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ABSTRACT 

Canonical and micro-canonical Monte Carlo algorithms were 

implemented on a 2D Ising model. Expressions for the internal energy, U, 

inverse temperature, Z, and specific heat, C, are given. These quantities 

were calculated over a range of temperatures, lattice sizes, and time steps. 

Both algorithms accurately simulate the Ising model. To obtain greater 

than three decimal accuracy from the micro-canonical method requires 

that the more complicated expression for Z be used. The overall difference 

between the algorithms is small. The physics of the problem under study 

should be the deciding factor in determining which algorithm to use. 
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1. INTRODUCTION 

In the study of phase transitions and other critical phenomena the 

Monte Carlo method has emerged as one of the most powerful simulation 

techniques-canonical and micro-canonical being just two of the more 

common approaches. Determining which is best for a particular problem 

can be difficult. It is the goal of this paper to help the researcher by 

comparing the ability of these two algorithms to simulate a 2D Ising model, 

with an emphasis on illustrating the differences in behavior and accuracy 

as a function of temperature and lattice size. 

In the canonical approach, one computes the state of each point from the 

previous state using a random number generator. Usually, each state is 

weighted according to a probability proportional to the Boltzman factor 

exp(-EikT), with E being the energy of the state [1]. 

The micro-canonical Monte Carlo method consists of constraining the 

total energy of the system, while letting the energy distribution evolve. The 

transfer of energy is carried out by a new set of variables, called demons, 

which correspond to the kinetic energy in molecular dynamics calculations 

[2]. 

2. THE UPDATING ALGORITHMS 

In both algorithms, the central operations are performed on a lattice of 

spins, S, that are either up (+1) or down (-1). For our model, we will define 

the energy of a particular site i as 

Ei = Io -sisj). (1) 

where the sum is over the four nearest neighbors j of i [3]. This has the 

operational effect of making a lattice with aligned spins have lower energy 
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than an unaligned lattice. Note that flipping the spin of i produces a 

change in energy 

(2) 

A quantity of particular interest in our experiments IS the internal 

energy, U. In terms of the previous notation 
1 1 N 

-U = 2- 2NLEi • 
i=1 

(3) 

where N is the number of points in the lattice. In the limiting case of N ~ 

oo, U is known exactly 
1 + [2 tanh2(H) - 1] 2K(k1)ht 

U = tanh(H) ' (4) 

where H = 2Z, k1 = 2 sinh(H)/cosh2(H), and KCk1) = F(7tl21 k1) is the complete 

elliptic integral of the first kind [ 4,5]. This provides a way to compare the 

two algorithms. 

Having defined the spin structure and the energy, the canonical scheme 

for changing spins can best be explained by the following piece of pseudo

code: 

r = random number between 0 and 1 

B = exp(-~EiZ) 

if(r <B) then 

endif 

where the temperature, T = 1/Z, is an input parameter of the program [6]. 

Executing the above procedure on every site in the lattice constitutes one 

iteration, or time step, of the algorithm. 

The micro-canonical procedure is a bit more complicated. In addition to 

the spin lattice, we have a corresponding lattice of demons, D. Each 

element in D, Di, is restricted by the condition that DiE {0, 1 , 2, ... , Dmax}. 

2 

.. 



... 

Di can be thought of as the kinetic energy conjugate to the ith point in the 

lattice. The most important property of the micro-canonical updating 

algorithm is that the energy at each point be conserved 
N N 

Ei + 4Di = constant ~ ET = 4 LDi + LEi , (5) 
i=l i=l 

where ET is the total energy of the lattices. Eq. (5) illustrates the central 

difference between the two algorithms. Canonical sampling selects 

configurations based on their Boltzman weight, while micro-canonical 

sampling selects configurations that satisfy the total energy constraint of 

Eq. (5). As a consequence ofEq. (5) 

~i + 4Wi = 0, (6) 

which gives some insight as to how to construct the updating algorithm. 

The spin flipping procedure used in our experiments was equivalent to the 

following code fragment: 

Di' = (4Di- ~i)/4 

if (0 ::;:; Di' ::;:; Dmax) then 

Di = Di' 

Si = -Si 

endif [7] 

The factor of four comes about from the property-obtained from Eq. (1)

that ~Ei e {-8, 4, 0, 4, 8}. A convenient way of running the program is to 

have each demon unit correspond to the smallest change in ~Ei. For a 

detailed explanation of implementing this algorithm see ref. [8]. 

Eq. (6) obeys the principle of detailed balance [9], implying that Sand D 

are governed by traditional thermodynamic principles. This provides an 

intuitive rational for believing that the micro-canonical algorithm works. 

As the system evolves, the demons become distributed according to their 
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Boltzman factors. The demon average will then be related to the 

temperature by 

_!_~D· - (D·)- LYexp(-4yZ) 
N~ I - I - ' 

i=l L',exp(-4yZ) 
(7) 

where the sums are carried out from y = 0 to Dmax· Given a particular state 

D, (Di) can be calculated, and Eq. (5) can be numerically inverted to find the 

temperature. Thus, the temperature is an output rather than an input of 

the algorithm. 

3. RUNNING THE ALGORITHMS 

Both algorithms were implemented with doubly periodic boundary 

conditions. A checkerboard updating procedure was used to avoid the 

result of [10]-that any algorithm which updates all spins simultaneously 

cannot simulate the Ising model. All the spins were initially set to + 1. To 

compensate for the relaxation of the system from its starting state, some 

number of initial steps, ti, need to be discarded. Berretti and Sakal [11] 

point out that ti should not be larger than - ~. tt being the total number of 

iterations of the algorithm. 

In the micro-canonical program the demons were initialized to either 2 

or 0. An input parameter was used to set the ratio of the number of 2's to 

the number of O's, depending upon the desired value of the total energy. In 

order to speed up the algorithm it was necessary to increase the thermal 

contact by "scrambling" the demons. This was done by offsetting the entire 

demon lattice by 3 positions in both the x and y directions after each 

iteration. The value of Dmax needed to be set so that there were neither too 

few nor too many energy levels for the particular range of Z. The best 
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results seem to occur when Dmax was allowed to vary dynamically so that 

the highest energy level contained -0.1% of the demons. 

A listing of the Fortran program used to implement these sampling 

techniques is given in Appendix B. 

4. RESULTS 

A survey of both algorithms using a 100x100 lattice (tt = 1200 and ti = 200), 

over the range 0 < Z < 1, was conducted on a Stardent GK3000 mini-super-

computer. The main output was the internal energy, U, which was 

calculated after each time step and then averaged for the whole run. These 

results (see Figs. 1a, b and Table I) illustrate the short term behavior of the 

algorithms. Both algorithms seem to follow the exact curve fairly well over 

the range 0.2 < Z < 0. 7. However, near the critical temperature, Zc = 

~ log(1 + -J2) = 0.44068 ... , both produce results above the exact value (see Fig. 

2). The kink in the internal energy that should occur at Zc, seems to take 

place at Z::::: 0.435. 

Comparing the relative accuracies of each method required much 

longer runs. These were carried out on a Cray 2 super-computer. The 

ratio of U to Uexact is shown in Fig. 3 (N = 100x100, tt = 100,000 and ti = 

25,000). The numerical values are given in Table II. In general, one sees 

that the canonical is consistently much closer to the exact value. The 

micro-canonical appears to be correlated with Z. This correlation could be 

due to the fact that for finite N 

(Di) = LY exp[-4'fl- (4'fl)
2
/2CN] + 0(1/N), 

:Lexp[-4'fl- (4'fl)212CN] + 0(1/N) 
(8) 

where C is the specific heat (see ref. [3]). Runs of N = 40x40 and N = 200x200 

(tt = 100,000 and ti = 25,000) were conducted for both algorithms. Figs. 4a 
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and 4b show U!Uexact for two different lattice sizes for the canonical and 

micro-canonical methods respectively. The canonical method changes 

little with lattice size, while the micro-canonical method exhibits increased 

variation with decreasing N. This variation could also be related to Eq. (8). 

Another quantity of interest is the specific heat. In the canonical case, C 

can be calculated from the standard deviation of U, O'u: 
2au 2 2 

-Ccan = Z az = Z (Ncru ) . (9) 

The derivation ofEq. (9) is given in Appendix A. Since both Z and U vary in 

the micro-canonical method, Eq. (9) cannot be used. That the micro

canonical method exhibits the same behavior as the canonical method can 

be shown using the following empirical equation 

C 
. _ (Ncrz 2)(Ncru2) 

- tmcro- KmZ (10) 

where O'z is the standard deviation of Z, and Km is a constant equal to one 

with units of energy. Ccan and Cmicro are plotted in Fig.5 (N = 100x100, tt = 

100,000, ti = 25,000). Both agree with Cexact qualitatively, but fall short 

quantitatively. In the case of Ccan, the shortfall is an indication that the 

successive configurations of S are correlated. This may also be true for 

Cmicro, indicating that the correlation in the micro-canonical method is 

greater-a believable hypothesis since the algorithm is deterministic. 

CcaniCexact and Cmicr01Cexact are plotted in Fig. 6 for (N = 100x100, tt = 

1,000, ti =250) and (N = 100x100, tt = 100,000, ti =25,000). Fig. 6 shows that 

there is a consistency in the difference between Ccan and Cmicro. and that 

both fall short of Cexact in the same way. This suggests that Cmicro really 

does describe the specific heat. Fig. 6 also demonstrates that the variations 

due to different initial conditions are smoothed out as tt is increased. 
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Finally, runs ofN = 200x200, tt = 1,000,000, tj = 250,000 were conducted for 

both algorithms at Z""' 0.4. No significant difference was found with the tt = 
100,000 data. 

5. CONCLUSIONS 

In this paper extensive surveys of the canonical and micro-canonical 

sampling methods were conducted over 0.2 < Z < 0. 7, 40x40 ~ N ~ 200x200, 

and 1,000 ~ tt ~ 1,000,000. In each case U, Z, O'u, and O'z, were examined. 

The main results are: 

I) For short runs, tt = 1,000, both algorithms give nearly identical 

results. 

II) In longer runs, tt = 100,000, it appears as though the more 

complex formulation of Z is required for the micro-canonical 

method to match the canonical method's accuracy. 

III) The specific heat indicates that both algorithms suffer from 

successive configurations being correlated, with the micro

canonical algorithm suffering more. 

For the researcher debating about which algorithm to use for his or her 

particular model, the main result of this work is that the two algorithms 

are equivalent enough in accuracy over 0.2 < Z < 0. 7, that the particular 

physics involved should be the determining factor. The canonical approach 

is simpler. One can get good results using a smaller lattice. Although, 

this performance advantage can be offset by the need for random numbers 

and the exponential function, depending upon the implementation. The 

main advantage of the micro-canonical approach is its temperature 

independence. This makes it ideal for studying systems where the 

temperature is either not uniform or evolving. Finally, a different set of 
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situations can be explored since the demons correspond to their own 

physical system-the kinetic energy of the lattice sites. 
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APPENDIX A 

In this appendix the equation for the canonical specific heat is derived. 

From Eq.(9) it is apparent that 
au · 2 az =Nau 

is all that needs to be shown. First note: 

au2 = ( ((U)- U)2) = (U2)- (U)2. 

Let, 

and 
1 

(U) = Z L,E11 exp[-ZE~ 
ll 

be the partition function and the a-verage internal energy of a 

thermodynamic system respectively [12]. (U) and (U2) can be re-written in 

terms of partial derivatives 

1 az 2 1 (az)2 

(U) = - z az => (U) = z2 az 
2 1 2 1 a2z 

(U ) =- "'E exp[-ZE- l =--z L..J 11 J.l-1 z az2 · 
ll 

Thus, 

2 1 a2 z 1 (a z)2 a ( 1 a z) 
cru = z az2 - z2 az = az z az · 

Substituting in for the definition of (U) gives 

cru2 = a~~)=(~¥) . 
· U = (U) 

In the finite 2D Ising model [13] 

u ---7 -:z (~ log(ZN)), 

which has the necessary factor of N, resulting in 
1 au 2 
N az = O"u 
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TABLE I 
Some numerical values of the internal energy 
calculated from the canonical and micro-canonical 
algorithms of the 2D Ising model. Programs were run 
for 1200 iterations on a 100x100 lattice. The first 200 
iterations were discarded. "-" indicates that the 
algorithm did not yield consistent results. Dmax is the 
largest a demon could become for the given micro
canonical run. 

z 
0 

0.1064 
0.2040 
0.3091 
0.4033 
0.4370 
0.4407 
0.5142 
0.6733 

1 

Exact 
0 

0.2169 
0.4381 
0.7339 
1.1240 
1.3653 
1.4151 
1.7829 
1.9540 
1.9972 

u 
Can 

0.2497 
0.4422 
0.7330 
1.1223 
1.3916 
1.4113 
1.7801 
1.9522 
1.9955 

11 

Micro 

0.2174 
0.4381 
0.7324 
1.1215 
1.3987 
1.4114 
1.7808 
1.9455 

Dmax 

14 
8 
5 
4 
4 
4 
3 
2 



TABLE II 
Numerical values used to generate Fig. 3 and Fig. 5. 
Data obtained from runs using N = lOOxlOO, tt = 100,000, and ti = 25,000. 

Canonical Micro-Canonical 
z u Ncru2 U/Uex z Ncrz2 u Ncru2 U/Dex 

0.20 0.42827 1.34756 1.00010 0.21099 0.00700 0.45479 1.16199 0.99875 
0.25 0.55728 1.82468 1.00001 0.26849 0.01626 0.60867 1.45837 0.99914 
0.30 0.70450 2.39080 1.00000 0.32558 0.03862 0.78891 1.70429 0.99894 
0.35 0.87990 3.23888 1.00011 0.37865 0.08173 0.99968 1.95769 0.99925 
0.40 1.10587 4.87621 0.99981 0.42220 0.14297 1.23924 2.23533 0.99835 

,_. 0.45 1.51312 7.47434 1.00005 0.44118 0.19915 1.42264 2.61784 0.99961 
N 

0.50 1.74558 2.58469 1.00001 0.46171 0.18690 1.59006 1.82139 0.99934 
0.55 1.85104 1.29418 0.99995 0.49603 0.18469 1.73236 1.20608 0.99922 
0.60 1.90906 0.73575 0.99999 0.52703 0.18775 1.81125 0.86258 1.00017 
0.65 1.94306 0.43015 0.99999 0.55614 0.18912 1.86026 0.65435 1.00007 
0.70 1.96380 0.26043 1.00001 0.60289 0.21157 1.91239 0.47006 1.00043 

" 
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Figure Texts 

Fig. 1. Internal energy vs. inverse temperature for (a) canonical and (b) 
micro-canonical approaches (N = 100x100, tt; = 1200, ti = 200). 

Fig. 2. Behavior of the the internal energy near the critical temperature (N 
= 100x100, tt; = 1200, ti = 200). 

Fig. 3. Ratio of the exact to the computed values of the internal energy (N = 
100x100, tt; = 100,000, ti = 25,000). 

Fig. 4. Effect of changing the lattice size, N, on (a) canonical and (b) micro
canonical approaches (tt; = 100,000, ti = 25,000). 

Fig. 5. Specific heat (Ccan and Cmicro) vs. inverse temperature (N = 
lOOxlOO, tt; = 100,000, ti = 25,000). 

Fig. 6. Effect of increasing the total number of time steps, tt. on CcaniCexact 
and CmicrofCexact (N = 100x100). 
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APPENDIXB 

Listing of the Fortran program used in these experiments. Note that the 

first section is the common block, which is inserted by the "include" 

command at the beginning of each subroutine. 

c ******************* BEGIN COMMON BLOCK ************** 

c calculation variables 
c 302*302 = 91204 

integer gspin1(302,302), gdemarr1(302,302) 
integer gspin2(302,302), gdemarr2(302,302) 
integer gmap(91204,6) 

c 
c 
c 

gspin1 = SPIN array 1; gdemarr1 
gspin1 = SPIN array 2; gdemarr1 
gmap = MAP array 

common gspin1, gdemarr1 
common gspin2, gdemarr2 
common gmap 

c calculation parameters 
logical gdovarb 
integer gmethod, gdemoff 

DEMon ARRay 1 
DEMon ARRay 2 

integer gmaxbins, gminbins, gmaxdem 
integer gbinht, gdemonht 
real gvarbwt, gspinwt, gdemonwt 

c gdovarb = DO VARiable Bins 
c gmethod = sampling METHOD; gdemoff = DEMon array OFFset 
c gmaxbins = MAXimum demon BIN; gminbins = MINimum demon BIN; 
c gmaxdem = MAXimum DEMon value 
c gbinht = demon BIN HeighT; gdemonht = DEMON value HeighT 
c gvarbwt = VARiable Bin WeighT; gspinwt = SPIN WeighT; 
c gdemonwt = DEMON WeighT 

common gdovarb 
common gmethod, gdemoff 
common gmaxbins, gminbins, gmaxdem 
common gbinht, gdemonht 
common gvarbwt, gspinwt, gdemonwt 

c canonical globals 
real gzinput, gboltzar(5) 

c gzinput = Z Input; gboltzar 

common gzinput, gboltzar 

c calculation outputs 
integer glastbin 

BOLTZman ARray 
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c 
c 
c 

c 

c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 

c 

c 

c 
c 
c 
c 
c 

c 

real gavgbin, gavgham, gz, gu 

glastbin = LAST demon BIN 
gavgbin = AVeraGe demon BIN; gavgham AVeraGe spin HAMiltonian; 

gz = Z (inverse temperature); gu = U (internal energy) 

common glastbin 
common gavgbin, gavgham, gz, gu 

running outputs 
integer gstep 
real gztot, gutot 
real gzsqrd, gusqrd 

gstep = current time STEP 
gztot = Z TOTal; gutot = U TOTal 
gzsqrd = total Z SQuaReD; gusqrd 

common gstep 
common gztot, gutot 
common gzsqrd, gusqrd 

running paramters 
integer gxsize, gysize, gtotal, 
integer gavgit, gfullu 

total U SQuaReD 

gsteps 

gxsize = X SIZE; gysize = Y SIZE; 
gtotal = TOTAL array elements; gsteps = total time STEPS 

gavgit = time steps before calling AVeraGe IT; 
gfullu = FULL output file Unit 

common gxsize, gysize, gtotal, gsteps 
common gavgit, gfullu 

character*8 gfullf 
gfullf = FULL output Filename 
Cray insists that all string variables be placed 
in a separate common block. 
common /string/gfullf 

******************** END COMMON BLOCK *************** 

program ising 
load common block 
include 'vectb.f' 

global/common block variables are denoted by a "g" 
Declare local variables. 
nstep is the size of the lattice, zstep is 
the temperature, and zscale converts 
zstep into a usable real number. 

integer nstep,zstep 
real zscale 
character*l6 titlel,title2 

call dropfile(O) 
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c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 

c 

Set defualt values. 

call setdefs 
zscale = 0.001 

Set up output file. 
Since we are using status= 1 old 1

, a file 
called gfile (see defaults) must already exist. 

title1 = 1 n avgz sigz uex 
title2 = 1 avgu sigu cex 1 

open(unit=gfullu,file=gfullf,status= 1 old 1
) 

write(gfullu,*) title1,title2 

This is where the user can change values 
e.g. time step, sampling method, ... 
Vary the constants in the zstep and nstesp 
do loops to change the temperature and 
lattice size. These loops are there to make 
it convenient to do surveys over a range of 
temperatures and lattice sizes. 

gsteps = 40 
gmethod = 1 
gdovarb = .true. 
gavgit = gsteps/4 
do 90 zstep = 200,200,100 

gzinput = zscale * zstep 
if (gmethod .eq. 1) then 

Approximate imperical formula that 
sets the initial demon lattice so that the 
equilibrium temperature will be approximately 
equal to gzinput. This is only relavent 
in the micro-canonical (gmethod = 1). 

gdemonwt = ((1.0/gzinput) - 1.0)/7.0 

gdemoff = 3 
endif 

do 80 nstep = 40,40,20 

Although have seperate variables for the 
X and Y array limits, this is only there 
if one day someone wants to do rectagular 
arrays. 

gxsize nstep 
gysize gxsize 
gtotal gxsize * gysize 
print*, 1 z = 1 ,gzinput, 1 n 
call initit 

Begin main loop. 

do 70 gstep = 1, gsteps 
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c 
c 

Choose between micro-canonical 
and canonical approaches 

if (gmethod .eq. 1) then 
call calcmic 
call evaluate 
if (gdemoff .gt. 0) call randemon 

elseif (gmethod .eq. 2) then 
call calccan 
call evaluate 

endif 
if (gstep .ge. gavgit) call avgit 

70 continue 
call stats 

80 continue 
90 continue 

close(gfullu) 
end 

c Converts bins to demons. 
function bindem(bins) 

integer bins 
bindem = 4 * (bins - 1) 

return 
end 

c Converts demons to bins. 
function dembin{demon) 

integer demon 
dembin = {demon/4) + 1 

return 
end 

c Sets the default values of many of 
c the variables in the common block. 

subroutine setdefs 
c load common block 

include 'vectb.f' 

gmethod 2 
gzinput 0.4 
gdemoff 0 
gdovarb .true. 
gvarbwt 0.001 
gmaxbins = 5 
gminbins = 3 
gmaxdem = bindem(gmaxbins) 
gspinwt = 0.0 
gdemonwt 0.0 
gbinht = 3 
gdemonht bindem(gbinht) 

gxsize 
gysize 

100 
gxsize 
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gtotal gxsize * gysize 
gsteps 100000 
gavgit 200 
gfullf 'fulld' 
gfullu 21 

return 
end 

c INITIALIZE ARRAYS 
c Initialize the lattice in accordance with 
c the values set at the beginning of the main 
c loop. The function rand(O) returns a random 
c real number between 0.0 and 1.0 with uniform 
c distribution. 

subroutine initit 
c load common block 

include 'vectb.f' 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

integer i,j,k,l,s,d,ip,im,jp,jm 

INIT BOLTZMAN TABLE 
No need to call exp() all the time 
since there are only five different 
values in the canonical method, so we put 
them in a lookup table. 

do 10 i 1, 5 
gboltzar(i) exp(4*(3-i)*gzinput) 

10 continue 

INITMAP 
In order to use checkerboard updating need 
to create a list of x and y lattice locations 
so that one can simply step through the list 
and hit the right points. NOTE, this requires 
that gxsize and gysize be even. 
Stepping through the first half of the map 
gives the first color, the second half 
gives the second color. 

k = 0 
1 = gtotal/2 
do 30 i 1, gxsize - 1, 2 

do 20 j = 1, gysize - 1, 2 
k = k + 1 
gmap(k,1) i 
gmap(k,2) j 
k = k + 1 
gmap(k,1) i + 1 
gmap(k,2) j + 1 
1 = 1 + 1 
gmap(l,1) i 
gmap(l,2) j + 1 
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c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 

c 
c 
c 
c 

20 
30 

40 

50 

60 

1 = 1 + 1 
gmap(l,1) 
gmap(l,2) 

continue 
continue 

INIT SPINS 

i + 1 
j 

Sets initial configuration of the spin lattice. 
Lowest energy is when spins are 
either all up, 1, or all down, -1, 
which corresponds to gspinwt of 1 and 0 
respectively. The highest energy state 
corresponds to gspinwt = 0.5. 

do 40 k = 1, gtotal 
i gmap(k,1) 
j = gmap(k,2) 

weights spins according to gspinwt 
s = -1 
if (rand(O) .lt. gspinwt) s = 1 
gspin1(i,j) = s 

continue 

INIT DEMONS 
Sets initial configuration of demon lattice. 
All demons are set to either 0 or gdemonht in 
praportion to gdemonwt. Thus the highest 
energy is gdemonwt = 1.0 

do 50 k = 1, gtotal 
i gmap (k, 1) 
j = gmap(k,2) 

weights demons according to gdemonwt 
d = 0 
if (rand(O) .lt. gdemonwt) d = gdemonht 
gdemarr1(i,j) = d 

continue 

INIT COPIES 
In order to vectorize, need to have copies 
of the arrays. So, we need to copy the 
initial values of the arrays to their 
corresponding copies. 
do 60 k = 1, gtotal 

i = gmap (k, 1) 
j = gmap (k, 2) 
gspin2(i,j) = gspin1(i,j) 
gdemarr2(i,j) = gdemarr1(i,j) 

continue 

PERIODIC BOUNDARY CONDITIONS 
Called "torroidal" or "doubly periodic". 
For a given lattice size these conditions 
are constant and can be calculated in 
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c 
c 
c 

c 

70 

advance and put into the map, 
they only need be looked up. 
it is the fastest approach. 
do 70 k = 1, gtotal 

i gmap(k,1) 
j = gmap(k,2) 

ip=i+1 
im=i-1 
jp=j+1 
jm=j-1 
if (im .lt. 1) im 
if (ip .gt. gxsize) 
if (jm .lt. 1) jm = 
if ( jp .gt. gysize) 
gmap (k, 3) ip 
gmap(k,4) im 
gmap(k,S) jp 
gmap (k, 6) jm 

continue 

return 
end 

CYCLE DEMONS 

gxsize 
ip = 1 
gysize 
jp = 1 

so that 
In theory 

c To speed up the relaxation time of 
c the micro-canonical approach, the demons 
c are cycled so as to increase the rate at 
c which energy is transferred around the lattice. 
c Without it, oscillations between the spin 
c lattice and the demon lattice can occur. 

subroutine randemon 
c load common block 

include 'vectb.f' 

c 
c 
c 
c 
c 
c 

10 

integer i,j,xoffset,yoffset,xmoveto,ymoveto 

Get x and y positions from map, no implicit 
need to, but helps vectorization. 
Offset demon and move into the copy, then copy 
back into demon array. In this instance the 
copy, gdemarr2, just acts as a convenient 
storage space. 

xoffset = gdemoff 
yoffset = gdemoff 
if (gdemoff .gt. 0) then 

do 10 k = 1, gtotal 
i = gmap(k,1) 
j = gmap(k,2) 
xmoveto = i + xoffset 
ymoveto = j + yoffset 
if (xmoveto .gt. gxsize) xmoveto = xmoveto - gxsize 
if (ymoveto .gt. gysize) ymoveto = ymoveto - gysize 
gdemarr2(xmoveto,ymoveto) = gdemarr1(i,j) 

continue 
do 20 k = 1, gtotal 
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c 
.. c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

,_. 

20 

a 

i = gmap(k,1) 
j = gmap(k,2) 
gdemarr1(i,j) 

continue 
endif 

return 
end 

MICRO-CANONICAL 

gdemarr2 (i, j) 

Main subroutine for micro-canonical. 
Jump through quite a few hoops to get 
vectorization. 1) Update gspin1 
and gdemarr1 from gspin2 and gdemarr2 for 
first color of the checkerboard. 2) Copy 
spin1 and gdemarr1 back into gspin2 
and gdemarr2. 3) Repeat calculations for 
the second color of the checkerboard. 
WARNING: Updating all spins at once causes the 
algorithm to fail, which is why we use the 
checkerboard updating scheme. 

subroutine calcmic 
load common block 
include 'vectb.f' 
integer i,j,k,l,lo,hi,isum 
integer newdemon,delh,demsum,hamsum 
logical test 

glastbin is used to vary bins. 
glastbin 0 
demsum 0 
hamsum = 0 

do 30 1 = 1,2 

if (1 .eq. 1) then 
lo = 1 
hi = gtotal/2 

elseif (1 .eq. 2) then 
lo = 1 + gtotal/2 
hi = gtotal 

endif 

do 10 k = lo,hi 
i = gmap(k,1) 
j = gmap(k,2) 
isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j) 
+ gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6)) 

delh = 2 * gspin2(i,j) * isum 
newdemon = gdemarr2(i,j) - delh 
test = ( (newdemon. ge. 0) . and. (newdemon .le. gmaxdem)) 
if (test) gdemarr1(i,j) = newdemon 
if (test) gspin1(i, j) = -gspin2(i,j) 
hamsum = hamsum + (gspin2(i,j) * isum) 

10 continue 

do 20 k = lo,hi 
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i = gmap (k, 1) 
j = gmap(k,2) 
gspin2(i,j) = gspin1(i,j) 
gdemarr2(i,j) = gdemarr1(i,j) 
if (gdemarr1(i,j) .eq. gmaxdem) glastbin 
demsum = demsum + gdemarr1(i,j) 

20 continue 

30 continue 
gavgbin 
gavgham 

return 
end 

demsum/(4.0*gtotal) 
hamsum/(1.0*gtotal) 

c CANONICAL 
c Main subroutine for canonical. 
c Jump through quite a few hoops to get 
c vectorization. 1) Update gspin1 
c from gspin2 for 
c first color of the checkerboard. 2) Copy 
c spin1 back into gspin2. 
c 3) Repeat calculations for 
c the second color of the checkerboard. 
c WARNING: Updating all spins at once causes the 
c algorithm to fail, which is why we use the 
c checkerboard updating scheme. 

subroutine calccan 
c load common block 

include 'vectb.f' 
integer k,l,i,j,isum,lo,hi 
integer delh, aboltz, hamsum 
logical test 

hamsum = 0 
do 30 1 = 1, 2 

if (1 .eq. 1) then 
lo = 1 
hi = gtotal/2 

elseif (1 .eq. 2) then 
lo = 1 + gtotal/2 
hi = gtotal 

endif 
do 10 k = lo,hi 

i = gmap(k,1) 
j = gmap(k,2) 

glastbin + 1 

isum = gspin2(gmap(k,3),j) + gspin2(gmap(k,4),j) 
a + gspin2(i,gmap(k,5)) + gspin2(i,gmap(k,6)) 

delh = 2 * gspin2(i,j) * isum 
aboltz = 3 + (delh/4) 
test = rarid(O) .lt. gboltzar(aboltz) 
if (test) gspin1(i,j) = -gspin2(i,j) 
hamsum = hamsum + (gspin2(i,j) * isum) 

10 continue 

do 20 k = lo,hi 
i = gmap (k, 1) 
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j = gmap(k,2) 
gspin2 (i, j) gspinl (i, j) 

20 continue 
30 continue 

gavgham = hamsum/(l.O*gtotal) 
return 
end 

c Takes values calculated from the main 
c loop and acts on them. Finds the energy 
c and calculates the proper temperature 
c depending upon which sampling method 
c is being used. Also, the variable 
c bin algorithm is implemented here. 

subroutine evaluate 
c load common block 

include 'vectb.f' 

c 
c 
c 
c 
c 
c 
c 
c 
c 

logical lolim, hilim, lobin, hibin 
real eps 

gu (gavgham/2.0) 

if (gmethod .eq. 1) then 
gz = findz(gavgbin,gmaxbins) 

elseif (gmethod .eq. 2) then 
gz = gzinput 

endif 

Want to make sure gmaxdem is neither too 
large nor too small. glastbin tells us 
how many demons are in the highest energy 
level. The number we are aiming for is 
gvarbwt * gtotal. NOTE: that there are 
bounds below (gminbins), and above (32). 
NOTE2: that there is a region, 0.5 to 1.5, 
times the target, in which no change 
occurs. This helps prevent oscillations. 

if ((gdovarb) .and. (gmethod.eq.l)) then 
eps = gvarbwt * gtotal 
lolim gmaxbins .gt. gminbins 
hilim gmaxbins .lt. 32 
lobin glastbin .lt. (0. 5 * eps) 
hibin glastbin . gt. ( 1. 5 * eps) 
if ( (lolim) . and. (lobin)) then 

gmaxbins = gmaxbins - 1 
gmaxdem = bindem(gmaxbins) 

elseif ( (hilim) . and. (hibin)) then 
gmaxbins = gmaxbins + 1 
gmaxdem = bindem(gmaxbins) 

endif 
endif 

return 
end 
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c Keeps track of values needed to 
c calculate the mean and standard 
c deviation of Z and U. 

subroutine avgit 
c load common block 

include 'vectb.f' 
character tab 

c 
tab = • 
initialize avg counters first time through 
if (gstep .le. gavgit) then 

gutot = 0.0 
gusqrd = 0.0 
gztot = 0.0 
gzsqrd = 0.0 

elseif (gstep .gt. gavgit) then 
gutot = gutot + gu 
gusqrd = gusqrd + ((gu)**2) 
if (gmethod .eq. 1) then 

gztot = gztot + gz 
gzsqrd = gzsqrd + ((gz)**2) 

endif 
endif 

return 
end 

c Calculates mean and standard deviation 
c of Z and U from the values calculated 
c in the subroutine avgit. Also computes 
c the exact values of U and the specific 
c heat, C, from Z; writes these values 
c into the output file. 

subroutine stats 
c load common block 

include 'vectb.f' 
integer effsteps 
real totz, totu 
real avgz,sigz,uex,avgu,sigu,cex 
character t 
t = I 

effsteps = gsteps - gavgit 
avgz gztot/effsteps 
avgu gutot/effsteps 
totz gzsqrd- ((gztot)**2)/effsteps 
totu gusqrd- ((gutot)**2)/effsteps 
sigz sqrt(totz/(effsteps 1)) · 
sigu sqrt(totu/(effsteps- 1)) 
if (gmethod .eq. 2) then 

avgz gzinput 
sigz = 0.0 

endif 

uex -uint(avgz) 
cex cap (avgz) 
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c 
c 
c 

10 

write(gfullu,*) gxsize,t,avgz,t,sigz,t,uex,t,avgu,t,sigu,t,cex 
return 
end 

Uses Newton's method to calculate the 
inverse temperature from the avg demon 
value. 

function findz(avgen,noofbins) 
real avgen,x0,xn,temp1,temp2,temp3,temp4,fx0,fprimex0 
integer noofbins,i,j 
xO = 0.5 
epsilon 
do 20 i 

temp1 
temp2 
temp3 
temp4 

do 10 j 
temp1 
temp2 
temp3 
temp4 

continue 

0.00005 
1,100 

0.0 
0.0 
0. 0 
0.0 

O,noofbins-1 
exp(-4 * j * xO) 
temp2 + temp1 
temp3 + ( j * temp1) · 
temp4 + (j * j * temp1) 

fxO = (temp3/temp2) - avgen 
fprimexO = (1- (16 * temp4 * temp2))/(ternp2 * ternp2) 

xn = xO - (fxO/fprimexO) 
if (abs(xn- xO) .lt. epsilon) goto 100 
xO = xn 

20 continue 

100 findz = xn 
return 
end 

c Calculates the exact value of the 
c internal energy, U, for a given Z. 

function uint(v) 
real v 
integer n,l 
if (v .le. 5.0) then 

n = 5 
ternp1 = u(2.0*v,n) 
do 10 l = 1,12 

n = 2*n 
temp2 = u(2.0*v,n) 
if (abs(ternp1-ternp2) 
if (l .ne. 12) temp1 

10 continue 
100 uint = -temp2 

.lt. 0.00005) goto 100 
= ternp2 
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c 

else 
uint 

endif 
return 
end 

-2.0 

Function called by uint(v). 

function u(w,n) 
real k,kl,pi,sum,h,t1 
integer ctn,i · 
if (w .gt. 0) then 

pi = 3.1415926 
sum= 0.0 
ctn=2*n 
h = pi/ctn 
k1 = 2*sinh(w)/(cosh(w)**2) 
do 10 i = 1,n-1 

sum= sum+ 1.0/sqrt(1.0- (k1**2*(sin(i*h)**2))) 
10 continue 

sum= sum+ 0.5*(1 + 1./sqrt(1-k1**2)) 
k= h*sum 
t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*k 
u = t1/tanh(w) 

else 
u = 0 

endif 
return 
end 

c Calculates the exact value of the 
c specific heat, C, for a given Z. 

20 
10 

function cap(v) 
integer n,l 
real v,temp1,temp2 
n = 20 
temp1 = C(2.*v,n) 
do 20 1 = 1,12 

n = 2*n 
temp2 = C(2.*v,n) 
if (abs(temp1-temp2) .lt .. 00005) then 

goto 10 
end if 
if (1 .ne. 12) temp1 temp2 

continue 
cap=temp2 

return 
end 

c Function called by cap(v). 

function C(w,n) 
real w,K,E,k1,pi,sum1,sum2,h,t1,t2 
integer n,i 
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10 

if (w .eq. 0) then 
c = 0 
return 

end if 
pi= 3.1415926 
k1 = 2*sinh(w)/(cosh(w)**2) 
sum1 = 0.0 
sum2 = 0.0 
h = pi/(2*n) 
do 10, i = 1,n-1 

sum1 = sum1 + 1.0/sqrt(1. - (k1**2*(sin(i*h)**2))) 
sum2 = sum2 + sqrt(1. - (k1**2*(sin(i*h)**2))) 

continue 
sum1 = sum1 + .5*(1 + 1./sqrt(1-k1**2)) 
sum2 = sum2 + .5*(1 + sqrt(1-k1**2)) 
K = h*sum1 
E = h*sum2 
t1 = 1 + (2*tanh(w)**2 - 1)*(2./pi)*K 
t2 = 2*(K-E-0.5*pi*(1-tanh(w)**2)*t1) 
C = (.5/pi)*(w/tanh(w))**2*t2 

return 
end 
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