NONF-910432]- -

LBL-2Gi04

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division
Presented at the 7th iEEE International Conference on Lo

re
Data Engineering, Kobe, Japan, April 8-12, 1991, and to - ,99/
be published in the Proceedings

Problems Underlying the Use of Referential Integrity
Mechanisms in Relational Database Management Systems

V.M. Markowitz

December 199()

RV T =1

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor-
ria, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ermnment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-

poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL--30104

DE92 004304

Probl'ems Underlying the Use of Referential Integrity
Mechanisms in Relational Database Management Systems

Victor M. Markowitz

Computing Science Research & Development
Information & Computing Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

December 1990

Proceedings of. the 7th IEEE International Conference on
Data Engineering, Kobe, Japan, April 8-12, 1991

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
piocess disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

%‘G / g‘&g‘ ER

This work was supported by the Director, Office of En i
. g ergy Research, Applied Mathematics
Sciences Research Program and the Office of Health and Environmental Rgsea:ch Programlof
the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
_
S
DISTRIBUTION OF THiS DOCUMENT IS UNLIMITED

PROBLEMS UNDERLYING THE USE OF REFERENTIAL INTEGRITY
MECHANISMS IN RELATIONAL DATABASE MANAGEMENT SYSTEMS *

Victor M. Markowitz

Lawrence Berkeley Laboratory
Information and Computing Sciences Division
1 Cyclotron Road, Berkeley, CA 94720

ABSTRACT

Referential integrity is used in relational data-
bases for expressing existence dependencies
between tuples. Relational database manage-
ment systems (RDBMS) provide diverse
referential integrity capabilities. Thus, in some
RDBMSs referential integrity constraints can be
specified non-procedurally (declaratively),
while in other RDBMSs they must be specified
procedurally. Moreover, some RDBMSs restrict
the class of allowed refereatial integrity con-
straints. We examine in this paper the main
problems underlying the use of referential
integrity mechanisms in three representative
RDBMSs, DB2, SYBASE, and INGRES.

1. INTRODUCTION

In relational databases existence dependencies between
tuples are expressed using referential integrity constraints
[1]; referential integrity constraints are specified by associ-
ating a foreign-key in one relation with the primary-key of
another relation [3). Referential integrity constraints are
usually associated with referential integrity rules that
define the behavior of the relations involved in these con-
straints under insertion, deletion, and update.

Presently, several relational database management
systems (RDBMS), notably IBM’s DB2, SYBASE, and
INGRES, support the specification of referential integrity
constraints. The referential integrity mechanisms provided
by these systems are different and difficult to use. Thus,
SYBASE [11] and INGRES (7] provide mechanisms
(triggers in SYBASE and rules in INGRES) for specifying
referential integrity constraints procedurally. Conversely,

* Issued as technical report LBL-30104. This work was supporncd
by the Office of Health and Environmental Rescarch Program and the
Applicd Mathematical Sciences Research Program, ut' the Office of Ener-
gy Rescarch, US. Department of Encrgy, under Contna DE-ACO3-
T6S100098.

DB2 {6] supports non-procedural (declarative)
specifications of referential integrity constraints, but with
restrictions on the structure of such constraints. In this
paper we examine and compare the referential integrity
mechanisms of DB2, SYBASE, and INGRES, and discuss
the main problems undedlying their use.

We examine the mechanisms provided by SYBASE
and INGRES for the procedural specification of referential
integrity constraints. We show that although conceptually
similar, these mechanisms are technicaily different, with
the INGRES rule mechanism being more flexible and less
restrictive than the SYBASE trigger mechanism. The task
of specifying procedurally referential integrity constraints
in SYBASE and INGRES is tedious and labor-intensive, and
therefore likely to be avoided by most users. Moreover,
SYBASE and INGRES leave to users the task of specifying
correct referential integrity structures.

Compared to the complexity of the procedural
referential integrity mechanisms of SYBASE and INGRES,
the non-procedural referential integrity mechanism of DB2
is significantly simpler. Furthermore, DB2 has been
unique among RDBMSs in addressing data manipulation
problems caused by certain referential integrity structures.
DB2 attempts to avoid such problems by imposing restric-
tions on the structure of referential integrity constraints it
allows. We show that these restrictions are too stringent
and do not prevent certain data manipulation problems.

The rest of the paper is organized as follows. In sec-
tion 2 we briefly review the relational concepts used in this
paper. In section 3 we examine the mechanisms provided
by SYBASE and INGRES for the procedural specification
of referential integrity constraints. The DB2 mechanism
supporting the declarative specification of referential
integrity constraints is examincd in scction 4. Section S
concludes this paper with a summary and a bricf discus-
sion of further issues. A generic procedural definition for
referenuial integrity constraints is given in the appendix.

2. PRELIMINARY DEFINITIONS

We use in this paper some graph-theoretical concepts. Any
textbook on graph theory (e.g. [S]) can provide the neces-
sary reference. We denote by G =(V,H) a directed
graph with set of vertices V and set of edges H, and by
v;—»v; a directed edge, A, from verter v; to vertex v;; h is
said to be incident from v; to v;. A directed path from
(start) vertex v, to (end) vertex v, is a sequence of alter-
nanng vertices and edges. Vi, ’!j‘\’;‘ ...’l}_ Vi such m’ll. is
incident from v, to v, 1sk<m. A directed cycle is a
directed path whose start vertex is also its end vertex.

We review briefly below the relational concepts
used in this paper. Details can be found in any textbook
(e.g. (8)) for the basic concepts, and in [2] for inclusion
dependencies. We denote by ¢ a tuple and by ¢[W] the
subtuple of ¢ comresponding to the attributes of W. A
tuple is said to be total if it has only non-null values.

A relational schema RS is a pair (R, A), where R is
a set of relation-schemes and A is a set of dependencies
over R. We consider relational schemas with
A=F Ul UN, where F,I, and N denote sets of func-
tional dependencies, inclusion dependencies, and null con-
straints, respectively. A relation-scheme is a named set of
attributes, R;(X;), where R; is the relation-scheme name
and X; denotes the set of attributes. Every attribute is
assigned a domain, and every relation-scheme, R;(X;), is
assigned a relation (value), r;. Two attributes are said to
be compatible if they are associated with the same
domain, and attribute sets X and Y are said to be compati-
ble iff there exists a one-to-one correspondence of compa-
tible attributes between X and Y.

Let R;(X;) be a relation-scheme associated with
relation r;. The total projection of r; on a subset W of X;
is denoted nlw(r;), and is equal to {t[W]|t € r; and
t{W]istotal}.

Let R;(X;) be a relation-scheme associated with
relation r;. A functional dependency gver R; is a state-
ment of the form R;: Y —Z, where ¥ and Z are subsets
of X;: R;: Y 5Z is satisfied by r; iff for any two tuples of
r;otand ¢, t[Y)=¢t'[Y] implies t{Z}=¢"[Z]. A key
associated with R; is a subset of X;, K|, such that
R; : K; 5X; is satisfied by any r; associated with R; and
there does not exist any proper subset of K; having this
property. A rclation-scheme can be associated with several
candidate keys from which one primary-key is chosen.

Let K;(X;) and R;(X;) bc two relation-schemes
associated with relations r; and r;, respectively. An inclu-
sion dependency is a statcment of the form
R, (Y] < R;[Z], where Y and Z arc compatible subscts of
X; and X, respectively; R (Y] € R;[Z] is satisfied by r;

-2-

and r; iff wly (r;) © wlz (r;). I Z is the primary-key of
R; then R;[Y] CR;[Z] is said to be key—based, and Y
is called a foreign-key of R;. Key-based inclusion depen-
dencies are referential integrity constraints ([1], [3]).

Let RS =(R.A) be a relational schema with A
involving referential integrity constraints. The referential
integrity (directed) graph associated with RS,
G;=(V,H), is defined as followss V=R, and
H ={(R;—R;| R,[Y] C R;[Z] € I). The set of referential
integrity constraints of RS is said to be cyclic (resp. acy-
clic) iff G; has (resp. does not have) directed cycles.
associated with an insert—rule, a delete—rule and an
update—rule [3]. There is a unique insert-rule, restricted ,
which asserts that inserting a tuple ¢ into r; can be per-
formed only if the tuple of r; referenced by ¢ already
exists. The delete and update rules define the effect of
deleting (resp. updating the primary-key value in) a tuple
t’ of r; : arestricted delete (resp. update) rule asserts that
the deletion (resp. update) of ¢’ cannot be performed if
there exist tuples in r; referencing 1’ ; a cascades delete
(resp. update) rule asserts that the deletion (resp. update)

L Kelation—-Schemes (Keys are underlined)

(R,) EMPLOYEE (E_SSN, S_SSN, M_SSN, P_NR)
(R2) MANAGER (M_SSN, P_NR)

(Ry) PROJECT (P_NR)

Null Constralnts (Nulls-Not—Allowed)

EMPLOYEE: @ ¥ E_SSN MANAGER: @ E¥ M_SSN
PROJECT: @ E¥P_NR

Referential Integrity Constraints

(I;) MANAGER [M_SSN] ¢ EMPLOYEE {E_SSN]
(I) EMPLOYEE (S_SSN] < EMPLOYEE (E_SSN]
(Iy) EMPLOYEE (M_SSN] ¢ MANAGER [M_SSN]
(I MANAGER [P_NR]} ¢ PROJECT [P_NR]
(/) EMPLOYEE [P_NR] ¢ PROJECT [P_NR]

Rules insert delcte update
(I ls.1y) restricted restricted cascades
(U2 1s) restricted nullifies cascades

il. Referential Integrity Graph :

(&)

li. Database State :

14 44
(R)): rl={§;:g (Ry): r2=[3 ;] Ry): r3=[b
4 - -a c

Abbr. : E(MPLOYEE), M(ANAGER), P(ROJECT), S(UPER VISOR)
Figure 1. A Relational Databasc Example.

of ¢’ implies deleting (resp. updating the subtuple ¢[Y] in)
the tuples of r; referencing ¢ ; and a nullifies delete (resp.
update) rule asscrts that the deletion (resp. update) of ¢*
implies setting to null the subtuple ¢[Y] in all the wples ¢
of r; referencing ¢’ .

A null constraint is a restriction on the way nulls
appear in relations [8]. Let R;(X;) be a relation-scheme
associated with relation r;. A mull constraint is a state-
ment of tle form R;: Y 5Z, where Y and Z are subsets of
X;:R;: Y BZ is satisfied by r; iff for every tuple ¢ of r;,
t[Y] is total only if ¢[Z] is total. All relational database
management systems support the aulls-not-allowed type of
null constraint. A nulls-not-allowed constraint has the
fom R;: @ BZ; R;: @B Z is satisfied by r; iff for every
tuple ¢ of r;, the subtuple ¢[Z] is total.

An example of a relational schema involving key
dependencies, referentia! integrity constraints, and nulls-
not-allowed constraints is shown in figure 1(i); the
referential integrity graph corresponding to this schema is
shown in figure 1(ii).

3. REFERENTIAL INTEGRITY IN SYBASE AND INGRES

SYBASE {11] and INGRES (7} do not allow declarative
specifications of referential integrity constraints. Instead,
they provide mechanisms for specifying such constraints
procedurally. In this section we examine the main prob-
lems underlying the use of these mechanisms.

Referential integrity constraints can be enforced in a
database by executing a referential integrity procedure
whenever a relation is affected by a data manipulation
consisting of tuple insertions, deletions, or updates. Given
a data manipulation 8 involving one or several tuples of a
relation r; associated with relation scheme R;, the referen-
tial integrity procedure corresponding to ; must

(i) revoke & if the relation that would result by apply-
ing & on r;, r’;, does not satisfy the referential
integrity constraints involving R; and associated
with restricted insert, delete, or update rules;

(ii) initiate additional (corrective) data manipulations if
r’; does not satisfy the referential integrity con-
straints involving R; and associated with nullifies or
cascades delete or update rules.

The definition of a generic referential integrity pro-
cedure called RefProc is given in the appendix. RefProc
assumes that for every relation r; there exists a relation
called change;, that records how a given data manipula-
tion § would affect the tuples of r;, without actually apply-
ing & on r;. Every tuple 1 of change; consists of the con-
catcnation of two tuples, ¢ and ¢’ , where ¢ is an exisling
tuple of r; that is going to be deleted or updated, and ¢ is

-3-

a new tuple that is cither going to be inserted in r;, or is
going o replace ¢ inr;.

The mechanism provided vy SYBASE for the pro-
cedural specification of referential integrity constraints
involves a special kind of stored procedures, called
triggers that are activated (fired) when a relation is
affected by a data manipulation. A trigger procedure is
associated with a unique relation-scheme, say R;, anC
employs two system provided relations, called deleted and
inserted : if R; is associated with relation r; then follow-
ing a data manipulation the deleted relation consists of the
r; tuples that are going to be deleted or updated; the
inserted relation consists of tuples that are going to be
inserted into r;, or of newly updated tuples of r;. SYBASE
allows the specification of three trigger procedures per
relation: an insert, a delete , and an update trigger pro-
cedure. These procedures can be derived straightforwardly
from RefProc as follows:

create trigger insertMANAGER on MANAGER for Insert as
begin
declare @row int, @insPROJECT int, @nullPROJECT int,
@insEMPLOYEE int, @nullEMPLOYEE int
select @row = @@rowcount
select @nullPROJECT = count(*) from inserted
where inserted.P_NR = null
select @insPROJECT = count(*) from inserted, PROJECT
where inserted.P_NR = PROJECT.P_NR
select @insEMPLOYEE = count(*) from inserted, EMPLOYEE
where inserted. M_SSN = EMPLOYEE.E_SSN
if @nullPROJECT + @insPROJECT + @insEMPLOYEE
. 1=2*@row
Begin rint Failed insertion into MANAGER because of"
if @nullPROJECT + @insPROJECT = @row
print "Missing reference to PROJECT”
if @nullEMPLOYEE + @insEMPLOYEE != @row
print "Missing reference to EMPLOYEE"
end rollback transaction
end

create trigger delcteMANAGER on MANAGER for delete as
begin
declare @delEMPLOYEE int
select @delEMPLOYEE = count(*) from deleted, EMPLOYEE
where deleted M_SSN = EMPLOYEEM_SSN
if @delEMPLOYEE > 0
begin g .
print "Failed dcletion from MANAGER because of
existing reference from EMPLOYEE™
end rollback transaction
end

Note : @@rowcount = number of tuples affected by insertion

Figurc 2. SYBASE Trigger Examples.

-insert trigger procedures correspond to RefProc[I(1,
24, 3)); delete trigger procedures comespond 10
RefProc [I(1, 2.b, 3), 1I(1, 2.2)); and update trigger pro-
cedures correspond RefProc [I(1, 2.a, 2.c, 3), II(1, 2.b)];

-relations deleted and inserted replace relation change;
as follows: deleted is the projection of change; that
includes existing tuples of r; that are affected by the data
manipulation under consideration; and inserted is the
projection of chasge; that includes new tuples that are
going to be insert=d into r; following the data manipula-
tion under consideration;

- the relational algebra expressions in the definition of
RefProc are translated into SQL expressions.

Trigger procedures are specified in SYBASE's

Transact—SQL which allows in addition to the standard

SQL the specification of control-flow statements. For

example, the insert and delete trigger procedures for

relation-scheme MANAGER of the relational schema of

figure 1(i) are shown in figure 2.

The SYBASE trigger mechanism has the following
limitaiions:

1. the number of levels allowed for nesting triggers is
limited to 16;

2. a trigger cannot be fired more than once for a given
data manipulation; thus, if deleting a tuple ¢ in a
relation r; leads (cascades) to the deletion of another
tuple, ¢, in r; then the delete trigger associated with
r; is not activated by the deletionof 1 ;

3. the employment of the system provided relations
inserted and deleted does not provide a way of
keeping track of how new tuples replace existing
tuples in a relation.

Restriction (2) above means that cyclic referential
integrity structures involving referential integrity con-
straints associated with cascades delete-rules cannot be
comrectly specified in SYBASE. Restriction (3) above
means that a cascades update-rule can be implemented
only if updates of primary-key values referenced by other
tuples, are limited to single tuples at a time, that is, only if
the inserted and deleted relations consist of at most one
referenced tuple (see the note in the appendix). Finally,
Transact-SQL includes an operation called
TRUNCATE TABLE that deletes all the tuples in a relation
without activating the delete triggers, and thus potentially
undermining the referential integrity of the database.

The mechanism provided by INGRES for the pro-
cedural specification of referential integrity constraints is
conceptually similar to the SYBASE trigger mechanism.
Instead of triggers INGRES allows the specification of
rules. Like the triggers, rules are activaied when relations

-4-

are affected by data manipulations. However, while
triggers embody the referential integrity procedures, rules
are employed only as a mechanism for invoking the
referential integrity procedures which must be specified
separately. While SYBASE triggers are set-oriented (i.c.
are activated for sets of tuple manipulations), INGRES
rules are tuple-oriented (i.e. are activated for single tuple
manipulations). Accordingly, the inserted and deleted
relations provided by SYBASE are replaced in INGRES by
two tuples, called new and old: following a data manipu-
lation involving a relation r;, the old tuple contains the r;
tuple that is going to be deleted or updated, and the new
tuple is the tuple that is going to be inserted into ;, or the

create procedure
p_insertMANAGER (n_P_NR char(20), n_M_SSN int) as
declare msg varchar(80) not null; check_val integer;
begin
if n_P_NR is not null then
select count (*) into :check_val from PROJECT
where P_NR = :n_P_NR;
if check_val = 0 then
msg = "Failed inscrtion into MANAGER because
of missing reference to PROJECT";
raise error 1 :msg;
endif;
endif;
if n_M_SSN is not null then
select count (*) into :check_val from EMPLOYEE
where E_SSN = :n_M_SSN;
if check_val = 0 then
msg = "Failed insertion into MANAGER because
of missing reference to EMPLOYEE®,
raise error 2 :msg;
endif;
endif;
end;
create rule r_insertMANAGER after insert into MANAGER
execute procedure p_insertMANAGER (n_P_NR = new.P_NR,
n_M_SSN = new.M_SSN);
create procedure
p_deleteMANAGER (o_P_NR char(20), o_M_SSN int) as
declare msg varchar(80) not null; check_val integer;
begin
select count(*) into :check_val from EMPLOYEE
where M_SSN = :0_M_SSN;
if check_val > 0 then
msg = "Failed dcletion from MANAGER because
of existing reference from EMPLOYEE";

__ raisc error 1 :msg;
endif;

end;
create rule r_deleteMANAGER after delete from MANAGER
exccute procedure p_dcleteMANAGER (o_P_NR =old.P_NR,
0_M_SSN = old.M_SSN),

Figure 3. INGRES Rule Examplecs.

newly updated tuple of r;. Although INGRES, unlike
SYBASE, allows the specification of any number of rules
per relation, it is enough to specify an insert, a delete , and
an update rule for each relation. The referential integrity
procedures associated with the rules can be derived from
RefProc in a similar way to the derivation of trigger pro-
cedures meationed above. The procedures associated with
rules are specified in INGRES's (Extended) SQL, which is
richer and more flexible than SYBASE's Transact—SQL .
For example, the insert and delete rules and referential
integrity procedures for relation-scheme MANAGER of the
relational schema of figure 1(i) are shown in figure 3.

The INGRES rule mechanism does rot have the limi-
tations of the SYBASE trigger mechanism. However, both
SYBASE and INGRES have two important flaws in their
referential integrity mechanisms. First, both in SYBASE
and INGRES the removal of a relation-scheme R; leads to
the removal of the triggers and rules associated with R;,
but rot of the triggers and rules referring to R;, thus allow-
ing syntactically incorrect trigger and rule specifications.
Second, both SYBASE and INGRES nrovide data loading
facilities that bypass the triggers and rules, thus allowing
the introduction of data that is inconsistent with respect to
the referential integrity constraints expressed by triggers
and rules. Moreover, SYBASE and INGRES do not provide
any mechanism for detecting or removing such incon-
sistent data,

4. REFERENTIAL INTEGRITY IN DB2

Referential integrity constraints in IBM’s DB2 database
management system are specified declaratively (i.e. non-
procedurally). In this section we examine the main
characteristics and limitations of the DB2 referential
integrity mechanism.

Referential integrity specifications in DB2 are cou-
pled with the specifications for relation-schemes,
primary-keys, and nulls-not-allowed constraints; thus, the
DB2 specification for a relation-scheme R; includes the
specification of all the referential integrity constraints that
involve R; in their left-hand sides. For example, the DB2

CREATE TABLE EMPLOYEE (

PRIMARY KEY (E_SSN),

E_SSN CHAR(12) NOT NULL, S_SSN CHAR(12),

M_SSN CHAR(12), P_NR INTEGER,

FOREIGN KEY (S_SSN) REFERENCES EMPLOYEE
ON DELETE SET NULL,

FOREIGN KEY (M_SSN) REFERENCES MANAGER
ON DELETE RESTRICT,

FOREIGN KEY (P_NR) REFERENCES PROJECT
ON DELETE SET NULL)

Figure 4. Example of a Relation Definition in DB2.

specification for relation-scheme EMPLOYEE of the rela-
tional schema of figure 1(i) is shown in figure 4.

Referential integrity constraints are associated in
DB2 by default with restricted update-rules; DB2 does not
support nullifies and cascades update-rules.

Example 1. Suppose that in the relational database of
figure 1(iii) data manipulation 8 consists of changing from
a to d the value of atiribute P_NR in tuple (a) of relation
ry If the referential integrity constraints are associated
with cascades update-rules (as they actually are in the
schema of figure 1(i)) then 8 implies changing from a to
d the P_NR values in tuple (4 @) of relation r, and in tuples
(144a) and (4——-a) of relation r,. These changes
would be carried out automatically while enforcing the
referential integrity constraints. Conversely, if the
referential integrity constraints are associated with res-
tricted update-rules then & cannot be executed.

Allowing only restricted update-rules is misplaced
because restricting updates of attribute values should be a
property of the attributes, rather than depend on the tuple
references. Thus, while there is no reason for restricting
updates of regular (key or non-key) relational attributes,
updates of surrogate attributes are not allowed by
definition [1]. Consequently, if (primary and foreign) key
attributes are surrogate attributes then update-rules are not
needed; however, if key attributes are regular (non-
surrogate) attributes then the referential integrity con-
straints should not be associated with restricted update-
rules. For updates such as that in example 1 above, DB2
proposes an unreasonably complex altemative: tuples
affected by primary-key changes together with all the
tuples referencing them must be manually deleted and
then reinserted with the new values.

Certain referential integrity structures may have

‘unpredictable effects on the outcome of tuple deletions.

Example 2. Suppose that the relational schema of figure
1(i) includes only three referential integrity constraints, /,
and [5 associated with cascades delete-rules, and /4 asso-
ciated with a restricted delete-rule. Let deletion 8 involve
tuple (a) of relation r,. The outcome of & depends on the
order in which /,, /4, and /5 are enforced (i) if /¢ is
enforced first then tuples (144a) and (4——a) are
deleted from r,, thus jcading to the deletion of tuple (4 a)
from r, while enforcing /,; or (ii) if /, is enforced first
then & is blocked by tuple (4 a) of r,.

Example 3. Suppose that the relational schema of figure-
1(i) includes only referenta' integrity constraint /, associ-
ated with a restricted dclete-tale. Let deletion 8 involve
tuples (2 -—b)and 32 - b) of relation ry. The outcome
of & depends on the order in which the wples involved in
S are accessed: (i) if (32 - 56) is accessed first then both

tuples involved in & are deleted; or (i) if 2—--b) is
accessed first then § is blocked by wple (3 2-4).

The following restrictions imposed by DB2 on the
structure of referential integrity constraints are intended to
avoid problems such as those exemplified above.

Definition !. Let RS=(R, F U) be a relational schema,
where F and I denote sets of key dependencies and
referential integrity coastraints, respectively. Let
G;=(R,H) be the referential integrity graph associated
with RS . Given a relation-scheme R; of R, sets Casc (R;)
and Null(R;) defined below consist of the relation-
schemes whose associated relations may contain aples
that can be deleted, respectively updated, as a result of
deleting tuples in a relation associated with R;; and set
Restr(R;) defined below consists of the relation-schemes
whose relations may contain tuples that can block the
deletion of tuples in a relation associated with R;:
Casc(R;) is the subset of R consisting of R; and the
relation-schemes that are connected in G; to R; by a
directed path consisting of edges that correspond to
referential integrity constraints associated with cascades
delete-rules;

Null(R;) is the subset of R consisting of relation-schemes
R;, where R; is connected in G; to a relation-scheme of
Casc(R;) by an edge that corresponds to a referential
integrity constraint associated with a nullifies delete-rule;

Restr(R;) is the subset of R consisting of relation-
schemes R;, where R; is connected in G; to a relation-
scheme of Casc(R;) by an edge that comresponds to a
referential integrity constraint associated with a restricted
delete-rule;

Null’ (R;) is the subset of Null (R;) consisting of relation-
schemes R;, where R; is connected in G; to relation-
schemes of Casc(R;) by at least two edges corresponding
to referential integrity constraints associated with nullifies
delete-rules.

In DB2 the referential integrity constraints must satisfy the
following two restrictions:

T1. For every relation-scheme R; of R, sets Restr (R;),
Null(R;), and (Casc(R;)— {~;}) are pairwise dis-
joint, and set Null’ (R;) is empty.

T2: For every subset /* of / that consists of referential
integrity constraints corresponding to edges forming
a directed cycle in G, if I consists of a single con-
straint then this constraint must be associated with a
cascades delete-rule; otherwise at least two con-
strainis of /* must be associated with restricted or

! Our notations differ from the notations used in [6].

nullifies dclete-rules. B

For example, the referential integrity structures of
examples 2 and 3 above do not satisfy conditions T,
respectively T2. Conditions T1 and T2, however, disallow
noi only problematic referential integrity structures, but
non-problematic ones as well.

Example 4. If in the relational schema of figure 1(i)
referential integrity constraints /4 and /5 are associated
with nullifies delete-rules, and / is associated with a cas-
cades delete-rule then condition T1 is not satisfied. How-
ever, it can be verified that in this case the outcome of
deletions does not depend on the sequence in which /4, /4,
and J 5 are enforced.

The extra restriction imposed by T1 is meant to
avoid the effect of null constraints on deletions.

Example 5. Suppose that the relational schema of figure
1(@i) includes only three referential integrity constraints, /4
and / 5 associated with nullifies delete-rules, and / , associ-
ated with a cascades delete-rule. Suppose also that
relation-scheme R, is associated with null constraint (V)
R,:M_SSNESP_NR. Let deletion & involve tuple (a) of
relation r5. Note that without N; & would imply nullify-
ing (via I5) the P_NR values in tuples (1444a) and
(4 — - a) of relation r, and nullifying (via I 4 and /,) the
M_SSN value in tuple (1 4 4 a) of relation r,. However,
N, makes the outcome of & depend on the order in which
Iy, 1,, and I are enforced: (i) if /4 is enforced first then
tuple (4a) is deleted from r,, thus leading to the
nullification of the M_:SN value in tuple (14 4 a) of r,
while enforcing 74, the subsequent enforcement of /s
results in nullifying the P_NR values in tuples (14 - a)
and (4 - - a) of ry; or (ii) if /4 is enforced first then 8 is
blocked by tuple (144 a) of r,, where the P_NR value
cannot be nullified because of M.

Although DB2 does not support declarative
specifications of general null constraints such as N, above,
such constraints can be specified procedurally using a spe-
cial Validproc procedure which is activated (triggered) by
every tuple manipulation. However, even when null con-
straints are involved condition T1 is still too restrictive.

Example 6. Consider the relational schema of figure 1(i),
and supposc that refcrential integrity censtraint /4 is asso-
~iated with a nullifies dclete-rule, /4 is associated with a
cascades delete-rule, and /5 associated with a restricted
delete-rule. If relation-scheme R, is associated with null
constraint R,: P_NR B3 M_SSN * then condition T1 is not
satisfiecd. However, the outcome of deletions docs not

¢ Disregard the database state of figure 14iii) which does
not satisfy this constraint.

depend on the scquence in which /4, /4, and [are
enforced, because the null constraint ovemrides the
nullifies delete-rule associated with 74, thus making /4 to
behave as if it is associated with a restricted delete-rule.

Condition T2 easures that deletions do not depend
on the access sequence selected by the query optimizer
(c.g. see cxample 3 above). However, the restriction of not
allowing nullifies deizt:-rules for referential integrity con-
straints such as /, of figure 1(j) is misplaced.

Example 7. Suppose that the relational schema of figure
1(i) includes only referential integrity constraint [, associ-
ated with 2 aullifies delete-rule, and that relation-scheme
Ry (FMPLOYEE) is associated with relation r, of figure
1@ii). Consider the following data manipulation:

DM : DELETE FROM EMPLOYEE WHERE S_SSN IS NULL
which requires deleting from r, tuples that represent
employees without supervisors. DM has two possible exe-
cutions depending on the order in which the tuples of r,
are accessed: (i) if tuples 2—-b) and (4 ——a) are
accessed first, then tuples (32— 5) and (1 44 a) are also
deleted since the S_SSN values in these tuples tumn to nulls
while enforcing I, following the first deletions; or (ii) if
tuples (2—-—b) and (4 ——a) are accessed last, then no
other tuples are deleted.

The problem illustrated above, howeves, is not
caused by the existence of multiple access sequences for
DM, but by the ambiguity of DM. Thus, the two execu-
tions above correspond to different interpretations of DM :
while the first execution interprets the WHERE condition
as a precondition for the deletion, the second execution
interprets the WHERE condition as a postcondition for the
deletion. Accordingly, instead of not allowing nullifies
delete-rules for referential integrity constraints such as /,
above, ambiguous deletions such as DM should be
rejected.

Interestingly, a deletion equivalent to DM expressed
over a relational schema equivalent to the schema of figure
1(i) is not allowed by DB2.

Example 8. Suppose that the relational schema shown in
figure 1(i) is transformed as follows:

(a) relation-scheme EMPLOYEE is split into two relation-
schemes: EMPLOYEE (E_SSN, M_SSN, P_NR)

and SUPZRVISE (E_SSN, S_SSN);
(b) SUPERVISE is associated with null constraint
D ERE_SSN, S_SSN;

(c) SUPERVISE is involved in two referential integrity
constraints associated with cascades dclete-rules:

SUPERVISE [S_SSN] ¢ EMPLOYEE [E_SSN]

and SUPERVISE (E_SSN] ¢ EMPLOYEE [E_SSN].

It can be verified that this transformation results in a

schema equivalent 10 the schema of figure 1(i}, and that

the following data manipulation expressed over the new

schema is equivalent to DM :

DM’ : DELETE FROM EMPLOYEE WHERE E_SSN NOT IN
(SELECT E_SSN FROM SUPERVISE)

Like DM , DM’ is ambiguous and has two possible execu-
tions. However, deletions such as DM’ are detected by
DB2 as ambiguous and therefore rejected.

While examples «, 6, 7, and 8 above illustrate how
the conditions imposed by DB2 on the structure of referen-
tial integrity constraints can be excessively restrictive, the
example below involves a data manipulation problem that,
although caused by a referential integrity structure, is not
prevented by DB2.

Example 9. Consider relation-schemes R, and R, of the
relational schema of figure 1(i), and suppose that referen-
tial integrity constraint /, is associated with a cascades
delete-rule, so that conditions T1 and T2 are both satisfied.
If foreign-keys S_SSN and M_SSN associated with R, are
not allowed to have null values, then referential integrity
constraints /,, /,, and /4 prevent the insertion of tuples
(526b) and (652a) in ry, and of wple (6 b) in r,,
although once inserted these tuples satisfy /4, I',, and [5.

5. CONCLUSION.

We have examined the referential integrity mechanisms of
three relational daiabase management systems (RDBMS),
DB2, SYBASE, and INGRES. DB2 supports the declarative
specification of referential integrity constraints, but
imposes restrictions on the structure of referential integrity
constraints. We have shown that some of these restric-
tions limit unreasonably the specification of referential
integrity constraints in DB2; conversely, DB2 allows the
specification of some referential integrity structures that
cause data manipulation problems. We have also shown
that ambiguous data manipulations are not treated uni-
formly in DB2.

We have examined the mechanisms provided by
SYBASE and INGRES for the procedural specification of
referential integrity constraints. We have shown that
although conceptually similar, these mechanisms differ,
with the INGRES rule mechanism being more flexible and
less restrictive than the SYBASE trigger mechanism.
Unlike DB2, SYBASE and INGRES dn not provide any.
mechznism for detecting crroncous refercntial integrity
structures.

Compared with the relative simplicity of specifying
declarative referential integrity constraints in DB2,

specifying SYBASE triggers and INGRES rules is a tedious
and error-prone process. Triggers and rules can be made
transparent by providing users with a language for the
declarative specification of referential integrity con-
straints, and a compiler for generating code for trigger and
rule procedures. Such a compiler has been incorporated
into the Schema Design and Translation (SDT) tool
described in [10). SDT supports the design of both con-
ceptual (Extended Entity-Relationship) schemas and
abstract (ic RDBMS independent) relational schemas,
from which it can generate schema specifications for DB2,
SYBASE, and INGRES. The difficulty of specifying
SYBASE triggers and INGRES rules is illustrated by the
amount of code (over thcee thousand lines) generated by
SDT for the trigger and rule procedures involved in the
definition of relational schemas with thirty relation-
schemes.

The concept of referential integrity is still sur-
rounded by confusion, as illustrated by the successive
modifications of the original definition of [1] (see [3], [4]).
Thus, although it is known that certain referential integrity
structures may cause data manipulation problems (see
[4]), the nature of these problems has not been explored
and conditions for avoiding them have not been formally
developed. Safeness conditions necessary for avoiding
such data manipulation problems are formally developed
in [9]. In [9] we have shown that while some DB2 restric-
tions are more stringent than the safeness conditions, DB2
allows the specification of certain unsafe referential
integrity structures.

REFERENCES

{11 EF. Codd, "Extending the relational database model
to capture more meaning”, ACM TODS 4, 4 (Dec
1979), pp. 397434.

[2] M.A. Casanova, R. Fagin, and C.H. Papadimitriou,
"Inclusion dependencies and their interaction with
functional dependencies”, Journal of Computer and
Svsiem Sciences 28,1 (Feb. 1984), pp. 29-59.

[3] CJ. Date, "Referential integrity”, in Relational
Database-Selected Writings, Addison-Wesley, 1986.

[4] CJ. Date, "Referential integrity and foreign keys:
Further considerations”™, in Relational Database-
Writings 1985-1989, Addison-Wesley, 1990.

[S] S. Even, Graph Algorithms , Computer Science
Press, 1979.

{6] IBM Corporation, "IBM DATABASE 2 Referential
Integrity Usage Guide", June 1989.

(7] Ingres, Inc., "INGRES/SQL Refercnce Manual”,
Release 6.3, Alameda, California, Nov. 1989.

{8] D. Maicr, The theory of relational databases, Com-
puter Science Press, 1983.

[9] V.M. Markowitz, "Safe referential integrity structures
in relational databases”, TR LBL-28363, Dec. 1990.

{10] V.M. Markowitz and W. Fang, "SDT 3.1. Reference
manual®, TR LBL-27843, May 1990.

[11] Sybase, Inc., "Transact-SQL User’s Guide”, Release
4.0, Emeryville, California, Oct. 1989.

APPENDIX. A GENERIC REFERENTIAL INTEGRITY
PROCEDURE

A relational schema RS=(R,F ul UN),
where R, F, I, and N denote sets of relation-
schemes, key dependencies, safe referential
integrity constraints, and nulls-not-allowed
constraints, respectively;

Procedure RefProc(R;) is associated with
relation-scheme R; (X;) of R; RefProc(R;)
must be executed whenever a data manipula-
tion (ie. insertion, deletion, or update) affects a
relation r; associated with R;.

Notations:

Input:

Outline:

r; is the relation currently associated with R; ;
) is the data manipulation applied on r;:
8 € (insert, delete , update);
K; is the primary-key associated with R;;
FK; ,FK; are a foreign-key, respectively the union of all
foreign-keys, associated with R;;

To(R;) is the set of referential integrity constraints
involving R; in their right-hand sides:

(ReFK) S R IK]I R [FK, 1 R;[K; 1€ 1),

From(R;)is the set of referential integrity constraints
involving R; in their left-hand sides:
(R (FK_) R (K;)| R,(FK_1 < R;[K; € I');
is the relation currendy associated with R;,
where R; is involved in a referential integrity
constraint of From (R;);

r is the relation currently associated with R,,
where R, is involved in a referential integrity
constraint of To (R;);

change; is a rclation associated with attribute set X; X ’;
where the atributes of X’; arc rcnamed attri-
butes of X;: every tuple 1 of change; consists
of thc concatcnation of two tuples, ¢ and ¢,
where ¢ is an old (existing) tuple of r;, that is
deleted or updated following 8, and ¢ is a new
tuple that is inscried in r;, or replaces ¢ in r,

following &; for insertions 7[X;] is null, and for
deletions 1 [X *;] is null;

refin, consists of foreign-key values of r; that do not

have references to existing primary-key values
inr;: refin 2 “l"'i. (change;) —®lg(r});

refdel,, consists of foreign-key values of r, that refer-

ence deleted or updated primary-key values of
r;: refdel, & xlpg*_(r.) N (=dg(change;) -

tl"‘(change‘)).
RefProc (R;) :

L1 error =0,
2. case (&) of

a. (insert, update):

having restricted insert-rule do
_?_j(refin;, #) then error :=error+1;
print ‘r; tuples have no referencesin r;";
endif
enddo

b. (delete):
fzwchR,, [FK, 1cR:[K;]lin To(R;)

having restricted delete-rule do
i (refdely, # D) then error =error+1;
print ‘r; tuples are referenced by 7, tuples’;
endif
enddo.

c. (update):
for each Ry [FK,] C R;[K;]in To(R;)
having restricted update-rule do
if(refdel, # @) then error =error+l;

print ‘primary-keys in r; tuples are

endif referenced by r, tuples’;

enddo
endcase
3.if (error>0) then revoke & endif

IL1 if (error =0) then
2. case (8) of
a (delete):
for each R, [FK,) C R;[K;]inTo(R;)
having nullifies deletc-rule do

replace in r; the wples of
A= (1|t € ry, 317 € refdel,_s.L1[FK, }=t")
by (11 1[X,—FK,)=t [X,~FK,), 1(FK,_)=null,

where t € A}
enddo

Jor each R, [FK,] cR;[K;] in To(R;)
having cascades delete-rule do
delete from r; the tuples of
{tlt € ry, 3¢’ € refdel;,_ st t[FK, }=t"}
enddo

b. (update):
):g: each R, [FK; 1 c R;[K;) inTo(R;)

having nullifies update-rule do
replace in r; the wples of
A= {tlt € ry, 31’ € refdel,_st t[FK }=t')
by (t| 11X, —FK, Y=t [X,~FK,_), 1 [FK;_J=null,

where t € A).

enddo
Joreach R, [FK,; 1cR;[K;]inTo(R;)
" having cascades update-rule do
replace in r; the tuples of
A=(t|t € ry, 31" € refdel,_s.t 1[FK, }J=t')
by* (¢1 1(X,—FK,) = t[X,-FK,_),

1[FK J=tpalK ;). where 3 (1 € A and
‘w € Changei) s.L I[FKL] =‘.,‘[K"]).

enddo
endcase
endif W

Note : * can be replaced by:

{(t1 11X, —FK,) = t [X,—FK,) 1 [FK_ Vot ane [K),
where 3 (1 € A, t,,., € ny.(change;) and
L € my(change;)) st t[FK,] =t4lK;])

iff (|refdel,_| =0)or

(Irefdely_|=| ry,(change;)|= | - (change;)| = 1).

This condition underlies the enforcement of referental
integrity constraints associated with cascades update-rules
in SYBASE, where: deleted = ny (change;)

and inscrted= ny.(change;) .

- DATE
- FILMED

AN N LSIN Za Xa

)

AT AL

