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Rapidly-Convergent Quadratures for 
Integral Operators with Singular Kernels 

Bradley K. Alpert 

Abstract 

A numerical integration method that has high-order convergence for 
singular integrands is presented. Based on endpoint corrections to the 
trapezoidal rule, the quadratures are well suited to integral equations en­
countered in problems of potential theory. Several numerical examples, as 
well as actual quadrature weights, are included. 

Key Words. numerical integration, singular kernels, quadrature rules, corrected 
trapezoidal rules 

AMS(MOS) subject classifications. 65D30, 65B15, 65R20 

An integral equation to be solved numerically must be reduced to a finite­
dimensional problem. The Nystrom method achieves this reduction by approxi­
mating the integral with a quadrature (a weighted average of values of the inte­
grand at selected points). The quadrature's rate of convergence to the integral, 
as the number of points increases, affects the amount of computation needed to 
achieve a given accuracy in the solution to the integral equation. The conver­
gence rate depends on the behavior of the integrand and in particular on whether 
the integrand is .singular in the interval of integration. In this paper we develop 
rapidly-convergent quadratures for several types of singularities encountered in 
physical problems .. 

The quadratures are based on the trapezoidal rule, with modifications to the 
points and weights at the ends of the interval of integration. It is designed to give 
high-order convergence for integrands which are several times differentiable ex­
cept at isolated singularities of known type. The method arises from a technique 
developed by Rokhlin [4]. Changes to his method have been made with the a.im 
of solving non-periodic integral equations; in addition, one improvement permits 
higher order quadratures in practice. These differences from [4] are noted as they 
are presented. The dissertation [1] of the present author gives an earlier report 
of the present work. 

1 



In §1 the Nystrom method is introduced. In §2 we construct quadrature rules 
for differentiable and for singular integrands. In §3 we analyze their convergence 
properties, and several numerical examples are given in §4. An appendix provides 
actual quadrature weights for various parameter values. 

1 Nystrom Method 

A linear Fredholm integral equation of the second kind is an expression of the 
form 

I(x) -lb I«x, t) I(t) dt = g(x), (1) 

where the kernel I< is in .e2 [a, bJ2 and the unknown I and right-hand-side 9 are in 
.e2 [a, bj. We use the symbol K to denote the integral operator of Eq. (1), which 
is given by the formula 

(Kf)(x) = lb I«x, t) I(t) dt, 

for all I E .e2 [a, bj and x E [a, bj. Then Eq. (1) written in operator form is 

(I - K)I = g. (2) 

The Nystrom, or quadrature, method for the numerical solution of integral equa­
tions approximates the integral operator K by the finite-dimensional operator R, 
characterized by points Xl, X2, ... ,Xn E [a, bj and weights WI, W2, ... ,Wn E R., 
and given by the formula 

n 

(Rf)(x) = LWj I«x,Xj) I(xj), 
j=l 

for all I E .e2 [a, bj and x E [a, bj. Substitution of R for K., in Eq. (2), combined 
with the requirement that the resulting equation hold for X = XI, X2, •.• ,xn , 

yields the following system of n equations in the n unknowns III 12, ... , fn: . . 
n 

Ii - L Wj I«Xi' Xj) fJ = g(Xi), i = 1, ... ,no (3) 
j=l 

This system is typically solved by standard methods of numerical linear algebra, 
such as Gaussian elimination. 

The approximation (f1,"" In) to the solution I of Eq. (1) may be extended 
to all X E [a, bj by the natural formula 

n 

IR(x) = g(x) + LWj I«x,Xj) ij, (4) 
i=l 

2 

...". 
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which satisfies IR(Xi) = Ii for i = 1, ... ,n. How large is the error eR = 1- IR of 
the approximate solution? We follow the derivation by Delves and Mohamed in 
[2]. Rewriting Eqs. (3) in operator form, we have 

(1 - R)IR = g, (5) 

and combining Eqs. (2) and (5) yields 

Provided that (1 - Ktl exists, we obtain the error bound 

(6) 

The error depends, therefore, on the conditioning of the original integral equation, 
as is apparent from the term 11(1 - K)-lll, and on the fidelity of the quadrature 
R to the integral operator K. It is not necessary that 11K - RII be small, rather 
merely that R approximate K well near the solution I. In this paper we develop 
quadrature rules that have this property; nevertheless, they have a somewhat 
different form than R does and are defined only on the mesh points Xl, ... , Xn 

rather than the whole interval [a, b]. 

2 Corrected Trapezoidal Rules 

It is well known that the trapezoidal rule for integration can be modified at the 
ends via the Euler-Maclaurin summation formula to a rapidly convergent rule, 
provided the integrand is sufficiently differentiable. We will suppose, instead, 
that the integrand is singular at one end of the interval and the form of the 
singularity is known. In this case a modification at that end may be determined 
so that the corrected trapezoidal rule is rapidly convergent. 

2.1 Differentiable Integrands 

We begin with the assumption that the integrand is differentiable throughout the 
interval of integration. For positive integers I, n, and rn = 21 + 2, and a function 
I E Cm[a, b], the Euler-Maclaurin summation formula is given by the equation 
(see, e.g.) [5]) 

(7) 
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where 

Dr;:(f, x) 

h (~f(a) + f(a + h) + ... + f(b - h) + ~f(b)) 
m/2-1 B 
L h2i --;j<2i-l) (x) 
i=1 (2z). 

n-11
a+h(i+1) B ((x - a)jh - i) - B () 

h m L m , m f m (x) dx 
;=0 a+hi m. 

= _hmBm (b - a) f(m)(o 
m! 

and h = (b - a)jnand a < e < b. Here Bi are the Bernoulli numbers, 

1 
B6 =-, 

42 

1 
Bs = -30'···· 

The derivatives which appear in D:;:(f, a) and D:;:(f, b) may be approximated 
-by finite differences, to obtain high-order quadrature rules which depend only on 
the values of f at equispaced points. Using the Taylor expansion for f about the 
point a we have, for i = 1,2, ... , m - 2, 

f(a + i h) = f(a) + I: f(j)(a) (i ~)j + f(m-1)(vJ (i h)m-l, (8) 
j=1 J. (m-1). 

with a < Vi < a + ih. Eqs. (8) can be considered to be a system of equations 
in the unknowns hf(1)(a), h2 f(2)(a), ... , hm- 2 f(m-2)(a), and the matrix Am of 

this system, given by the formula 

1 1 1 
2! (m-2)! 

2 22 2m-

Am = 2T (m-2)! 

m-2 
(m_2)2 {m_2)m-2 

2! (m-2)! 

is non-singular, since the functions x j j j! for j = 1,2, ... form a Chebyshev sys­

tem. We define the vector vh = (Vh,l' ... ' Vh,m-2V of finite differences by the 
expressIOn 

( 

f(a + h) - f(a) ) 

1 
f(a+2h)-f(a) 

Vh = (Amt 

f(a + (m - 2)h) - f(a) 

and from Eqs. (8) we obtain, for j = 1, ... ,m - 2, the error bound 

IVh,j - hj f(J)(a)1 < ern hm- 1 sup If(m-l)(ol, 
~E[a.a+(m-2)hl 

(9) 
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where em is independent of [a, b], h, and the function 1. 
The expressions vh,j for the derivatives are used to define the left-end correc­

tion lD;':U, a) by the formula 

m/2-l B 
lD;:U, a) = ~ h (2i

2)! V~2i_l. (10) 

Similarly, in Eqs. (8) we replace a by band i by -i to obtain finite-difference 
expressions wh = (Wh,l' ... ' Wh,m_2)T for the derivatives at the right endpoint 
(hf'(b), h2 1(2)(b), ... , hm- 21(m-2)(b))T, and we define the right-end correction 
lD;':U, b) by the formula 

(ll) 

We thus obtain the corrected trapezoidal rule 

(12) 

that depends only on the values of 1 at the equispaced points a, a + h, . .. , 
b - h, b. Combination of the Euler-Maclaurin formula (Eq. 7) with the finite 
differences error bound (9) yields the bound 

where lem is independent of [a,b], h, and the function 1. 
Quadrature rules equivalent to 1 T;:" are derived by Weinberger [6] using a 

different technique. 
Alternatively, the corrections to the trapezoidal rule may be concentrated in 

the subintervals [a, a + h) and (b - h, b] by replacing h by hi = hj(m - 1) in 
Eqs. (8) to define revised endpoint corrections 2D;':U, a) and 2Dr;:U, b) by the 
formulae 

m/2-l 
h B2i m 2D;:U, a) L (2i)! vh',2i-1 (13) 

i=1 
m/2-1 

h B2i m 2D;':U, b) = L (14) 
i=1 

(2i)! wh',2i-1· 

These endpoint corrections give us the "crowded" corrected trapezoidal rule 

(15) 
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For the quadrature 2T;: we obtain the error bound (as for IT;:) 

where 2em is independent of [a, bj, h, and the function f. This rule has the 
advantage over the equispaced rule that the constant of the error term is smaller; 
it has the disadvantage that the coefficients are larger and hence produce larger 
round-off errors. Independently of these two characteristics, the crowded rule 
is a suitable starting point for construction of rules for integral equations with 
singular kernels, as we shall see below. 

Coefficients of finite-difference expressions for the derivatives, equispaced cor­
rected trapezoidal rules, and crowded corrected trapezoidal rules are given in an 
appendix. 

2.2 Singular Integrands 

We now consider integrands of the form 

f(x) = 4>(x) s(x) + ~(x) (16) 

for all x E (0, b], where 4>, ~ E Cm[O, bj and the function s contains the singular 
part of f. In particular, we construct quadratures for f, where s is given by the 
formula s(x) = log(x) or the formula s(x) = xC> with ° < lal < l. 

We define T~ to be the trapezoidal rule on [0, b] minus the left-end, by the 
formula 

T~ (f, b) = h (f ( h) + ... + f (b - h) + ~ f ( b)) , 

where h = bin, and define the right-end corrected rule T~ by the formula 

T~(J, b) = T~(J, b) - 2D';:(J, b), (17) 

where the term 2D':(J, b) is the finite-difference approximation to the Euler­
Maclaurin correction, as defined in Eq. (14). Given a positive integer I and two 
finite sequences 13 = (131,(32, ... , (31) and X = (Xl> X2,···, XI)' with 0 < Xl < X2 < 
... < XI :::; 1, we define the left-end correction L~ by the formula 

I 

L~(J) = "L13i f(xi h). 
i=1 

We now define the linear mapping T~: £} [0, b] ---+ R by the formula 

T~(J, b) = T:(J, b) + L~(J). (18) 

6 
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Although L~ and Tf! depend on x, this sequence is generally implied (see Remark 
2.1 below) and we omit the symbol X from our notation. The mapping Tf! with 
suitable choice of f3 and X will be used as a quadrature formula for functions f 
of the form given in Eq. (16). We now show how f3 may be chosen, given X. 

For positive integers k and n we consider the following system of linear equa­
tions with respect to the unknowns f3n = (f3f,·· . ,f3-:'A): 

(19 ) 
2k b 

Lf3j(xj h)i s(X j h) = 10 xis(x)dx-T:(xis(x),b), 
j=l 

for i = 0,1, ... , k - 1. We will see below that this system has a unique solution 
f3n and for functions f of the form given in Eq. (16) the rule T.f!" is a quadrature 
with convergence of order at least k - 1. 

Remark 2.1 In Rokhlin [4], the points XI, ... ,X2k are chosen to be equispaced, 
namely Xi = i/(2k). While this choice leads to satisfactory quadratures for k :::;3, 
larger values of k co~respond to coefficients f3r, ... ,f3~k which are large enough to 
introduce substantial round-off errors to fixed-precision computations. We have 
found that alternative spacing of the points can be chosen so as to delay the 
growth in the coefficients. Letting Xl, ... , X2k be half-Chebyshev points 

(
2i - 1 7r) 

Xi = 1 - cos --:U-' 2" (20) 

results in f3f, ... , f3~k which are satisfactory for k :::; 5. Coefficients for both 
equispaced points and half-Chebyshev points are given in the appendix. 

Our primary purpose in this paper is the development of quadratures for 
integral operators with diagonally-singular kernels. We consider kernels of the 
form 

I«x, i) = ¢(x, i) s(lx - il) + 'I/J(x, i), 

where ¢, 'I/J E Cm[a, b]2 and s is as introduced above. To compute the value 

(KJ)(e) = lb I«e, i) f(i) di, (21) 

the interval [a, b] is divided into [a, e] and [e, b]. The integrand is singular on one 
end of each of these intervals, so the quadrature Tf!" is applicable. We augment 
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our notation by defining the quadrature LTt
n 

for an interval [c, b] with a left-end 
singularity by the formula 

{3n _ (3" 
LTn (f(x), c, b) - Tn (f(x + c), b - c). 

Similarly, we define the quadrature RTt
n 

for an interval [a, c] with a right-end 
singularity by the formula 

{3n _ {3n (( ) ) RTn (f(x),a,c) -Tn f c-x ,c-a. 

Now we define a quadrature for the integral in Eq. (21) by defining the mapping 
T:'i: el[a, b]2 ~ n by the formula 

(22) 

and further define T:'o(G) = LTtn(Go,a,b) and T:'n(G) = RTtn(Gn,a,b). Here 
G: [a, bj2 ~ nand Gi : [a, b] ~ n is the restriction of G defined by the formula 
Gi(t) = G(Xi' t) where Xi = a + i h for i = 0,1, ... , n, and h = (b - a)/TL The 
quadrature T:'i has convergence of order k - 1, uniformly in i, as we will show in 
the next section. 

3 Analytical Properties of the Corrected Rules 
. , 

The following lemma is a restatement of a classical result (see, e.g., [3]). 

Lemma 3.1 Suppose that the function s: (0, b] ~ n is given by the formula 
s(x) = log(x) or the formula s(x) = X

CX with 0 < lal < 1. Then the system of 
Eqs. (19) has a unique solution f3n = (f3~, ... , f3~k). 

The next two lemmas are proven in [4]. Lemma 3.2 states that the coefficients 
f3~, ... ,f3~k have limiting values as n ~ (X) and that the rate of convergence to 
these values depends on the difference between the orders of correction k on the 
left end and m on the right end. Lemmas 3.2, 3.3, and 3.4 will be used in the 
proof of Theorem 3.5, below. 

Lemma 3.2 (Rokhlin) Suppose that k and m are positive integers with k < m, 
the function s is as specified in Lemma 3.1, and for each positive integer n, the 
coefficients f3n = (f3~, ... ,f3~k) are the solution to the linear system of Eqs. (1.9). 
Then there exist coefficients 13 = (131, .. . ,f32k) and a constant c > 0 such that 

for i = 1, ... ,2k and all n. 
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Lemma 3.3 (Rokhlin) Suppose that the function s is one of the singula1' func­
tions specified in Lemma 3.1, k is a positive integer, and <.p E Ck[O, bj satisfies 

o = cp(O) = cp'(O) = ... = cp(k)(O). 

Then the function w = cp . s is defined on the closed interval [0, bj and 

o = w(O) = w'(O) = ... = w(k-l)(O). 

For the function w = cp . s, whose kth derivative is unbounded near 0, the 
simplified Euler-Maclaurin error expression 

with 0 < ~ < b, is not useful. In this case we substitute the following bound. 

Lemma 3.4 Suppose that k and n are positive integers and the function w 

[0, bj -t n is as specified in Lemma 3.3, above. Then the error E~( w) of the 

Euler-Maclaurin formula (Eq. 7) has the bound 

(23) 

Thus, there is a constant Ck > 0, independent of n, b, and the function w, such 

that 

(24) 

where h = bin. 

Proof The bound (23) is immediate from the definition of E~ given in Eq. (7). 
The error bound (24) then follows from the combination of the Euler-Maclaurin 
formula, the observation that D~( w, 0) = 0, the definition of Tt (Eq. 17), and 
bound (9). 0 

The following theorem is the foundation for the corrected trapezoidal rules for 
singular functions. It is a slight generalization of a theorem found in Rokhlin [4], 
in that the error bound is established for integrals taken on subintervals [0, *bj, 
for i = 1, ... ,n, of the interval [0, b], provided that the trapezoidal points' spacing 
h = bin is preserved. 

Theorem 3.5 Suppose that k and m are positive integers with 2 ::; k < m and 
the function f: (0, bj -t n is given by the formula f = </> . s + 'ljJ, whe1'e 

</>, 'ljJ E cm[o, bj and the function s is as specified in Lemma 3.1. Further suppose 

that for each positive integer n, (3n is the solution of Eqs. (19) and Tr is defined 
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by Eq. (i8). Then there exists c > 0 independent of b and the function f such 
that 

iTt u, i/n. b) - r*b f(x) dxi < c b hk- 1 sup (IrP(k)(OI + IV,,(k)(OI) (2.5) 
Jo ee[O,b] 

for all nand i = 1, ... , n. 

Proof We write the function f as a sum of two functions; one is integrated 
exactly by the quadrature and the other has several zero derivatives at O. 

Let P(<p) denote the k-term Taylor expansion of a function <p E Cm[O, b] about 
x = 0: 

k-l <pU)(O) . 
P(<p)(x) = L " xJ. 

j=O J. 

Now we define rPr = rP - P(rP) and 'ljJr = 'ljJ - P('ljJ) so we have 

o = rPr(O) = 'ljJr(O) = ... = rP~k-l)(O) = 'ljJ~k-l)(O). (26) 

We further define fp = P( rP) . s + P( 'ljJ) and fr = rPr . S + 'ljJr, so that f = fp + I" 
and we let bi = *b. Now we bound the error by the inequality 

iTtU,b;) _labi 

f(x) dxi < iTtUp,bi) _labi 

fp(x) dxi 

+ iTt Ur' b;) - labi 

fr(x) dxi ' 

where by Eqs. (19) the first term on the right vanishes. By the definition of Tt 
(Eq. 18), the second term satisfies 

By Eq. (26) and Lemma 3.3 the function fr = rPr . S + 'ljJr vanishes at 0 and has 
vanishing derivatives, 

from which, in combination with error bound (24), we obtain 

(27) 

for some constant Ck independent of n, b, i, and the function Ir. For the remaining 
term, we define M¢> = k!sup IrP(k)(x)1 and M", = k!sup 1'ljJ(k)(x)l, both suprema 
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taken for x E [0, bJ, therefore finite, and M{J = sup f3j, taken over positive integers 
i and j = 1, ... ,2k. M{J is finite by Lemma 3.2, and we obtain 

2k 2k 
'Lf3;fr(X j h) < M{3 'L Ifr(Xj h)1 
j=l j=l 

2k 
< M{3 'L (Mq, (Xj h)k IS(Xj h)1 + M", (Xj h)k) 

j=l 

< M{3 (2k) (Mq, + M",) hk-\ (28) 

for sufficiently large n. Combining bounds (27) and (28) yields (25). 0 
Note that Theorem 3.5 establishes that the quadrature T!nU, b) converges 

to the integral of f on the fixed interval [0, b], with order of convergence at least 
k - 1. Additionally, however, it establishes the same convergence on subintervals 
[0, *bJ of [0, b] with correspondingly fewer quadrature points. This characteristic 
is essential for proper treatment of non-periodic integral operators; in fact, it 
assures uniform convergence of the quadratures T~i defined inEq. (22). 

Corollary 3.6 Suppose that k and m are positive integers with k < m and that 
the kemel K: [a, b] X [a, b] ---+ n is given by the formula 

K(x, t) = </J(x, t) s(lx - tl) + 'lj;(x, t) 

where </J,1P E Cm([a,b] X [a,b]) and 8 is as o5pecified in Lemma 3.1. We further' 
suppose f E Cm[a, b] and define the function G: [a, b] X [a, b] ---+ n by the f01'mula 
G(x, t) = K(x, t) f(t). There exists Ck > ° such that 

I 
k lb I Ck Tni(G) - Xi G(x, t) f(t) dt < nk- 1 

(29) 

for all nand i = 0,1, ... ,n. 

Proof We observe that Mq, and M", defined by the formulae 

ak</J(x, t) 
sup a k 

x,tE[a,b] t 

ak'lj;(X, t) 
sup a k 

x,tE[a,b] t 

are finite, then apply Theorem 3.5. 0 
The quadratures T~i achieve uniform convergence and thus, combined with 

the kernel K and the coefficient p, represent an operator R which approximates 
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the integral operator x:, defined above. An issue that arises in computing Rf 
for a function f, however, is that T!:i requires the values of f at non-equispaced 
points in the interval [a, b] in addition to the points a, a + h, ... , b - h, b. This 
issue can be handled by using k-point interpolation, for f E Cm[a, b]. We have 
the estimate 

jt(O - t, Ci(O f(a + (i + je) h)1 < :k' 
where Cl(O, ... , Ck(e) are Lagrange interpolation coefficients and jf. is chosen 
such that e E [a + (1 + je) h, a + (k + jf.) h]. Replacing f(e) in T!:i(f{ f) by the 
interpolation preserves our error estimates. 

4 Numerical Examples 

In this section we present numerical examples of the corrected quadrature rules 
applied to differentiable and singular integrands. FORTRAN routines were writ­
ten which incorporate the corrections developed in §2, and the quadratures were 
computed in double-precision arithmetic on a Sun Sparcstation 1. The correc­
tion weights themselves, which are given in the appendix, were computed exactly 
with Maple (for differentiable integrands), and in quadruple-precision arithmetic 
in FORTRAN running on a DEC microVAX (for singular integrands). 

Table 1 shows the errors in using quadratures of order 4, 8, and 12 to ap­
proximate the integral of a smooth function, comparing the equispaced corrected 
trapezoidal rule to the "crowded" corrected trapezoidal rule. Errors from the 
uncorrected trapezoidal rule are also shown for comparison. We make several 
observations: 

1. Full single or double precision accuracy is easily achievable with the higher­
order rules. 

2. The observed rate of convergence matches that expected quite closely, as 
can be seen by comparing the errors for various n. 

3. The "crowded" rules get a substantial jump on the equispaced rules and 
show small errors almost as soon as the integrand is resolved by the quadra­
ture points. 

4. The crowded rules ultimately achieve somewhat less preClSIOn than the 
equispaced rules, due to roundoff error resulting from the large correction 
weights, but this effect is important only if full double-precision accuracy 
is required. 

12 
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Table 1: The quadrature rules IT;:: of Eq. (12) and 2T;:: of Eq. (15) a1'e used 
to compute J~ [cos{21x) + sin{22x)] dx and relative errors are shown f01' various 
values of n, m. 

Trapez. Equispaced rule IT;:-
n Rule m=4 m=8 .m = 12 

10 -0.397E+00 -0.235E+00 0.128E+01 -0.499E+01 
20 -0.936E-01 0.840E-02 -0.U9E-01 0.385E-02 
40 -0.231E-01 0.137E-02 -0.181E-04 -0.226E-05 
80 -0.575E-02 0.108E-03 0.863E-07 -0.847E-10 

160 -0.144E-02 0.733E-05 0.617E-09 0.676E-13 
320 -0.359E-03 0.474E-"-06 0.286E-U -0.189E-:-15 
640 -0.897E-04 0.301E-07 0.966E-14 -0.227E-14 

12S0 -0.224E-04 0.190E-OS -0.170E-14 -0.151E-14 

"Crowded" rule 2T;:-
n m=4 m= S m = 12 

10 0.425E-02 0.103E-04 0.U9E-06 
20 0.133E-02 0.866E-06 0.653E-09 
40 0.109E-03 0.462E-OS -O.420E-U 
SO 0.74SE-05 0.201E-1O 0.121E-U 

160 0.4S6E-06 0.793E-13 0.SIOE-12 
320 ' 0.309E-07 O.OOOE+OO 0.S63E-13 
640 0.195E-OS -0.227E-14 -0.172E-12 

12S0 0.122E-09 -0.170E-14 O.130E-12 

In summary, the corrected rules should be preferred to the trapezoidal rule when­
ever high accuracy is desirable. The "crowded" corrected trapezoidal rule of order 
12 performs very well. 

Table 2 shows the errors from using the corrected trapezoidal rule for singular 
functions to compute the integral of an integrand with logarithm singularity. The 
rule was applied for various numbers of quadrature points n and various k, and for 
equispaced and half-Chebyshev Xl, ... ,X2k. In each case the correction weights 
/3 = (/31, ... ,/32k) were chosen to be the limiting values (of Lemma 3.2), given in 
the appendix. Note that Theorem 3.5 assures us of convergence of order at least 
k - 1. We observe: 

1. Although we have proven that the order of convergence is at least k - 1, 
the actual order of convergence appears to lie between k and k + 1 and the 
convergence pattern is somewhat irregular. 

2. The correction weights from equispaced points Xl, ... ,X2k are much larger 
than those from half-Chebyshev points; nevertheless, both versions of the 
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Table 2: The quadrature rule T~ of Eq. (18) is used to compute the integral 
J~[cos(21x) + sin(22x) + log(x)(cos(23x) + sin(24x))] dx and relative errors are 
shown for various values of n, k. The right end is corrected to eighth ordeT 

(m = 8). 
Equispaced points Xl, ... ,X2k 

n k=2 k=3 k=4 k=5 
10 -0.548E+00 -0.219E-01 0.429E-01 -0.608E-02 
20 0.386E-02 -0.657E-02 0.506E-03 0.394E-04 
40 0.403E-02 -0.242E-03 -0.169E-05 0.614E-06 
80 0.663E-03 -0.341E-05 -0.236E-06 0.482E-08 

160 0.964E-04 0.381E-06 -0.971E-08 0.809E-11 
320 0.139E-04 0.545E-07 -0.363E-09 -0.593E-12 
640 0.202E-05 0.509E-08 -0.135E-10 0.258E-14 

1280 0.292E-06 0.414E-09 -0.497E-12 0.861E-15 

Half-Chebyshev points Xl, ... ,X2k 

n k=2 k=3 k=4 k=5 
10 -0.510E-01 -0.667E-02 -0.503E-02 -0.110E-02 
20 0.143E-02 0.599E-04 -0.166E-04 0.553E-05 
40 0.484E-03 0.615E-05 0.732E-06 0.877E-07 
80 0.750E-04 0.349E-06 0.351E-07 0.653E-09 

160 0.108E-04 0.203E-07 0.132E-08 -0.312E-12 
320 0.156E-05 0.125E-08 0.492E-1O -0.148E-12 
640 0.227E-06 0.796E-10 0.183E-11 -0.445E-14 

1280 0.327E-07 0.519E-11 0.670E-13 -0.100E-14 

Table 3: The quadrature rule T:i of Eq. (22) is used to compute F( x) = 

;;:[cos(21xt) + sin(22xt) + s(lx - tl)(cos(23xt) + sin(24xt))] dt) with x = i/n 
for i = 0,1, ... , n. The function s is singular and has one of three fOTms given 
below. The relative £} errors for the quadratures with k = 4 are shown. 

Three Choices of Integrand f( x, t) 
n s(x) = log(x) s(x) = x- I / 2 s(x) = xl / 2 

10 0.302E-03 0.134E-03 0.482E-04 
20 0.527E-05 0.187E-05 0.579E-06 
40 0.681E-07 0.487E-07 0.206E-07 
80 0.573E-08 0.266E-08 0.611E-09 

160 0.283E-09 0.132E-09 0.181E-10 
320 0.118E-10 0.613E-11 0.547E-12 
640 0.454E-12 0.300E-12 0.169E-13 

1280 0.216E-13 0.155E-12 0.271E-14 
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quadrature rule perform well and lead to nearly full precision accuracy in 
practice. 

The uncorrected trapezoidal rule, with the left end omitted, gives very slow 
convergence for this problem and is not practical for achieving high accuracy. 

Our final examples of the corrected trapezoidal rules, in Table 3, demonstrate 
the uniform convergence of the quadratures for various integral operators. In 
these examples, we approximate the integral Fi = f~ f(Xi, t) dt for Xi = ijn and 
i = 0,1, ... , n, by the quadrature T!:i(f), defined in Eq. (22). The table shows 
the relative £2 error of the approximations, defined by the formula 

(30) 

By taking ratios of the errors for different n, it can be seen that (for k = 4) the 
rate of convergence is uniformly of order at least 4. For the logarithm singularity, 
the order of convergence is about 4.5, and for the square root singularity, it is 
nearly 5. In each case, n = 20 produces roughly single-precision accuracy. 

A Quadrature Weights 

This appendix contains various weights and correction coefficients used in the 
quadratures of the paper. The coefficients in the finite difference expressions 
for odd-numbered derivatives, which appear in the Euler-Maclaurin formula, as 
well as the corresponding correction coefficients are tabulated (Tables 4 and 5 
and 6). The limiting values of the correction weights used for the singularities 
s( x) = log( x) and s( x) = xC> for a = ±~ are shown for equispaced correction 
points (Table 7) and for half-Chebyshev correction points. The correction weights 
for all finite n (which are infinite in number) are obtained by interpolation from 
the weights for a few values of n. The coefficients of the interpolating polynomials 
are quite numerous, however, and are not shown. They are available from the 
author. 
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Table 4: Finite-difference coefficients for odd-numbered derivatives to vaTZous .. 
orders of approximation are shown. The table entries are coefficients from the 
formula hj jU)(x) = (lid) "L~(/ Ci f(x + i h) + O(hm), for j = 1,3,5,7,9 and 
Tn = 4,6,8,10,12. 

hf(1)(x) hSf{S)(x) 
O(h4) O(h6) O(hB) O(hlO) O(h12) O(hB) O(hlO) O(h12) 

d 2 12 60 840 2520 2 6 288 
Co -3 -25 -147 -2283 -7381 -7 -81 -8591 
CI 4 48 360 6720 25200 40 575 72492 
C2 -1 -36 -450 -11760 -56700 -95 -1790 -278313 
C3 16 400 15680 100800 120 3195 6407.52 
C4 -3 -225 -14700 -132300 -85 -3580 -979878 
Cs 72 9408 127008 32 2581 1039656 
C6 -10 -3920 -88200 -5 -1170 -774402 
C7 960 43200 305 399408 
CB -105 -14175 -35 -136347 
C9 2800 27788 
CIO -252 -2565 

h3 f(3)(x) h7 f(7)(X) h9f(9)(X) 
O(h6) O(hB) O(hlO) O(h12) O(hIO) O(hI2) O(h12) 

d 2 8 240 30240 2 24 2 
Co -.5 -49 -2403 -42047.5 -9 -60.5 -11 
CI 18 232 13960 2876868 70 .5628 108 
C2 -24 -461 -36706 -9389763 -238 -23583 -477 
C3 14 496 57384 19227792 462 58632 1248 
C4 -3 -307 -.58280 -27098442 -560 -95802 -2142 
Cs 104 39128 27147960 434 107520 2520 
C6 -15 -16830 -19395138 -210 -83958 -2058 
C7 4216 9693648 58 45048 1152 ,.1 

CB -469 -3229227 -7 -15897 -423 
C9 645412 3332 92 
ClO -58635 -315 -9 
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Table 5: Equispaced endpoint corrections transform the familiar trapezoidal 

rule into a high-order quadrature for functions with several continuous deriva­

tives. The quadrature rules are given by the formula f: f( x) dx = Tn(f)+ 

(h/d)L::~o2cdf(a+ih)+f(b-ih)] + O(hm), where h = (b-a)/n and Tn (f) = 
h [!f(a) + f(a + h) + ... + f(b - h) + !f(b)] . 

O(h2) O(h4) O(h6) O(hS) O(hlO) O(h12) 
d 1 24 1440 120960 7257600 958003200 
Co 0 -3 -245 -23681 -1546047 -216254335 
Cl 4 462 55688 4274870 679543284 
C2 -1 -336 -66109 -6996434 -1412947389 
C3 146 57024 9005886 2415881496 
C4 -27 -31523 -8277760 -3103579086 
Cs 9976 5232322 2939942400 
C6 -1375 -2161710 -2023224114 
C7 526154 984515304 
Cs -57281 -321455811 
Cg 63253516 
ClO -5675265 

Table 6: Corrections crowded into the intervals [a, a + h) and (b - h, b] con­

vert the trapezoidal rule into a high-order quadrature for functions with sev­

eral continuous de1'ivatives. The quadrature rules have the form f: f( x) dx = 
Tn (f) + (h/d) L::~o2 cdf(a+ m~l h) + f(b- m~l h)] + O(hm), where h = (b- a)/n 
and Tn (f) = h [~f( a) + f( a+ h) + ... + f(b- h) +! f( b)]. These 1'ules have smaller­
error constants, but larger coefficients, than the equispaced corrected rules. 

O(h2) O(h4) O(h6) O(hS) O(hlO) O(h12) 
d 1 8 288 17280 89600 87091200 
Co 0 -3 -125 -7889 -41943 -41374135 
Cl 4 30 13832 -372570 4717178004 
C2 -1 240 -57421 2898654 -43825028709 
C3 -190 133056 -9112466 180245487576 
C4 45 -130067 15663360 -428859839166 
Cs 58744 -15657582 649926182400 
C6 -10255 9131810 -649910688834 
C7 -2897.574 428850243624 
Cs 388311 -180220260891 
Cg 43821791596 
ClO -4703691465 
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Table 7: The limiting values of the correction weights, at equispaced points, 
for the corrected trapezoidal rules for singular functions a7'e tabulated. The 
corrected quadrature rules are given by the formula J: f(x) dx == T~(f)+ 
h L7!1 (3i f(a + 2V~) + (hid) L~o2 Ci f(b - m~l h), where h = (b - a)ln, 
T~(f) = h (.f(a + h) + f(a + 2h) + ... + f(b - h) + !f(b)], and the coefficients d 

and Co, ... ,Cm -2 are given by Table 6. 

Singularity s(x) = log(x - a) 
k=2 k=3 

{31 0.1601298415357170E+01 0.2228766018460087E+01 
{32 -0.3382558521919485E+01 -0.1231212070062612E+02 
{33 0.3627888464434128E+01 0.3157965997308673E+02· 
{34 -0.1346628357871812E+01 -0.3840391590010434E+02 
{3s 0.226 7350459115253E+ 02 
{36 - 0.5265893981968890E+ 01 

k=4 k=5 
{31 0.3093483401777122E+01 0.4335882754006495E+01 
{32 -0.3101788376740780E+02 -0.6931374375731333E+02 
{33 0.1362059155903270E+03 0.4590379369965628E+03 
{34 -0.3147474808724213E+03 -0.1630223863113166E+04 
{3s 0.4215054127612634E+03 0.3509093316535128E+04 
{36 -0.3287854038787327E+03 - 0.4819809483739626E+ 04 
{37 0.1388011671370668E+03 0.4271587513841620E+04 
{3s -0.2455521037187227E+02 -0.2374001155274844E+04 
{3g 0.7547424129498612E+03 
(31O -0.1049488171922296E+03 

Singularity s(x) = (x - a)-1/2 
k=2 k=3 

{31 0.3338954623777353E+01 0.5156862384200115E+01 
(32 -0.1036918555513964E+02 -0.3718025418572306E+02 
{33 0.1238817390561390E+02 0.1050278047880726E+03 
{34 -0.4857942974251604E+01 - 0.1388205130918806E+03 
{35 0.8799431664143500E+02 
{36 -0.2167821653610409E+02 
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Table 7: (continued) 

Singularity s(x) = (x - a)-1/2 (continued) 
k=4 k=5 

/31 0.7889576157976986E+01 0.1191640221424121E+02 
/32 -0.1014839102693306E+03 -0.2431211398143441E+03 
/33 0.4982052353339497E+03 0.1823927314310889E+04 

/34 -0.1241778604543411E+04 - 0.708366608506080 7E+ 04 

/35 0.1751093993580452E+04 0.1635686640624526E+05 
/36 -0.1419085152097947E+04 -0.2381679753707451E+05 

/37 0.6179863268019096E+03 0.2217597560756524E+05 
/38 -0.1123274649636003E+03 -0.1285030321889555E+05 

/39 0.4231931207608981E+04 
/310 -0.60622895 70994023E+ 03 

Singularity s(x) = (x - a)1/2 
k=2 k=3 

/31 0.1076226369733505E+01 0.1403733895743621E+01 
/32 -0.1472473730142097E+01 -0.6106269754659710E+01 

/33 0.1382935017750346E+01 0.1458214411894674E+02 
/34 -0.4866876573417537E+00 -0.1639615278631818E+02 
/35 0.8952282755716858E+01 

/36 -0.1935738229429337E+01 

k=4 k=5 
/31 0.1761384695584808E+01 0.2301960768321394E+01 
/32 -0.1382118344852977E+02 -0.2856244752621036E+02 
/33 0.5459150117813370E+02 0.1642204330046712E+03 
/34 -0.1173574845498706E+03 -0.5199121092937581E+03 
/35 0.1507790199321616E+03 0.1011593120489479E+04 
/36 -0.1147784911579322E+03 -0.1264688737067177E+04 
/37 0.4 762309598361213E+02 0.1027260908792144E+04 
,138 -0.8297842633159577E+01 -0.5280676861522366E+03 
/39 0.1570202164406574E+03 

:;.. /310 -0.2066565945589198E+ 02 
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Table 8: The limiting values of the correction weights, at half-Chebyshev 
points, for the corrected trapezoidal rules for singular functions are tabulated. 

The quadmtures are given by f: f(x) dx == T~(J) + h L;!l f3i f(a + Xi h)+ 
(hid) L~o2 Ci f(b - m~l h), where h = (b - a)ln, Xi = 1 - cos((2i - 1)7r 1(8k)), 
T~(J) = h [J(a + h) + f(a + 2h) + ... + f(b - h) + ~f(b)L and the coefficients d 
and Co, ... ,Cm -2 are given by Table 7. 

Singularity s( x) = log( x - a) 
k=2 k=3 

/31 0.5603992216960789E-Ol 0.2395413023703419E-01 
/32 0.2870630583396921 E+OO 0.1743092878178258E+00 
/33 0.2563533589170907E+00 -0.1631724711422584E+00 
/34 - 0.9945633942639063E- 01 0.9387069242218954E+00 
/35 -O.5880276430135620E+00 
/36 0.1142297718790650E+00 

k=4 k=5 
/31 0.3338537800974016E-01 0.1916264301337224E-02 
/32 -0.1737066212781738E+00 0.1567268574189051E+00 
/33 0.1198836762516400E+01 -0.4334786391079948E+00 
/34 -0.2591374963545573E+01 0.7215818540402889E+00 
/35 0.3883697343902998E+01 0.1482966328206821E+01 
/36 -0.2430220427598129E+01 - 0.65959386852468 77E+ 0 1 
/37 0.6270755476376530E+00 0.1169258889232862E+02 
/38 -0.4769301964491491E-01 -0.9958531304701892E+01 
/39 0.4103424553775595E+01 
/310 -0.6712561210148048E+00 

Singularity s(x) = (x - a)-1/2 
k=2 k=3 

/31 0.8353164416920675E-01 0.3888639530245085E-01 
/32 0.1911747004918826E+00 0.8640672385266692E-01 
/33 0.3657110693973134E+00 0.3880300543933000E-01 
/34 -0.1404174140584028E+00 0.7069014304227 469E+00 
/35 -0.4537263116382184E+00 
/36 0.8272875662102377E-01 
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Table 8: (continued) 

Singularity s(x) = (x - a)-1/2 (continued) 
k=4 k=5 

(31 0.2823063071751857E-01 0.1604517803043481E-01 
(32 -0.1016030472473191E+00 -0.2672763418512212E-01 
(33 0.8957498450 168363E+ 00 0.4952499866825667E+00 
(34 -0.1944630011805141E+0l -0.1916835699721412E+01 
(35 0.3079540564910779E+01 0.6247645777407226E+01 
(36 -0.1835281366554477E+01 -0.1233093115169777E+02 
(37 0.3822511312525950E+00 0.1631924962150504E+02 
(38 -0.4257746290791726E-02 -0.1237865585994330E+02· 
(39 0.4849695950284900E+01 
(310 -0.7747361683625560E+00 

Singularity s(x) = (x - a)1/2 
k=2 k=3 

(31 0.3685550676579945E-01 0.1729631990952830E- 01 
(32 0.3411680628277778E+00 0.2024441114244492E+00 
(33 0.2026521530973060E+00 -0.2155157764926719E+00 
(34 -0.8067572269088319E-01 0.9910326020047757E+00 
(35 - 0 .6154646588009935E+00 
(36 0.1202074019549121E+00 

k=4 k=5 
(31 0.7512196681423955E-01 -0.6317627640571476E-01 
(32 -0.4538891994788910E+00 0.7370068868212822E+00 
(33 0.2050275204711021E+01 -0.2828700163634487E+01 
(34 -0.4084723895152133E+0l 0.6657003574957570E+01 
(35 0.5503263764388441 E+O 1 -0.8199869710972154E+01 
(36 -0.3512451256619964E+01 0.4165258132856930E+01 

)!o, (37 0.1038747521068656E+01 0.35544554 70298683E+0 1 
(38 -0.1163441057313696E+00 -0.5923097194990581E+01 
(39 0.29134 78385611404E+0 1 
(310 -0.5123591045429318E+00 
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