
I

LBL-?G~04

ITt1I Lawrence Berkeley Laboratory
11;;1 UNIVERSITY OF CALIFORNIA

Informatiorl and Computing
Sciences Division
Presented at the 7th IEEE International Conference on
Data Engineering, Kobe, Japan, April 8-12, 1991, and to'"
be published in the Proceedings

Problems Underlying the Use of Referential Integrity
Mechanisms in Relational Database f\.lanagement Systems

V.M. Markowitz

December 1990

Prepared i'(Jf tht u.s. Departmei.t iif EnF.ig) Lindei Contidet Numbei DE-h-C03-76SF00098

DISCLAIMER

This document was prepared as an account Jf work sponsored by the
United States Government Neither the United States G.:>vernment
nor any agency thereof, nor The Regents of the University \)f Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri
vately nwned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark. m.mufac
rorer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur
poses.

Lawrence !3erkeley Laboratory is an equal opportunity employer.

..

LBL--30104

DE92 004304

Problems Underlying the Use of Referential Integrity
Mechanisms in Relational Database Management Systems

Victor M. Markowitz

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley I California 94720

December 1990

Proceedings of the 7th IEEE International Conference on
Data Engineering, Kobe, Japan, April 8-12, 1991

DISCLAIMER

This report was prepRred as an account of work sponsored by an agency of the United ~tat~s
Government. Neither the United States Government nor any agency ther~r. .n~r any o. thel.r
employees, makes any warranty, express or implied, or assumes any legal hablhty or responsI
bility for the accuracy, completeness, or usefulness of a.ny ~nform~tion, apparatus: product, or
p.ocess disclosed, or represents that its use would not mfnnge ~nvately owned nghts. Refer
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, r~m
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

This work was supported by the Director, Office of Energy Research, Applied Mathematics
Sciences Research Program and the Office of Health and Environmental Research Program of
the U.S. Department of Energy under Contract No. DE-AC03-76SFOOO98.

<:7-
"'-l.

DJSTRI!$UTION OF THIS DOCUiv1ENT IS UNLIMITED

PROBLEMS UNDERLYING THE USE OF REFERENTIAL INTEGRITY
MECHANISMS IN RELATIONAL DATAiJASE MANAGEMENT SYSTEMS·

Victor M.. Markowitz

Lawrence Berkeley Laboratory
Infonnation and Computing Sciences Division

1 Cyclotron R~ Berkeley, CA 94720

ABSTRACf

Referential integrity is used in relational data
bases for expressing existence dependencies
between tuples. Relational database manage
ment systemS (RDBMS) provide diverse
referential integrity capabilities. Thus, in some
RDBMSs refemttial integrity constraints can be
specified DOll-procedurally (declaratively),
while in other RDBMSs they must be specified
pocedurally. Moreovcc, some RDBMSs restrict
the class of allowed referential integrity COD

suaints. We examine in this paper the main
problems undedying the use of reft7Clltial
integrity mechanisms in three representative
RDBMSs, DB2, SYBASE, and INGRES.

1. OORODucnON

In relational databases existence dependencies between
tuples are expressed using referential integrity constraints
[I]; referential integrity constraints are specified by associ
ating a foreign-key in one relation with the primary-key of
another relation [3]. Referential integrity constraints are
usually associated with referential integrity rules that
define the behavior of the relations involved in these con
straints under insertion, deletion, and update.

Presently. several relational database management
systems (RDBMS), notably mM's OB2, SYBASE, and
INORES, support the specification of referential integrity
constraints. The referential integrity mechanisms provided
by these systems are different and difficult to use. Thus.
SYBASE [11] and INGRES [7] provide mechanisms
(triggers in SYBASE and rules in INORES) for specifying
referential integrity constraints procedurally. Conversely.

• Issued as technical report LBL-30104. This wonc was supported
by the Office or Health and Environmental Research J)"Og~m and the
Applied Mathematical Sciences Research Prog~m. "I'the Orfioe of Ener
gy Research. U.s. Dep.vtmcnl of Energy. under Conl~Cl DE-AC03-
76SF00098.

-1-

DB2 (6] SUpports non-procedural (declaralive)
specifications of referential integrity constraints, but with
restrictions on the structure of such constraints. In this
paper we examine and compare the referential integrity
mechanisms of DB2, SYBASE, and INORES, and discuss
the main problems underlying their use.

We examine the mechanisms provided by SYBASE
and INORES for the procedural specification of referential
integrity constraints. We show that although conceptually
similar, these mechanisms are technically different. with
the INGRES rule mechanism being more flexible and less
restrictive than the SYBASE trigger mechanism. The Wk
of specifying procedurally referential integrity constraints
in SYBASE and INORES is tedious and labor-intensive, and
therefore likely to be avoided by most users. Moreover,
SYBASE and INGRES leave to users the task of specifying
correct referential integrity structures.

Compared to the complexity of the procedural
referential integrity mechanisms of SYBASE and INORES,
the non-procedural referential integrity mechanism of DB2
is significantly simpler. Furthermore, DB2 has been
unique among RDBMSs in addressing data manipulation
problems caused by certain referential integrity structures.
OB2 attempts to avoid such problems by imposing restric
tions on the structure of referential integrity constraints it
allows. We show that these restrictions are too stringent
and do not prevent certain data manipulation problems.

The rest of the paper is organized as follows. In sec
tion 2 we briefly review the relational concepts used in this
paper. In section 3 we examine the mechanisms provided
by SYBASE and INGRES for the procedural specification
of referential integrity constraints. The DB2 mechanism
supporting the declarative specification of referential
integrity constraints is examined in section 4. Section 5
concludes this paper with a summary and a brief discus
sion of further issues. A generic procedural definition for
referential integrity constraints is given in the appendix.

2. PRELIMINARY DEFlNITIONS

We use in this paper some graph-theoretical concepts. Any
textbook on graph theory (e.g. [5]) can provide the neces
sary reference. We denote by G = (V, H) a directed
graph with set of vertices V and set of edges H • and by
"i --+"} a directed edge. h, from verteT. "i to vertex "J; h is
said to be inc:idenI from "i to "j' A dirc:cled path from
(start) vertex. "ie to (end) vertex "i. is a sequeacc of alter-

nating vertices and edges, " .. hj,Vi, ••• h}.. vi.' such that h). is
incident from "i- 10 v ... lSkSm. A dirc:cled cycle is a
dirc:cled path whose start vertex is also its cod vatex..

We review briefly below the reWional concepts
used in this paper. Details can be found in any textbook
(e.g. [8]) for the basic concepts. and in [2] for inclusion
dependencies. We denote by t a IUpIe and by trw) the
subtuple of t corresponding to the attributes of W. A
tuple is said to be total if it has only non-null values.

A relational schema RS is a pair (R • ~), where R is
a set of relation-schemes and ~ is 8 set of dependencies
ova R . We consider relational schernas with
II = F u I uN. where F , I, and N denote sets of func
tional dependencies, inclusion dependencies. and null con
straints, respectively. A relation-sche~ is a named set of
atlribu~ Ri (Xi)' where Ri is the relation-scheme name
and Xi denotes the set of attributes. Every attribute is
assigned a domain, and evay relation-scheme. R; (X;.), is
assigned a relation (value), ri. Two attributes are said to

be compatibk if they are associated with the same
domain, and attribute sets X and Y are said to be compati
ble iff there exists a one-to-one correspondence of compa
tible attributes between X and Y.

Let Ri(Xi) be a relation-scheme associated with
relation ri' The total projection of ri on a subset W of Xi
is denoted 7t4('i). ~lld is equal to {t[Wllt E 'i and
([W] is total).

Let Ri (Xi) be a relation-scheme associated with
relation 'i' A functional dependency (lver Ri is a state
ment of the fonn Ri : Y --+Z, where Y and Z are subsets
of Xi; Ri : Y --+Z is satlsPd by ri iff for any two tuples of
rio t and c'. t[Y]=t'[Y] implies t[2]=t'[Z]. A key
associated with Ri is a subset of Xi. Ki , such that
R j : Ki -+X; is satisfied by any rj associated with Rj and
there does not exist any proper subset of Ki having this
propeny. A relation-scheme can be associated with several
candidate keys from which one primary-key is chosen.

Let Xj(Xj) and Rj(Xj) be two relation-schemes
associated with relations'i and 'j' respectively. An inclu
sion dependency is a statement of the fonn
R;[Y] <;; R j [2], where Y and 2 are com pati ble subsets of
Xi and Xl' respectively; R;[Y] C Rj[Z] is satisfied by ri

-2-

and 'j iff n:!y (ri) c n:lz ('j). If 2 is the primary-key of
R j then Ri [Y 1 c R j [Z] is said to be key -based. and Y
is called afo,eign-key of R;. Key-based inclusion depen
dencies are refer~"tia1 integrity constraints ([1]. (3)).

Let RS = (R,ll) be a relational schema with II
involving referential integrity constraints. 100 referential
integ£;ty (~ted) graph associated with RS.
G1 = (V. H), is defined as follows: V =R. and
H = (Ri-HlJ I R1[y] c: Rj[Z] e I). The set oC referential
integrity consttaints of RS is said to be cyclic (resp. acy
clic) iff G1 Iw (resp. does not have) directed cycles.

A referential integrity constraint R; [Y] t: R j [K}] is
associated with an insert-rule. a delete-nde and an
Ilptlau-nde [3]. There is a unique insert-rule, restric~d.
which assens that inserting a tuple I into ri can be per
formed only if the tuple of rj referenced by I already
exists. 1be delete and update rules define the effect of
deleting (resp. updating the primary-key value in) a tuple
t' of rj : a rutric~d delete (resp. update) rule asserts that
the deletion (resp. update) of I' cannot be pafonned if
there exist 1Uples in ri referencing t' ; a cascadu delete
(resp. update) rule asserts that the deletion (resp. update)

L Relation-Schemes (Keys are underlined)

(R 1) EMPLOYEE (E SSN. S_SSN. M_SSN. P _NR)
(Rv MANAGER eM SSN. P _NR)
(R]) PROJECT ~

Nun Constraints (Nulls-NOl-AUowed)

EMPLOYEE: 0 Q E_SSN MANAGER: 0 Q M_SSN
PROJECT: 0 Q P_NR

Rererentlal Integrity Constraints
(f l > MA.NAGER (M_SSN] c: EMPLOYEE (E_SSN)
(f V EMPLOYEE (S_SSN] c: EMPLOYEE [E_SSN)
(I,) EMPLOYEE [M_SSN] c: MANAGER [M_SSN]
(f ~ MANAGER [P _NRJ c: PROJECT [P _NRJ
(f s> EMPLOYEE (P _NRJ c: PROJECT [P _NRJ
Rules Insert delete

(f l , 1)0 f.J ,estricu.d rutri.ct.e.d

(120 IS> ,atricud nulli/IU

U. Referential Integrity Graph:

tii. Database State:

(RI):rI=[~~ ~!l (R ,): rl=[~:J (R 3): r 3 =m
Abbr. : E(MPLOYEE). M(ANAGER). P(ROJEC1). S(UPERVISOR)

Figure 1. A Relational Database Example.

of t' implies deleting (resp. updating the subtuple t [Y J in)
the tuples of r, referencing t' ; and a null~s delete (resp.
update) rule asserts that the deletion (resp. update) of t'
implies setting to null the subtuple t [YJ in alilhe tuples t
of r, referencing t' .

A tudl constrainl is a restriction on the way nulls
appear in relalions [8]. Let Ri (Xi) be a relation-scheme
associated with relation ri. A IUllI constraint is a slate
mcnt of d..e fonn Ri : Y ~Z. where Y and Z are subsets of
Xi; Ri : Y ~z is SIJlisfied by ri iff for e\'el)' tuple t of ri,
t [Y] is total only if t [Z] is toIal. All relational database
management systems support the IUdls-not-ollowed type of
null constrainL A IUdls-nol-allowed constraint has the
fonn Ri : " ~Z; Ri : "~Z is satisfied by ri iff for every
tuple t of ri. the subtople t [Z] is lOcaL

An example of a relational schema involving key
dependencies. referentia! integrity consttaints, and nulls
oot-al1.owed constraints is shown in figme l(i); the
referential integrity graph corresponding to this schema is
shown in figure t(ii).

3. REFERENTIAL INTEGRITY IN SYBASE AND INGRES

SYBASE [11] and INORES 17l do not allow declarative
specifications of referential integrity constraints. I~~
they provide mechanisms for specifying such constraints
procedurally. In this section we examine the main prob
lems underlying the use of these mechanisms.

Referential integrity constraints can be enforced in a
database by executing a referOltial integrity procedure
whenever a relation is affected by a data manipulation
consisting of tuple insertions., deletions. or updates. Given
a data manipulation 8 involving one or several tuples of a
relation ri associated with relation scheme Ri , the referen
tial integrity procedure corresponding to ri must

(i) revoke 8 if the relation that would result by apply
ing S on ri' r'i, does not satisfy the referential
integrity constraints involving R, and associated
with restricted inse~ delete, or update rules;

(ii) initiate additional (corrective) data manipulations if
r'i does not satisfy the referential integrity con
straints involving Ri arid associated with nullifies or
cascades delete or update rules.

The definition of a generic referential integrity pro
cedure called RqProc is given in the appendix. RqI>roc
assumes that for every relation ri there exists a relation
called change;. that records how a given data manipula
Lion 0 would affect the tuples of ri • without actually apply
ing 0 on 'j. Every tuple t of changej consists or the con
catenation of two tuples. I and I' • where I is an existing
tuple of rj th:tt is going Lo be deleted or updaLed, and I' is

-3-

a new tuple that is either going to be inserted in rj. or is
going to replace t in ri •

The mechanism provided oy SYBASE for the pro
cedural specification of referential integrity constraints
involves a special kind of stored procedures, called
triggers that are activated (fired) when a relation is
affected by a dala manipulation. A trigger procedure is
associaled with a Wlique relation-~ say Ri • anG
employs two system provided relations, called tkleted and
inserud : if Ri is associated with relation ri then follow
ing a data manipulation the deleted relation consists of the
r; tuples that are going to be deleted or updated; the
inserted relation consists of tuples that are going to be
inserted into ri. or of newly updated tuples of ri. SYBASE
allows the specification of three trigger procedures per
relation: an insert, a delete. and an uptlJJk bigger pr0-

cedure. TIlese procedures can be derived straightforwardly
from RejProc as follows:

create trigger insertMANAGER on MANAGER for Insert as
begin

declare @row int. @insPROJEcr int. @nullPROJEcr int.
@insEMPLOYEEint. @nullEMPLOYEE int

select@row = @@rowcount
select @nullPROIEcr :"'.= count(·) from inserted

wher.e inserted.P_NR = null
select @insPROIECr = count(*) from inserted. PROIECI'

where inserted. P _NR = PROIECf.P_NR
select @insEMPLOYEE = count(*) from inserted. EMPLOYEE

where inserted.M_SSN = EMPLOYEE.E_SSN
if @nullPROmcr + @insPROJEcr +@insEMPLOYEE

begin != 2 * @row
print "Failed insertion into MANAGER because or
if @nullPROJECT + @insPROIECT != @row

print "Missing reference to PROIECl
if@nullEMPLOYEE + @insEMPLOYEE != @row

print "Missing reference to EMPLOYEE"
end rollback transaclion

end

create trigger delete.MANAGER on MANAGER for delete as
begin

declare @delEMPLOYEE int
select@delEMPLOYEE = countC·) from deleted. EMPLOYEE

where dc1elcd.~1_SSN = EMPLOYEE.M_SSN
if @deIEMPLOYEE > 0
begin

print "Failed deletion from MANAGER because of
existing reference from EMPLOYEE"

end rollback transaction

end

Note: @@rowcount = number of tuples affccted by inscnion

Figure 2. SYBASE Trigger Examples.

- insert trigger procedures correspond to Rqrroc [I(I,
203, 3)]; delete trigger procedures correspond to
RqProc [l(l, 2..b, 3), 11(1, 203)]; and updale trigger pr0-

cedures correspond RefProc [1(1, 2.a. 2.c, 3), n(1, 2.b)];

-relations deleted and inserted replace relation changei
as fonows: dekted is the projection of changei that
includes existing tuples of ri that are affected by the data
manipulation WlCb' consideration; and inselUd is the
projection of clu:L,ge; that includes new tuplcs that are
going to be insemd into'i following the data manipula
tion under consideration;

-the reIalioM1 algebra expressions in the definition of
RefProc are uanslaIed into SQL expressions .

. Trigger procedures are specified in SYBASE's
Transact-SQL which allows in addition to the standard
SQL the specification of control-Dow statements. For
example. the insert and delete nigger procedures for
rela1ion-scheme MANAGER of the relational schema of
figure I(i) are shown in figure 2.

The SYBASE trigger mechanism has the following
limitations:

I. the nwnber of levels allowed for n~g triggers is
limited to 16;

2. a trigger cannot be fired more than once for a given
data manipulation; thus, if deleting a tuple t in a
relation'i leads (cascades) to the deletion of another
tuple. t' , in ri then the delete trigger associated with
ri is not activated by the deletion of t' :

3. the employment of the system provide<! relations
inserted and deleted does not provide a way of
keeping track of how new tuples replace existing
tuples in a relation.

Restriction (2) above means that cyclic referential
integrity structures involving referential integrity con
straints associated with cascad.es delete-rules cannot be
correctly specified in SYBASE. Restriction (3) above
means that a casccu:les update-rule can be implemented
only if updates of primary-key values referenced by other
tuples, are limited to single tuples at a time, that is, only if
the inserted and deleted relations consist of at most one
referenced tuple (see the note in the appendix). Finally,
Transact-SQL includes an operation called
TRUNCATE TABLE that deletes all the tuples in a relation
without activating the delete triggers, and thus potentially
undermining the referential integrity of the database.

TIle mechanism provided by INGRES for the pro
cedural specification of referential integrity constraints is
conceptually similar to the SYBASE trigger mechanism.
Instead of triggers INGRES allows the specificalion of
rules. Like the triggers. rules are activaled when relalions

-4-

are affected by data manipulations. However, while
triggers emboti.y the referential integrity procedures, rules
are employed only as a mechanism for invoking the
referential integrity procedures which must be specified
separately. While SYBASE triggers are set-oriented (i.e.
are activated for sets of tuple manipulations), INORES

rules are tuple-oriented (i.e. are activated for single tuple
manipulations). Accordingly. the inserted and deleted
relations provided by SYBASE are replaced in !NGRES by
two tuples. called new and old: following a data manipu
lation involving a relation ri. the old tuple contains the ri
tuple that is going to be deleted or updaled. and the new
tuple is the tuple that is going to be inserted into ri, or the

create procedure
p_insertMANAGER (n_P _l\'R char(20), n_M_SSN int) as

declare msg varchar(80) not null; check_val integer;
begin

if n_P _NR is not null then

endif;

select count (.) into :checlc_ val from PROJECf
where P jlR = :n_P _NR;

if check_val = 0 then
msg = 'Failed insc~.ion into MANAGER because

of missing reference to PRomcr';
raise error 1 :msg;

endif;

if n_M_SSN is not null then

endif;
end;

select count (.) into :checlc_val from EMPLDYEE
where E_SSN = :n_M_SSN;

if check_val = 0 then
msg = 'Failed insertion into MANAGER because

of missing reference to EMPLDYEE';
raise error 2 :msg;

endif;

create rule r_insertMANAGER after Insert into MANAGER
execute procedure p_insertMAl~AGER (n_P _NR = new.P _l\'R.

n_M_SSN = new.M_SSN);
create procedure

p_deleteMANAGER (o_P _NR char(20), o_M_SSN int) as
declare msg varc'har(80) not null; check_val integer;
begin

select ~unt('4<) into :check_val from EMPLOYEE
where M_SSN = :o_M_SSN;

if check_val> 0 then

end if;
end;

msg = 'Failed deletion from MANAGER because
of exisling reference from EMPLOYEE';

raise error 1 :msg;

create rule r_delelcMANAGER after delete from MANAGER
execute procedure p_dclcte~1A_"AGER (o_P _NR = old.P _?\'R,

o_M_SSN = old.M_SS=');

Figure 3. INGRES Rule Examples.

newly updated tuple of r;. Although INORES, unlike
SYBASE, allows the specification of any number of rules
per relation, it is enough 10 specify an insert, a tkle~ • and
an u.pdale rule for each relation. The referential integrity
procedures associated wilh the rules can be derived from
RqProc in a similar way 10 the derivation of triggec pr0-

cedures mentioned above. The procedures associaIed with
rules ~ specified in INORES's (Exte~d) SQL. which is
richer and more 8exible than SYBASE's TranstJCl-SQL.
For example, the insert and tUk~ rules and referential
integrity procedures for relation-scheme MANAOER of the
rdational schema of figure I (i) are shown in figure 3.

TIle INGRES rule mechanism does not have the limi
lations of the SYBASE trigger mechanism. Howev«, both
SYBASE and INORES have two important flaws in their
referential integrity mechanisms. Farst. both in SYBASE
and INORES the removal of a relation-scheme R; leads 10
the removal of the triggers and rules associated with R· . ,
but not of the triggers and rules referring 10 R;. thns allow
ing syntactically incorrect crigger and role specifications.
Second. both SYBASE and INGRES provide data loading
facilities that bypass the triggecs and rules, thus allowing
the introduction of data that is inconsistent with JP..spect to
the referential integrity constraints expressed by triggers
and rules. Moreover, SYBASE and)NORES do not provide
any mechanism for detecting or removing such incan
sisterlt data.

4. REFER.ENTIAL INTEGRITY IN DBl

Referential integrity constraints in mM's DB2 database
management system are specified declaratively (i.e. non
procedurally). In this section we examine the main
characteristics and limitations of the DB2 referential
integrity mechanism.

Referential integrity specifications in DB2 are cou
pled with the specifications for relation-schemes
primary-keys, and nulls-not-allowed constraints; thus, th;
DB2 specification for a relation-scheme R. includes the
specification of all the referential integrity constraints that
involve R; in their left-hand sides. For example, the DB2

CREATE TABLE EMPLOYEE (
PRIMARY KEY (E_SSN),
E_SSN CHAR(l2) NOT NUu... S_SSN CHAR(12).
M_SSN CHAR(12), P_NR INTEGER.
FOREIGN KEY (S_SSN) REFERENCES EMPLDYEE

ON DELEfE SET NU~
FOREIGN KEY (M_SSN) REFERENCES MANAGER

ON DELEfE RESTRICT,
FOREIGN KEY (P _NR) REFERENCES PROJEcr

ON DELETE SET NULL)

Figure 4. Example of a Relation Definition in OB2.

-5-

specification for relation-scheme EMPLOYEE of the rela
tional schema of figure l(i) is shown in figure 4.

Referential integrity constraints are associated in
DB2 by default with restricted update-rules; DB2 does not
support rwllifiu and cascades update-rules.

Example 1. Suppose that in the relaliooal database of
figure Ifw) data manipulation ~ consists of changing from
a to d the value of attribute p ~ in tuple (a) of relation
T,. If abe referential integrity consttaints are associated
with casClJdes update-rules (as they actually ~ in the
schema of figure 10» then 8 implies changing from a 10
d the P JlR values in tuple (4 a) of relation r 1 and in tuples
(144 a) and (4 - - a) of relation r 1. These changes
would be canied out automatically while enforcing the
referential integrity constraints. Conversely. if the
referential integrity constraints are associated with res
trickd update-rules then 8 cannot be executed.

Allowing only restricted update-rules is misplaced
because restricting updates of attribute values should be a
property of the attributes, rather than depend ora the blple
references. Thus. while there is no reason for restricting
updates of regular (key or non-key) relational attributes,
updates of surrogate attributes are not allowed by
definition [1]. Consequently, if (primary and foreign) key
attributes are surrogate attributes then update-rules are not
needed; however, if key attributes are regular (non
surrogate) attributes then the referential integrity con
stIaints should not be associated with restricted update
rules. For updates such as that in example 1 above, DB2
proposes an unreasonably complex alternative: blples
affected by primary-key changes together with all the
tuples referencing them must be manually deleted and
then reinserted with the new values.

Certain referential integrity structures may have
. unpredictable effects on the outcome of tuple deletions.

Example 2. Suppose that the relational schema of figure
(0) includeS only three referential integrity constraints, I.
and Is associated with cascades delete-rules, and 14 ass0-

ciated with a restricted delete-rule. Let deletion 8 involve
tuple (a) of relation r 3. The outcome of 8 depends on the
order in which I I' I 4- and 15 are enforced (i) if I s is
enforced first then tuples (144 a) and (4 - - a) are
deleted from r 1, thus leading to the deletion of tuple (4 a)
from T2 while enforcing ' 1; or (ii) if 14 is enforced first
then ~ is blocked by tuple (4 a) of r 2'

Example 3. Suppose that the relational schema of figure·
lei) includes only referential intcgrity constraint 12 associ
ated with a restricted dclete-lu!~ Let deletion ~ involve
tuplcs (2 - - b) and (3 2 - b) of relation r l' The outc~me
of ~ depends on the order in which the tuples involved in
o are accessed: (i) if (3 2 - b) is accessed first then both

tupl~ invol ved in ~ are deleted; or (ii) if (2 - - b) is
accessed first then ~ is blocked by tuple (3 2 - b).

TIle following restrictions imposed by DB2 on the
structure of referential integrity constraints are intended to

avoid problems such as those exemplified above.

Definition t. Let RS =(R • F u I) be a Jdalional scIlerna,
where F and I denote sets of key dependencies and
referential integrity constraints., respectively. Let
G, =(R • H) be the referential integrity graph associated
with RS. Given a relation-scheme Rl of R .. sees Cose (Ri)
and Null (R,) defined below consist of the relation
schemes whose associated relations may contain tuples
that can be deleted. respectively updared. as a result of
deleting bJples in a rdatioo associated with R;: and set
Restr(Ri) defined below consists of the relation-schemes
whose relations may contain tuples that can block the
deletion of tuples in a relation associated with R; :

Case (R;) is the subset of R consisting of Ri and the
relation-schemes that are connected in G, to Ri by a
directed path consisting of edges that correspond to
referential integrity constraints associated with ClJSeodes
delete-rules;

NulI(R;) is the subset of R consisting of relation-schemes
R j , where R j is connected in G, to a relation-scheme of
Case (R;) by an edge that corresponds to a referential
integrity constraint associated with a mdli~ delete-rule;

RatT(Ri) is the subset of R consisting of relation
schemes R j , where Rj is connected in GJ to a relation
scheme of Case (R;) by an edge that corresponds to a
referential integrity consuamt associated with a restricted
delete-rule;

Null' (Ri) is the subset of Nu1l(Ri) consisting of relation
schemes R j' where R j is connected in G I to relation
schemes of Case (Ri) by at least two edges corresponding
to referential integrity constraints associated with nullifies
delete-rules.

In DB2 the referential integrity constraints must satisfy the
following two restrictions:

Tl: For every relation-scheml! Ri of R , sets Restr (Ri).
Null(R;). and (Case(R i)- {-"=d) are pairwise dis
join~ and set Null' (RJ is empty.

T2: For every subset J' of J that consists of referential
integrity constraints corresponding to edges forming
a directp1 cycle in G,: if I' consists of a single con
straint then this constraint must be associated with a
cascades delete-rule; otherwise at least two con
straints of I' must be associated with restricted or

t Our notations differ fro'll the notations used in (6).

-6-

nullifies delete-rules. •

For example, the referential integrity structures of
examples 2 and 3 above do not satisfy conditions TI.
respectively TI. Conditions Tl and n. however, disallow
not only problematic referential integrity suuctures. but
non-problematic ones as well

Example 4. If in the relational schema of figure l(i)
referential integrity constraints 13 and Is are associated
with nullifies delete-rules. and 14 is associated with a cas
CJldu delete-rule then condition Tl is not satisfied. How
ever, it can be verified that in this case the outcome of
deletions does not depend on the sequence in which 13• 14 •

and Is are enforced.

The extra restriction imposed by Tl is meant to
avoid the effect of null constraints on deletions.

Example 5. Suppose that the relational schema of figure
10) includes only three referential integrity constraints, 13
and Is associated with nullifies delete-rules, and 14 associ
ated with a cascades delete-rule. Suppose also that
relation-scheme R 1 is associated with null constraint (N I)

R 1: M_SSN ~ P _NR. Let deletion ~ involve tuple (a) of
relation r3. Note that without N 1 ~ would imply nullify
ing (via Is) the P _NR values in tuples (144 a) and
(4--a) of relation rl~ and nullifying (via 14 and 13) the
M_SSN value in tuple (1 4 4 a) of relation r I. However.
N 1 makes the outcome of 0 depend on the order in which
13• 14• and Is are enforced: (i) if 14 is enforced first then
tuple (4 a) is deleted from r2, thus leading to the
nullification of the M_~~N value in tuple (144 a) of r 1

while enforcing 13; the subsequent enforcement of Is
results in nullifying the P _NR values in tuples (I 4 - a)
and (4 - - a) of r 1; or (ii) if I s is enforced first then 0 is
blocked by tuple (1 4 4 a) of r 1. where the P _NR value
cannot be nullified because of N l'

Although DB2 does not support declara,jve
specifications of general null constraints such as N 1 above,
such constraints can be specified procedurally using a spe
cial Validproe procedure ,,:hich is activated (triggered) by
every tuple manipulation. However. even when null con
straints are involved condition Tl is still too restriclive.

Examplt 6. Consider the relational schema of figure 1 (i),
and suppose that referential integrity ccnstraint 13 is asso
" lated with a nullifies dektc·rule. 14 is associated with a
cascades delete-rule, and 15 associated with a restricted
delete-rule. If relation-scheme R 1 is associated with null
constraint R I: P _NR ~ M_SSN t then condition Tl is nOl
satisfaed. Howevct, the outcome of deletions docs not

t Disregard the dalahJ~c Slate of figure 1 (iii) which does
not salisfy lhis constrain!.

depend on the sequence in which 13• I... and I s are
enf~ because the null constraint ovenides the
mdl~s delete-rule associated with I .. , thus making I .. 10

behave as if it is associated with a restriCled delete-rule.

Condition T2 ensures "'at deletions do not depend
on the access sequmce selected by the query optimizer
(e.g. see example 3 abo"ve). Howevel'.1he resbiction of not
allowing IIJdliPf ~ ~-rulcs for referential integrity con
straints such as 12 or figure l(i) is misplaoed.

Example 7. Suppose that the relational schema of figure
l(i} includes only rd'el'Clllial integrity consttaint 12 associ
ated with a nullijiu delete-rule. and that relation-scheme
R I (r~lDYEE) is associatc<l with relation r I of figwe
letii}. Consider the following data manipulation:
DII : DELETE FROM EMPLOYEE WHERE S_SSN IS NUll..

which reqlJi.RS deleting from r 1 tuplcs that represent
employees withoot supervisors. DM has two possible exe
cutions depending QIl the order in which the tuples of r 1

me accessed· (i) if tuples (2 - - b) Mid (4 - - a) are
accesKod first, then tuples (3 2 - b) and (1 44 tJ) are abo
deleted since the S_SSN values in these tuples tum to nulls
while enforcing 12 following the first deletions; or (ti) if
tuples (2 - - b) and (4 - - a) are accessed last. then no
other tuples are deleted..

1be problem illustrated above, howevCl, is not
caused by the existence of multiple access sequericcs for
DM , but by the ambiguity of DM. Thus, the two execu
tions above COI1'CSp)nd to different interpretations of DM:
while the Iirst execution interprets the WHERE condition
as a precondition for the deletion, the second execution
intezprets the WHERE condition as a postcondition for the
deletion. Acconfingly, instead of not allowing nullifies
delete-rules for referential integrity constraints such as 12
above, ambiguous deletions such as DM should be
rejected.

Interestingly. a deletion equivalent to DM expressed
over a relational schema equivalent to the schema of figure
1 (i) is not allowed by DB2.

Example 8. Suppose that the relational schema shown in
figure 1(i) is transformed as follows:

(a) relation-scheme EMPLDYEE is split into two relation-
schemes: EMPLDYEE (E SSN. M_SSN. P ~NR)

and SUPJRVISE ~E SSN. S_SSN);

(b) SUPERVISE is associated with null constraint

o ~ E_SSN. S_SSN;

(c) SUPERVISE is involved in two referential integrity
constraints associated with cascades delete-rules:

SUPERVISE [S_SSN] C EMPLOYEE [E_SSN]

-7-

and SUPERVISE [E_SSNl C EMPLDYEE [E_SSNJ.

It can be verified that this transfonnation results in a
schema equivalent to the schema of figure 1 (i), and that
the following data manipulation expressed over the new
schema is equivalent to DM :
011' : DELETE FROM EMPLOYEE WHERE E_SSN NOT IN

(SELECf E_SSN FROM SUPERVISE)

Like DM • DM' is ambiguous and has two possible execu
tions. However, deletions such as DM' are detected by
DB2 as ambiguous and therefore rejected.

While examples 4, 6, 7, and 8 above illusttaIC how
the conditions imposed by OB2 on the SUUCt1l.rC of referen
tial integrity constraints can be excessively restrictive. the
example below involves a data manipulation problem that.
although caused by a referential integrity sttucture. is not
prevent£:d by DB2.

Example 9. Consider relation-schemes R 1 and R 2 of the
relatiunal schema of figure l(i), and suppose that referen
tial integrity constraint 12 is associated with a casClJdes
delete-rule~ so that conditions Tl and 1'2 are both satisfied.
If foreign-keys S_SSN and M_SSN associated with R 1 are
not allowed to have null values. then referential integrity
constraints II, 12, and 13 prevent the insertion of tuples
(526 b) and (652 a) in r., and of tuple (6 b) in r2,
although once inserted these tuples satisfy II' 12, and 13•

s. CONCLUSION.

We have examined the referential integrity mechanisms of
three relational daUibase management systems (RDBMS).
OB2, SYBASE, and INORES. DB2 supports the declarative
specification of referential integrity constraints. but
imposes restrictions on the structure of referential integrity
constraints. We have shown that some of these restric
tions limit unreasonably the specification of referential
integrity constraints in DB2; conversely. OB2 allows the
specification of some referential integrity structures that
cause data manipulation problems. We have also shown
that ambiguous data manipulations are not treated uni
fonnly in OB2.

We have examined the mechanisms provided by
SYBASE and INORES for the procedural specification of
referential integrity constraints. \Ve have shown that
although conceptually similar. these mechanisms differ.
with the INORES rule mechanism being more flexible and
less restrictive than the SYBASE trigger mechanism.
Unlike DB2, SYBASE and INGRES do not provide any
mecha.oism for detccting erroneous referential integrity
structures.

Compared with the relative simplicity of specifying
dcclarative referential integrity constraints in DB2.

specifying SYBASE triggers Md INGRES rules is a tedious
and error-prone process. Triggers and rules can be made
tmnsparent by providing users with a language for the
declarative specification of referential integrity con
straints. and a compiler for generating code for trigger and
rule procedures. Such a compiler has bcc:o incorporated
into the SchemD Dulgn and Transl4lioll (SOT) 1001
described in [10]. SOT supports the design of both con
cepcual (Extended Entity-Relationship) schcmas and
abstract (Lf ROBMS independent) relational ~
from which ,t can generate schema specifications for DB~
SYBASE, and INORES. The diflicuby of specifying
SYBASE triggers and INORES rules is iIlustraUd by the
amount of code (over aruee thousand 1iDes) genecated by
SOT for the bigger and rule procedwes involved in the
definition of relational schemas widl Ibirty relation
schemes.

The concept of referential integrity is still sur
rounded by confusion, as illustrated by the successive
modifications of the original definition of [1] (see (3], [4]).
Thus, although it is known that certain referential integrity
structures may cause data manipulation poblems (see
[4]), the nature of these problems has DOt been explored
and conditions for avoiding them have DOt been fonnally
developed. Sa/en.ess conditions necessary for avoiding
such data manipulation problems are formally developed
in [9]. In [9] we have shown that while some DB2 restric
tions are more stringent than the safeness conditions, DB2
allows the specification of certain unsafe referential
integrity structures.

REFERENCES

[1] E.F. Codd, "Extending the relational database model
to capture more meaning", ACM TODS 4, 4 (Dec
1979), pp. 397-434.

[2] M.A. Casanova, R. Fagin, and c.H. Papadimitriou.
"Inclusion dependencies and their interaction with
functional dependencies", Journal of Computer and
System Sciences 28,1 (Feb. 1984), pp. 29-59.

[3] CJ. Date, "Referential integrity·, in Relational
Dalabase-Selected Writings, Addison-Wesley, 1986.

[4] CJ. Date, "Referential integrity and foreign keys:
Further considerations", in Relalional Database
Writings 1985-1989, Addison-Wesley, 1990.

[5] S. Even, Graph Algorithms , Computer Science
Press, 1979.

[6] IBM Corporation, "mM DATABASE 2 Referential
Integrity Usage Guide", June 1989.

[7] Ingres, Inc., "INGRES/SQL Reference Manual".
Release 6.3, Alam~ California, Nov. 1989.

-8-

(8] D. Maier, The theory of relational databases, Com
puter Science Press, 1983.

(9) V.M. Marlcowitz, "Safe referential integrity structures
in relational databases", TR LBL-28363, Dec. 1990.

[10] V.M. Markowitz and W. Fang, "sur 3.1. Reference
manual·, TR LBL-27843, May 1990.

[11] Sybase, Inc., "Transact-SQL User's Guide", Release
4.0, Emc-zyville, California, Oct 1989.

APPENDIX. A GENERIC REFERENTIAL INTEGRITY
PROCEDURE

Input: A relational schema RS =(R ,F u I uN),
where R , F , I • and N denote sets of !elation
schemes, key dependencies. safe referential
integrity constraints, and nulls-DOt-allowed
constraints, respectively;

OutHl'!!: Procedure RtfProc (R;) is associated with
relation-scheme R; (X;) of R; RefProc (R;)
must be executed whenever a data manipula
tion (Le. insertion, deletion, or update) affects a
relation ri associated with R; .

Notations;

T; is the relation currently associated with R; ;

~ is the data manipulation applied on r;:
~E (insut.~k~,~);

K; is the primary-leey associated with Ri ;

FK;J' FK; are a foreign-leey, respectively the union of all
foreign-leeys, associated with R; ;

To (R;) is the set of referential integrity constraints
involving R; in their right-hand sides:
(R1 [FKk..l cR;[K;] I R1 [FK .. 1 CRi[Ki] e I);

From (R;) is the set of referential integrity constraints
involving R, in their left-hand sides:
{R;[FK ...] CRj[Kj] I R,[FK ... 1 cRj[Kjl e I};

rj is the relation currently associated with Rj ,
where Rj is involved in a referential integrity
constraint of From (R;);

rt is the relation currently associated with RI;t
where Rt is involved in a referential integrity
constraint of To (R;);

change; is a relation associated with atuibute set Xi X'i,
where the auributes of X'i arc renamed attri
butes of Xi; every tuple t of change; consists
of the concatenation of two tuples, t and I' ,

where I is an old (existing) tuple of r;, that is
deleted or updated following 0, and c' is a new
tuple that is insened in 'j, or replaces I In 'j

,.

following ~; for insertions I[Xi] is null, and for
deletions I[X ' i] is null;

consists of foreign-key values of ri that do not
have references to existing primary-key values
in rj: refine. t JtJ.FKr. (change.) -KJ.c,(rj); ..
consists of foreign-kcy values ol't that refer
ence deleted or updated primaIy-key values of
": re/iU1t.. ~ Kl'K (rt) " (d. .. (cAange;)-

k..

ReJProc (R.) :
KJ,c~(change.)).

I. 1 error:= 0;

2.. f!!:!! (i) of

a. (iIum.~):
for each R, [FKi..1 t: R} [Kj] in From (R,)

having rutriaed insert-rule do

!(refini.. ~0) Ilu!n error :=error+l;

print ari tuples have no references in r}';

endif

enddo

bo (~):
for each R" [FKt..] t: R, [K. 1 in To (Rc)

having rutricted delete-rule do

if(rej'tlt!lt. ¢") Ilu!n error:= error+l ;

print ari tuples are referenced by rj; tuples';

endif

enddo

Co (lIpdDte):
for each R" [FKt..] ~ R; [Ki] in To (Ri)

having restricted update-rule do

if..(refdelt. ¢") I~n error:= error+l ;

print aprimary-keys in ri tuples are

endif

enddo

endcase

referenced by ric tuples';

3. if (error>O) lhen revou ~ endif

ILl if (error = 0) then

2~ (li) of

a (dI!lek):
for each RA: [FKl..l ~ Ri [Kd in To(R;)

having nullifies delf".le-rule do

-9-

replace in r1 the tuples of

A= {tit E r10 3 t' E refde11.. Sol I [FKt.]=l' }

by {/I/[XA;-FKl..]=l [X1-FK ...], I[FK ...]=null,

enddo
where I E A}

for each Rj;[FKt.] c:Ri[K,l in To (R,)

having c:asauks dekle-rule do

iUlele from rIc the tuples of

(III e rIc. 31' e ,qtk1t. S.l t[FKt..)=t')

enddo

b. (update):
for each R,,[FK ... 1 t:R,[K,] in To (R.)

having nullifies update-rule do

replace in r" the tuples of

A= (III Eric. 3 I' e rej'lkZt. S.l I [FKt..)=t' 1
by (II I[X,,-FKl..J=t [X1-FKt..]. t[FKt..l=mdI,

enddo
where leAl.

for each R1 [FK ... 1 t: Ri [K,] in To (R.)

having cascada update-rule do

replace in r" the tuples of

A= {II I E rIc. 3 t' e refdel ... Sol I [FK ...]=l' }

by· (II I(X,,-FKk..J = I [X1-FK ...].

enddo

endcase

endif •

I(FK.l:..l=lMpCl[K';], where 3 (t e A and
lupd E change;) S.l t[FKt.] = lifM[K;1}.

NOle: • can be replaced by:

(/1/[X1-FKl..] = 1 [Xt-FK ... 1./[FKl..]=l1WW [K'i 1,

where 3 (t E A, luw E xx', (change;) and

l.,ld E 1tx,(change;)) S.t. t [FKt.] = tol4[Kdl

iff (Ire/del ... I = 0) or

(Ire/del ... 1=1 1tX,(changei) 1= l1tx,.(change;)I = I).
This condition underlies the enforcement of referential
integrity constraints associated with cascades update-rules
in SYBASE, where: deleted= 7rx. (change ..)

and inserled = Trx', (change;) .

I ,I , " . I I i I II I I II", Ii " I I i I;' I II" II

