second color.

k = 0
1 = gtotal/2
do 30 i 1, gxsize - 1, 2

do 20 j = 1, gysize - 1, 2
k = k + 1
gmap(k,1) i
gmap(k,2) j
k = k + 1
gmap(k,1) i + 1
gmap(k,2) j + 1
1 = 1 + 1
gmap(l,1) i
gmap(l,2) j + 1

26

~ .

.. ,

•

,;;.,

c
c
c
c
c
c
c

c

c
c
c
c
c

c

c
c
c
c
c

c
c
c
c

20
30

40

50

60

1 = 1 + 1
gmap(l,1)
gmap(l,2)

continue
continue

INIT SPINS

i + 1
j

Sets initial configuration of the spin lattice.
Lowest energy is when spins are
either all up, 1, or all down, -1,
which corresponds to gspinwt of 1 and 0
respectively. The highest energy state
corresponds to gspinwt = 0.5.

do 40 k = 1, gtotal
i gmap(k,1)
j = gmap(k,2)

weights spins according to gspinwt
s = -1
if (rand(O) .lt. gspinwt) s = 1
gspin1(i,j) = s

continue

INIT DEMONS
Sets initial configuration of demon lattice.
All demons are set to either 0 or gdemonht in
praportion to gdemonwt. Thus the highest
energy is gdemonwt = 1.0

do 50 k = 1, gtotal
i gmap (k, 1)
j = gmap(k,2)

weights demons according to gdemonwt
d = 0
if (rand(O) .lt. gdemonwt) d = gdemonht
gdemarr1(i,j) = d

continue

INIT COPIES
In order to vectorize, need to have copies
of the arrays. So, we need to copy the
initial values of the arrays to their
corresponding copies.
do 60 k = 1, gtotal

i = gmap (k, 1)
j = gmap (k, 2)
gspin2(i,j) = gspin1(i,j)
gdemarr2(i,j) = gdemarr1(i,j)

continue

PERIODIC BOUNDARY CONDITIONS
Called "torroidal" or "doubly periodic".
For a given lattice size these conditions
are constant and can be calculated in

27

c
c
c

c

70

advance and put into the map,
they only need be looked up.
it is the fastest approach.
do 70 k = 1, gtotal

i gmap(k,1)
j = gmap(k,2)

ip=i+1
im=i-1
jp=j+1
jm=j-1
if (im .lt. 1) im
if (ip .gt. gxsize)
if (jm .lt. 1) jm =
if (jp .gt. gysize)
gmap (k, 3) ip
gmap(k,4) im
gmap(k,S) jp
gmap (k, 6) jm

continue

return
end

CYCLE DEMONS

gxsize
ip = 1
gysize
jp = 1

so that
In theory

c To speed up the relaxation time of
c the micro-canonical approach, the demons
c are cycled so as to increase the rate at
c which energy is transferred around the lattice.
c Without it, oscillations between the spin
c lattice and the demon lattice can occur.

subroutine randemon
c load common block

include 'vectb.f'

c
c
c
c
c
c

10

integer i,j,xoffset,yoffset,xmoveto,ymoveto

Get x and y positions from map, no implicit
need to, but helps vectorization.
Offset demon and move into the copy, then copy
back into demon array. In this instance the
copy, gdemarr2, just acts as a convenient
storage space.

xoffset = gdemoff
yoffset = gdemoff
if (gdemoff .gt. 0) then

do 10 k = 1, gtotal
i = gmap(k,1)
j = gmap(k,2)
xmoveto = i + xoffset
ymoveto = j + yoffset
if (xmoveto .gt. gxsize) xmoveto = xmoveto - gxsize
if (ymoveto .gt. gysize) ymoveto = ymoveto - gysize
gdemarr2(xmoveto,ymoveto) = gdemarr1(i,j)

continue
do 20 k = 1, gtotal

28

"'

~

·~

c
.. c

c
c
c
c
c
c
c
c
c
c

c

c

,_.

20

a

i = gmap(k,1)
j = gmap(k,2)
gdemarr1(i,j)

continue
endif

return
end

MICRO-CANONICAL

gdemarr2 (i, j)

Main subroutine for micro-canonical.
Jump through quite a few hoops to get
vectorization. 1) Update gspin1
and gdemarr1 from gspin2 and gdemarr2 for
first color of the checkerboard. 2) Copy
spin1 and gdemarr1 back into gspin2
and gdemarr2. 3) Repeat calculations for
the second color of the checkerboard.
WARNING: Updating all spins at once causes the
algorithm to fail, which is why we use the
checkerboard updating scheme.

subroutine calcmic
load common block
include 'vectb.f'
integer i,j,k,l,lo,hi,isum
integer newdemon,delh,demsum,hamsum
logical test

glastbin is used to vary bins.
glastbin 0
demsum 0
hamsum = 0

do 30 1 = 1,2

if (1 .eq. 1) then
lo = 1
hi = gtotal/2

elseif (1 .eq. 2) then
lo = 1 + gtotal/2
hi = gtotal

endif

do 10 k = lo,hi
i = gmap(k,1)
j = gmap(k,2)
isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j)
+ gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6))

delh = 2 * gspin2(i,j) * isum
newdemon = gdemarr2(i,j) - delh
test = ((newdemon. ge. 0) . and. (newdemon .le. gmaxdem))
if (test) gdemarr1(i,j) = newdemon
if (test) gspin1(i, j) = -gspin2(i,j)
hamsum = hamsum + (gspin2(i,j) * isum)

10 continue

do 20 k = lo,hi

29

i = gmap (k, 1)
j = gmap(k,2)
gspin2(i,j) = gspin1(i,j)
gdemarr2(i,j) = gdemarr1(i,j)
if (gdemarr1(i,j) .eq. gmaxdem) glastbin
demsum = demsum + gdemarr1(i,j)

20 continue

30 continue
gavgbin
gavgham

return
end

demsum/(4.0*gtotal)
hamsum/(1.0*gtotal)

c CANONICAL
c Main subroutine for canonical.
c Jump through quite a few hoops to get
c vectorization. 1) Update gspin1
c from gspin2 for
c first color of the checkerboard. 2) Copy
c spin1 back into gspin2.
c 3) Repeat calculations for
c the second color of the checkerboard.
c WARNING: Updating all spins at once causes the
c algorithm to fail, which is why we use the
c checkerboard updating scheme.

subroutine calccan
c load common block

include 'vectb.f'
integer k,l,i,j,isum,lo,hi
integer delh, aboltz, hamsum
logical test

hamsum = 0
do 30 1 = 1, 2

if (1 .eq. 1) then
lo = 1
hi = gtotal/2

elseif (1 .eq. 2) then
lo = 1 + gtotal/2
hi = gtotal

endif
do 10 k = lo,hi

i = gmap(k,1)
j = gmap(k,2)

glastbin + 1

isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j)
a + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6))

delh = 2 * gspin2(i,j) * isum
aboltz = 3 + (delh/4)
test = rarid(O) .lt. gboltzar(aboltz)
if (test) gspin1(i,j) = -gspin2(i,j)
hamsum = hamsum + (gspin2(i,j) * isum)

10 continue

do 20 k = lo,hi
i = gmap (k, 1)

30

..

j = gmap(k,2)
gspin2 (i, j) gspinl (i, j)

20 continue
30 continue

gavgham = hamsum/(l.O*gtotal)
return
end

c Takes values calculated from the main
c loop and acts on them. Finds the energy
c and calculates the proper temperature
c depending upon which sampling method
c is being used. Also, the variable
c bin algorithm is implemented here.

subroutine evaluate
c load common block

include 'vectb.f'

c
c
c
c
c
c
c
c
c

logical lolim, hilim, lobin, hibin
real eps

gu (gavgham/2.0)

if (gmethod .eq. 1) then
gz = findz(gavgbin,gmaxbins)

elseif (gmethod .eq. 2) then
gz = gzinput

endif

Want to make sure gmaxdem is neither too
large nor too small. glastbin tells us
how many demons are in the highest energy
level. The number we are aiming for is
gvarbwt * gtotal. NOTE: that there are
bounds below (gminbins), and above (32).
NOTE2: that there is a region, 0.5 to 1.5,
times the target, in which no change
occurs. This helps prevent oscillations.

if ((gdovarb) .and. (gmethod.eq.l)) then
eps = gvarbwt * gtotal
lolim gmaxbins .gt. gminbins
hilim gmaxbins .lt. 32
lobin glastbin .lt. (0. 5 * eps)
hibin glastbin . gt. (1. 5 * eps)
if ((lolim) . and. (lobin)) then

gmaxbins = gmaxbins - 1
gmaxdem = bindem(gmaxbins)

elseif ((hilim) . and. (hibin)) then
gmaxbins = gmaxbins + 1
gmaxdem = bindem(gmaxbins)

endif
endif

return
end

31

c Keeps track of values needed to
c calculate the mean and standard
c deviation of Z and U.

subroutine avgit
c load common block

include 'vectb.f'
character tab

c
tab = •
initialize avg counters first time through
if (gstep .le. gavgit) then

gutot = 0.0
gusqrd = 0.0
gztot = 0.0
gzsqrd = 0.0

elseif (gstep .gt. gavgit) then
gutot = gutot + gu
gusqrd = gusqrd + ((gu)**2)
if (gmethod .eq. 1) then

gztot = gztot + gz
gzsqrd = gzsqrd + ((gz)**2)

endif
endif

return
end

c Calculates mean and standard deviation
c of Z and U from the values calculated
c in the subroutine avgit. Also computes
c the exact values of U and the specific
c heat, C, from Z; writes these values
c into the output file.

subroutine stats
c load common block

include 'vectb.f'
integer effsteps
real totz, totu
real avgz,sigz,uex,avgu,sigu,cex
character t
t = I

effsteps = gsteps - gavgit
avgz gztot/effsteps
avgu gutot/effsteps
totz gzsqrd- ((gztot)**2)/effsteps
totu gusqrd- ((gutot)**2)/effsteps
sigz sqrt(totz/(effsteps 1)) ·
sigu sqrt(totu/(effsteps- 1))
if (gmethod .eq. 2) then

avgz gzinput
sigz = 0.0

endif

uex -uint(avgz)
cex cap (avgz)

32

,.

c
c
c

10

write(gfullu,*) gxsize,t,avgz,t,sigz,t,uex,t,avgu,t,sigu,t,cex
return
end

Uses Newton's method to calculate the
inverse temperature from the avg demon
value.

function findz(avgen,noofbins)
real avgen,x0,xn,temp1,temp2,temp3,temp4,fx0,fprimex0
integer noofbins,i,j
xO = 0.5
epsilon
do 20 i

temp1
temp2
temp3
temp4

do 10 j
temp1
temp2
temp3
temp4

continue

0.00005
1,100

0.0
0.0
0. 0
0.0

O,noofbins-1
exp(-4 * j * xO)
temp2 + temp1
temp3 + (j * temp1) ·
temp4 + (j * j * temp1)

fxO = (temp3/temp2) - avgen
fprimexO = (1- (16 * temp4 * temp2))/(ternp2 * ternp2)

xn = xO - (fxO/fprimexO)
if (abs(xn- xO) .lt. epsilon) goto 100
xO = xn

20 continue

100 findz = xn
return
end

c Calculates the exact value of the
c internal energy, U, for a given Z.

function uint(v)
real v
integer n,l
if (v .le. 5.0) then

n = 5
ternp1 = u(2.0*v,n)
do 10 l = 1,12

n = 2*n
temp2 = u(2.0*v,n)
if (abs(ternp1-ternp2)
if (l .ne. 12) temp1

10 continue
100 uint = -temp2

.lt. 0.00005) goto 100
= ternp2

33

c

else
uint

endif
return
end

-2.0

Function called by uint(v).

function u(w,n)
real k,kl,pi,sum,h,t1
integer ctn,i ·
if (w .gt. 0) then

pi = 3.1415926
sum= 0.0
ctn=2*n
h = pi/ctn
k1 = 2*sinh(w)/(cosh(w)**2)
do 10 i = 1,n-1

sum= sum+ 1.0/sqrt(1.0- (k1**2*(sin(i*h)**2)))
10 continue

sum= sum+ 0.5*(1 + 1./sqrt(1-k1**2))
k= h*sum
t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*k
u = t1/tanh(w)

else
u = 0

endif
return
end

c Calculates the exact value of the
c specific heat, C, for a given Z.

20
10

function cap(v)
integer n,l
real v,temp1,temp2
n = 20
temp1 = C(2.*v,n)
do 20 1 = 1,12

n = 2*n
temp2 = C(2.*v,n)
if (abs(temp1-temp2) .lt .. 00005) then

goto 10
end if
if (1 .ne. 12) temp1 temp2

continue
cap=temp2

return
end

c Function called by cap(v).

function C(w,n)
real w,K,E,k1,pi,sum1,sum2,h,t1,t2
integer n,i

34

,

•

10

if (w .eq. 0) then
c = 0
return

end if
pi= 3.1415926
k1 = 2*sinh(w)/(cosh(w)**2)
sum1 = 0.0
sum2 = 0.0
h = pi/(2*n)
do 10, i = 1,n-1

sum1 = sum1 + 1.0/sqrt(1. - (k1**2*(sin(i*h)**2)))
sum2 = sum2 + sqrt(1. - (k1**2*(sin(i*h)**2)))

continue
sum1 = sum1 + .5*(1 + 1./sqrt(1-k1**2))
sum2 = sum2 + .5*(1 + sqrt(1-k1**2))
K = h*sum1
E = h*sum2
t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*K
t2 = 2*(K-E-0.5*pi*(1-tanh(w)**2)*t1)
C = (.5/pi)*(w/tanh(w))**2*t2

return
end

35

'"~-4,

~-= -~
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

BERKELEY, CALIFORNIA 94720

~·~

