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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Analysis of Transformation-Induced Crack Closure 

Z. Mei and J. W. Morris, Jr. 

Center for Advanced Materials, Lawrence Berkeley Laboratory and 
Department of Materials Science and Mineral Engineering, University of California at 

Berkeley, Berkeley, CA 94720, USA 

The defonnation-induced martensitic transfonnation around a fatigue 
crack results in the phenomenon of crack closure. By approximation of the 
residual stress field due to the volume expansion of a slab of transfonned 
zone as that of an edge dislocation pair, we have derived a closed-form 
solution of crack opening as a function of external loading. 

I. IN1RODUCflON 

The previous studies l -12 indicated that the defonnation-induced martensitic 
transfonnation that occurs at the tip of a growing fatigue crack in metastable austenitic 
steels reduces the crack propagation rate in both the threshold and Paris regions. One of 
the explanations for that phenomenon is the residual stress field induced by the volume 
expansion associated with the martensitic transfonnation. The stress/strain concentration at 
a crack tip induces the martensitic transformation; as' it propagates, the crack is enveloped 
with a transformed zone. The elastic constraint of the surrounding matrix material on the 
dilatant transformed zone puts the crack under compression. 

It was proposed by Suresh and Ritchie13 that the dilatant transfonnation around a 
fatigue crack should induce "crack closure". The crack closure, in the study of fatigue 
crack propagation, refer to the premature contact between the crack faces during the tensile 
portion of the fatigue cycle. It have been well documented and reviewed 13 that the crack 
closure may be resulted from the plastic deformation at the crack tip, oxide deposits formed 
within the crack, irregular crack surface morphologies, and viscous media penetrated inside 
the crack. The crack closure induced by the martensitic transformation has been observed 
as well.8•9•12 However, the crack closure measurement data could not quantitatively 
explain the reduction of the crack growth rate in metastable austenitic stainless steels. 12 

It is our intention here to develop an analytic model for the crack closure induced by 
the martensitic transfonnation, in order to understand the displacement field of a crack that 
is under the transfonnation-induced residual compressive stress and exactly how the crack 
opens and closes under external cyclic tensile loading. The model reported here 
approximates the residual stress field of a slab of dilatant transformed zone with the stress 
field of a pair of edge dislocations, the changing of the opened crack length with increasing 
external tensile load is then calculated. The results from this model should also shed light 
on the crack closure induced by the oxide deposit, crack face irregularity, and viscous 
media. 
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II. ANALYSIS 

Residual Stress 

Assume that it is a two dimensional plain strain condition. As shown in Fig. 1, a 
through-thickness straight crack with length (2 ao) is embedded in a rectangular 
transformed zone of width (2 w) and length 2 (ao + 0). The zone itself is located inside an 
infmitely large elastic body. The strain associated with the transformation is a pure volume 
expansion described by eT (=!:l.V / V). The residual stress field induced by the presence of 
the transformed zone is modeled as the stress field of a pair of dislocations. The crack­
opening stress, cryy along y = 0, is plotted in Fig. 1, and can be expressed as,14 

ad _ bu 1 bu 1 
yy - - 21t(1-v) ao+O-x - 21t(I-v) ao+O+x (1) 

where the first and second terms represent the stress fields of two edge dislocations located 
at (x = ao + 0) and (x = - ao - 0) respectively, u is the shear elastic constant, v the Poisson's 
ratio. It is seen from Fig. 1 that the compressive stress reaches the maximum value at the 
tip of the crack and the minimum value at the c~nter of the crack, 

-A bu 1 1 
O"yy(max) = - (~ + 2 +0) 

21t(l-v) 0 ao 
(2a) 

-A ( . ) bu 1 o"'yy mm = - ~. 
1t(I-v) ao 

(2b) 

The Burger's vector of the dislocations, b, should be the displacement of the 
transformed zone relative to the non-transformed matrix materials. The vector b is 
approximately along the y axis and with the value of (2 weT), because the dimensions 
along x and z axis of the transformed zone are much larger than that along y axis, the 
displacement associated with a pure dilatant plate is mostly along the normal direction of the 
plate. 

Loading and Crack Opening 

It is supposed that this cracked elastic body is under a remotely applied tensile 
stress. cro. Let cro, now, increase from zero. If the stress cro is small, the crack remains 
closed due to the residual compressive stress. As the stress cro increases to a critical value 
such that crO ~ adyy(min) of Eq (2b), the crack starts to open from the center, because the 
central part of the crack is under the smallest compressive stress. The opened part of the 
crack extends towards the crack tip as cro increases further. . 
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The determination of the opened part length of the crack as a function of the 
remotely applied stress 0'0 is analogical to determination of the plastic zone size at a crack 
tip. While the yield stress is constant everywhere inside an elastic body, the stress to open 
the crack varies as the absolute value of the compressive residual stress. Two methods 
were used in fracture mechanics to determine the crack tip plastic zone size, the Irwin 
plastic zone correction and the Dugdale stripe approach. Here the Dugdale approach 15 is 

("r modified to calculate the crack opening with increasing 0'0. 

,j The basic assumption is that the stress level at the tip of the opened part of the crack 

l. 

[ ... 

can not go to infinite, the stress singularity should disappear. That means that the stress 
intensity Ka due to the remotely applied 0'0 has to be compensated by the stress intensity 
Kp due to the compressive residual stress adyy, 

Ka+Kp=O. (3) 

The requirement (3) permits determination of the opened part length xo of the crack. 

The stress intensity Ka of a central crack of length (2 xo) in an infmitely large elastic 
body under remotely applied 0'0 is 

Ka = 0'0 ~ 1t XO. (4) 

The stress intensity Kp of the symmetrically distributed (with respect to x = 0) loads on the 
crack surfaces can be calculated by integration of the stress intensity solution of two pairs 
of concentrated splitting forces P acting on (-x, 0) and (x, 0) of the crack surfaces. Such 
solution is,16 

Therefore, 

2 1 
KG = -- -;::::::=====7-

~1tXO ...J 1- (x/xO)2 

xo 
K 

_j_2_ O'yy(x)dx 
p-

~1tXO ...Jl-(x/XO)2 

After replacing O'yy (x) in (6) with adyy (x) of (1), (6) becomes, 

xo XO 

P ..J1tXO 1t(1-v) ~1-(x/xo)2 ao+8-x ...Jl-(x/XO)2 ao+O+ x 
K = __ 1_ bu (j 1 dx + j 1 dx) 
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1 bu 
= - ...Jnxo n(l-v) 

xo 

f 
1 dx 

~ 1- (x/XO)2 ao+O+x 

-xo 

1C/2 

- -{XQ bu f de 
-fie n(1-v) ao+O+xosin8 · 

-1C/2 

It is listed in reference 17 that, 

f 
dz 2 a tan~)+b 

a+bsinz = ~a2-b2 arctan ~a2-b2 ' 

Using that result, we have, 

After inserting (9) and (4) into (3), (3) becomes, 

bu 1 
0'0 = . 

n(1-v) ~(ao+O)2-xQ2 

Reform (lOa), express the crack opening XO in terms of the extemalloadO'o, 

(7) 

(8) 

(9) 

(lOa) 

(lOb) 

The value of 0'0 when the crack just starts to open can be calculated by replacing XO 
= 0 in (lOa), 

( . ) bu 1 
0'0 mm = ~ 

n(1-v) ao+o 
(11) 

The result is consistent with that of (2b). The value of 0'0 to fully open the crack can be 
evaluated by replacing xo in (10) with ao, then 

bu 1 
0'0 (max) = -- -;:::====-=-­

n(1-v) ~2oao+02 

The stress intensity when 0'0 = 0'0 (max) is, 

Ko (max) = 0'0 (max) ...J nao 
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= 
bu 13ij 

11t(1-v) ~28ao+82 

Numerical Results 

Rewrite (lOb) in tenns of the non-dimensional variables, 

cr*o - cro x*o = xo w* = w 8* = i 
- E/ (1-v)2 ' ao ' ao ' ao 

where E is the Young's elastic modulus~ we have, 

* xo= 

(13) 

(14) 

(lOc) 

Now we use AISI 304 austenitic stainless steel as an example and input some practical 
values for the parameters in (lOc). The volume expansion eT associated with y to a' 
martensitic transfonnation is about 2%; the transfonnation zone width w is approximately 
0.5 mm; the zone size ahead of the crack 8 is in the same range as w; the crack length a is 
about 10 mm.1 2 For these conditions, the crack opening x*o vs. extemalload cr*o is 
plotted in Fig. (2). 

III. DISCUSSION 

Residual "Stress 

It is an approximation to represent the residual stress field due to a rectangular 
dilatant transfonnation zone with that of a pair of edge dislocations. The approximation is 
accurate only when the width is much smaller than the length of the rectangular zone. The 
exact solutions for the stress field in an infinitely large body due to a rectangular element 
that has an initial homogeneous strain have been solved. IS The expression for cryy(x) is 
very complicated. However, the general trend of cryy is similar to that of a edge 
dislocation: it is compressive inside the rectangular and tensile outside the rectangular; it has 
smallest compressive stress at the center, and increases to infinite at the edge. 

Stress Intensity Reduction by the Residual Stress 

1<0 (max) in (13) represents the maximum possible reduction of the stress intensity 
by the compressive residual stress field. When a cracked body is under a cyclic tensile 
loading, the effective cyclic stress intensity at the crack tip changes from Kmax - Kmin to 
Kmax - 1<o(max), if 1<o(max) > Kmin; When a cracked body is loaded monotonically, its 
fracture toughness increased by the amount of 1<o(max). 
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It has been well documented that the fracture toughness of certain ceramics can be 
enhanced by the martensitic transformation. The amount of enhancement were estimated 
theoretically with the weight function method by McMeeking and Evans. 19 Their result is 
that, 

E 
Ka = 0.22 e T {W (1-'vY (15) 

It should be interesting to compare (15) and (13). Since a» 0, (13) can be approximated 
as, 

(16) 

o is in the same size range with w, i.e. 0 = a w. For the transformation zone defined in 
reference 19, a = (8 / 3V). If v is chosen as 1/3, we can rewrite (16) as, 

(17) 

Crack Closure Measurement 

The crack closure is usually determined by the unloading displacement vs. load 
curve. The slope of the curve, compliance, depends on the crack length. During unloading 
cycle, when the crack faces starts to contact near the crack tip, the crack length is reduced, 
so is the compliance, therefore the displacement vs. load straight line starts to bend. The 
analysis described above present a method to calculate the crack opening vs. the applied 
load. For specimen geometries that are different from the infinitely large plate with a 
central crack, the similar procedure of (3) through (13) can still applied. With the 
knowledge of the crack opening vs. load, plus the formula of displacement vs. crack length 
(usually listed in the stress analysis handbooks), the displacement vs. load curve can be 
estimated. 

It is seen from Fig. 2 that the crack does not open until ao reaches aO(min), 
immediately after that, it opens very fast (dxO / daO = 00 when ao = ao(min», as the crack 
opens further it gets more and more difficult to open (dXO / dao decreases). The unloading 
is a reverse process of the loading. It is easy to see that the initial point where the 
unloading straight line starts to bend is very difficult to locate. It implies that the accuracy 
of determination of Ka(max) from the compliance measurement is inherently difficult to 
achieve. 
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y and cryy 

Fig. 1: A crack embedded in a rectangular transformed zone. The residual stress 

associated with the dilation of the transformation is close to the stress fields of a pair 

dislocations located at both edges of the rectangle. 
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Fig. 2: Predicted crack opening vs. remotely applied tensile stress, see the text 

for the parameters used. 
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